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Abstract: Southern Ocean primary productivity is primarily controlled by adjustments in light and 15 

iron limitation, but the spatial and temporal determinants of iron availability, accessibility and 16 

demand are poorly constrained, hindering accurate long-term projections. We present here a 17 

unique multi-decadal record of phytoplankton photophysiology between 1996 – 2022, from 18 

historical in situ datasets collected by BGC-Argo floats and ship-based platforms. We find a 19 

significant multi-decadal trend in irradiance-normalised non-photochemical quenching due to 20 

increasing iron stress, with concomitant declines in regional net primary production. The observed 21 

trend of increasing iron stress results from changing Southern Ocean mixed layer physics, as well 22 

as complex biological and chemical feedbacks that are indicative of important ongoing changes to 23 

the Southern Ocean carbon cycle. 24 

 25 

Summary Sentence: Southern Ocean phytoplankton exhibit a significant multi-decadal increase 26 

in iron stress with climate implications.  27 
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Main Text 28 

 29 

The Southern Ocean acts as the climate flywheel of the planet, buffering the impacts of climate 30 

change by accounting for half of the total oceanic uptake of anthropogenic CO2, absorbing three 31 

quarters of the excess heat generated by anthropogenic CO2 (1, 2), whilst also regulating the 32 

supply of nutrients in support of low latitude productivity (3). Net primary production (NPP) is a 33 

major contributor to biological carbon export, ~2 Pg C year-1 (4), in the Southern Ocean and 34 

supports rich marine ecosystems (5), driven in part by high macronutrient availability and 35 

summertime light levels, but ultimately constrained by seasonal changes in light and a scarce 36 

supply of the essential micronutrient iron (Fe) (6, 7). Substantial progress has been made in 37 

understanding the range of Southern Ocean Fe supply mechanisms and biogeochemical cycling 38 

processes that act to govern contemporary NPP (8, 9). Fe availability in the surface ocean is a 39 

complex mix of concurrent biotic and abiotic processes that rapidly consume and recycle Fe, as 40 

well as remove it from solution by particle scavenging and colloidal pumping (9). A central role 41 

is played by the mixed layer depth, which influences seasonal and sub-seasonal Fe supply (8, 10) 42 

simultaneously altering light availability, which affects phytoplankton growth and Fe demand 43 

(11, 12). It is likely that anthropogenic forcing will affect all of these supply and removal terms 44 

(13) in a complex manner, impacting Fe availability, NPP, ecosystem function and the transfer of 45 

carbon, energy and nutrients through pelagic and benthic food webs (5). Observational 46 

constraints on how climate variability impacts Fe availability for phytoplankton is, therefore, a 47 

crucial component of Southern Ocean environmental change. 48 

 49 
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The Southern Ocean experiences climate variability associated with the Southern Annular Mode 50 

(SAM) (14–16), with the recent increase in the positive phase of the SAM due to ozone depletion 51 

and greenhouse gases driving an intensification and poleward shift of the westerly winds (15). 52 

This is considered the clearest and most persistent change in Southern Hemisphere climate in the 53 

last half century (17). Changes in Southern Ocean winds associated with the SAM elicit 54 

widespread alterations of ocean vertical stratification and mixed layer depth (18–20), affecting 55 

nutrient supply and the light environment, which interact seasonally to influence phytoplankton 56 

growth (5). The poleward shift of the westerly winds may also impact atmospheric dust 57 

deposition further altering Fe supply to the surface ocean (21). Any observable climate 58 

adjustments will integrate changes associated with the SAM such as altered ocean stratification, 59 

mixing and atmospheric deposition, with stronger projected changes in warming, carbonate 60 

chemistry and ocean transport (22). Crucial to both contemporary and future trends in NPP, is 61 

the response of Fe supply, availability and demand, which will be a key driver. However, there 62 

are presently poor constraints on changing Fe supply and demand, and little consensus on the 63 

impact of ocean warming and altered carbonate chemistry on Fe bioavailability in the Southern 64 

Ocean (5, 13). Earth System Models tend to predict increased Southern Ocean NPP by the end of 65 

the 21st century but are typified by significant inter-model disagreement (23). These 66 

uncertainties in NPP trends are amplified by poor constraints on the Fe cycle components of 67 

earth system models themselves (24), especially regarding projected changes in Fe stress (25), 68 

for which there are no observation-based datasets presently available.  69 

 70 

It is not possible to directly infer Fe stress from observed ambient concentrations, as standing 71 

stocks are severely depleted by biological uptake (26) being maintained by recycling (10) and 72 
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there is substantial plasticity of phytoplankton cellular contents and requirements (11, 12), which 73 

necessitates experimental approaches (27). Manipulation experiments of natural or cultured 74 

communities incubated in bottles (6) or via in situ open ocean fertilization (28, 29) provide 75 

insight regarding the role of Fe addition, while proteomic techniques quantify cellular responses 76 

to in situ resource stresses of specific organisms (e.g., 30). Results from decades of research have 77 

identified various responses in the probability of energy allocation of photons from a net balance 78 

perspective in response to varying Fe and light conditions that stem from the central role that Fe 79 

plays in photosynthesis (Fig. 1). For example, under optimal light and Fe replete conditions (Fig. 80 

1A) phytoplankton photochemistry is at maximum capacity with any remaining energy being 81 

dissipated as either fluorescence or non-photochemical quenching (NPQ; the dissipation of 82 

excess energy in the form of heat; 31). Under nutrient replete conditions with high light stress 83 

(Fig. 1B) there is a reduction in photochemistry to prevent photodamage to photosystem II and a 84 

reduction in fluorescence (i.e., the common scenario of suppressed fluorescence measured during 85 

daylight hours) with the dominant sink of excess energy being NPQ. Phytoplankton can adjust to 86 

low average light levels by synthesizing additional photosynthetic reaction centres for increased 87 

light absorption (32). However, because of the high Fe requirement of reaction centres, Southern 88 

Ocean phytoplankton have evolved a photoacclimation strategy in response to their typically low 89 

light and Fe environment (7, 27) that economizes their Fe use by enhancing light absorption 90 

through increased light harvesting antennae size (with additional pigment complexes) rather than 91 

the number of reaction centres (12). Selective pressure for this strategy however reduces the 92 

efficiency of excitation energy transfer (from light harvesting pigments to reaction centres) and 93 

can result in a bottleneck and buildup of protons under low Fe conditions (33). The result of this 94 

scenario (under optimal light and Fe deplete conditions, Fig. 1C) is an equal allocation of energy 95 
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to photochemistry (as in an optimal light and Fe scenario, Fig. 1A) but with a greater proportion 96 

of energy being dissipated as fluorescence. This drives the universal and readily observed 97 

increase in fluorescence to chlorophyll ratios under low Fe conditions (34, 35). If we consider a 98 

Fe limited but high light environment (Fig. 1D), phytoplankton avoid overexcitation and damage 99 

to their photosystems by reducing photochemistry and fluorescence with the dominant energy 100 

sink being NPQ. This is further supported by an increase in the synthesis of photoprotective 101 

pigments involved in the xanthophyll cycle under Fe limiting conditions (36). An observed 102 

increase in NPQ (in surface sunlit waters) is thus expected to reflect an increase in Fe stress 103 

under high light conditions. Although this photophysiological plasticity may not be common to 104 

all Southern Ocean phytoplankton, with a few exceptions exhibiting limited NPQ capacity to the 105 

same stressors (Table S1), experiments that expressed a measurable increase in NPQ from excess 106 

energy diversion were always in response to Fe limiting conditions (Table S1). These 107 

photophysiological responses to Fe and light have a well-founded mechanistic basis and the 108 

potential to provide a diagnostic appraisal of environmental conditions (37). 109 

 110 

Changing Photophysiology in the Southern Ocean 111 

 112 

A novel in vivo approach developed by Ryan-Keogh & Thomalla (38) quantifies the degree of 113 

NPQ (which manifests as a measurable decrease in the ratio of photons emitted as fluorescence 114 

to those absorbed by pigments) as a function of available light (irradiance-normalised NPQ, 115 

referred to as αNPQ in Ryan-Keogh & Thomalla (38)). Since the dominant influence of 116 

“instantaneous” environmental light conditions on the degree of quenching are accounted for in 117 

the determination of irradiance-normalised NPQ (as the slope of NPQ against in situ irradiance; 118 
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see Materials and Methods), this approach uniquely fingerprints the photophysiological response 119 

of phytoplankton to their environment, independent of current light conditions and inclusive of 120 

pigment configuration. A particular strength of this approach is that it can be applied to any 121 

ocean profile with coincident measurements of fluorescence, photosynthetically active radiation 122 

and backscatter or beam attenuation (e.g., ship-based, BGC-Argo profiling floats or autonomous 123 

gliders), providing a unique opportunity to deliver a long-term time series by taking advantage of 124 

historical measurements (see Materials and Methods). Here, we quantify irradiance-normalised 125 

NPQ from a data set of 47 BGC-Argo floats and 194 cruises comprising a total of 5795 profiles 126 

spanning 26 years (Fig. 2; see Materials and Methods), to produce the first multi-decadal (1996 – 127 

2022) in situ assessment of irradiance-normalised NPQ in the Southern Ocean biome (defined 128 

here as the spatial extent of the subpolar and ice biomes (39). We find a significant (Table 1; F-129 

statistic = 260.50, p<0.001, r2 = 0.92) positive linear trend in irradiance-normalised NPQ (Fig. 2) 130 

in the Southern Ocean (4.69% yr-1) which is robust (p<0.001 – <0.05) across different seasons 131 

(Fig. S1A–D), ocean basins (Fig. S1E–G) and frontal zones (Fig. S1H–J). Moreover, this trend is 132 

not affected by an unequal distribution of observations by year, with no change in trend when the 133 

sample size is retained at a minimum (n = 3) over time (Fig. S2A) or using a Monte Carlo 134 

experiment where the years were randomly sampled (i.e., a jackknife resampling of 75% of the 135 

1996 to 2022 range: Fig. S2B). These additional tests are indicative of the robustness of the 136 

detected trend in irradiance-normalised NPQ that is not significantly affected by seasonal, spatial 137 

or temporal bias in data coverage. The link between Southern Ocean contemporary climate 138 

variability and the trend in annual mean irradiance-normalised NPQ is highlighted by its 139 

significant correlation with the decadal rolling mean of the SAM index (Fig. S3, r2 = 0.62, 140 

p<0.001), which implies that Southern Ocean phytoplankton are experiencing a multi-decadal 141 
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photophysiological adjustment, via their irradiance-normalised NPQ, to changes in nutrient and 142 

light availability from altered stratification,      mixed layer dynamics and dust deposition. If this 143 

trend were driven primarily by increasing Fe stress, it would suggest significant implications for 144 

adjustments in regional NPP and the effectiveness of the biological carbon pump. 145 

 146 

The likelihood that variability in irradiance-normalised NPQ is primarily reflecting Fe stress is 147 

supported by the fact that this proxy was significantly higher in control versus Fe addition 148 

incubation experiments in the sub-Antarctic Southern Ocean (38) that it is well correlated with 149 

elevated fluorescence to Chl ratios in Fe limited regions of the Southern Ocean (35) and it 150 

reproduces known gradients in Southern Ocean Fe limitation, from both natural and artificial Fe 151 

fertilization experiments. For example, BGC-Argo profiles upstream and downstream of the 152 

Kerguelen Plateau (Fig. 3A), a region with a well characterised island mass Fe fertilization effect 153 

(40), show significantly lower irradiance-normalised NPQ values (t-statistic = -12.74, p<0.001, 154 

df = 1011) in Fe fertilized downstream waters (mean = 16.6 × 10-3, SE = 0.41 × 10-3, n = 525) 155 

compared to Fe-limited upstream locations (mean = 23.3 × 10-3, SE = 0.44 × 10-3, n = 470). 156 

Similarly, ship-based profiles in and out of Fe addition patches during the SOIREE (28) and 157 

SOFEx (29) mesoscale Fe fertilization experiments (Fig. 3A) are typified by irradiance-158 

normalised NPQ values that are significantly lower (t-statistic = 2.95 & 2.66, p<0.05, df = 12 & 159 

18, respectively) in patch (mean = 3.0 × 10-3, SE = 1.24 × 10-3, & 3.3 × 10-3, SE = 0.97 × 10-3, n 160 

= 6 & 8, respectively) compared to out of patch (mean = 9.1 × 10-3, SE = 1.72 × 10-3, & 21.6 × 161 

10-3, SE = 4.79 × 10-3, n = 4 & 16, respectively). Finally, across all available Southern Ocean 162 

data, irradiance-normalised NPQ values in spring (Fig. 3B) and summer (Fig. 3C) are 163 

significantly higher than those from autumn (Fig. S4A; spring = t-statistic = 2.10, p<0.05, df = 164 
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2392; summer = t-statistic = 3.29, p<0.001, df = 3555) and winter (Fig. S4B; spring = t-statistic 165 

= 3.92, p<0.001, df = 2236; summer = t-statistic = 4.89, p<0.001, df = 3399), in accordance with 166 

expected spring and summer time Fe depletion from biological utilisation (7, 10). Since a 167 

photoacclimation response to seasonal variability in light would drive the opposite relationship, 168 

this further supports the role of Fe-stress in driving irradiance-normalised NPQ. 169 

 170 

Although the effect of instantaneous light is accounted for when deriving irradiance-normalised 171 

NPQ, longer term photoacclimation strategies may also impact the trend (and seasonal 172 

characteristics) observed in irradiance-normalised NPQ. These photophysiological adjustments 173 

can also be detected through changes in cellular chlorophyll to carbon (Chl:C) ratios, however it 174 

is important to note that these reflect phytoplankton's combined photoacclimation and nutrient 175 

allocation response. Chl:C ratios are expected to increase in response to low light (41), however 176 

photoacclimation occurs more effectively during Fe replete conditions (42), such that the degree 177 

of response in Chl:C is primarily dependent on Fe availability. Particulate backscatter (bbp) (from 178 

both satellite and in situ sensors) can act as proxies for phytoplankton carbon (43–45), and their 179 

proportion relative to chlorophyll can be used to infer cellular Chl:C ratios. The positive trend 180 

observed in Chl:C from satellite remote sensing (r2 = 0.62, 0.81% yr-1, p<0.001; Fig. S5) for the 181 

coincident period (1998 – 2021), suggests that phytoplankton are responding to a reduction in 182 

available light by increasing cellular packaging of chlorophyll. This is supported by a spatially 183 

coherent trend of a significant decrease in mixed layer light across the Southern Ocean (Fig. S6). 184 

As such, photoacclimation/photoadaptation to low light conditions may contribute to the 185 

observed trend in irradiance-normalised NPQ. That said, any reduction in available light in the 186 

typically iron stressed Southern Ocean (7, 27) would increase Fe demand (12, 46) and increase 187 
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Fe stress in the absence of sufficient increases in Fe supply. When the trend in Chl:C is 188 

investigated  in situ (2015 – 2021) (restricted to BGC-Argo as, unlike irradiance-normalised 189 

NPQ, fluorescence derived estimates of chlorophyll and optical proxies for carbon cannot be 190 

merged across different sensors from the ship-based dataset due to differences in sensors and 191 

manufacturer calibration coefficients), the integrated mixed layer trend (although insignificant) is 192 

instead negative (r2 = 0.50, -3.59% yr-1, p = 0.07) reflecting a more typical response to Fe stress 193 

(i.e., a decrease in Chl:C with a decrease in growth rates under Fe limiting conditions), with no 194 

evidence of photoacclimation/photoadaptation. Moreover, a significant a negative relationship is 195 

observed between in situ increasing irradiance-normalised NPQ and decreasing Chl:C (2015 – 196 

2021) (Fig. S7A-C; r2 = 0.51 – 0.54, p<0.001), which strongly suggests that the 197 

photophysiological trend in irradiance-normalised NPQ is in response to iron stress (rather than 198 

low light). Similarly, when the seasonal characteristics are interrogated, Chl:C ratios are 199 

significantly higher in winter than in summer (Fig S8; t-statistic = 18.7 – 21.9, p<0.001, df = 200 

2019 – 2113) reflecting typical photoacclimation in response to low light conditions (41). Were 201 

photoacclimation the dominant driver of seasonal variability in NPQ it would elicit an increase in 202 

irradiance-normalised NPQ in winter. The opposite response however (Fig. 3B,C) suggests that 203 

Fe stress is instead most likely to be the dominant driver of seasonal variability in irradiance-204 

normalised NPQ.  205 

      206 

Trends in Primary Productivity 207 

 208 

Any trend of increasing Fe stress should reflect in concurrent reductions in photosynthetic 209 

capacity and a decline in overall productivity, with large implications for biogeochemical cycling 210 
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and carbon drawdown (47). We note however that a decline in NPP, although expected in 211 

response to an increase in Fe stress, is not a certainty (or a necessary requirement to verify Fe 212 

stress), as indeed an increase in standing stocks (from increasing NPP) could drive an increase in 213 

Fe stress. Similarly, trends in NPP may also reflect top-down controls of grazing that are 214 

independent of Fe stress. Nonetheless, when we apply two models of NPP (48, 49) to the 215 

Southern Ocean BGC-Argo data set (restricted to this platform for the same reason as described 216 

above, 2014 – 2021; see Materials and Methods), we observe a decrease in NPP for both models 217 

(Fig. 4).  While the decline in NPP from the CbPM model is significant (Fig. 4A, 10% yr-1, r2 = 218 

0.81, p<0.01; Table 1), the decreasing trend from the VGPM model is insignificant (Fig. 4A, 8% 219 

yr-1, r2 = 0.43, p = 0.08), but both are on a similar order of magnitude as the increase in 220 

irradiance-normalised NPQ for the same time period (4.72% yr-1, r2 = 0.56, p<0.05). When we 221 

apply the same two NPP models in combination with an additional two NPP models (50, 51) to a 222 

concomitant 24 year time series (1998 – 2021) from the Ocean Colour Climate Change Initiative 223 

product (52) (see Materials and Methods), we see dominant declines in NPP for the subpolar and 224 

ice biomes (39) from the carbon-based CbPM models and absorption-based CAFE model (with 225 

61 – 80% of the trends being negative and 10 – 29% positive; Fig. 4B-D). Although the VGPM 226 

model shows an increase in NPP (77% positive and 13% negative; Fig. 4C) this can be explained 227 

by its strong dependence on trends in chlorophyll that are augmented by Southern Ocean 228 

warming (5, 53). Similar results were observed in a recent study by Pinkerton et  al. (54) (with 229 

different satellite data and trend detection methods) but with all trends in NPP from the CbPM 230 

model being negative with an overall negative but insignificant trend of -0.15% yr-1 (p = 0.17), 231 

whereas NPP from the VGPM model were positive and significant (0.8% yr-1, p < 0.001). 232 

However, when we investigate trends in NPP for the same period (1996 – 2021) from earth 233 
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system models of the Coupled Model Intercomparison Project phase 6 (CMIP6) we see very 234 

little multi-decadal variability, with trends in NPP that range from -0.22% to 0.21% yr-1 (r2 = 1.5 235 

× 10-3 – 0.42, Fig. 4F; Table 1). While most earth system models show insignificant trends in 236 

NPP, three display significant positive trends (0.10 – 0.15% yr-1, p<0.05, Table 1) while two 237 

others depict significant negative trends (-0.01% and -0.22% yr-1, p<0.05, Table 1). Once 238 

projected to the end of the century however, the majority of CMIP6 models (>80%) agree on an 239 

increasing trend in NPP (23) at odds with trends currently observed to be ongoing. 240 

 241 

Sensitivity of Fe limitation to climate drivers 242 

 243 

The progressive trend of increasing in situ irradiance-normalised NPQ observed here over the 244 

past 26 years reflects the impact of a suite of concurrent physical, chemical and biological 245 

processes on the Southern Ocean Fe cycle and the response of phytoplankton production 246 

(inclusive of physiological plasticity and adaptability), ranging from changing Fe supply, 247 

speciation and recycling to adjustments in phytoplankton Fe demands and interactions with other 248 

microbes (9, 55). The key challenge is that large scale in situ datasets are largely concerned with 249 

ocean physics at spatio-temporal scales that are not matched by biological and chemical process 250 

experiments (9). Overall, the trend in irradiance-normalised NPQ showed moderate correlations 251 

with the dominant climate trends of reduced pH and surface warming (Fig. S9A,B, Table S2; r2 = 252 

0.42 and 0.36, respectively; p<0.001). This relationship with pH would agree with previous 253 

studies that exhibit reduced Fe uptake under ocean acidification scenarios (56) due to potential 254 

inhibition of the Fe uptake mechanisms (57). Moreover, ocean acidification is likely to impact 255 

the availability of Fe bound to organic ligands as a lower pH will affect both Fe adsorption and 256 
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complexation (58, 59). Direct impacts of a reduced pH on NPQ is also likely as this mechanism 257 

relies upon a trans-thylakoid membrane pH gradient (60), which would be impacted by a buildup 258 

of intracellular hydrogen ions (61). The relationship with surface warming more likely reflects 259 

independent changes to Fe delivery (e.g., 14) or poorly constrained impacts on Fe speciation, 260 

bioavailability and demand (13). Relating the trend in irradiance-normalised NPQ to the 261 

dominant SAM driven response of altered wind (namely vertical mixing and stratification) 262 

showed some linkages, with a significant correlation between deeper summer mixed layer depths 263 

(Fig. S9C, r2 = 0.39, p<0.05), but no correlation with autumn, winter or spring mixed layer 264 

depths (Fig. S9D-F, p>0.05). Recent evidence (24) has shown that in the Southern Ocean 265 

summer there is a deepening of the mixed layer (-3.4% ± 1.5% decade-1), which could increase 266 

Fe demand (by decreasing light availability) and a significant increase in stratification (8.1% ± 267 

4.1% decade-1), which could negatively impact subseasonal Fe supply (e.g., from storm driven 268 

entrainment, 8). Furthermore, it is also likely that for some key regions of the Southern Ocean, 269 

local signals linked to changing Fe supply from dust, margins, glaciers or sea ice may be 270 

important (5). 271 

 272 

Adjustments in irradiance-normalised NPQ are fingerprinted by the well understood response of 273 

phytoplankton photophysiology to Fe limitation. If the trend in irradiance-normalised NPQ 274 

observed here is indeed reflecting a long-term increase in Fe stress, with an amplitude 275 

adjustment in time (Fig. 2) similar to that observed from natural Fe fertilisation (Fig. 3A), 276 

alongside a concomitant decrease in NPP (from in situ BGC-Argo floats 2014 – 2021; Fig. 4A 277 

and CbPM satellite derived Fig. 4B), the implications are that earth system models may be 278 

underestimating ongoing change in the Southern Ocean. Both CMIP5 and CMIP6 earth system 279 
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models tend to project a trend of increasing NPP and reducing Fe stress in the Southern Ocean 280 

by the end of the 21st century in response to climate change (23), which is opposite to the 281 

observed trend emerging across the region in this study. Improved knowledge of how Fe stress 282 

interacts with other limiting factors and the role of parallel changes in phytoplankton species 283 

composition and top-down control by grazers would enable us to link changing climate drivers, 284 

growing Fe stress and altered NPP more robustly in the Southern Ocean and improve confidence 285 

in projections. A major strength of irradiance-normalised NPQ is that it is a photophysiological 286 

in situ measurement that can be applied retrospectively to appropriately equipped platforms to 287 

span timeframes that reflect an integrated response to climate change and may help provide 288 

emergent constraints for earth system models for improved climate projections.  289 

 290 
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 622 

Fig. 1. Schematic of the proportional energy allocation at photosystem II (PSII) under different 623 

iron (Fe) and light scenarios that phytoplankton may encounter, where PC means 624 

photochemistry, FL means fluorescence and NPQ means non-photochemical quenching. 625 

Scenario A represents the optimal light and iron scenario where PC is at its maximum with any 626 

remaining energy dissipated as FL or NPQ. Scenario B represents a high light stress scenario 627 

where there is a reduction in PC to prevent damage to PSII and a reduction in FL, with NPQ 628 

acting as the dominant energy sink. Scenario C represents an iron limiting scenario with an 629 

increased light harvesting antenna size to maintain PC as in scenario A, but with an increase in 630 

FL. Scenario D represents both a high light stress and iron limiting scenario, where both PC and 631 

FL will be reduced with NPQ again acting as the dominant energy sink. The opaque background 632 

units in panels A and B represent complete reaction centres with light harvesting antennas, 633 

whereas the opaque background units in panels C and D represent the synthesis of energetically 634 

decoupled light harvesting antennas, which may absorb light with only FL and potentially NPQ 635 

acting as energy sinks. 636 

 637 

Fig. 2. Distribution and trend of irradiance-normalised NPQ. Seasonal and annual means, with 638 

an Ordinary Least Squares regression on the annual mean, of irradiance-normalised NPQ 639 

determined from the combined BGC-Argo and ship-based dataset. (Inset) Map showing 640 

distribution of BGC-Argo and ship-based profiles (1996 – 2022). 641 

 642 

Fig. 3. Robustness of irradiance-normalised NPQ as a proxy for Fe stress demonstrated through 643 

natural and artificial Fe gradients and seasonal Fe depletion. (A) Mean irradiance-normalised 644 
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representation instead of Schematic. 



31 
 

NPQ ± standard errors from BGC-Argo profiles upstream and downstream of the Kerguelen 645 

plateau and from ship-based profiles in and out of Fe-fertilized patches during SOIREE and 646 

SOFEX. Maps of irradiance-normalised NPQ based on combined BGC-Argo and ship-based 647 

profiles (1996 – 2021) for (B) Spring (SON: September, October, and November) and (C) 648 

Summer (DJF: December, January, and February) gridded to 5° × 5°. The dashed line represents 649 

the spatial extent of the Southern Ocean defined as the subpolar and ice biomes from Fay & 650 

McKinley (39). See Fig. S4 for Winter and Autumn. 651 

 652 

Fig. 4. Comparing net primary production (NPP) for the Southern Ocean from BGC-Argo, 653 

remote sensing, and earth systems models. (A) Normalised annual means of NPP derived BGC-654 

Argo using 2 different NPP models (2014 – 2021) and derived from remote sensing using 4 655 

different NPP models (1998 – 2021) averaged across the sub-polar and ice biomes from Fay & 656 

McKinley (39), decadal trends (1998 – 2021) from remote sensing using (B) CbPM1, (C) 657 

CbPM2, (D) CAFE and (E) VGPM, and (F) normalised annual means of NPP from CMIP6 658 

model outputs (1996 – 2021). Statistics of the normalised annual trends of NPP models from 659 

panels A and F can be found in Table 1. Normalisation was performed by dividing the data by 660 

the mean value. Note that CbPM1 refers to the Behrenfeld et al. (49) model and CbPM2 refers to 661 

the Westberry et al. (50) model. The dashed line represents the spatial extent of the Southern 662 

Ocean defined as the subpolar and ice biomes from Fay & McKinley (39).  663 
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Platform Date 

range 

Parameter Slope Intercept R2 F-statistic p-value 

in situ 1996 – 

2022 

Irradiance-

normalised 

NPQ 

4.69 × 10-2 -93.18 0.92 260.49 2.18 × 10-

14 

2014 – 

2021 

VGPM -0.08 172.29      0.43      4.45 0.08 

CbPM1 -0.10 197.73      0.81      25.60      2.31 × 10-3 

Remote 

Sensing 

1998 – 

2021 

VGPM 0.01 -15.79 0.55 26.97 3.30 × 10-5 

CbPM1 -0.02 32.85 0.61 34.13 7.05 × 10-6 

CbPM2 -0.01 25.80 0.57 29.08 2.05 × 10-5 

CAFE -0.01 19.47 0.46 18.75 2.69 × 10-4 

Earth 

System 

Models 

1996 – 

2021 

CMIP6 

Median 

7.96 × 10-4 -0.60 0.10 2.83 0.15 

CMIP6 

Range 

-2.25 × 10-

3 – 2.19 × 

10-3 

-0.38 – 

5.51 

1.54 × 

10-3 – 

0.42 

0.04 – 

17.53 

7.92 × 10-3 

– 0.98 

 664 

Table 1: Normalised Ordinary Least Squares regression results of irradiance-normalised NPQ 665 

(1996 – 2022), NPP from 2 production models applied to BGC-Argo data (2014 – 2021), NPP 666 
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from 4 production models applied to Remote Sensing data (1998 – 2021) and NPP from CMIP6 667 

outputs (1996 – 2021). Note that CbPM1 refers to the Behrenfeld et al. (49) model and CbPM2 668 

refers to the Westberry et al. (50) model. 669 


