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Developing in-silico predictions of

toxicity - Chrystalla Iosif

Abstract

A large number of chemicals are released into the environment from various human

activities, including the manufacturing and use of pharmaceuticals, industrial chemicals,

pesticides, and insecticides. Traditional risk assessment requires the use of long-term

experiments to evaluate the toxicity of each chemical on different organisms and multiple

levels of biological organisation, which is time-consuming and costly. Thus, most of those

chemicals are introduced into the environment before a proper risk assessment is

performed, increasing the risk of releasing a potentially environmentally harmful compound.

The need to reduce risk assessment time and cost, facilitated the generation of in silico

approaches based on experimental data, computational approaches (predictive modelling,

classification methods) and previous scientific knowledge. Such methods have been used to

predict the toxicity of new chemicals with unknown toxicological effects, based on similarities

with chemicals that have already been assessed.

Chemical structural information (molecular descriptors) that describe its physicochemical

properties, such as bonds composition, chemical weight, electronegativity, lipophilicity, and

chemical polarity have been associated with the mode of action of each chemical related to

toxicity (MoA), and through predictive modelling to toxicity phenotypes (QSAR models).

However, the high heterogeneity between chemicals and the fact that chemicals with similar

structural characteristics (cis-, trans- isomers) may have different effects on organisms

where only one of them is toxic or chemicals with different structures may act through similar

mechanisms (endocrine disruptors), underlies the inability of such methods to describe the

toxicity of each chemical fully. At the same time, signature-matching approaches have been

developed that are based on the assumption that chemicals with similar gene expression

signatures will cause similar biological effects and can be used in predicting the toxicity of

new chemicals and identifying toxicity-related genes. This was facilitated by the development

of “‘omics” technologies (genomics, transcriptomics, proteomics, metabolomics and

epigenomics) that allow the generation of large datasets that can be used to explore

changes at the molecular level.



In this project, the ability of molecular descriptors (physicochemical information of a

chemical) and mRNA sequencing data (gene expression profiles after exposure), in

clustering a set of highly heterogeneous chemicals based on profile similarities were tested

and compared, highlighting the difference between those two clustering methods. The large

set of heterogeneous chemicals (in structural features and gene count profiles) used in this

study allows for more generalizable results due to the bigger applicability domain of each

method. Clustering chemicals using molecular descriptors was highly associated with

changes in heart rate after chemical exposure and with the Verhaar MoA classification since

both methods use chemical structural characteristics for grouping chemicals based on

toxicity. However, using the differentially expressed genes between control and exposure,

chemicals that significantly change zebrafish heart rate tend to cluster together, but no

correlation can be seen when compared to MoA classification. These results suggest that

Verhaar MoA classification is not necessarily representative of cardiotoxicity, underlying the

importance of using molecular responses such as gene expression profiles in assessing

chemical-induced cardiotoxicity. In an effort to connect those two datasets, molecular

descriptors and gene count profile data, predictive modelling was performed to identify a set

of molecular descriptors that could explain the difference between the mRNA clusters,

generated using the differentially expressed genes. However, due to the high heterogeneity

between the chemicals, this was not successful when the whole dataset was used, but by

reducing the number of chemicals, a predictive model was generated that could predict the

potential mRNA cluster of each chemical with high accuracy (R2=0.89), thus more chemicals

with high variability in structural characteristics (molecular descriptors) and gene expression

profiles, can be used to generate more homogenous clusters and validate this relationship.

Molecular descriptors and gene count profiles were used as input in the predictive modelling

function generated in this study, in an effort to identify a set of molecular descriptors or

genes that can be used to predict changes in heart rate caused by chemical exposure.

Predicting changes in zebrafish heart rate using the structural information (molecular

descriptors) was not successful when the whole dataset was used (143 chemicals). The

predictive function was not able to identify a set of molecular descriptors that can explain the

various effects the chemicals have on the zebrafish heart rate.

On the other hand, predictive modelling identified 80 genes that can predict the effect the

chemical has on zebrafish heart rate. Following those results, the chemical dataset was split

into three, according to the clustering results generated using the mRNA data. Modelling

with molecular descriptors (QSAR models) generated a model for two out of the three

clusters, with only one common molecular descriptor, highlighting the difference between the

chemicals in the separated clusters. Models based on transcriptional data did not produce



comparable accuracies. The effect the chemicals in the third cluster have on zebrafish heart

rate could only be predicted by gene expression profile data and not molecular descriptors.

Showing the importance of both datasets in risk assessment.

Finally, based on the adverse outcome pathway (AOP) concept, the gene count data were

grouped into metabolic pathways using the KEGG database, and predictive modelling

identified pathways that their activity could to some extent predict changes in zebrafish heart

rate, chemical concentration during exposure, and the LC50 of each chemical (concentration

at which 50% of the population is dead). The pathways identified in this study to be

predictive of chemical LC50 or chemical exposure concentration can be close to or represent

a potential molecular initiating event (e.g. receptor binding), thus the shortest distance

(lowest number of pathways) between pathways associated with chemical toxicity (molecular

initiating event) and pathways related to heart-rate fold change (adverse outcome) can

represent a potential AOP, with the pathways in between representing the key events. The

use of large-scale genomics data and pathway analysis can be used in identifying new key

events or potential adverse outcome pathways, and assist in the generation of adverse

outcome pathways networks for chemical risk assessment.



Chapter 1

Introduction

1.1 Chemical risk assessment

Human activities, including the manufacturing and use of pharmaceutical and industrial

compounds, have increased the abundance and diversity of such chemicals in the

environment. Potentially toxic chemicals may be found in or used in the production of

medical devices, pharmaceutical substances, industrial chemicals, insecticides, pesticides

and packaging materials (Myatt et al., 2018). Toxicity describes the various adverse effects

caused by exposure to various chemicals on humans, animals, plants, and the environment.

Such chemicals are persistent and can potentially be deleterious, thus increasing the need

for reliable and accurate, acute toxicity testing methods (Hwang et al., 2002). Chemical

exposure has also been associated with heart defects (cardiotoxicity), which could lead to

myocardiopathy, including arrhythmia and myocardial hypertrophy. Risk assessment of such

chemicals requires the use of multiple vertebrates as model organisms, including rodents

and fish (Scholz et al., 2014). The exposure method, chemical dosage, frequency, and

duration of exposure along with chemical properties such as absorption, distribution,

metabolism, and excretion/elimination, can be used in determining the toxicological effect of

a chemical on an organism (Raies et al., 2016).

Danio rerio (zebrafish) is a tropical fish, native to Southeast Asia, which has been used as a

model organism since the 1960s (Figure 1.1). The complete zebrafish genome sequence,

available since 2013, consists of more than 26 thousand protein-coding genes. The

zebrafish genome shares a lot of similarities with the human genome, where 70% of human

genes have zebrafish orthologs (Howe et al., 2013), and 84% of the genes associated with

human diseases are homologous to zebrafish genes. In addition, major organs and tissues,

such as the heart and vascular system, are conserved among vertebrates. Zebrafish are an

important model for evaluating chemical ecotoxicology and for understanding the

mechanisms of development and human health (Teame et al., 2019).
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Figure 1.1: Zebrafish embryos after 72 hours of exposure. A) Zebrafish embryo under control conditions. B)
Zebrafish embryo exposed to a non-toxic chemical. C) zebrafish embryo with large oedema, deformed tail and
egg sac. D) A dead zebrafish due to exposure to a toxic chemical.

Zebrafish are small organisms that produce hundreds of offspring every week, grow very

fast, and have lower maintenance costs compared to other experimental animals such as

mice. Zebrafish embryos are transparent and develop outside the mother’s body, which

allows the development of internal structures to be evaluated, i.e. blood vessel defects on

zebrafish embryos can be identified using a low-power microscope. This allows the

evaluation of embryonic development at every stage of embryogenesis. Because of their

rapid development within the first 48h after fertilisation, zebrafish’s major organs such as

heart and blood vessels are already completed. Within the first 24h after fertilisation

anatomical structures, including somites, notochord and heart anlage, can be localised, and

the body length can be measured. By 36h post fertilisation, the heartbeat is pronounced and

regular (Barrionuevo et al., 1999), and by 48h craniofacial features are further developed

and allow the assessment of cardiac and circulatory systems. Major sensory organs and
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various brain and spine components can be distinguished, and an increased number of

epidermal pigment cells can be seen, as well as the formation of the caudal fin and the buds

of the pectoral fins (Teame et al., 2019; Hellfeld et al., 2020).

The low cost, small size, and rapid and external development of zebrafish embryos make

them an important model organism for vertebrate development, genetics, immunity,

physiology, and human diseases, like neural disorders, cancer, cardiovascular diseases,

muscle disorders and DNA damage repair (Magyary, 2018; Teame et al., 2019). In addition,

zebrafish are widely used in environmental toxicology to explore the effect of toxic metals,

endocrine disruptors and organic pollutants (Domingues et al., 2010; Martínez-Sales et al.,

2015; Magyary, 2018).

Technology advancements have allowed the generation of large data sets, genomics,

transcriptomics, proteomics, metabolomics and epigenomics (‘omics data), which require the

use of bioinformatic methods for their analysis. The use of ‘omics data revealed the effect of

chemicals on a molecular level, highlighting alterations in cell biochemistry and physiology,

which make them a useful tool in toxicology for identifying biomarkers of adverse effects and

toxicity. This will facilitate the prediction of potential adverse outcomes by evaluating whole

genome alterations and replacing animal testing. ‘Omics data, such as gene expression

profiles, have also been used for chemical classification and class prediction based on

chemical effect, and allow identification of genes related to cellular responses and suggest

mechanisms of toxicity for each compound (Sauer et al., 2017).

1.2 In silico approaches

The large number of new chemicals that need to be assessed and the notion to move away

from animal testing, reducing the cost and the experimental time, raise the need for new and

more robust risk assessment methods. Computational approaches (in silico) are used to

analyse, visualise, and predict chemical toxicity (in silico toxicology). In silico approaches are

used in combination with toxicity tests, by generating predictive models for the potential

chemical toxicity based on experimental data, structure-activity relationships and previous

scientific knowledge. In silico approaches have been used to rapidly evaluate potential

chemical effects when experimental data are unavailable (Amberg, 2013; Myatt et al., 2018).

Such methods are cheap, fast and high throughput; thus they have been applied to prioritise

chemicals for in vitro and in vivo toxicology testing. In silico methods, however, are

considered a “black box” by many researchers, making it harder to assess the model

predictions and reliability. This can be overcome by standardisation of in silico tools

protocols. The lack of generally accepted in silico protocols, including predictive modelling
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application, database usage and result documentation, had led to inconsistencies in the

application of in silico approaches. Standardisation of in silico approaches protocols will

describe the prediction process in a coherent and well-documented manner, and allow

consistent performance and evaluation, ensuring reproducibility and enhancing the

acceptability of the methods and their results (Myatt et al., 2018).

1.2.1 Machine learning approaches

Machine learning is the process of using algorithms to identify patterns in datasets in order

to fit predictive models or identify informative groupings within the dataset (Greener et al.,

2022). The resulting models can then be used to predict the response (e.g. toxicity

endpoints) of data not used in the generation of the model (Patterson, 2017). Machine

learning approaches are divided into supervised and unsupervised based on the input data.

Supervised machine learning requires labelled data as input; the values to be predicted by

the model are provided. On the other hand, unsupervised machine learning is used to

explore patterns in unlabelled data (response is unknown), like grouping data based on

similarities in expression (Greener et al., 2022) (Figure 1.2).

Supervised machine learning approaches include regression and classification analysis.

Regression analysis is used to predict the dependent variable of continuous data, using a

set of independent variables, whereas classification analysis is used to predict defined

classes. Regression analysis includes linear regression, polynomial regression, and random

forest regression. Linear regression analysis is used to select one or more features

(multivariable linear regression) required to explain the dependent variable (only continuous)

when the relationship between them is linear. However, it should be used with caution with

large datasets because it is sensitive to outliers. Logistic regression, on the other hand, is an

extension of linear regression and can be used with large datasets but only with binary

dependent variables, and low correlation between the independent variables. Polynomial

regression is used for converting non-linear data points to polynomial features and uses a

linear model for predictions (Schneider et al., 2010; Myatt et al., 2018).

Those models fail when the relationship between variables and outcome is not linear or

when the independent variables interact with each other. This type of data requires decision

tree methods that can be used for classification and regression analysis, such as random

forest (RF). The popularity of RF-supervised machine learning relies on the good predictive

abilities of the models, simplicity, robustness, low overfitting, and easy interpretability for

both classification (categorical variable) and regression analysis (continuous variables).

Features such as the evaluation of prediction accuracy, and the calculation of how each
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variable contributes to the model decision, make RF a strong candidate for toxicity prediction

studies (Breiman, 2001; Myatt et al., 2018; Degenhardt et al., 2019).

Classification algorithms include support vector machines (SVM), random forest and

k-nearest neighbours (k-NN). Support vector machines can be used on linear data, where

the data domains can be divided linearly to separate the classes, and non-linear data needs

to be transformed into a new data domain that can be divided linearly, for classification and

regression. SVM generates a hyperplane that best divides a dataset into classes

(Suthaharan, 2016). The k-NN algorithm is one of the oldest and simplest methods used in

pattern classification. K-NN uses distance metrics, usually Euclidean distance, to calculate

similarities between items based on the assumption that similar points can be found close to

one another (Kilian Q. Weinberger, 2009).

Unsupervised machine learning approaches, on the other hand, include clustering and

association analysis. Clustering analysis groups items based on distance measurements,

thus items that are found close to each other are grouped together (Patterson, 2017).

Unsupervised clustering methods include k-means and hierarchical clustering. The k-means

algorithm is based on the sum-of-squares criterion, but the number of clusters needs to be

defined from the beginning (Sinaga et al., 2020). Hierarchical clustering analysis has been

widely used in big data analysis and data mining. It can be categorised in two ways,

agglomerative (bottoms-up) and divisive (top-down) (Ross et al., 2009). The agglomerative

approach isolates the data points as separate groups and then they are merged together

based on similarity. Euclidean distance is the most common metric used for calculating the

similarities between the data points, but other measurements such as Manhattan distance

have also been applied. On the other hand, in divisive clustering, the analysis starts with a

single cluster that is divided based on the differences between the data. To visualise these

types of clustering methods, a dendrogram is used that shows the merging or the splitting of

data points at each iteration (Yogita Rani, 2013). Association analysis is used to identify the

relationship between the variables in a dataset, such as dimensionality reduction methods

that identify patterns or correlated variables to exclude any redundant information, and a

priori algorithms that are used to identify repeated patterns (IBM Cloud Education, 2020).
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Figure 1.2: Machine learning approaches and their use in predicting biological properties. These include filling
knowledge gaps, pattern identification, generation of models that can explain the observed phenotype, and
data visualization. The techniques can be split into supervised and unsupervised-based approaches. Supervised
classification and regression models are used for the prediction and explanation of the data. Unsupervised
clustering and associating techniques are used in data explanation and visualization.

To evaluate the predictive ability of each model, the coefficient of determination, R2, has

been introduced. This value measures model performance, by comparing the observed and

predicted values of the dependent variable. Thus, the value of R2 indicates the percentage of

variance in the dependent variable that can be explained by the features of the model

(Schneider et al., 2010). At the same time, cross-validation methods have been introduced

to evaluate the predictive validity and compare models. The hold-out validation requires

splitting the dataset into training and test sets. The training set is used to generate the

predictive model and consists of independent variables and a dependent variable to be

predicted. Once a model is generated, its efficiency is measured by its ability to predict the

response of new data not included in the training step, the test dataset. In k-fold

cross-validation the dataset is split into a number of sets of equal sizes (k) and the model is

trained using k-1 groups, and the other group is used as a test set. The process is repeated

until all groups are used as test sets. Leave-one-out cross-validation is a type of k-fold

cross-validation, where the model is trained on almost all the data except for 1, and then the

model is used to predict that single observation (Refaeilzadeh P et al., 2009). The aim of

predictive modelling is to identify patterns in the training dataset and use those patterns to

predict the test set's dependent variables (Dhall et al., 2020). Q2 is the correlation coefficient

calculated after cross-validation of the model (Mansouri et al., 2013). The closer the R2 and
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Q2 are to 1 the more accurate the prediction of the model is. The main concern when

generating a predictive model is overfitting or underfitting. Underfitting models usually

consist of a very small number of variables and fail to predict the response of both the

training and test set accurately (low R2). In contrast, complex models, with a large number of

variables can predict the response of the training dataset with high accuracy, thus a very low

error rate, but fail to do the same with the test dataset, this is usually an indication of

overfitting (Patterson, 2017).

High throughput data suffer from high dimensionality, where the number of variables is larger

than the number of samples, thus various machine learning methods have been developed

for feature selection to identify only relevant data and exclude noise (Chowdhury et al.,

2020). Such methods aim to select the smallest number of variables required to build an

accurate and reliable predictive model or identify all the variables involved in a response.

The selection of appropriate variables for model generation is an important and difficult part

of building a model. The selection of too few variables usually leads to a model that fails to

capture the true relationship between the dependent and independent variables, underfitting.

On the other hand, models with a large number of features, are more dependent on the

observed data, may have reduced predictive power and fail to be generalised. Such models

are usually characterised by overfitting. Simple models with fewer variables are preferred

over complex models with many variables since they are easier to interpret, generalise and

use (Guyon et al., 1999; Chowdhury et al., 2020). Variable selection aims to identify a subset

of variables which can be used in predictive modelling and rank them based on their

predictive power. Thus, variable selection methods provide a balance between simplicity and

fit.

Lasso (least absolute shrinkage and selection operator) regression, a supervised machine

learning approach, is used to reduce the complexity of the model by identifying a few

features from the dataset that can be used in building the model while setting the coefficients

of less contributing features to zero (or close to zero) (Mozafari et al., 2020). This allows for

faster variable selection by reducing the number of features. Stepwise selection methods,

forward and backward, are also used to reduce the number of unnecessary variables,

feature reduction. Forward selection is a stepwise approach that evaluates the contribution

of a variable to the model one by one and keeps only those that help explain the dependent

variable. On the other hand, backward selection is removing a variable one by one to identify

the ones that are important for prediction (Schneider et al., 2010; Myatt et al., 2018). The

various selection methods, use selection criteria for the inclusion or exclusion of features,

such as the Akaike information criterion (AIC) which compares multiple models and

estimates the relative information loss between them, and the Bayesian information criterion
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(BIC) that penalises models also based on the number of features utilised by the model.

Variable selection improves model prediction performance, reduces computation and

utilisation time, facilitates data visualisation and by reducing the complexity of the model can

potentially provide new insights into the underlying biological processes (Bozdogan, 2000;

Lee et al., 2014).

High throughput data allow a system-wide evaluation of chemical effects, identifying genes,

proteins and biochemical reactions as interactive networks and linking them to biological

processes and adverse effects. This allows the identification of new insights for multiple

biological processes without prior knowledge, filling any knowledge gap (Garcia-Reyero et

al., 2011). ‘Omics data have been used in ecotoxicology to describe the underlying

molecular mechanism of adverse effects (Denslow et al., 2007), and identify protein-protein

interactions and pathways involved in a toxic response (Martyniuk et al., 2009). Large or

complex datasets, such as “‘omics data'', require computational approaches for analysis and

pattern identification, increasing the popularity of machine-learning approaches (Greener et

al., 2022). Machine learning approaches generate reproducible and time-efficient pipelines,

through a data-driven workflow (Wu et al., 2022), and can utilise existing toxicological and

chemical data, reducing the need for repeating experiments. The aim of machine learning

approaches is to link chemical exposure to biological alterations, by generating predictive

models and assisting in the identification of the relationship between toxins and

environmental effects.

1.2.2 Quantitative Structure-Activity Relationship models

Computational and mathematical methods have been used to correlate structural properties

(physicochemical characteristics) of a chemical to biological activities, Quantitative

Structure-Activity Relationship models (QSAR). QSAR methods generate predictive models

from molecular descriptors characterising the physicochemical properties (molecular weight,

lipophilicity, absorption, distribution, excretion) electronic and topological state, and structure

of a chemical (functional groups). The presence of ester, amides, hydroxyl, aldehyde, and

carboxylic groups have been associated with biodegradation ability, and halogen groups,

chain branching and nitro groups with chemical biodegradation time (Mansouri et al., 2013).

On the other hand, water-soluble chemicals are more easily degraded compared to insoluble

chemicals, and heavier chemicals are harder to move into the cell (Boethling, 1996). QSAR

internal validation depends on statistical measures (R2 and Q2) or Leave-one-out

cross-validation (LOOCV), which explores the stability of the model by excluding one

chemical at a time before model generation. However, the reliability of the model in

predicting the toxicity profile of a new compound relies on the applicability domain of the
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QSAR model, where the new chemical needs to be similar to the chemicals from the training

set (Mansouri et al., 2013; Carrió et al., 2014; Patlewicz et al., 2016). QSAR modelling has

been used in various scientific disciplines, including chemistry, biology, and toxicology, in

predicting biological activities, classifying chemicals and early prioritisation and exclusion of

potentially harmful chemicals in drug discovery processes (Perkins et al., 2003). However,

the effect of some chemicals, such as endocrine disruptors, cannot be predicted solely by

their structural characteristics, due to the high heterogeneity among the chemicals of such

groups, chemicals with similar structural features act through different mechanisms (Perkins

et al., 2003; Futran Fuhrman et al., 2015; Martin et al., 2015).

1.2.3 The mode of action

Identifying and understanding the various toxicological mechanisms associated with

chemical exposure, increases the accuracy of chemical clustering improving toxicity

prediction (Kienzler et al., 2017). The mode of action (MoA) of a chemical describes the

series of chemical-specific events, from exposure to an observed effect, based on

experimental and mechanistic data. Verhaar et al. used fish acute toxicity to split chemicals

into four classes based on the MoA, baseline toxicity and narcosis (class 1), less inert

chemicals (class 2), reactive chemicals (class 3) and specifically acting chemicals (class 4).

They also identified structural features that can be used as rules for predicting mode of

action; chemicals that do not follow those structural rules are placed in class 5 (Verhaa et al.,

1992; D. Villeneuve et al., 2014; Kienzler et al., 2017). Clustering chemicals using MoA

information has been used in predictive models (QSAR) and chemical risk assessment

(Yuan et al., 2007; Martin et al., 2015). Studies have shown that the toxicity of chemicals

belonging to nonpolar (MoA class 1) and polar narcosis (MoA class 2) can be predicted

using the octanol-water partition coefficient (Van Sprang et al., 2013), but class 3 contains

chemicals that act through multiple reactive mechanisms which increase the difficulty of

predictive modelling. In addition, it has been shown that chemicals that follow the same

structural rules, thus cluster together using MoA classification, might act through a different

mechanism, and vice versa (Russom et al., 1997; Martin et al., 2015; Ellison et al., 2016).

1.2.4 The Adverse Outcome Pathway

The Adverse Outcome Pathways (AOPs) framework has been proposed to help organise the

existing knowledge related to toxicological effects starting from the interaction of a chemical

with a biological target (molecular initiating event; MIE), to an adverse outcome (AO). At the

same time, AOPs describe the various measurable/observable biological changes (key

events) that occur at the molecular level and the experimentally defined relationship (key
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event relationships) between them in sufficient detail (Ankley et al., 2010). Key events are

measurable changes in the biological state compared to control, whereas key event

relationships are defined by biological plausibility and allow the prediction of downstream key

events based on the known upstream key events. AOPs describe the biology and the

relationship between biological events and rely on the assumption that when any chemical

triggers a specific molecular initiating event, it will follow the chain of defined key events if

the exposure duration is sufficient, to elicit an adverse outcome (Ankley et al., 2010; Sauer

et al., 2017) (Figure 1.3).

Figure 1.3: Representation of Adverse outcome pathway framework. A diagram with the key features of an
adverse outcome pathway (AOP). An AOP begins with the molecular initiating event (MIE) that describes the
chemical interaction with the biological target initiating a series of molecular responses leading to an AO. QSAR
models have been used to directly link exposure information with phenotype. Molecular responses (‘omics data)
can be used as a mediator between exposure characteristics and phenotype.

There are three AOP strategies, and their use depends on the type of available information.

The top-down strategy is performed when either an adverse outcome is observed but

without an understanding of the underlying biological mechanisms involved, thus key events

and the relationship between them, are identified using experiments or literature reviews

(Ankley et al., 2009), or when the MIE has been well characterised, for example through

QSAR models, but the toxic effect of such interaction is not clear (L. Zhang et al., 2013). The

bottom-up strategy aim is the description of the multiple key events following the MIE

(receptor-ligand) when the chemical concentration and exposure time are sufficient to have a

toxic effect (D. L. Villeneuve et al., 2014). Finally, the middle-out strategy describes the

situation where a key event is characterised, but without further knowledge about the MIE or

an adverse outcome, for example, transcriptional changes due to chemical exposure, but no

information is provided about the MIE or the potential adverse outcome (D. L. Villeneuve et

al., 2014; D. Villeneuve et al., 2014).

When working with AOPs it is important to remember that specific key events and key event

relationships do not correspond to a single AOP, and multiple independent MIEs can be
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upstream connected to a single key event and a common adverse outcome, just like in

biological systems where interaction and crosstalk between multiple pathways are common.

This also suggests that key events and key event relationships only need to be defined once

and can be reused in new AOP descriptions. However, AOPs are usually presented as a

single chain of key events, to simplify the available toxicological information related to risk

assessment. AOPs aim to provide more information about the underlying molecular

interactions (key events and key events relationships) that link an MIE to an adverse

outcome. As new tools are being developed, new key events and key event relationships are

identified or measured better, thus AOPs are continuously growing (D. L. Villeneuve et al.,

2014). By combining the information on the various key events, the multiple AOPs can be

linked into a single larger AOP network. Such AOP networks can then provide means for

identifying potential new AOPs, where new MIE to adverse outcome linkages are

established, and therefore support risk assessment more broadly.

Chemical classification, chemical properties and structural information (molecular

descriptors) can assist in identifying or predicting chemical interactions surrounding

molecular initiating events. From existing AOPs and their networks, signals can be followed

through downstream key events, and likely identify adverse outcomes. QSAR models use

structural information to predict the interaction between a chemical and a target biomolecule,

such as receptor-ligand interaction (MIE), which is linked to an adverse outcome, and the

MoA of a chemical (D. L. Villeneuve et al., 2014; Martin et al., 2015; Ellison et al., 2016).

Structural information such as absorption, distribution, metabolism, and elimination can be

used to predict molecular initiating events interaction. Pharmacokinetic factors and potency

of the chemical influence the duration and perturbation at the molecular initiating event (D. L.

Villeneuve et al., 2014). Both the MoA and AOPs frameworks describe a series of

measurable biological events that are essential for the initiation and progression of toxicity, in

risk assessment. However, AOPs are endpoint oriented, whereas MoAs are

substance-specific. Combining traditional molecular biology and in silico approaches, as

described earlier, such as AOPs, and their networks, can support toxicity prediction and risk

assessment and thus minimise the need for extensive animal testing and reduce the cost

and duration of toxicity tests (Raies et al., 2016).

1.3 Scope of the thesis

Various in silico approaches have been developed that group chemicals based on

similarities, including MoA classification using physicochemical properties, and

signature-matching approaches (toxicogenomic) using gene expression profiles. These

methods facilitate risk assessment and enable the move away from time-consuming and
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costly animal experiments. MoA classification has been very popular in risk assessment

since only physicochemical information, such as molecular weight, lipophilicity, bond

composition, and chemical polarity, are required. However, despite the development of

numerous MoA frameworks, a large number of chemicals cannot be classified, and there is a

high inconsistency between the results of those frameworks (Kienzler et al., 2017; Kienzler

et al., 2019). On the other hand, the use of gene expression profiles for toxicity assessment,

chemical clustering, and chemical prioritisation (toxicogenomic), is becoming more popular

in risk assessment (Bourdon-Lacombe et al., 2015). Those classification methods rely on the

assumptions that the structure of a molecule is responsible for its physical, chemical and

biological properties and that chemicals with similar gene expressions, will cause similar

biological effects (toxicogenomic).

To test these assumptions, this project characterised a set of 143 chemicals in zebrafish

larvae and then clustered these based on structural information (molecular descriptors), and

gene count profiles. Two endpoints were defined by the physiological information provided in

this dataset 1) heart rates and 2) chemical concentration. Clustering chemicals based on the

molecular descriptors and transcriptional response was evaluated in the context of these

endpoints as well as using the more traditional Verhaar MoA classification. Further effort to

link these two was undertaken to examine whether gene expression clusters could be

predicted by molecular descriptors.

Furthermore, this study evaluated the ability of molecular descriptors (QSAR model) and

gene expression data to predict changes in zebrafish heart rates across all measured

chemicals. To explore whether there are subgroups of chemicals that are more easily

predicted by either of the two datasets, chemicals were grouped based on the clustering

performed. According to the literature, multiple molecular descriptors have been associated

with toxicity, however, QSAR models have a small applicability domain, since they are

usually developed using chemicals from a single MoA class. In addition, there is limited

available information on QSAR models or gene expression data being used in predicting

cardiotoxicity. The model generated here will evaluate the ability of QSAR models and gene

expression data to predict chemical toxicity of a highly diverse chemical dataset, and allow

the identification of molecular descriptors and genes that can be used in predicting toxic

effects.

While transcriptomics has been widely used to generate large sets of data that can be

assessed to identify differentially expressed genes between two conditions (Anjum et al.,

2016; Costa-Silva et al., 2017; McDermaid et al., 2019), the utilisation of differentially

expressed genes alone cannot describe the underlying biological mechanism since gene
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data usually cannot explain an entire functional trait (Ramanan et al., 2012). In addition, in

some cases, compounds do not significantly influence gene expression, leading to

transcriptional signals dominated by noise that does not represent the effect of the chemicals

on the organism. One approach to extract mechanistic information from a long list of

differentially expressed genes and proteins is pathway analysis which groups genes into

functional pathways through gene interactions using prior knowledge. The identification of an

active pathway has more explanatory power than a set of differentially expressed genes or

proteins (Glazko et al., 2009; Ramanan et al., 2012).

To put pathways into context, and provide an anchor for an improved understanding of the

underlying biology, the AOP concept has been developed, particularly as an alternative to

traditional risk assessment (Ankley et al., 2010). This study makes use of this development

to show that molecular and chemical data, given suitable endpoints such as heart-rate

changes, LC50, or even exposure concentration, can be used to develop potential AOPs

de-novo.

Compare to other studies, a highly diverse dataset was used in this work, which consists of

chemicals with high variability in structural characteristics and molecular responses after

exposure, which can potentially increase the applicability domain of the generated models.

Chemical clustering is widely applied in risk assessment using structural characteristics,

however, in this study comparing structural and molecular clustering, using a set of highly

diverse chemicals, the aim is to evaluate the ability of structural clustering to group together

chemicals that potentially have a similar molecular effect (gene expression profiles) on the

zebrafish. Molecular descriptors and gene expression profiles have been very popular in

predictive modelling, but there is limited available information on cardiotoxicity models in the

literature, especially for predicting heart rate changes in zebrafish embryos. In addition, such

studies use chemicals from the same MoA for the generation of predictive models, whereas

in this work the dataset consists of highly diverse chemicals. Thus, this study aims to

generate predictive models using molecular descriptors or gene expression profiles to

predict the effect chemicals have on zebrafish heart rate, which can potentially assist in

in-silico chemical risk assessment. Finally, the same set of chemicals and gene expression

profiles are used in pathway analysis, where by organising the gene expression profiles into

pathway activity information, the aim is to identify pathways that can be used to predict

chemical toxicity and heart rate fold changes and arrange them into pathway networks which

can potentially assist in building cardiotoxicity AOPs.
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The work performed in this study is presented in the theses in the form of papers. Three

manuscripts were prepared with the intention to be submitted to journals and are added to

the thesis as Chapters 2,3 and 4.
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Chapter 2

Disparity between structural and

molecular effect clustering of

chemicals

2.1 Abstract

Risk assessment of new chemicals is costly and time-consuming, thus computational

approaches that can predict the toxicity of a compound based on similarities with already

defined chemicals have been developed. Identifying molecular descriptors and genes

associated with heart rate changes in zebrafish embryos and the increased concentration,

chemicals were clustered based on similarities. Molecular descriptors such as polarity,

lipophilicity, atoms composition and chemical bonds were found to be an indicator of

cardiotoxicity and chemical concentration exposure. Genes involved in cell-to-cell signalling,

membrane depolarization, cell death, muscle proliferation, muscle specification and

morphogenesis were found to be differentially expressed during toxic chemical exposure and

associated with heart rate changes in zebrafish embryos.

Classifying chemicals using the information encoded in the molecular structure (molecular

descriptors) has been widely used with many advantages in risk assessment, however,

clustering compounds using molecular responses (sequencing data: gene count profiles)

grouped chemicals differently. The results of the two clustering methods, molecular

descriptors and sequencing data, were compared to the Verhaar MoA classification and their

ability to group chemicals based on their effect on zebrafish heart rate. Chemical

classification based on structural information (molecular descriptors), was representative of

MoA classification, where chemicals from the same MoA class tend to be grouped together.

In addition, chemicals that significantly alter zebrafish heart rates are also grouped together

using molecular descriptors for chemical clustering. On the other hand, grouping chemicals

using gene count profiles (mRNA-seq data) was highly associated with chemicals’ effect on

zebrafish heart rate, but no association can be seen with the Verhaar MoA classification.
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Even when combining the structural features (molecular descriptors) and transcriptional

responses (mRNA seq-data) to predict heart rate the models always tend to associate

significantly with heart rate but not with Verhaar MoA classification. This suggests that one of

the most used in silico mode of action approaches lacks the ability to represent adverse

outcomes sufficiently and that more molecular approaches, such as transcriptional

responses, are necessary to understand the underlying biological mechanism of chemical

toxicity.

2.2 Introduction

The rapid development of the manufacturing and pharmaceutical industry has increased the

abundance of numerous chemicals in the environment (Corrales et al., 2015; Przybylińska et

al., 2016). Despite the best efforts to understand the impact of these compounds on humans

and other organisms, many of them only hold limited toxicological data. Given that the

number of compounds likely exceeds 100,000, it is unlikely that each compound can be

tested in depth to characterise its impact on multiple organisms. As a result, computational

approaches have been developed to describe chemical structural characteristics and

associate them with regulatory-relevant endpoints such as lethality. Classifying chemicals

based on their MoA, using structural information, has been widely used in risk assessment.

Multiple toxicity mechanisms have been identified, however, most of the industrial chemicals

follow either polar or non-polar narcosis and, on a few occasions, toxicity is caused by

irreversible covalent bond formation (Russom et al., 1997; Bearden et al., 1998; Aptula et al.,

2006).

MoAs define the more general biological process which causes specific adversity. Several

approaches have been proposed to simplify and predict these MoAs. One of the most

applied classifications is defined by Verhaar (Verhaar et al., 1992; Russom et al., 1997).

Verhaar splits chemicals into 5 classes based on structural features. Chemicals from class 1

exhibit non-polar narcosis or baseline toxicity and do not interact with specific receptors, they

form non-covalent and reversible alteration at the site of action; their toxicity depends on

their hydrophobicity. Class 2 chemicals are less inert, cause polar narcosis, possess strong

electron-releasing substituent and aromatic structures, and form hydrogen bonds, their

toxicity cannot be predicted by hydrophobicity alone. Class 3 of MoAs consists of reactive

chemicals with enhanced toxicity, by forming irreversible covalent bonds with amino acid

protein residues. Class 4 consists of chemicals that act by a specific mechanism, in a

non-covalent manner. The chemicals that do not follow any of the structural criteria set for

the previous classes are grouped in class 5 (Verhaar et al., 1992).
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MoA classification relies on the same premises as QSAR models, the toxicity of a new

chemical can be predicted using structural information (molecular descriptors) and chemicals

with already defined toxicity. QSAR models utilise multiple statistical and machine learning

techniques to predict the physicochemical, biological, and environmental impact of various

compounds using molecular descriptors (Kwon et al., 2019). Molecular descriptors result

from logical and mathematical procedures, which transform chemical information encoded

within a symbolic representation of a molecule, into numbers, or the result of some

standardised experiment (Todeschini et al., 2009). The major types of descriptors include

topological representation, connectivity of atoms, presence and nature of chemical bonds

and physicochemical properties (Svetnik et al., 2003; Singh et al., 2013; Agatonovic-Kustrin

et al., 2014; Roy et al., 2015). Multiple software can calculate thousands of descriptors such

as Dragon 7 (Mauri et al., 2006). Understanding the nature of molecular descriptors

increases the interpretability of QSAR models. The classical machine learning approach for

QSAR is a linear regression technique, however, not all biological properties are linear in

nature. Thus non-linear techniques such as artificial neural networks and random forest have

been applied (Svetnik et al., 2003; Singh et al., 2013; Agatonovic-Kustrin et al., 2014; Roy et

al., 2015; Drgan et al., 2016).

High variability in molecular descriptors can increase the complexity of QSAR analysis and

generate models with low power and a large number of molecular descriptors. The use of

chemicals from a single MoA class shows higher accuracy since they cover more similar

chemical domains (Yuan et al., 2007; Michielan et al., 2010; Cassotti et al., 2015). QSAR

methods are being increasingly used in screening, testing prioritisation, hazard identification,

and risk assessment, to reduce the number of experiments and testing (Cherkasov et al.,

2014). As MoAs are defined by their molecular interaction it stands to reason that the

inclusion of molecular information can increase the reliability of structural-based predictive

modelling.

To assess the large number of chemicals fast and accurately using fewer resources and

experimental animals, new computational, molecular, and in vitro tools have been generated,

increasing the types and amount of information available. Advances in high throughput

screening techniques and genome-wide expression analysis, enable the development of

signature-matching approaches that are based on the assumption that chemicals with similar

gene expression signatures will cause similar biological effects and can be used in predicting

the toxicity of new chemicals and identifying toxicity-related genes (Lamb et al., 2006;

Smalley et al., 2010; Sarmah et al., 2016). RNA-seq data represent the molecular state of

the cell, tissue, or organism and therefore can be used as markers to uncover the mode of

toxicity. Interestingly, chemical similarity profiles can be very diverse when using gene
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expression profiles versus structural similarities (Sirci et al., 2017) as for example cis and

trans isomers may have significantly different effects on the organism where only one form of

the chemical is toxic (Singh et al., 1988; Blisard et al., 1991).

To address the lack of known MoAs and to develop better QSAR models for regulatory use,

unsupervised clustering approaches can help to address these challenges using a

data-driven approach. Several clustering algorithms have been proposed with varying

success in the accuracy and reliability of grouping (Prasad, 2020). Clustering algorithms are

divided into hierarchical and partitioning clustering. Hierarchical clustering, e.g., top to

bottom, groups samples into a hierarchy of clusters and decomposes the data generating

sub-clusters (Murtagh et al., 2012; Murtagh et al., 2017; Prasad, 2020). Partitioning

clustering, the simplest and most effective method, uses various measurements (density,

distribution, distance) to calculate the variation between samples. K-means, the most widely

used partitioning clustering method, where each observation is placed in the cluster with the

nearest mean (cluster centre), uses various distance methods to calculate similarities

between data points, such as Euclidean or Manhattan distances, in order to split the dataset

into a pre-defined number of clusters (Likas et al., 2003; Reynolds et al., 2006; Barioni et al.,

2014). However, K-means cannot handle outliers and non-linear data since the mean value

is influenced by extreme values. Partitioning clustering is more suitable for large datasets

compared to hierarchical clustering (Reynolds et al., 2006). In addition, some algorithms can

assign a chemical into multiple clusters (Fuzzy clustering), which is necessary when

variables have a high level of correlation, but it is slower and should be used with caution

with large data (Prasad, 2020; Baraldi et al., 1999; Gosain et al., 2016).

The most important principle in toxicology is that increasing the exposure concentration of a

potentially toxic compound increases the probability of occurrence and severity of an

adverse effect. Thus, the dose-response principle has been widely used in chemical risk

assessment (Andersen et al., 2005; Holsapple et al., 2008). On the other hand, a large

number of drugs were withdrawn because they were found to induce cardiotoxicity (Cai et

al., 2019; Ma et al., 2020). Various environmental pollutants, such as heavy metals,

pesticides (Georgiadis et al., 2018) and multiple drugs including aspirin and terfenadine

(Milan et al., 2003; Zhu et al., 2014), affect heart development and function (R. Li et al.,

2020). Heart development is a very sensitive process that can be affected by molecular,

cellular and environmental factors (Sarmah et al., 2016). Exposure to such toxins may lead

to arrhythmia and myocardial hypertrophy, or damage to the heart muscle and other cardiac

tissues. Zebrafish embryos are widely used in assessing cardiotoxicity, due to their rapid

cardiac development and embryonic transparency, which allow non-invasive evaluation of
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heart function (Fraysse et al., 2006; Scholz et al., 2008; Sarmah et al., 2016; Zakaria et al.,

2018).

Here the aim is to compare how chemical structural information (molecular descriptors) and

associated molecular data cluster chemicals into specific groups and how similar these two

clustering methods are. A chemical structural dataset was generated using Dragon 7 and in

parallel used RNA-seq data after chemical exposure. The two datasets (molecular

descriptors and gene count profiles) were used for chemical clustering and the association of

structural descriptors and genes to adverse outcomes, points towards a more complex

relationship between chemical structure and adverse outcomes.

2.3 Methods

2.3.1 Chemical selection and exposure

Chemical selection was governed by retrieved chemical lists from the UK, Canada, EU, and

the USA high concern priority compound lists. 258 compounds were selected to ensure that

a) they have previous data in other species, b) were structurally varied to other compounds,

and c) were structurally singular and could be used to calculate structural features.

Zebrafish (Danio rerio) embryos were exposed to 258 chemicals for 72 hr using 96-well

plates. For every chemical, 6 concentrations were tested (LC50, LC5, LC5/2, LC5/4, LC5/8,

LC5/16) with 6 individual embryos in separated wells for each concentration; 36 zebrafish

embryos in total were exposed to each chemical (6 concentrations, 6 replicates). In each

well plate, two chemicals were tested along with 6 zebrafish embryos exposed to control and

6 embryos exposed to DMSO, 84 zebrafish per well-plate, and 10836 zebrafish embryos in

total (129 plates,774 controls exposure, 774 DMSO exposure, 9288 chemical exposure).

However, since most of the chemicals were dissolved in DMSO, DMSO was also added to

all the samples and the DMSO exposure was used as a control for further analysis.

Chemicals that failed to kill the zebrafish embryos even at the highest concentration (LC50)

were excluded along with those that failed to generate a proper dose-response curve,

resulting in 156 chemicals for further analysis. These chemicals are used in pharmaceuticals

and/or industry and/or as pesticides/insecticides, some chemicals are used in multiple

products such as Diethanolamine which is used in pesticides, pharmaceuticals and polishers

(Table 2.1).
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Figure 2.1: Flowchart of data acquisition. Zebrafish embryos were exposed to 156 chemicals. The number of
embryonic deaths for each concentration (survival data) were used to calculate the LC50 of each chemical.
Video evidence was used to calculate heart rate fold change. Zebrafish embryos underwent mRNA sequencing
generating a gene count profile for each chemical exposure. A smile notation was acquired for each chemical
and used to calculate molecular descriptors.

Pharmaceutical Industrial Insecticides/Pesticides
Acetaminophen Acetaminophen Warfarin
Anagrelide Aspirin P-Aminoazobenzene
Androstenedione Dichlorophene Pentachlorophenol
Anisindione Diphenhydramine 2,2'-Dichlorodiethyl ether
Aspirin Ibuprofen O-Cresol
Benzamide Melatonin P-Chloroaniline
Bupropion Phenacetin Urethane
Busulfan Progesterone 1,2,4-Trichlorobenzene
Cetirizine Testosterone 2-Chlorophenol
Chlorpromazine 4-Hydroxybenzophenone 4-Hydroxybiphenyl
Clofibric Acid Benzofuran Alachlor
Clozapine Catechol Carbaryl
Dichlorophene Acrylamide Chlorobenzilate
Diclofenac Adiponitrile Cyanazine
Diflunisal Benzophenone Demeton-O
Diltiazem Bisphenol A Diazinon
Diphenhydramine Dibutyl Phthalate Dichlorvos
DL-Norepinephrine Diisobutyl Phthalate Diclofop-Methyl
Fenofibrate Dodecyltrimethylammonium

Chloride
Diethanolamine

Finasteride Epichlorohydrin Dinoseb
Fluoxetine Ethylparaben Diuron
Flurbiprofen Methyl-4-Hydroxybenzoate Ethyl

Dipropylthiocarbamate
Flutamide Nitrobenzene Fenitrothion
Gemfibrozil O-Anisidine Fenthion
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Pharmaceutical Industrial Insecticides/Pesticides
Ibuprofen O-Dianisidine Fipronil
Isotretinoin O-Dinitrobenzene Malathion
Ketoprofen O-Phenylenediamine Molinate
Ketotifen O-Toluidine O-Phenylphenol
Medetomidine Octylamine Pirimicarb
Melatonin P-Aminoazobenzene Prochloraz
Methyltestosterone P-Cresidine Resmethrin
Nifedipine P-Toluidine Tributyltin Oxide
Phenacetin Pentachlorophenol Fenoxaprop-Ethyl
Procarbazine Perfluorooctanoic Acid Fluralaner
Progesterone Propylene Oxide O-Tolunitrile
Propranolol HCl Triclosan 1,8-Diamino-p-menthane
Retinoic Acid Triphenyl Phosphate 2,4-Dichlorophenol
Rizatriptan 1,2-Diaminopropane Acetochlor
Serotonin 1,3-Butadiene Folpet
Tacrine 2,2'-Dichlorodiethyl ether Benomyl
Terfenadine 2,4-Diaminotoluene
Testosterone 2,4-Dinitroaniline
Trenbolone 2,5-Hexanedione
Valproate 2-Methyl-4-isothiazolin-3-one
Warfarin 3-Ethoxy-4-hydroxybenzaldehyde
3-Methylpyridine 4,4'-Methylenebis(2-Chloroaniline)
4-Hydroxybenzophenone 4-Amino-2-Nitrophenol
4-Hydroxytamoxifen 4-Chloro-o-Phenylenediamine
Benzofuran 4-Heptylphenol
Catechol 4-Methyl-2-Pentanone
Cholesterol 4-Nonylphenol
MS-222 4-Tert-Butylphenol
Naproxen 4-Tert-Octylphenol
Flubendazole 5-Nitro-o-Anisidine
Estradiol Aniline
Caffeic Acid Dipentyl Phthalate
Isradipine Ethanolamine
Vortioxetine N,N-Dimethylformamide
1,2-Diaminopropane O-Cresol
Phenol P-Chloroaniline
Urethane P-Hydroxybenzoic Acid
2-Bromopropane Phenol
4-Methylimidazole Succinic Acid
Diethanolamine Urethane
4-heptyloxyphenol 1,2,4-Trichlorobenzene
2-(1-phenylethyl)phenol 1,2-Dichlorobenzene

1-Hexanol
2,6-Dimethylaniline
2-Bromopropane
2-Chlorophenol
4-Hydroxybiphenyl
4-sec-Butylphenol
4-Methylimidazole
N,N-Dimethyl-P-Toluidine
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Pharmaceutical Industrial Insecticides/Pesticides
Butyl Benzyl Phthalate
Michler's Ketone
4-Nitrobenzamide
Nitrapyrin
Diethanolamine
Diuron
O-Phenylphenol
Tributyltin Oxide
2,4-Dichlorophenol
Folpet
2-(1-phenylethyl)phenol

Table 2.1: Chemical grouping of the 156 chemicals A) pharmaceuticals, B) Industrial and C) Insecticides/
Pesticides.

2.3.2 Video recordings

Video recordings were generated daily during those 72 hours, for every embryo used in this

study. The videos generated needed to be converted to AVI format for the next step, using

the FFmpeg function, an open-source audio and video converter, accessed through the

command line (FFmpeg, 2018). FFmpeg supports multiple media formats of video and audio

files and has been used for editing, video scaling, and decoding (Lei et al., 2013). The

resulting videos were analysed using Fiji, an open-source image processing package

(Schindelin et al., 2012) using the time series analyser V3 plugin (Available online:

https://imagej.nih.gov/ij/plugins/time-series.html). The heart of the zebrafish is selected as

the region of Interest (ROI) using the circle tool, and the “add button” is then used for

choosing the ROI. Once selected, the “get average” button was used to analyse the pixel

change pattern shift at the ROI and extract the heartbeat frequency (Sampurna et al., 2018).

This plugin is used for analysing time-lapse images and can be used to get heartbeats per

minute by analysing dynamic pixel changes. Since there are 6 embryos for each condition,

the mean heart rate was calculated and then compared to the control samples (DMSO) from

the same well plate, to estimate the fold change in heart rate and identify the chemicals that

significantly affect zebrafish heart rate.

2.3.3 Using SMILE notations to generate molecular descriptors

and perform Verhaar classification

For each compound in this study, Dragon 7 software (Mauri et al., 2006) was used to

calculate the molecular descriptors, from smile notations identified using ChemSpider

(ChemSpider, 2018), SigmaAldrich (Sigma-Aldrich, 2020) and Pubchem (PubChem, 2018).

Dragon software generates 5270 descriptors that represent among others constitutional,
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topological and connectivity indices, ring descriptors, P-VSA-like descriptors, autocorrelation

descriptors, geometrical descriptors, functional group counts and various molecular

properties, such as lipophilicity (list of molecular descriptors calculated by Dragon7

(available at: http://www.talete.mi.it/products/dragon_molecular_descriptor_list.pdf) (Dragon -

Talete srl, 2018; Worachartcheewan et al., 2015). These descriptors aim to quantitatively

describe the physical and chemical information of a molecule. Such descriptors are used in

exploring molecular structure-property relationships and similarity analysis (Sawada et al.,

2014). The structural information provided in the form of molecular descriptors can be very

rich and can be used to showcase the similarity or dissimilarity between compounds. Before

clustering, the molecular descriptors data were normalised using log transformation, and any

descriptors with low variability (constant or near constant values) or those with missing

values (NA), were filtered out. This resulted in a total of 2085 descriptors for further analysis

(Chavan et al., 2014).

To investigate how the chemicals are related to each other in terms of toxicity, MoA

classification was performed using the Toxtree software (version 3.1.0), an open-source

application, that classifies chemicals by applying a decision tree approach (Patlewicz et al.,

2008). Currently, Toxtree can perform multiple toxicity estimation schemes, such as Cramer

rules, Verhaar classification, Kroes TTC decision tree and Skin irritation schemes, and can

process various types of input data, including SMILES, CSV, TXT and MOL files. In this

study, SMILE notations were used to assess chemical toxicity using the Verhaar

classification scheme (Enoch et al., 2008; Patlewicz et al., 2008).

2.3.4 Generating gene count profiles from mRNA sequencing

data

Zebrafish embryos were exposed to 156 chemicals, 6 concentrations, and 6 replicates each.

For mRNA sequencing, the 6 replicates were grouped together as one sample resulting in

936 samples, and only five concentrations were sequenced from each chemical exposure

(LC5, LC5/2, LC5/4, LC5/8, LC5/16), thus 156 samples were excluded (936-156= 780).

However, for certain chemicals calculating the LC50 or the LC5 was harder than expected,

due to the steepness of the dose-response curve. The inability to accurately calculate the

LC50 and LC5 of each chemical and the additional equipment errors resulted in zebrafish

embryos dying even at LC5 and LC5/2. Thus, for 19 chemicals, including Fenitrothion,

Flubendazole, Dinoseb and Naproxen, the highest available concentration in the mRNA data

was LC5/2 instead of LC5, thus these 19 samples of LC5 were excluded from the mRNA

sequencing (780-19=761) (Table 2.2). In addition, for five chemicals, such as Flutamide,
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Clozapine and Diuron, no sequencing data were provided for either LC5 or LC5/2 since

zebrafish embryos died, thus 10 samples representing the LC5 and LC5/2 of those five

chemicals were excluded (761-10= 751) (Table 2.2). DMSO samples were used as controls

for gene expression profiles, from 35 plates, where each sample consisted of 6 replicates

from the same well plate (210 zebrafish in total). As before the 6 replicates were grouped

together resulting in 35 DMSO samples for mRNA sequencing. Thus from the 936 samples

from chemical exposure and 35 samples from DMSO exposure, and the exclusion of the

LC50 samples (156) and the death of the zebrafish that compromise 29 samples, 786

samples were used for mRNA sequencing (936+35-156-29=786).

mRNA sequencing data - Highest available concentration
LC5/2 LC5/4

Fenitrothion Flutamide
Propylene Oxide Butyl Benzyl Phthalate

Naproxen Clozapine
Flubendazole Anisindione

Dinoseb Diuron
Fenoxaprop-Ethyl

Gemfibrozil
Busulfan

Pentachlorophenol
O-Phenylenediamine

4,4'-Methylenebis(2-Chloroaniline)
Benomyl

Medetomidine
N, N-Dimethyl-P-Toluidine

P-Aminoazobenzene
Bisphenol A
Caffeic Acid
Prochloraz

Testosterone
Table 2.2: Chemicals with missing mRNA sequencing profiles. For 19 chemicals the highest available
concentration in mRNA-seq data was LC5/2 and for five LC5/4, instead of LC5.

These 786 samples were moved into RNALater at the end of each experiment and used for

Illumina RNA sequencing. Fastq files were analysed using Cutadapt a widely used adapter

trimmer (Illumina adapters:AGATCGGAAGAGCACACGTCTGAACTCCAGTCA/

AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT) (Martin, 2011), and STAR software for

a two-pass alignment to generate 786 gene count profiles (Dobin et al., 2013). In two-pass

alignment, splice junctions are identified during the first alignment and are later used as

annotations in the second pass to increase the sensitivity of the method. Compared to

single-pass alignment, two-pass alignment with STAR improves splice junction annotation,

provides better splice junction detection and reduces read truncation (Veeneman et al.,

2015). STAR alignment begins by generating a genome index using GRCz10 zebrafish
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reference assembly for genome reference sequences (fasta files), annotated transcripts to

extract splice junctions information (GTF format), and the length of the genomic sequence

was set to 99. Once the genome index is generated, it is used for the first pass alignment,

along with the available fastq files. For this step, reads with inconsistent or non-canonical

introns are filtered out (--outSAMstrandField intronMotif). The first alignment generates a list

of splice junctions (SJ.out.tab), which is then used for generating a genome index again

using the fasta file. Finally, a second alignment step is performed, using the second genome

index, fastq files and the GTF file. From the second pass alignment a BAM file sorted based

on coordinates (--outSAMtype BAM SortedByCoordinate) and a file containing the number of

reads per gene (gene counts) (--quantMode TranscriptomeSAM GeneCounts) were

generated for every sample (786 files) (Dobin, 2019).

The read count data needed to be normalised before use. The TPMCalculator package

(version 0..4) (Vera Alvarez et al., 2019) that calculates transcripts per million (TPM) has

been widely used in comparing multiple samples from several experiments since it allows

normalisation by transcript gene length.TPMCalculator quantifies mRNA abundance using

the same GTF file, used in STAR alignment, and the BAM file generated through STAR. In

addition, in this study, the smaller size allowed for an intron set to 90 to exclude small introns

(-c 90) and only the properly paired reads were included (-p). Following TPM normalisation,

TMM was also performed, a trimmed mean of M-values normalisation method, that is based

on the assumption that the majority of genes are not differentially expressed, part of the

EdgeR package (version 3.28.1) (Robinson et al., 2010). This function was performed using

the gene count profiles (normalised by TPM) and by defining the normalisation method. This

double normalisation results in gene expression values that represent the changes in

expression relative to a core set of genes (Monaco et al., 2019). The normalisation step is

important as it allows us to remove systematic technical effects from raw counts and adjust

the gene counts, generating a gene expression profile for every sample.

2.3.5 Chemical screening

2.3.5.1 Batch effect

A source of variation in large-scale experiments is batch effects, defined as the presence of

variation in data due to non-biological factors and not scientific variables, such as variations

in laboratory conditions, experiments conducted in separated days and the presence of

multiple technicians (Leek et al., 2010; Reese et al., 2013). Few methods have been

developed for removing such samples, as batch effects can lead to incorrect correlations.

Principal component analysis (PCA) is an unsupervised learning approach, that transforms

25

https://paperpile.com/c/8TN32q/ukTf
https://paperpile.com/c/8TN32q/3u1U0
https://paperpile.com/c/8TN32q/itwh5
https://paperpile.com/c/8TN32q/s5zd+r6Hz+8UXo
https://paperpile.com/c/8TN32q/Forrb+x0Vh
https://paperpile.com/c/8TN32q/itwh5
https://paperpile.com/c/8TN32q/Dxlw0
https://paperpile.com/c/8TN32q/nQO5+ErtF


the observations in a dataset into new observations which are uncorrelated with each other

and account for decreasing proportions of the total variance of the original variables, with the

first principal component explaining most of the variation (Stefatos et al., 2007; Yang et al.,

2008; Holmes et al., 2011). PCA has been widely used for visualising batch effects by

plotting the first two principal components against each other (Reese et al., 2013). PCA was

performed on the RNA-seq data, in order to identify potential batch effects, resulting in six

chemicals being removed before further analysis, Naproxen, Acetochlor, Estradiol, Folpet,

Isradipine and Vortioxetine (Figure 2.2). The resulting dataset consists of 150 chemicals.

Figure 2.2: PCA plot for identification and visualisation of batch effect. PCA analysis was performed using the
gene count profiles of the 156 chemicals in order to identify any batch effect among the data. The red colour
represents chemicals that were excluded due to batch effect (five concentrations each). Black colour represents
the rest of the available chemicals and blue is the corresponding DMSO, whose variation cannot be explained
by biological factors, batch effect.

2.3.5.2 Survival data

Survival data, a record of the number of embryos that died during the experiment at each

concentration, were used for calculating the concentration at which 50% of the population is

dead (LC50). General Unified Threshold model of Survival (GUTS) modelling uses a

combination of toxicokinetic-toxicodynamic (TKTD) models to predict the probabilities of

survival. The external concentrations are translated to internal concentrations and

associated with the likely damage which triggers death. This, therefore, ensures that the

concentrations leading to 50% of death (LC50) are directly based on the likely internal

concentrations. GUTS modelling consists of four modules, internal concentration

(toxicokinetic model) and damage, hazard rate and threshold distribution (toxicodynamic
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models) (Figure 2.3) (Jager et al., 2011). GUTS modelling offers stochastic dead (SD) and

individual tolerance (IT) methods, based on different assumptions for those TKTD models. IT

approach is based on the assumption that a percentage of the population will survive

indefinitely, implying that individuals have different sensitivity levels, thus the first pulse is

killing off the most sensitive individuals and subsequent pulses will have less and less effect

on the population (Jager et al., 2011). On the other hand, the SD approach assumes that all

individuals are identical, and mortality is a stochastic process where the individuals that die

are not more sensitive, and any exposure that causes some mortality can eventually affect

the whole population given enough time. GUTS modelling uses all the available data to

estimate model parameters and does not require constant exposure concentration (Ashauer

et al., 2010).

Figure 2.3: Workflow of GUTS modelling. GUTS consist of toxicokinetics and toxicodynamic models and allow for
both Stochastic death models (SD) and Individual Tolerance models (IT). GUTS modelling begins by calculating
the internal concentration and then by identifying the damage and hazard rate, it calculates the estimated
probability of survival over time.

The openGUTS, a free and open-source software, is based on likelihood, and through the

use of a genetic algorithm, and likelihood profiling, it explores the parameter space to find

the best-fitting parameters. The reduced models for stochastic death (SD) are implemented

through the openGuts application, (Jager, 2019) (Figure 2.4). Damage as a function of time

is calculated using the recovery rate (kd), exposure concentration (Cw) and scaled damage

(Dw) that is proportional to the damage level (equation 1) (Jager, 2020).

dDw/dt =kd (Cw - Dw) with Dw (0) = 0 (1)

The hazard rate due to chemical stress (hc), which is the probability to die, represents the

continuous changes in probability over time. When the scaled damage (Dw) is lower than the

threshold (mw), the probability of an individual dying is zero, but when damage is greater

than the threshold, then the hc is increasing linearly with proportionality constant bw (the

killing rate) (equation 2) (Jager, 2020). Hc can be used to calculate the survival probability

(Sc) (equation 3).
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hc = bw max (0, Dw - mw) (2)

Sc = exp ( - hc ) (3)

Finally, openGuts takes into consideration background mortality (hb), death caused by

random events such as handling, and not due to exposure (Jager, 2020). Thus, when the

survival probability is calculated, the background survival probability is also taken into

account (equation 4).

S= Sc x exp (-hbt) (4)

The log Kow value was calculated by openGuts and was compared to Pubchem (PubChem,

2020) information before generating the dose-response curve and calculating the LC50 of

the compound. However, the LC50 could not be calculated for two chemicals, N-N-

dimethyl-p-toluidine and MS-222. After excluding those chemicals 148 chemicals were used

for further analysis.

Figure 2.4: Workflow of openGUTS software. OpenGUTS uses the reduced versions of models performed by
GUTS. In this study, only the stochastic death approach is shown. From chemical exposure, the recovery rate
and scale damage can be calculated and using the hazard rate the survival over time can be estimated.

2.3.5.3 Heart rate data

As mentioned above, for 19 chemicals LC5/2 was the highest available concentration in

mRNA sequencing data instead of LC5. In most cases, heart-rate fold change at LC5/2 was

representative of the effect the chemical has on zebrafish embryos, i.e. heart rate changed

significantly (or not) after exposure to both LC5 and LC5/2. However, five chemicals, Caffeic

Acid, Naproxen, Michler's Ketone, Flubendazole and Benomyl, were removed as at the

concentration of LC5/2 they cause no significant changes in heart rate but when the

concentration is increased to LC5, zebrafish heart rate was altered significantly. The same

rationale was applied to the chemical that the highest available concentration in the mRNA

data was LC5/4. Butyl-benzyl-phthalate was removed as the highest available concentration
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was LC5/4 which was again not representative of the effect the chemical had when LC5 was

used. The final dataset consists of 143 chemicals. It is important to note that among the 143

chemicals used in this study, some significantly increase heart rate and some significantly

reduce heart rate, thus heart rate fold change range from 0.23 to 1.137, where the control

(DMSO) had a heart rate fold change equal to 1.

2.3.6 Selection of features for classification

To ensure that as little noise as possible is added to downstream analyses Significance

Analysis of Microarrays (SAM) function was applied, from the samr R package (version 3.0)

(Tusher et al., 2001; Monaco et al., 2019). SAM applies a t-test for each independent

variable to identify whether the pattern of the variable is significantly changing based on

changes in experimental conditions (such as increasing chemical concentrations). A score

for each independent variable is calculated based on its correlation to the dependent

variable, by identifying changes relative to a standard deviation of measurements for that

variable. The relative difference is compared to the distribution of relative differences through

random permutations (Larsson et al., 2005). When the score is higher than the adjustable

threshold the variable is significant. But due to the likelihood of some variable being falsely

identified as significant, the false discovery rate (FDR) is calculated by permuting over the

repeated measurements (Tusher et al., 2001).

Four datasets were processed by SAM. The first one consists of 2085 molecular descriptors

for each chemical (143 chemicals), and the heart-rate fold changes for the highest available

concentration (from mRNA-seq data) for each chemical as the dependent variable (124

chemicals- LC5, 15 chemicals- LC5/2, 4 chemicals- LC5/4) (Heart rate fold change ~

molecular descriptors +error). The second dataset consisted again of 2085 molecular

descriptors for each chemical, but the experimental concentration (log format) of the highest

mRNA-seq data available, was used as the dependent variable (124 chemicals- LC5, 15

chemicals- LC5/2, 4 chemicals- LC5/4) (log(experimental concentration)~ molecular

descriptors +error). It is important to note that with SAM analysis (differential expression

analysis) that is performed using the actual experimental concentration, the smaller the

concentration the more toxic a chemical is. Thus, SAM analysis using those two datasets

aims to identify molecular descriptors (structural features) whose values change when the

zebrafish heart rate is altered or based on chemical toxicity.

The other two datasets consist of 726 gene count profiles with 31954 genes each, 692

genes profiled from chemical exposure, and 34 from DMSO exposure. For 124 chemicals

five concentrations were available (620 profiles), for 15 chemicals four concentrations were
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available (60 profiles), and for four chemicals three concentrations were available (12

profiles), a total of 692 gene count profiles. The dependent variable of the third dataset was

the heart-rate fold change calculated from the six replicates of each concentration and

compared to the DMSO heart rate (Heart rate fold change ~ gene expression +error). On the

other hand, the dependent variable of the fourth dataset consists of the values “0” for DMSO

samples, “1” for all the LC5/16 concentrations, “2” for all the LC5/8 concentrations, “3” for all

the LC5/4 concentrations, “4” for all the LC5/2 concentrations and “5” for all the LC5

concentrations (chemical concentration (0 to 5) ~ gene expression +error). The last dataset

is used to identify genes whose expression is altered as the chemical concentration is

increasing thus chemical effect (toxicity) is greater.

The SAM function was performed with 1000 permutations (nperms=1000) used for

estimating the FDR, the nature of the data was specified (resp.type="Quantitative"), and the

FDR cutoff for output in the significant genes table was set to 0.1 (fdr.output=0.1). For each

run, variables found to be differentially expressed were identified. The genes identified by

SAM to be differentially expressed when chemicals affect heart rate or chemical

concentration is increased (3791 genes) were processed using the R function gost from the

gprofiler2 R package (version 0.2.1) (Kolberg et al., 2020). Gprofiler2 performs

over-representation analysis to identify significantly enriched biological functions and

pathways from multiple sources such as Gene Ontology (GO) (Ashburner et al., 2000),

Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2019), Reactome

(REAC) (Fabregat et al., 2018), and miRNA targets mostly based on Ensembl databases

(Yates et al., 2020). The gost function was performed using FDR as the algorithm for

correcting for multiple testing (correction_method = "fdr") with a threshold set to 0.1

(user_threshold = 0.1), specifying the organisms used (organism = "drerio") and generating

a list of only the statistically significant results (significant = TRUE) among all the genes of

the given organism (domain_scope = c("known")). GO terms indicate the function of the

genes in biological processes, molecular functions, and cellular components, thus a gene is

usually represented by more than one GO term. Gene enrichment analysis was performed to

reveal the set of biological processes (GO: BP) and KEGG pathways that the identified

genes are found to be involved in. In addition, the miRNAs identified by gprofiler2 indicate

that certain miRNAs may have been present and regulating the genes identified. As the

sequencing approach does not identify miRNAs per se the terms shown can be considered

analogous to GO Terms.
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2.3.7 Clustering algorithm

The variables identified by differential expression analysis (SAM) were used for clustering

the 143 chemicals. Two datasets were used, one with all the molecular descriptors identified

to be associated with changes in chemical concentration, or the effect the chemical has on

zebrafish heart rate, and one with all the genes found to be differentially expressed when

chemical exposure affects zebrafish heart rate, or chemical concentration is increased. Both

datasets contain quantitative data.

The k-means clustering algorithm is used in this study through the cmeans function from the

e1071 R package (version 1.7.6) (Monaco et al., 2019), which allows for hard (chemicals

belong to only one cluster) and fuzzy clustering (chemicals belong to multiple clusters)

(Bezdek et al., 1984). This algorithm assigns membership to each data point (chemical)

corresponding to each cluster centre based on the distance between the cluster centre and

the data point. The sums of squares (euclidean) or the absolute values (manhattan) are

applied for calculating the distance between observations and the cluster centre. However,

as in the traditional k-means method, using the c-means function requires the number of

expected clusters to be defined. The Elbow method was used in this study, to determine the

number of clusters in a dataset by applying the k-means algorithm using various numbers of

clusters and calculating the Sum Square Error (euclidean distance) (Thorndike, 1953;

Marutho et al., 2018). The explained variation is plotted as a function of the number of

clusters. The first cluster explains a lot of variance, but the marginal gain drops giving an

angle in the graph as the number of clusters is increased (Anand, 2017). The elbow method

was performed using 1 to 7 clusters. From the plots generated (1-clustering using molecular

descriptors, 2-clustering using gene count profiles), the suggested number of clusters using

the data from this study is three and four.

For performing the c-means function the maximum number of iterations was set to 10000

(iter.max= 10000), the euclidean distance method (dist="euclidean") was chosen and the

degree of fuzzification was set to 1.5 (m=1.5). Clustering was performed with three clusters

for both input datasets (molecular descriptors, gene count profiles) for further analysis. The

output file of the c-means function includes a matrix with the membership values of each

chemical to the clusters, which is used for fuzzy clustering. Chemicals were assigned to one

or more clusters when the membership coefficient for each cluster was greater than 0.333

(since there are three clusters in total). Fuzzy clustering can deal more effectively with

outliers and data points that are found between the cluster centres and allow the

identification of potential overlap between clusters.
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2.3.8 Predicting mRNA (gene counts) clustering using

molecular descriptors

In order to test whether the molecular descriptors can be used to predict the mRNA (gene

count profiles) clustering, an R function was built. The dataset used as an input into that

function, consists of 2088 molecular descriptors, as the independent variables, and the

mRNA (gene counts) hard clustering of the 143 chemicals, as the dependent variable

(values "1", "2", "3", representing the 3 clusters). The first step of the predictive function is

splitting the dataset into test and training datasets, using the createDataPartition function

part of the Caret R package (version 6.0.86) (Kuhn, 2020). This function splits the dataset

randomly but aims to preserve the overall class distribution. In this study, the dataset is split

300 times into training and test sets (times = 300), where 63.2% of the chemicals are part of

the training dataset (p= 0.632). One of the training datasets is selected randomly and used in

downstream analysis.

To reduce the dimensionality of the dataset, by reducing the number of molecular descriptors

or genes, and computational time, LASSO was applied as implemented in the stabpath

function in the c060 R package (version 0.2.8) (Sill et al., 2014). The stabpath function

identifies features related to the dependent variable while setting the coefficients of less

contributing features to zero (or close to zero) (Mozafari et al., 2020). It begins by splitting

the training dataset again by 63.2% (size=0.632) 1000 times, subsamples (steps= 1000),

and since the dependent variable is categorical, multinomial analysis was performed

(family="multinomial"). In addition, to increase the consistency of estimations, the weakness

parameter is used that indicates the amount of additional randomization. In this study, for

each subsample, the features are reweighted by random weight uniformly sampled

(weakness= 1).

The features selected through the stabpath function were used as input to forward selection

that was performed in combination with ranger (RF). The features selected in the previous

step were ranked by their LASSO coefficient and then sequentially added to the RF model

(one by one) and tested against unused data, the 300 data splits performed in the first step.

The ranger function, part of the ranger R package (version 0.12.1) (Wright et al., 2017), was

applied for performing classification RF (classification= TRUE). RF calculates numerous

decision trees, where each tree generates a class prediction and the class with the most

votes is identified as the prediction of the model. The decision trees method is sensitive to

the input data, thus RF randomly performs row and feature sampling for each tree, ensuring

that each tree is different (bagging- bootstrap aggregation). Bootstrapping, a resampling
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technique is a statistical technique that describes the use of multiple small data samples and

the generation of an average estimate from all the small data samples, in order to improve

the robustness of the predicted model (Efron, 1979).

Each model was then used to predict the dependent variable, through the predict function

part of the stat R package (version 3.6.1) and then the cor function from the stat R package,

is applied to measure the correlation coefficient value between the dependent variable and

the predicted values. The R2 of the model is calculated by raising the correlation coefficient

to the power of two. R2 is a measurement of how much variation of the dependent variable is

explained by the independent variables. Finally, for the last part of the function, the model

that on average performs best across all 300 splits was identified by selecting the model with

the higher mean R2. Once the best model is identified, LOOCV was performed to evaluate

the model, by training the model on almost all the data except one, and then using the model

to predict the one observation left behind.

The train function, part of the caret R package, that fits predictive models over multiple

tuning parameters, performed LOOCV (trControl = trainControl(method = "LOOCV")) using

ranger (method= "ranger") for classification data (classification =TRUE). For classification

analysis, "gini" and "extratrees" split rules are used (splitrule=c("gini"," extratrees")). The

input dataset consists of the dependent variable, that is the mRNA hard clustering results,

and the molecular descriptors identified as part of the model.

In order to measure the validity of the selected model, the dependent variable was randomly

permuted, using the sample function in R, and used as an input for the predictive modelling

function where the mean R2 of the best model across the 300 datasets was recorded. This

was repeated 1000 times and the resulting R2 values were used to calculate the p-value of

the selected model using the ecdf function part of the stat package in R (empirical

cumulative distribution function) (1- ecdf(R2 from LOOCV)). The p-value is an indication of

the probability of the generated model occurring by chance, thus, a high p-value indicates

that the model is not representative of the actual data, and it can be generated even with

randomised data.

To further evaluate the performance of the generated model, accuracy, precision and recall

values are calculated that are based on the confusion matrix. The confusion matrix is a table

that consists of the comparison between the observed and predicted classification,

identifying false negatives, and false positives. The correctly classified elements are located

on the main diagonal (from top left to bottom right). The accuracy of the model is calculated

by dividing the number of correctly classified instances per class by the total number of

instances, measuring the ability of the model to correctly predict the class of the entire
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dataset. On the other hand, precision and recall metrics are calculated for each class

independently that depend on the number of false positive and false negative results. The

precision of the model is calculated, by dividing the number of correctly classified predictions

for each class by the total number of positively predicted units (true and false positives), thus

as the number of false positives is increase the precision is reduced. The recall is calculated

by dividing the number of correctly classified instances per class by the number of instances

per class (true positive and false negative), indicating the degree of reliability of the model,

the higher the number of false negatives the smaller the recall value (M et al., 2015; Grandini

et al., 2020). The workflow for the predictive modelling function and model evaluation is

shown in Figure 2.5.

The package ggplot2 (version 3.3.5) was used for data visualization (Wickham, 2016). To

evaluate the importance of each variable to the final model the varImpPlot function was

applied, from the random forest R package (version 4.7-1.1) (Liaw et al., 2002) that

generates the mean decrease in the accuracy plot and the mean decrease in Gini coefficient

plot. The mean decrease in accuracy plot shows how much accuracy is lost when a variable

is removed from the model, and the Gini plot measures how each variable contributes to the

homogeneity of random forest nodes and leaves.
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Figure 2.5:Generating and evaluating a predictive model. A predictive modelling function was developed that
begins by splitting the dataset into training and test sets. LASSO stability path is then used to identify variables
that can be used in predicting the dependent variable and using RF, a variable is added each time, and the
resulting model was evaluated using the splits generated in the first step. The model that performs best across
all splits is selected and used in LOOCV. The predictive modelling function was repeated 1000 times but the
dependent variable is randomised before running the function. Using the ecdf function the probability of the
model being representative of the effect is evaluated by calculating the p-value of the model.

2.4 Results

2.4.1 Majority of compounds affect zebrafish heart rate

significantly

Most of the chemicals used in this study (66%- 94 out of the 143 chemicals) significantly

upregulate or downregulate the heart rate of zebrafish embryos compared to the control.

MoA classification is one of the most widely used methods for toxicity evaluation, thus the

MoA of each chemical was identified in an effort to define the MoA classes of the chemicals

35



that can significantly alter zebrafish heart rate. MoA classification using Toxtree revealed the

high variability of the data in structural features, with chemicals that were classified in all 5

classes of Verhaar MoA (Table 2.3). Looking into the potential relationship between MoA and

the ability of a chemical to significantly alter heart rate in zebrafish embryos, it can be seen

that there is no particular enrichment since all five classes of MoA are represented in that list

(Table 2.3) (Fisher’s Exact Test p-value= 0.785). These results show no relationship between

the Verhaar MoA of a chemical with its ability to alter zebrafish embryos’ heart rates.

MoA 1 MoA 2 MoA 3 MoA 4 MoA 5

Significant heart-rate changes 14 4 6 9 61

Not significant heart-rate changes 10 3 3 6 27
Table 2.3: The Verhaar MoA of the chemicals split based on their effect on heart rate, showing no correlation
between toxic chemicals that significantly alter the heart rate of zebrafish, and the Verhaar MoA of the
chemicals (Fisher’s Exact Test p-value= 0.785).

2.4.2 Clustering chemicals using molecular descriptors reveals

distinct feature sets for changes in heart rate and chemical

concentration

After filtering, 2085 molecular descriptors were selected for differential analysis using SAM.

SAM was performed twice, using the heart rate fold change (significantly upregulated and

downregulated after chemical exposure) and experimental chemical concentrations (the

lower the LC5 of a chemical the more toxic a chemical is) of the highest mRNA-seq profiles

available concentration, for 124 chemicals the LC5, for 15 chemicals the LC5/2 and for four

chemicals the LC5/4, as the dependent variable. This analysis aims to identify structural

features (i.e. molecular descriptors) that contribute to the ability of a chemical to alter heart

rate in zebrafish embryos or has the potential to kill them (toxicity).

A total of 1188 molecular descriptors were identified by differential expression analysis

(SAM) to be significantly associated with heart rate changes, and 1240 with chemical

concentration (toxicity). Comparing those two lists, 1031 molecular descriptors were found to

be associated with both chemical toxicity and the ability of a chemical to affect heart rate.

This list contained some basic features related to the composition of the compound,

including molecular weight (MW, SpMax), the number of multiple atoms (nAT, nH, nSK, C%,

N%, nN, nC), the number of bonds and their nature (nBT, nBO, nAB, SpPosA), distance

(VE1_L, VE1_X), spatial autocorrelation (MATS) and topological descriptors (SpDiam,

SM06). Certain functional groups such as phenol/carboxyl OH (O-057), primary alcohols
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(nOHp) and the number of aromatic carbons (nCar), also seem to be associated with the

ability of a chemical to alter zebrafish heart rate and with chemical toxicity. In addition, those

two SAM analyses have identified various descriptors related to the presence and structure

of rings in a chemical (nCIC, TRS, Rperim, nR06, nR07, nBnz, NRS). Finally, descriptors

relating the polarity of the compounds such as unipolarity (UNIP), the octanol-water partition

coefficient (MLOGP2), polarity number (Pol, P_VSA, SpPosA, ATSC6p, ATS7p), the sum of

atomic polarizabilities (Sp), ionisation potential (Si, ATS2i, ATSC4i, Wi_B(i)) and

electronegativity (ATS3e, GATS2e), were also important in associating with the effect

chemicals have on cardiac function of zebrafish embryos, and chemical toxicity.

A total of 209 molecular descriptors were identified by differential expression analysis (SAM)

to be associated only with chemical concentration (chemical toxicity) including the presence

of certain chemical features such as ethers (nROR), number of primary amines (nRNH2),

hydrogen atoms attached to alpha-Carbon (H-051), the number of Pyrroles (nPyrroles), the

number of aromatic hydroxyls (nArOH), number of nitriles (nRCN), and the number of

nonaromatic conjugated Carbons (nCconj). In addition, the percentage of hydrogen atoms

and the number of oxygen atoms (H%, nO), the number of double and rotatable bonds (nDB,

RBN), the number of 5-membered rings (nR05) and the hydrophilic factor (Hy) were found to

be associated only with chemical toxicity (Figure 2.6).

On the other hand, 157 molecular descriptors were identified by differential expression

analysis (SAM) to be associated only with changes in heart rate. Some of those descriptors

are the percentage of halogen atoms (X%), the number of triple bonds (nTB), aromatic ratio

(ARR), the number of 10-membered rings (nR10), ring fusion density (RFD), ring bridge

count (Rbrid) and the ratio of multiple path count (PCR). The chemicals that tend to

dysregulate zebrafish heart rate are characterised by the presence and the number of

tertiary amines (nRNR2), the number of sulphides (nRSR) and the number of secondary and

tertiary alcohols (nOHs, nOHt) (Figure 2.6). The two lists were combined to represent the

largest possible list of molecular descriptors associated with chemical concentration (toxicity)

and the changes in heart rate fold change, with 1397 molecular descriptors in total to be

used for clustering.
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Figure 2.6: Molecular descriptors identified by differential expression analysis (SAM) to be associated with heart
rate and toxicity. Comparing the molecular descriptors selected by SAM analysis using changes in heart rate
and chemical concentration exposure.

The c-means function was performed for chemical clustering with 1.5 degree of fuzzification,

the molecular descriptors were identified by differential expression analysis (1397 molecular

descriptors) and by setting the expected number of clusters to three. This analysis split the

chemicals into 42, 52, and 49 chemicals (Table 2.4). Examining each cluster shows that

chemicals that significantly change heart rate due to exposure are found in all clusters (Table

2.5), however, using Fisher’s Exact Test, a significant association was found between the

chemical effect on heart rate and the molecular descriptors clustering, indicating that

chemicals that influence heart rate were more likely to be grouped together (Fisher’s Exact

Test p-value 0.017). Clustering using the molecular descriptors was compared to Verhaar

MoA classification, showing that molecular descriptors clustering also represents MoA

classification strongly with Fisher’s Exact Test p-value of 0.007, as expected, since both

classification methods use the structural characteristics of a chemical, for chemical grouping.

The c-means function also allows for fuzzy clustering, where chemicals can be part of more

than one cluster, based on the degree of fuzzification to explore any potential overlap

between the clusters and identify chemicals that are found in between clusters and share

structural features with chemicals from more than one cluster. Fuzzy clustering is not based

on distance like in traditional k-means function but is based on probability score or likelihood

(Rehman et al., 2019). The chemicals in this study were divided into three clusters,

consisting of 46, 60, and 60 chemicals (Table 2.4), with low overlap (Figure 2.7) indicating

that chemicals from different clusters have different molecular descriptors profiles (structural

characteristics). Chemicals that significantly influence heart rate in zebrafish embryos were

found in all fuzzy clusters (Table 2.5). Fisher’s Exact Test was performed and revealed an

association between molecular descriptors’ fuzzy clustering and chemical effects on

zebrafish embryos’ heart rate (p-value= 0.008) and between the fuzzy clustering and the
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MoA classification of chemicals (p-value = 0.009) (Table 2.6), indicating that chemicals from

the same MoA class and chemicals that significantly affect zebrafish heart rate tend to

cluster together.

Molecular descriptors clustering
Number of chemicals

mRNA Sequencing clustering
Number of chemicals

Hard Fuzzy Hard Fuzzy

Cluster 1 42 46 43 34

Cluster2 52 60 34 109

Cluster 3 49 60 66 /
Table 2.4: Clustering of the 143 chemicals using molecular descriptors and mRNA sequencing, hard and fuzzy
clustering.

Molecular descriptor Hard Clustering

Cluster 1 (n=42) Cluster 2 (n=52) Cluster 3 (n=49)

Significant heart-rate changes 20 39 35

Not significant heart-rate
changes

22 13 14

Molecular descriptor Fuzzy Clustering

Cluster 1 (n=46) Cluster 2 (n=60) Cluster 3 (n=60)

Significant heart-rate changes 24 47 46

Not significant heart-rate
changes

22 13 14

Table 2.5: The distribution of chemicals that significantly affect heart rate among the clusters generated using
molecular descriptors for hard clustering (Fisher’s Exact Test p-value=0.017) and fuzzy clustering (Fisher’s Exact
Test p-value=0.008).
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Figure 2.7: Comparing the Fuzzy clustering results generated using molecular descriptors. Chemicals were
grouped into three clusters with low overlap.

Hard Clustering using Molecular descriptors

MoA 1 MoA 2 MoA 3 MoA 4 MoA 5

Cluster 1 (n=42) 9 7 2 2 22

Cluster 2 (n=52) 5 0 3 7 37

Cluster 3 (n=49) 10 0 4 6 29

Fuzzy Clustering using Molecular descriptors

MoA 1 MoA 2 MoA 3 MoA 4 MoA 5

Cluster 1 (n=46) 10 7 2 2 25

Cluster 2 (n=60) 6 1 3 9 41

Cluster 3 (n=60) 12 0 5 8 35
Table 2.6: The Verhaar MoA distribution of the chemicals in each molecular descriptor cluster generated from
hard clustering (Fisher’s Exact Test p-value=0.007) and fuzzy clustering (Fisher’s Exact Test p-value=0.009), both
showing a strong correlation between mRNA clustering and Verhaar MoA classification.

2.4.3 Clustering chemicals using mRNA sequencing data

highlights the strong association with heart rate changes

The mRNA sequencing data generated after exposure of zebrafish embryos to 143

chemicals at multiple concentrations, were used to generate gene count profiles that consist

of 31,953 genes each. To identify gene expression changes associated with increasing

chemical concentration (chemical toxicity) or heart rate defects, a quantitative association

analysis was performed using differential expression analysis (SAM).
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Differential expression analysis identified a set of 3780 genes associated with increases in

chemical concentration, 930 of those genes were upregulated and 2850 were downregulated

as chemical concentration was increased. Functional enrichment analysis was performed to

identify gene ontology terms that are significantly associated with the selected genes. The

targets of six microRNAs were identified to be upregulated, thus the expression of the

equivalent miRNA is reduced (Table 2.7). The miR-126a-3p (p-value=0.045) is involved in

various toxicant exposures and its downregulation contributes to cardiac dysfunction (Shen

et al., 2019; Balasubramanian et al., 2020). The miR-155 (p-value=0.045), is a key regulator

for cell homeostasis and regulates hematopoietic lineage differentiation, immunity and

inflammation (Cao et al., 2016; Liu et al., 2021). The miR-216b (p-value=0.045) and

miR-499-5p (p-value=0.045) are involved in chemical stress, myocardial autophagy and

apoptosis (Ahkin Chin Tai et al., 2020; Wang et al., 2021). The miR-30a-5p (p-value=0.06) is

involved in muscle cell types specification and differentiation and downregulation contributes

to endoplasmic reticulum stress in cardiac muscle and vascular smooth muscle cells (Ketley

et al., 2013; Chen et al., 2014). Finally, the miR-145-5p (p-value=0.06) regulates smooth

muscle cell differentiation and cardiac specification during heart development, found to be

downregulated in coronary artery disease (Zhao et al., 2015; Vacante et al., 2019). The

genes found to be upregulated when the chemical concentration is increased were

associated with 103 significant biological properties, amino sugar metabolism,

cytoskeleton-dependent intracellular transport, regulation of microtubule polymerization or

depolymerization, cell death, nervous system and regulation of DNA-templated transcription

(p-value range 0.02-0.093) (Table 2.7, Supplementary materials Table S.1). Finally, one

KEGG GO term was selected, thiamine metabolism (p-value=0.015), which is involved in

vitamin b1 biosynthesis that plays an important role in changing carbohydrates into energy.

Using the downregulated genes identified by differential expression analysis (SAM) one

miRNA was identified by GO analysis, miR-1 (p-value=0.093), indicating that since the

targets of this miRNA are downregulated the miRNA is overexpressed. miR-1 is a

muscle-specific cardiac miRNA and upregulation of miR-1 has been associated with various

cardiac conditions (Ai et al., 2012; Ahkin Chin Tai and Freeman, 2020). Finally, the

downregulated genes were involved in two KEGG pathways, MAPK signalling pathway

(p-value= 0.008) involved in cell proliferation, differentiation and migration, and cellular

senescence pathway (p-value=0.066) responsible for irreversible cellular arrest (KEGG

PATHWAY Database).
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Chemical concentration- Genes upregulated

GO term name P value GO term ID

miRNA-126a-3p 0.045 dre-miR-126a-3p

miRNA-155 0.045 dre-miR-155

miRNA-216b 0.045 dre-miR-216b

miRNA-499-5p 0.045 dre-miR-499-5p

miRNA-30a-5p 0.06 dre-miR-30a-5p

miRNA-145-5p 0.06 dre-miR-145-5p

Thiamine metabolism 0.015 KEGG:00730

Morphogenesis 0.044-0.093 Biological Processes

Cell membrane
organisation

0.02-0.093 Biological Processes

Nervous system 0.05-0.09 Biological Processes

Microtubule 0.045-0.086 Biological Processes

Cell death 0.07-0.093 Biological Processes

Chemical concentration- Genes downregulated

MAPK signalling pathway 0.008 KEGG:04010

Cellular senescence 0.066 KEGG:04218

miRNA-1 0.093 dre-miR-1

Heart-rate fold changes

Name P value GO term ID

miRNA- 206-3p 0.07 dre-miR-206-3p

miRNA-126a-3p 0.01 dre-miR-126a-3p

miRNA-155 0.01 dre-miR-155

miRNA-216b 0.01 dre-miR-216b

miRNA-499-5p 0.01 dre-miR-499-5p

miRNA-430a-3p 0.01 dre-miR-430a-3p
Table 2.7: Functional enrichment analysis of the genes selected by differential expression analysis (SAM), to be
differentially expressed based on chemical toxicity (chemical concentration) and heart-rate changes.
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When establishing the association to heart rate changes a set of 1890 genes were identified

to be differentially expressed. Functional enrichment analysis was performed and identified

six miRNAs, miR-206-3p (p-value=0.07), known to be expressed in skeletal muscles and

regulates muscle proliferation and differentiation (Lin et al., 2017),miR-126a-3p

(p-value=0.01), involved in circulatory system development and is expressed in the

cardiovascular system (Khanaghaei et al., 2016) and miR-155 (p-value=0.01), associated

with cardiovascular diseases (Faraoni et al., 2009). The miR-216b (p-value=0.01), has been

associated with cardiomyocyte proliferation (Faraoni et al., 2009; Ahkin Chin Tai et al.,

2020), miR-499-5p (p-value=0.01), is involved in cardiac differentiation (Shieh et al., 2011;

Garreta et al., 2017) and finally, miR-430a-3p (p-value=0.01) that is important in embryonic

heart morphogenesis (Li et al., 2017) (Table 2.7).

Comparing the two gene lists obtained (heart rate fold change and increasing concentration),

11 genes were only associated with changes in the heart rate of zebrafish embryos, related

to protein targeting and localization to the mitochondrion, apoptotic signalling, MAPK, TCR

and AKT signalling and innate immune system (p-value range= 0.01 - 0.098). On the other

hand, 1901 genes were associated only with chemical exposure concentration related to

organ development, cell-cell signalling, wnt, Foxo and VEGF signalling, cell cycle and fatty

acid elongation (p-value range= 2.8e-11 - 0.08).

Combining the two lists generated by differential expression analysis (SAM), to get the list of

unique genes that are associated with both heart-rate effects on zebrafish and chemical

exposure, 3791 genes were identified and used for clustering. Using the Elbow method, the

dataset was split into three clusters consisting of 43, 34 and 66 chemicals (Table 2.4).

Checking the distribution of chemicals that do not significantly influence heart rate in the

clusters after mRNA clustering, it can be seen that most of them are grouped in cluster 3

(Table 2.8). Fisher’s Exact Test verified the association between heart rate changes and

mRNA clustering with a p-value of 6.084e-08. On the other hand, the mRNA clustering does

not seem to be associated with Verhaar MoA classification, Fisher’s Exact Test p-value =

0.706 (Table 2.9).

Fuzzy clustering resulted in the generation of two clusters, the first one consisting of the

same 34 chemicals as the mRNA cluster 2 hard clustering and the second cluster, consisting

of 109 chemicals, the combination of hard mRNA cluster 1 (43 chemicals) and cluster 3 (66

chemicals) (Table 2.4), indicating that the chemicals from hard mRNA clustering cluster 1

and 3 share similar gene count profiles. Most of the chemicals from fuzzy cluster 1, 32 out of

34 chemicals, significantly affect the heart rate in zebrafish embryos (Table 2.8). As

expected mRNA fuzzy clustering is highly associated with the effect of the chemical on the
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zebrafish embryo heart rate (Table 2.8) (Fisher’s Exact Test p-value = 2.363e-05) and not

associated with the Verhaar MoA classification (Table 2.9) (Fisher’s Exact Test p-value =

0.453).

Hard Clustering with mRNA sequencing data

Cluster 1
(n=43)

Cluster 2
(n=34)

Cluster 3
(n=66)

Significant heart-rate changes 34 32 28

Not significant heart-rate changes 9 2 38

Fuzzy Clustering with mRNA sequencing data

Cluster 1
(n=34)

Cluster 2
(n=109)

Significant heart-rate changes 32 62

Not significant heart-rate changes 2 47
Table 2.8: The distribution of chemicals that significantly affect heart rate among the clusters generated using
mRNA sequencing data. Both clustering methods, hard and fuzzy, are shown to cluster chemicals based on
heart rate changes, hard clustering Fisher’s Exact Test p-value=6.084e-08 and fuzzy clustering
p-value=2.363e-05.

Hard Clustering with mRNA sequencing data

MoA 1 MoA 2 MoA 3 MoA 4 MoA 5

Cluster 1 (n=43) 7 2 1 7 26

Cluster 2 (n=34) 5 2 3 1 23

Cluster 3 (n=66) 12 3 5 7 39

Fuzzy Clustering with mRNA sequencing data

MoA 1 MoA 2 MoA 3 MoA 4 MoA 5

Cluster 1 (n=34) 5 2 3 1 23

Cluster 2 (n=109) 19 5 6 14 65
Table 2.9: The Verhaar MoA of the chemicals from each cluster generated from mRNA clustering. Hard
clustering (Fisher’s Exact Test p-value= 0.706) and fuzzy clustering (Fisher’s Exact Test p-value=0.453) show no
correlation between the clusters and the chemical MoA.
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2.4.4 Combining molecular descriptors and gene expression

significantly improves association with heart rate and chemical

concentration

Cluster membership of chemicals clustered using molecular descriptors and mRNA data

differ significantly (Table 2.10). Based on Fisher's Exact Test comparing the two clustering

methods (molecular descriptors versus mRNA-seq data clustering) it is clear that the

distribution of values is fairly random and that no single enrichment of chemicals has been

observed. For the hard and fuzzy clustering, this is highlighted by Fisher’s Exact Test p-value

of 0.106 and 0.183 respectively. In addition, clustering chemicals using molecular descriptors

represent both heart-rate changes and the Verhaar MoA of the chemicals, but clustering

chemicals using only mRNA information, although it does represent heart-rate changes very

well, there is no association between the mRNA clustering of the chemicals and their MoA.

Hard Clustering

Molecular descriptors

Cluster 1
(n=42)

Cluster 2
(n=52)

Cluster 3
(n=49)

mRNA
clustering

Cluster 1 (n=43) 7 2 1

Cluster 2 (n=34) 5 2 3

Cluster 3 (n=66) 12 3 5

Fuzzy Clustering

Molecular descriptors

Cluster 1
(n=46)

Cluster 2
(n=60)

Cluster 3
(n=60)

mRNA
clustering

Cluster 1 (n=109) 5 2 3

Cluster 2 (n=34) 19 5 6
Table 2.10: Comparing cluster composition between molecular descriptors and mRNA sequencing data
clustering, highlighting the difference between the two methods, hard clustering (Fisher’s Exact Test
p-value=0.106) and fuzzy clustering (Fisher’s Exact Test p-value=0.183).

Thus, in order to explore those differences, the molecular descriptors and genes identified to

be altered under the two conditions explored in this study, chemical concentration (toxicity)

and heart rate fold change caused by chemical exposure, were combined. The new dataset

consists of 5188 variables (3791 genes and 1397 molecular descriptors). The same method
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was followed here, where the elbow method was used along with the c-means function to

cluster the 143 chemicals into three classes. Clustering chemicals using the new, combined

dataset, resulted in three clusters with 53, 39 and 51 chemicals each (Table 2.11). Fuzzy

clustering on the other hand also resulted in three clusters, clusters 1 and 2 containing 90

chemicals each, 88 of them shared between the clusters, and cluster 3, consisting of 52

chemicals, from which only one (o-Phenylenediamine) is shared with cluster 2 (Table 2.11).

Data combined clustering- number of chemicals per
cluster

Hard Fuzzy

Cluster 1 53 90

Cluster 2 39 90

Cluster 3 51 52
Table 2.11: Clustering chemicals using a combination of molecular descriptors and mRNA information used to
explain chemical toxicity and heart-rate effects on zebrafish organisms.

Molecular descriptors clustering

Cluster 1
(n=42)

Cluster 2
(n=52)

Cluster 3
(n=49)

Data
combined
clustering

Cluster 1 (n=53) 0 18 35

Cluster 2 (n=39) 5 20 14

Cluster 3 (n=51) 37 14 0

mRNA clustering

Cluster 1
(n=43)

Cluster 2
(n=34)

Cluster 3
(n=66)

Data
combined
clustering

Cluster 1 (n=53) 24 0 29

Cluster 2 (n=39) 5 34 0

Cluster 3 (n=51) 14 0 37
Table 2.12: Comparing the combined clustering with the molecular descriptors clustering (Fisher’s Exact Test
p-value <2.2e-16) and mRNA clustering (Fisher’s Exact Test p-value=2.2e-16) both showing a high correlation
between the clustering methods.

Comparing the combined datasets’ clustering results, with the clustering methods using only

molecular descriptors or mRNA-seq data, a high correlation can be seen, with both of them,

as expected (Fisher’s Exact Test p-value <2.2e-16) (Table 2.12). Looking further into the

combined data clustering, a high correlation was observed between the clusters and the
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effect chemicals have on zebrafish heart rate (Fisher’s Exact Test p-value= 3.45e-06) (Table

2.13) but no correlation with the Verhaar MoA classification of chemicals (Fisher’s Exact Test

p-value= 0.222) (Table 2.14). The inability to find any correlation between MoA classification

and any clustering performed in this study using the mRNA-seq data, using only mRNA

seq-data or combined with molecular descriptors, highlighting the difference between

structural profiles and gene expression clustering and the variation in the information

provided by those two types of data (molecular descriptors, gene count profiles).

Data combined clustering

Cluster 1 (n=53) Cluster 2 (n=39) Cluster 3 (n=51)

Significant heart-rate changes 32 37 25

Not significant heart-rate
changes

21 2 26

Table 2.13: The distribution of chemicals that significantly affect heart rate among the clusters generated using
the combined dataset. This clustering method is highly representative of the effect toxic chemicals have on
zebrafish embryos (Fisher’s Exact Test p-value= 3.45e-06).

Data combined clustering

MoA 1 MoA 2 MoA 3 MoA 4 MoA 5

Cluster 1 (n=53) 10 0 3 9 31

Cluster 2 (n=39) 5 2 4 3 25

Cluster 3 (n=51) 9 5 2 3 32

Table 2.14: The Verhaar MoA of the chemicals from each cluster generated using the combined dataset,
showing no correlation between them (Fisher’s Exact Test p-value=0.222).

2.4.5 Prior clustering of chemicals based on mRNA improves

prediction using structural features

As the mRNA data were able to distinguish and associate much more closely with the effect

on heart rate compared to the structural features themselves, the ability of structural features

to predict the classification generated by the mRNA data was evaluated. The final model,

based on the LASSO stability selection approach, achieved a mean R² of 0.11 and used 66

molecular descriptors (Model 1 - Figure 2.8). Along with the low R², the accuracy of the

model was 0.53 (table 2.15), with the precision of prediction to be equal to 0.53 for class 1,

0.31 for class 2 and 0.57 for class 3, and the recall 0.4 for class 1, 0.15 for class 2 and 0.82

for class 3 (Figure 2.8). The low predictive ability of this model seems to suggest that

predicting the mRNA clustering using molecular descriptors is extremely challenging and
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that more data is required to define more homogenous chemical groupings which will likely

result in an improved effect prediction.

To identify the cause of such a weak model, and generate a more reliable one, the chemicals

with the highest overlap between the mRNA and structural clusters were selected.

Comparing molecular descriptors clustering and the combined clustering, 92 chemicals were

selected (Figure 2.9). The modelling function described in the methods was used with 2012

molecular descriptors (after removing molecular descriptors with NA values of those with no

variations across the samples) to predict mRNA classification. The resulting model (Model 2)

had an R2 of 0.22 and consisted of 98 descriptors (Table 2.15). Along with the low R², the

accuracy of the model was 0.70 (table 2.15), with the precision of prediction to be equal to

0.6 for class 1, 0.73 for class 2 and 0.75 for class 3, and the recall 0.5 for class 1, 0.53 for

class 2 and 0.89 for class 3 (Figure 2.9).

On the other hand, when only the chemicals with the highest overlap between mRNA

clustering and combined dataset clustering were used (molecular descriptors, mRNA), 95

chemicals were selected (Figure 2.10). The model generated (Model 3) resulted in 72

molecular descriptors out of the 2022 descriptors (after removing molecular descriptors with

NA values of those with no variations across the samples from the 5270 molecular

descriptors) and a mean R² across the 300 splits of 0.6 (p-value=0) (Table 2.15). The low

p-value is an indication that this model has a very low probability to be generated when the

dataset is randomised, thus the model is representative of the data provided and the

phenomenon under study. Along with the low R², the accuracy of the model was 0.72 (Table

2.15), with the precision of prediction to be equal to 0.75 for class 1, 0.61 for class 2 and

0.82 for class 3, and the recall 0.625 for class 1, 0.65 for class 2 and 0.865 for class 3

(Figure 2.10).

The selected molecular descriptors were evaluated based on their predictive power using

the mean decrease accuracy plot, which expresses how much accuracy is lost by excluding

each variable, and the mean decrease in Gini coefficient plot, which measures how each

variable contributes to the homogeneity of the nodes and leaves. The higher those values

are, the higher the importance of the variable to the model. The most important variables

based on the mean decrease accuracy plot and mean accuracy Gini coefficient were

identified (figure 2.10). Six 2D autocorrelation descriptors were selected, Geary

autocorrelation of lag 8 (the topological distance between pairs of atoms) weighted by van

der Waals volume (GATS8v), by ionization potential (GATS8i) or by mass (GATS8m) (Geary,

1954), Centred Broto-Moreau autocorrelation of lag 8 weighted by polarizability (ATSC8p)

and by ionization potential (ATSC8i) (Moreau et al., 1980) and the mean topological charge
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index of order 6 (JGI6) (Galvez et al., 1994). These spatial autocorrelation descriptors

provide information on how the considered property (weight) is distributed along the

topological structure (topological distance 8). CATS2D, atom-type autocorrelation

descriptors, are based on the potential pharmacophore points (PPP), in this case,

hydrogen-bond donor lipophilic properties (CATS2D_04_DL) (Schneider et al., 1999).

One 2D atom pair descriptor was identified, that describes the frequency of carbon and

oxygen atoms at topological distance 3 (F03[C-O]), where topological distance is defined as

the number of bonds of the shortest path between two atoms. Extended topochemical atom

(ETA) eta x shape index (Eta_sh_x), calculated from molecular composition information and

two-dimensional representations, provides information about the branched distribution of

atoms (Pal et al., 1989). A 2D matrix-based descriptor was identified, the average

Wiener-like index from the Barysz matrix weighted by polarizability (WiA_Dz(p)). The barysz

distance matrix (Dz) is a weighted distance matrix accounting for the presence of

heteroatoms and multiple bonds (Todeschini et al., 2008). Finally, the smallest eigenvalue n.

5 of the Burden matrix weighted by polarizability (SpMin5_Bh(p) ), a Burden eigenvalues

descriptor was selected, which is calculated from the Burden matrix, where the diagonal

elements are atomic properties (polarizability), and the off-diagonal elements represent the

pairs of bonded atoms (Burden, 1989)

Following those results, selecting only the chemicals that highly overlap between the mRNA

and molecular descriptors clustering, resulted in 58 chemicals (Figure 2.11). Predictive

modelling identified 10 out of 2031 molecular descriptors (after removing molecular

descriptors with NA values of those with no variations across the samples from the 5270

molecular descriptors) that were selected to predict the mRNA clustering results (Model 4),

with an R² of 0.93 (p-value=0, low probability of the model to be generated with random

data) (Figure 2.11). Along with the low R², the accuracy of the model was 0.95 (table 2.15),

with the precision of prediction being equal to 0.94 for class 1, 0.87 for class 2 and 1 for

class 3, and the recall 0.91 for class 1, 0.93 for class 2 and 1 for class 3 (Figure 2.11). The

importance of each descriptor is evaluated using the decrease accuracy plot and the mean

decrease in the Gini coefficient plot. Two of those descriptors were similar to the ones

selected for model 3 but weighted by different properties, Geary autocorrelation of lag 4

weighted by Sanderson electronegativity (GATS4e) and the smallest eigenvalue n. 8 of

Burden matrix weighted by ionization potential (SpMin8_Bh(i)). One descriptor related to the

drug-like ability of the chemicals was selected, Ghose-Viswanadhan-Wendoloski

antidepressant-like index at 80% (Depressant-80) (Ghose, Viswanadhan and Wendoloski,

1999). Three descriptors were selected related to the edge adjacency indices, that provide

information about bonds, eigenvalue n. 3 from edge adjacency matrix weighted by dipole
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moment (Eig03_EA(dm)), eigenvalue n. 13 from augmented edge adjacency mat. weighted

by bond order (Eig13_AEA(bo)) and eigenvalue n. 14 from augmented edge adjacency mat.

weighted by bond order (Eig14_AEA(bo)) (Laskar, 1969). Finally, the number of the

5-membered rings (nR05), the presence or absence of single carbon-carbon bonds at

topological distance 6 (B06[C-C]), the presence or absence of oxygen sulfur bonds at

topological distance 2 (B02[O-S]) and the presence or absence of nitrogen and chlorine

bonds at topological distance 3 (B03[N-Cl]) were found to be essential for predicting the

chemical clustering.

R2 Accuracy

Model 1 (n=143) 0.11 0.53

Model 2 (n=92) 0.22 0.71

Model 3 (n=95) 0.6 0.72

Model 4 (n=58) 0.93 0.95

Table 2.15: The calculated R2 and accuracy of the four models generated to predict the mRNA-seq hard
clustering using molecular descriptors. Each model consists of a different number of chemicals.

Figure 2.8: Graphical representation of Model 1 generation and evaluation. 143 chemicals represented by
molecular descriptors were used as input for the predictive modelling function, to predict mRNA hard clustering.
The predicted and c-means function clustering membership were plotted and the precision and recall ability of
the predictive model were provided.
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Figure 2.9: Graphical representation of Model 2 generation and evaluation. 92 chemicals represented by
molecular descriptors were used as input for the predictive modelling function, to predict mRNA hard clustering.
The predicted and c-means function clustering membership were plotted and the precision and recall ability of
the predictive model were provided.
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Figure 2.10: Graphical representation of Model 3 generation and evaluation. 95 chemicals represented by
molecular descriptors were used as input for the predictive modelling function, to predict mRNA hard clustering.
The predicted and c-means function clustering membership were plotted and the precision and recall ability of
the predictive model were provided. The mean decrease accuracy and mean decrease Gini plots show the
molecular descriptors that contribute the most to the predictive power of the model.
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Figure 2.11: Graphical representation of Model 4 generation and evaluation. 58 chemicals represented by
molecular descriptors were used as input for the predictive modelling function, to predict mRNA hard clustering.
The predicted and c-means function clustering membership were plotted and the precision and recall ability of
the predictive model were provided. The mean decrease accuracy and mean decrease Gini plots show the
molecular descriptors that contribute the most to the predictive power of the model.

2.5 Discussion

2.5.1 Structural characteristics associated with chemical toxicity

More than 1000 descriptors were identified to be associated with chemical toxicity or the

ability of the chemical to affect zebrafish heart rate, where the majority of them are

associated with both toxicity and cardiotoxicity. The popularity of QSAR methods helped

identify various structural features associated with chemical toxicity, however, the available

information on the association between molecular descriptors and cardiotoxicity is limited.

The structure of the chemical has been associated with chemical-induced toxicity, where

different structural features are associated with different MoA, based on the assumption that

the structural characteristics of a chemical can be an indication of its biological properties.
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QSAR zebrafish toxicity studies have identified a set of molecular descriptors that are

associated with chemical toxicity, including lipophilicity, polarizability, electronegativity,

ionization potential, branching, presence of rings, number and nature of bonds, chemical

atom composition, and molecular weight (Estrada, 1996; Ghorbanzadeh et al., 2016; Lavado

et al., 2020). Lipophilicity values, such as AlogP and MLOGP, have been identified by

QSARs models to be associated with toxicity, since lipophilic chemicals can cross biological

membranes easier (Verhaar et al., 1992; Vaes et al., 1998; Klüver et al., 2019). The toxicity

of inert chemicals can be explained very well by the lipophilicity of the compound alone

(Verhaar classification MoA class 1). Chemical toxicity is also affected by polarization,

described by molecular descriptors such as P_VSA_e_2, SpMax4_Bh(p) and SpPosA_B(p)

which are found to be higher for toxic compounds. Polarizability describes the ability of a

chemical to interact with endogenous molecules that are important in the developmental

regulation of zebrafish embryos (Lavado et al., 2020). Electronegativity, the ability of an atom

to attract a pair of electrons in a chemical bond, is used to describe the polarity of the bond

(ATS4e, GATS2e) (Wong et al., 2014; Przybyłek, 2020). Ionization potential is defined as the

amount of energy required to remove one electron from an atom or a molecule and

describes the reactivity of the molecule and is used associated with the ability of a chemical

to be absorbed by the organism (SpMin4_Bhi, ATS4i, ATS2i) (Schindler, 2016; Przybyłek,

2020; Wang et al., 2022). Chemical toxicity is influenced by molecular size since larger

chemicals are absorbed slower by the organism and highly branched chemicals are less

toxic compared to straight chain isomers since branched chemicals are less membrane

soluble, due to decreased hydrophobicity (Zhang et al., 2006; Ghorbanzadeh et al., 2016).

Functional groups such as hydroxyls, characterise low-toxicity chemicals since they provide

high solubility that affects the excretion rate and the ability of a chemical to cross biological

membranes and accumulate (Gadaleta et al., 2019). To our knowledge, QSAR models that

link cardiotoxicity to structural features are very limited but descriptors such as lipophilicity

and molecular weight were used to predict ion current changes involved in cardiac action

potential generation (Wiśniowska et al., 2015). Most of the chemicals used in this study, from

all five Verhaar MoA classes, significantly alter zebrafish heart rates after exposure, raising

the question of whether structural characteristics (molecular descriptors) provide enough

information to explain the ability of a chemical to also cause cardiotoxicity.

Differential expression analysis revealed a large set of molecular descriptors that contribute

to the toxic effect of a chemical and the ability of a chemical to affect zebrafish heart rate.

Most of them have been previously described in the literature, however, differential

expression analysis can assist in identifying more structural features related to biological
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properties and help in generating more reliable models for toxicity and cardiotoxicity

prediction.

2.5.2 Gene Ontology terms associated with chemical toxicity

Differential expression analysis (SAM) also revealed a set of genes whose expression is

altered when toxic chemicals affect the heart rate of zebrafish embryos. Enrichment analysis

of these genes primarily identified associations with microRNAs used to regulate

fundamental cellular functions, developmental processes and vascular integrity. Four

miRNAs were found to be associated with both conditions, where the expression of

miR-126a, miR-216, miR-155, and miR-499 are altered. MiR-126a is expressed in the

cardiovascular system and is required to maintain vessel integrity during zebrafish vascular

development. This miRNA regulates cell migration, reorganisation of the cytoskeleton,

capillary network stability and cell survival in zebrafish (Fish et al., 2008; Zou et al., 2011).

MiR-126 is only expressed in the endothelial cell lineage and endothelial cell lines regulate

vascular endothelial growth factor-dependent PI3 kinase and MAP kinase signalling by

directly targeting PI3KR2 and SPRED1 in zebrafish (Fish et al., 2008) and regulates

oxidative stress and inflammation (Helmy et al., 2020).

MiR-155, a multifunctional microRNA, is involved in hematopoietic lineage differentiation,

apoptosis, immunity, inflammation, viral infections, and vascular remodelling. MiRNA-155

target genes associated with DNA damage-repairing process and found to regulate the

MAPK signalling pathway which is involved in cellular stress response, apoptosis, and

inflammation responses in zebrafish (Hu et al., 2019). Exposure to toxins such as

polystyrene causes cellular damage that increases the generation of reactive oxygen

species, causing an upregulation of miR-155 in humans (Ng et al., 2011; Grogg et al., 2016).

Various studies have associated lower expression levels of miR-155 with acute coronary

syndromes (Cao et al., 2016), but at the same time it is highly expressed in patients with

acute myocardial infarction (Matsumoto et al., 2012; Xie et al., 2014), coronary heart disease

(Zhang et al., 2019) or congestive heart failure (Cao et al., 2016), and miR-155 knockout

improves cardiac remodelling (He et al., 2016). These contradictory results indicate the

complexity of the underlying mechanisms involved.

MiR-499 is involved in cardiac and muscle growth and it is overly expressed in developing

hearts (van Rooij et al., 2009). MiR-499 is highly expressed in the myocardium and is

important in heart development, function and pathology (Sluijter et al., 2010; Wilson et al.,

2010; Fu et al., 2011) and is associated with human heart diseases (Chistiakov et al., 2016)

It is controlling the expression of the β-myosin heavy chain, enhancing myocardial oxygen
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metabolism and tolerance under normal conditions (Wan et al., 2018). MiR-499 protects

cardiomyocytes from stress-induced apoptosis and has several regulatory factors as targets

that inhibit mitochondrial cell apoptosis (Li et al., 2016; Wan et al., 2018). MiRNA-216 has

been associated with loss of vascular integrity, haemorrhage during zebrafish development,

and coronary artery disease in humans (Wang et al., 2017). MiR-216b, miR-155 and

miR-499 downregulation increase cyb561d2 expression in zebrafish, which is important for

electron transfer and cell defence and chemical stress (Ahkin Chin Tai et al., 2020).

In addition, among the genes dysregulated after toxic chemical exposure, two more miRNAs

were identified after differential expression analysis. MiR-30 has an important role in

zebrafish embryonic development by regulating muscle phenotype. This miRNA controls

Hedgehog (Hh) signalling during zebrafish embryonic development (Ketley et al., 2013).

Studies have identified the role of Hh signalling in muscle specification controlling the switch

from fast-twitch fibres to slow-muscle fibres (Blagden et al., 1997). MiR-145 is expressed in

vascular smooth muscle cells and its level increases during embryogenesis, especially in the

heart (Zeng et al., 2012). MiR-145 expression alterations cause delayed onset of heartbeat

pericardial oedema and unlooped heart (Zeng et al., 2009; Zeng et al., 2012) and control cell

death regulation through regulation of apoptosis (J. Li et al., 2020; Zhao et al., 2020) and cell

proliferation, differentiation and organ development, including heart formation, by regulating

the expression of sox9a and sox9b (Yokoi et al., 2009; Lin et al., 2021). Various biological

properties were identified to be explanatory of the toxic effects a chemical has on zebrafish.

The genes selected were found to be involved in the determination of heart left/right

asymmetry, anatomical structure development, involved in morphogenesis, neuron

differentiation and development, which are essential for zebrafish embryogenesis.

Microtubule stability is important in maintaining cell shape, intracellular transport, cell motility

and division (Díaz-Martín et al., 2021), and proper protein degradation is essential for the

maintenance of normal cell homeostasis but exposure to toxins alters those processes.

One microRNA and two KEGG pathways were found to be associated with the

downregulated genes after toxic chemical exposure. MiR-1, a muscle miRNA, promotes

embryonic muscle gene expression (Chen et al.,2006; Mishima et al., 2009), and is essential

in cardiac and skeletal muscle development and disease in zebrafish (Wang et al., 2019).

During cardiac development, miR-1 has been reported to control the balance between cell

proliferation and differentiation, it promotes myogenic differentiation and is involved in cell

cycle regulation and migration processes and also inhibits cell apoptosis in zebrafish (Zhao

et al., 2005; Lu et al., 2014). MiR-1 enhances angiogenesis during muscle regeneration by

silencing SARS proteins (Nakasa et al., 2010; Stahlhut et al., 2012), thus knockdown of

miR-1 increases SARS protein abundance, which represses VEGFA expression to affect
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zebrafish embryonic angiogenesis (Lin et al., 2013). MAPK signalling and cellular

senescence pathways are found to be downregulated as the chemical concentration

increases, causing toxicity. The MAPK signalling pathway is important for the transduction of

various extracellular signals to the nucleus, regulating macrophage activity and

angiogenesis. Cellular senescence is caused by DNA damage and oxidative stress and

protects damaged cells from proliferating. During embryonic development, senescence

promotes morphogenesis through cell turnover, tissue remodelling and growth (Da

Silva-Álvarez et al., 2020).

On the other hand, two miRNAs were identified to be associated only with changes in

zebrafish heart rate. MiR-430 is mainly functional during zebrafish embryonic development

and was found to regulate developmental pathways for cell movement, germ layer

specification, and axis patterning organ progenitor formation allowing embryonic body plan

formation. Altered expression of this miRNA is associated with developmental delay and

disturbed cardiovascular and neural systems (Liu et al., 2020). MicroRNA-206-3p targets,

that regulate muscle proliferation and differentiation in zebrafish embryos and mice (Kim et

al., 2006; Chen et al., 2010; Goljanek-Whysall et al., 2011; Lin et al., 2017). MiR-206 is

essential for gastrulation and is one of the most abundant miRNAs during zebrafish

embryogenesis and is regulating the proliferation and differentiation of muscle fibroblasts

during somitogenesis (Chen et al., 2005). Alteration of miR-206 expression results in severe

cell migration defects during zebrafish embryonic development (Liu et al., 2012; Lin et al.,

2017).

2.5.3 Clustering chemicals using molecular descriptors and

gene count profiles information

The results of this study support the idea that clustering chemicals using molecular

descriptors is very different compared to clustering using mRNA sequencing data since

chemicals with similar structures have different transcriptional responses, and vice-versa

(Sirci et al., 2017). As expected, molecular descriptors clustering was highly associated with

the Verhaar MoA of the chemicals, as both methods use structural characteristics for

classification. However, molecular descriptor clustering also successfully grouped chemicals

based on the heart-rate effect and concentration changes in chemical exposure, underlying

the importance of structural classification. Clustering chemicals using mRNA data was found

to be useful in clustering chemicals based on their effect on zebrafish heart rate, with higher

accuracy compared to molecular descriptors clustering. Still, there was no association

between mRNA clustering and MoA classification. These results suggest that Verhaar MoA
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classification is not necessarily representative of the ability of a chemical to alter zebrafish

embryos' heart rate, indicating that chemicals with similar structural characteristics may have

different gene expression profiles and consequently affect the organisms through different

mechanisms.

2.5.4 Predictive modelling connects molecular descriptors to

mRNA clustering

The effort to connect molecular descriptors to mRNA clustering results was not successful

when the whole dataset was used. However, after selecting chemicals for Model 3 or Model

4 two relatively accurate models were generated. These models show that molecular

descriptors have the potential to predict gene profile clustering and the use of more

chemicals, with high variability (in structural characteristics and gene count profiles), can

validate this relationship.

Multiple molecular descriptors were selected by the two predictive models (Models 3 and 4).

Model 3 molecular descriptors were related to molecular size (GATS8m, GATS8v) (Baldim et

al., 2017; Moussa et al., 2021), ionization potential (GATS8i, ATSC8i) (Guan et al., 2018;

Bittremieux et al., 2022), polarizability (ATSC8p, WiA_Dz(p), SpMin5_Bh(p)) (Gaudêncio et

al., 2022), lipophilicity (CATS2D_04_DL), molecular branching (Eta_sh_x) (Carnesecchi et

al., 2020), charge transfer between a pair of atoms (JGI6) (Doucet et al., 2018) and the

frequency of carbon and oxygen bonds (F03[C-O]) (Elsayad et al., 2020). These types of

molecular descriptors have been identified previously by various studies to be associated

with chemical toxicity or used for clustering chemicals based on structural features.

On the other hand, the molecular descriptors identified by model 4, were related to chemical

electronegativity (GATS4e) (Carnesecchi et al., 2020), ionisation potential (SpMin8_Bh(i)),

the drug-like ability of the chemicals (Depressant-80) (Solimeo et al., 2012) dipole moment

(Eig03_EA(dm)) (Zhang et al., 2015), bond order (Eig13_AEA(bo), Eig14_AEA(bo)) (Watkins

et al., 2016), the number of the rings (nR05) and the presence or absence of various bonds

(B06[C-C], B02[O-S], B03[N-Cl]) (Lavado et al., 2022).

Molecular size, lipophilicity, polarizability, electronegativity and ionization potential of a

chemical influence its absorption, distribution, metabolism and excretion (Gleeson, 2008;

Waring, 2009; Yang et al., 2012; Gajewicz-Skretna et al., 2021). Lipophilicity is also

associated with molecular branching and the presence of rings; chemical lipophilicity is

decreased when the molecular branching is high, and ring count correlates positively with

lipophilicity (Ritchie et al., 2009; Yang et al., 2012; Gajewicz-Skretna et al., 2021). Dipole

moment can be used to predict toxic potency since it is related to the binding affinity of the
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molecule (Forrest et al., 2014). Chemical drug-like properties derived from the analysis of

various physicochemical properties such as lipophilicity, molecular size, molar refractivity,

and the number of atoms (Anuta et al., 2014; Tsantili-Kakoulidou et al., 2021). Bond order,

described the number of bonds between atoms indicating the stability of the bond, whereas

more stable substances require more time to break down, leading to bioaccumulation within

the organism, carbon-carbon bonds are strong and stable whereas oxygen-sulphur bonds

are weak (Savoca et al., 2021).

The adverse outcome pathway (AOP) framework was developed in order to organise all

available information from multiple levels of biological organisation related to risk

assessment. AOP is a conceptual construct that portrays existing knowledge concerning the

linkage between a direct MIE, the interaction between the chemical and its biological target

at the molecular level, and an AO via key events, biological events as a response to MIE, at

a biological level of organisation relevant to risk assessment (Ankley et al., 2010). In silico

screening of new chemicals against known MIE or key events of AOPs allows the

classification of chemicals based on their biological activation profile and prediction of AOs

(Leist et al., 2017).

At the core of the QSAR and AOP fields is the predictive ability towards a relevant, mainly

regulatory, endpoint. However, conceptually these two approaches differ significantly. While

QSAR focuses on the assumption that chemical structural information must be associated

with its impact on an organism, AOPs argue that one, or more, MIE causes a cascade of

molecular perturbations that lead to an AO, indicating the importance of transcriptomics

data.

Predicting molecular responses clustering using molecular descriptors will reveal potential

connections between MIE and KE and make chemical classification and AO prediction

easier, and more accurate. Using molecular descriptors to predict gene count profiles will

allow the prediction of possible MIE and KE in silico, reducing the number of experiments

while taking into consideration the molecular effect of a chemical.

2.5.5 Conclusion

Differential expression analysis can be used to identify structural features that contribute to

the ability of chemicals to cause toxicity or cardiotoxicity, uncover important details related to

the structural features-toxicity relationship, or uncover potential mechanisms of toxicity by

identifying differentially expressed genes. Identifying the genes associated with an AO

(death, heart-rate changes), allow the identification of the underlying events occurring at a

molecular level which can represent key events in an AOP. Clustering chemicals using
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structural information has been widely used, however, clustering using molecular responses

(gene count profiles) is gaining a lot of attention since those two clustering methods cluster

chemicals differently. In addition, the fact that structurally similar compounds (cis- and trans

isomers) may have different toxic effects on the organism, or chemicals with different

structural characteristics that act through the same mechanisms, increases the popularity of

clustering using molecular responses. Structural information can be used as an indicator of

the toxicity effect of a chemical. Still, molecular information provides more details about the

mechanism of toxicity and the combination of those will provide more information about the

underlying biological processes of toxicity.

Molecular descriptors are used in the generation of QSAR models that have been widely

used for predicting chemical toxicity, but their power decreases when they are used on data

with chemicals from multiple MoAs and for MoAs 4 and 5. However, the results of this study

show that chemicals that affect the heart rate of zebrafish belong to all 5 Verhaar MoAs,

suggesting that chemicals that cause cardiotoxicity are characterized by various structural

features, increasing the difficulty of predictive model generation.

In this study, the ability of molecular descriptors to predict molecular response clustering

(mRNA-seq data) was evaluated. The results suggest that molecular descriptors have the

potential to predict molecular response clustering and the use of more chemicals, with high

variability (in structural characteristics and gene count profiles), can validate this relationship.

The ability to predict molecular information such as MIE and key events without the need for

experiments, will allow integration into existing AOPs and increase the accuracy of in silico

risk assessment.
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Chapter 3

Predicting changes in heart rate in the

model species Danio rerio

3.1 Abstract

Heart development and function are very sensitive processes, and susceptible to

environmental toxins. Chemicals that disrupt vascular remodelling, cardiomyocyte

proliferation and cardiac differentiation, ATP production, cell death, and various signalling

pathways, have a significant impact on the heart-rate fold change of zebrafish embryos. In

this study, the ability of structural features (molecular descriptors) or gene expression

profiles to explain the variation in heart rates was evaluated using predictive modelling with

random forest. Molecular descriptors fail to predict changes in heart rate when the dataset is

characterised by high variability, chemicals with various structural features (and modes of

action) or different gene expression profiles. On the other hand, predictive modelling

identified multiple genes associated with signal transduction, cell death and cardiac action

potential that were found to be predictive of the heart-rate fold change of zebrafish embryos

when 143 chemicals, characterized by high variability (diverse structural and gene

expression profiles) were used.

Clustering chemicals based on molecular responses (gene count profiles) reduces the

variability of the dataset since only chemicals with similar gene count profiles are grouped

together, generating three clusters. For chemicals from clusters 1 and 2 structural

information including lipophilicity, electrochemical characteristics and the presence and

nature of bonds were found to be predictive of the chemical effect on zebrafish heart rate.

Finally for chemicals from cluster 3, only mRNA information was able to predict the impact

on the heart rate using genes associated with ATP production, signalling pathways and

nervous system development. The results suggest that structural information and molecular

responses (gene count profiles) are complementary, and when used together can assist

chemical risk assessment.
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3.2 Introduction

Environmental pollution continues to be a major threat to public health. Exposure to

environmental contaminants and toxins during embryonic development can affect heart

development and function in various organisms, defined as cardiotoxicity (Onakpoya et al.,

2016; Georgiadis et al., 2018). Cardiotoxicity, the damage of the heart muscle and other

cardiac tissues or disruption of the electrophysiology of the heart due to toxic compounds,

can lead to inadequate pumping of blood through the body, or cardiac muscle dysfunction

(Basak et al., 1991). Heart development is a very sensitive process, susceptible to

environmentally toxic compounds, and molecular, and cellular factors. However, chemical

assessment in mammals is time-consuming and relatively expensive (R. Li et al., 2020).

Zebrafish (Danio rerio), a small tropical fish native to Southeast Asia, can be used as an

alternative animal model for toxicological screening, due to its simple maintenance, low cost,

and fast growth. Their small size allows the use of well plates and the simultaneous

evaluation of multiple individual organisms (Dai et al., 2014; Nasrallah et al., 2018) and their

highly permeable skin allows small molecules to be added directly into the water and

absorbed by the fish (Milan et al., 2003; McLeish et al., 2010; Martin et al., 2019). Their rapid

and external development of zebrafish embryos and their transparency allows for easier and

relatively straightforward phenotypic assessment.

The zebrafish genome has been fully sequenced and shares high similarity with the human

genome, where 70% of human genes have zebrafish orthologs (Howe et al., 2013), and a

large number of genes (84%) and regulatory networks that have been associated with

human diseases have also been identified in zebrafish. Thus zebrafish have been used as

model organisms for studying various human diseases (Poon et al., 2013). In addition,

Zebrafish and humans respond similarly to cardiotoxic compounds (Zhu et al., 2014), and

show similar electrocardiogram (ECG) recordings (Hodgson et al., 2018).

Zebrafish have been used as a model organism in developmental biology and molecular

genetics providing important information about the molecular regulation of vertebrate cardiac

development due to their high conservation among vertebrates (Miura et al., 2011; Staudt et

al., 2012; Chen, 2013). The stark similarities between zebrafish and human cardiogenesis,

the low cost, rapid cardiovascular development and the ability of the zebrafish to survive

without a fully functional cardiovascular system increase zebrafish popularity in

cardiovascular research (Nishimura et al., 2016). In addition, the transparency of the embryo

allows for non-invasive heart measurements that can be used to assess stage-specific

exposure effects on zebrafish embryos, which facilitates the understanding of functions

involved in cardiac development (Sarmah et al., 2016; Caballero et al., 2018).
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The rapid increase of anthropogenic chemicals in the environment, from industrial and

pharmaceutical advances, make in silico approaches that can evaluate new chemicals

based on similarities with previously defined compounds more and more essential (Kausar

et al., 2018). Quantitative Structure-Activity Relationship (QSAR) models have been used to

predict the physicochemical properties, and biological and environmental impact of a

chemical, using molecular descriptors. Molecular descriptors are the representation of

physicochemical properties, such as topological representation, connectivity of atoms, the

presence and nature of chemical bonds and chemical lipophilicity and polarizability, into

numeric values either as a result of standardised experiments or as a result of logical and

mathematical procedures (Todeschini et al., 2009; Roy et al., 2015). QSARs reduce the

number of experiments, by relating the structure and physicochemical properties of a

chemical with biological activities, selecting only a number of compounds for in vivo

experiments (Neves et al., 2018) in risk assessment (Melnikov et al., 2016), in medicinal

chemistry, in academy, industry and government institutions (Cherkasov et al., 2014).

On the other hand, signature-matching approaches have evolved, that are based on the

assumption that chemicals with similar gene expression signatures, will cause similar

biological effects, thus can be used in predicting the toxicity of new chemicals and identifying

toxic-related genes (Lamb et al., 2006; Smalley et al., 2010; Sarmah et al., 2016). The

popularity of those methods was facilitated by the advances in microarray technologies, and

subsequently, RNA-seq, where variations between RNA profiles enabled the understanding

of the toxic effect at a system level. The transcriptome represents the response to numerous

cellular signals, including that of exogenous compounds. With the latest technologies even

low abundant RNA species can be measured in a given sample providing one of the most

complete representations of the molecular state of a sample.

The numerous approaches in which an organism might respond to a given signal, however,

provide a challenge when trying to establish regulatory-relevant response profiles for given

exposure scenarios. The adverse outcome pathway (AOP) framework was developed to

organise all this available information from multiple levels of a biological organisation with a

focus on exogenous perturbation. An AOP portrays existing knowledge of the linkage

between an MIE and an AO via key events and the respective key event relationships to

improve risk assessment (Ankley et al., 2010). AOPs are chemically agnostic and can be

represented by multiple levels of biological organisation. Their modular properties enable the

linkage and interaction between AOPs to form AOP networks which can be utilised to

identify key events, which are central to several AOs and MIEs. AOPs are represented as

unidirectional chains of events from MIE to AO, but this is rarely true in biology. The AOP

concept is a simplified version of the response which usually overlooks the presence of
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positive/negative feedback loops and multiple pathways that connect to the AOP. Despite

these shortcomings, AOPs are extremely useful in regulatory applications as in silico

screening of new chemicals against known MIE or key events of AOPs allows the

classification of chemicals based on their biological activation profile and adds information to

that of structural similarity (Leist et al., 2017).

The AOP concept allows the integration of molecular mechanisms into the field of regulatory

toxicology, identifies uncertainties and research priorities (Ankley et al., 2010) and supports

decision-making in hazard identification and risk assessment by chemical prioritisation or

exclusion early in development (Leist et al., 2017). The development of AOPs is partly based

on scientific literature and partly on newly generated data, however the lack of reproducibility

(Hartung et al., 2013), the presence of contradictory data and the lack of transparency (Leist

et al., 2010; Leist et al., 2012), increase the difficulty of those process. AOPs reflect the

current state of knowledge, thus they can continue to evolve as new information becomes

available.

Both QSAR and AOPs use the similarities between the chemicals to predict an AO. QSARs

are relying only on the available structural characteristics of a chemical, whereas AOPs use

all the available information that allows the identification of key events that lead to an AO.

Chemical similarity profiles can be very different when using gene expression profiles versus

structural similarities (Sirci et al., 2017). QSAR models have been widely used for predicting

toxicity when the dataset consists of highly similar chemicals, especially chemicals that act

through polar and non-polar narcosis. However, data with high variability, in structure and

mode of action, or the use of reactive chemicals and chemicals that act through specific

mechanisms, decreases the accuracy of the QSAR model.

In this study, the aim is to identify if molecular descriptors (QSAR) or mRNA data (genes)

can be used to generate a reliable and accurate model that can predict the toxicity of a

highly diverse set of chemicals (in structural features and gene count profiles). In addition,

since the classification of data reduces the variability within the dataset, by grouping similar

chemicals together, clustering based on gene count profiles (chapter 2) can be used to

evaluate the strength of QSAR compared to mRNA data in predicting toxicity.
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3.3 Methods

3.3.1 Building heart rate datasets and chemical clustering

The chemicals used in this study were the same as in the Chapter 2 analysis, 143

chemicals. Zebrafish embryos were exposed to various chemicals (6 concentrations- LC50,

LC5, LC5/2, LC5/4, LC5/8, LC5/16, 6 individual embryos in separated wells per

concentration), and their heart rate was estimated using Fiji with the time series analyser V3

plugin (Schindelin et al., 2012). DMSO exposure was used as a control. The structural

characteristics in the form of molecular descriptors were calculated for each chemical using

Dragon 7 software (Mauri et al., 2006) and mRNA sequencing provides us with a gene count

profile for each chemical as described in chapter 2. Two datasets were generated with 143

chemicals each, with the heart-rate fold change as the dependent variable for both, the

molecular descriptors as the independent variables for the first dataset and the gene count

profiles for the second dataset.

The high variability of the data, chemicals with various structural features and gene count

profiles, increases the difficulty of generating robust and reliable models. One way to

overcome this complication is grouping the dataset into smaller clusters based on similarities

in gene count profiles. The hard chemical clustering using mRNA-seq data, described in

Chapter 2, was used to generate three smaller (43,34 and 66 chemicals each) datasets.

3.3.2 Identifying differentially expressed genes associated with

chemical impact on zebrafish heart rate

The dataset used in this study, consists mostly of chemicals that significantly change the

heart rate of zebrafish embryos compared to the controls. To explore the effect of those

chemicals on the zebrafish at the gene level, differential expression analysis (SAM) was

performed (Tusher et al., 2001). In an effort to identify differentially expressed genes

between exposure to chemicals that do not affect zebrafish heart rate, including controls,

(dependent variable = “0”), and those that cause bradycardia or tachycardia (dependent

variable value= “1”), chemicals were classified into those two categories. Gene count profiles

were used as the independent variable. The SAM function was performed with 1000

permutations (nperms=1000) used for estimating the FDR, the nature of the data was

specified (resp.type= "Two class unpaired"), and the FDR cutoff for output in significant

genes table was set to 0.1 (fdr.output=0.1).
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The genes identified by SAM to be differentially expressed when chemicals affect heart rate

were processed using the R function gost from the gprofiler2 package for functional

enrichment analysis (version 0.2.1) (Kolberg et al., 2020). The gost function was performed

using FDR as the algorithm for correcting for multiple testing (correction_method = "fdr") with

a threshold set to 0.1 (user_threshold = 0.1), specifying the organisms used (organism =

"drerio") and generating a list of only the statistically significant results (significant = TRUE)

among all the genes of the given organism (domain_scope = c("known")). Gene enrichment

analysis reveals a set of biological processes (GO: BP), and KEGG and Reactome (REAC)

pathways that the identified genes are found to be involved in, and also identifies the targets

of multiple miRNAs within that list (miRNA).

3.3.3 Predicting heart rate fold change using molecular

descriptors and mRNA-seq data

Eight datasets in total were used as input to the predictive function described in Chapter 2.

Four datasets consist of gene count profiles as the independent variables and the heart rate

fold change as the dependent variable. These four datasets differ in the number of

chemicals, the first one consists of all 143 chemicals used in this study, and the other 3

represent the clusters with 43, 34 and 66 chemicals each. The other four datasets, based on

molecular descriptors, followed the same rationale with the number of chemicals per dataset

(143,43,34,66 chemicals each) and the heart-rate fold change caused by exposure as the

dependent variable.

The same approach (predictive modelling function) as in chapter 2 was applied for the

generation of the predictive model but instead of classification, regression analysis was

used, since the dependent variable is quantitative (heart-rate fold change), compared to the

classification data (clusters) used in chapter 2. Thus, the “family” parameter of the LASSO

function was set to “gaussian” instead of "multinomial", the “classification” parameter for

random forest analysis was set to “FALSE” instead of “TRUE” and "variance" and

"extratrees” were used as splitrules for LOOCV.

The package ggplot2 (version 3.3.5) was used for visualising the results of the models

(Wickham, 2016). To evaluate the importance of each variable to the model, the mean

square error (%IncMSE) and the contribution of each variable to the homogeneity of random

forest nodes and leaves were calculated for every variable, the higher those values the

higher the importance of that variable to the model (varImpPlot function, random forest R

package version 4.7-1.1) (Liaw et al., 2002). The genes identified by predictive modelling
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were then processed using the gost function from the gprofiler2 R package (version 0.2.1)

for functional enrichment analysis.

3.4 Results

3.4.1 Differential expression and functional enrichment analysis

to identify biological properties involved in cardiotoxicity

The heart rate fold change was estimated for the 143 chemicals used in this study, at

multiple concentrations, and as it can be seen in Figure 3.1, increasing chemical

concentration is associated with bigger effects on heart rate as expected. Chemicals such as

clozapine, prochloraz, terfenadine, tacrine and chlorpromazine cause bradycardia in

zebrafish embryos and have a greater effect on heart rate than expected based on their

concentration (Figure 3.1). These five chemicals cause bradycardia in zebrafish but based

on the mRNA clustering from Chapter 2 their gene count profiles are different, as terfenadine

was grouped in cluster 1 whereas the rest, clozapine, prochloraz, tacrine and

chlorpromazine were grouped in cluster 2. This is an indication that various biological

mechanisms are involved in heart development and function.

Figure 3.1: Zebrafish were exposed to multiple chemical concentrations and their heart-rate fold change was
calculated. As the concentration increases (dose) the effect chemicals have on heart rate also increases. Some
outliers can be identified.

Most of the chemicals used in this study (66%) significantly affect the heart rate of zebrafish

embryos. Differential expression analysis (SAM) was performed in an effort to identify genes

that are upregulated or downregulated after exposure to chemicals that significantly affect

zebrafish heart rate. From the 31954 genes used for differential expression analysis, 7938

genes were identified to be upregulated when the heart rate is significantly influenced by

chemical exposure and 6977 genes were downregulated. Compared to the results from

chapter 2, more genes were identified to be upregulated or downregulated, however, not all

of the genes identified in chapter 2 were selected by the differential expression analysis
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(SAM) using the two-class unpaired method. This analysis allows the selection of genes that

are differentially expressed when the chemical has a significant impact on zebrafish heart

rate.

Functional enrichment analysis identified multiple biological properties, KEGG and

Reactome pathways that are significantly associated with the upregulated genes (Table 3.1,

Supplementary materials Table S.2). Biological functions and pathways associated with

organ development (p-value= 9.2e-12 - 8.9E-02), heart development and function (p-value=

9e-05-0.09), circulatory system development and negative regulation of hematopoietic stem

cell differentiation (p-value=0.005-0.09), were identified to be significantly associated with

heart rate changes caused by chemical exposure. Nervous and immune system

development and function (p-value= 2e-08-0.09) and mitochondria function and ATP

production (p-value= 0.002-0.097) were identified as expected to be significantly associated

with cardiotoxicity (bradycardia or tachycardia). Ion transmembrane transport (p-value=

2.3e-05- 0.09) and cell-cell communication (p-value= 6e-04 -0.08), describe the movement

of ions such as potassium and sodium and other small molecules across biological

membranes regulating cardiac function and contraction (Fountoulaki et al., 2015; Grandi et

al., 2017). In addition, the genes found to be upregulated when the chemical caused

cardiotoxicity, were involved in various signalling pathways including Wnt, PPAR, FoxO,

mTOR, MAPK, ErbB and VEGF signalling pathways (p-value=2e-07 -0.096), since signal

transduction facilitates the response to extracellular stimuli to ensure proper heart function

(Wheeler-Jones, 2005). Finally, among the genes found to be upregulated, pathways

involved in the negative regulation of DNA transcription and RNA biosynthesis, metabolic

processes splicing and degradation, were identified (p-value= 2.2e-04 - 0.9).

On the other hand, the downregulated genes were involved in pathways associated with

embryonic development (cell and organ development) (p-value=3.3e-05 - 9.3e-02) and heart

and muscle development, muscle contraction and ATP production (p-value= 0.001-0.09) as

expected. Genes involved in cell death (p-value= 6.8e-05 - 0.09), nervous system

development and neuroactive ligand-receptor interaction (p-value= 0.0005 - 0.086) and

immune system responses (p-value= 2.9e-0.5 - 8.1e-02) were selected. In addition DNA

replication, transcription and repair, generation of mature mRNA, ribosomes and

post-translational modifications pathways were identified after functional enrichment analysis

(p-value= 7.6e-05 - 0.095). Genes involved in cell-cell communication and transmembrane

transport of ions and molecules (p-value= 5.4E-09 - 0.09) were found to be downregulated.

Finally, genes were involved in multiple signalling pathways associated with various

processes including development (Wnt, VEGF, VEGFA-VEGFR2, MAPK), immune response

(Toll-like, Interleukins, TRC), cell death (TGF-beta, ErbB, FoxO) and gene expression
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(mTOR, FoxO, p53) (p-value=4.4e-05 - 0.09) were identified by differential expression

analysis (Table 3.1, Supplementary materias Table S.2).

Heart-rate fold changes -Genes upregulated

GO term P value

Organ development 9.2E-12 - 8.9E-02

Heart development and function 0.04-0.08

Circulatory system 0.005-0.09

Mitochondria 0.002-0.097

Neuronal system 7E-05 - 0.86

Immune system 2E-08 - 0.09

Transmembrane ion transport 2.3E-05 - 0.09

Cell-cell communication 0.0006-0.08

Signalling pathways 2E-07 - 0.096

DNA and RNA 2.2E-04- 0.09

Heart-rate fold changes -Genes downregulated

Embryonic development 3.3E-05 - 9.3E-02

Cardiac function and ATP production 0.001-0.09

Cell death 6.8E-05 - 0.09

Nervous system 0.0005-0.086

Immune responses 2.9E-05 - 8.1E-02

DNA and RNA 7.6E-05 - 0.095

Cell-cell communication 5.4E-09 - 0.09

Signalling pathways 4.4E-05 - 0.09
Table 3.1: Functional enrichment analysis of the upregulated and downregulated genes associated with
significant heart rate fold change.
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3.4.2 Prior clustering of chemicals by molecular effects,

significantly improves heart-rate prediction using molecular

descriptors

The relationship between toxicity and concentration suggests that chemical structure plays a

crucial role in predicting physiological outcomes resulting from chemical exposure. To test

the ability of the chemical structure to predict heart rate the stability path feature selection

approach was used for the whole dataset (143 chemicals). The model reached an R² of 0.19

with an adjusted p-value of 0.006, where the p-value indicates the probability of the selected

model being generated with randomized data, thus the smaller the p-value the more reliable

the model is, however, the low R2 indicates the low accuracy of this model, the inability of the

model to accurately predict the heart rate fold change caused by chemical exposure (Table

3.2, Figure 3.2). A set of 80 descriptors was selected for the generation of this model and

were related to multiple functional groups that are used in pharmaceuticals or industrial

products, including pyridines, aromatic primary amides, and amines, however, this model

can not predict the experimental heart rate changes caused by chemical exposure in this

study, especially the effect of triclosan, tacrine, terfenadine, propylene oxide, prochloraz and

chlorpromazine (Figure 3.2).

Molecular descriptors mRNA sequencing data

Number
of

variables

R2 Validate
(p-value)

FDR Number
of

variables

R2 Validate
(p-value)

FDR

143
chemicals

80 0.19 0.002 0.006 80 0.68 0 0

Cluster 1 35 0.39 0.054 0.072 28 0.58 0.19 0.25

Cluster 2 11 0.63 0.003 0.006 29 0.6 0.35 0.35

Cluster 3 6 0.17 0.219 0.219 21 0.64 0.03 0.05
Table 3.2: Generating predictive models for heart-rate fold change in zebrafish using molecular descriptors and
mRNA sequencing data. Several models were generated using the whole dataset (143 chemicals) and the 3
clusters separately. For each model, the number of variables selected, the R2 , the p-value from validation by
randomisation of the dependent variable and the adjusted p-value (FDR), were recorded.

The low predictive ability of the model raises the question of whether chemical heterogeneity

plays a crucial role in heart-rate prediction using structural information since QSAR models

usually fail to generate accurate models when chemicals from different MoA classes are

used. It stands to reason that selecting chemicals with similar structural characteristics for
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predictive modelling can generate a more accurate and reliable model as these should

contain aspects of structural similarity that carry the effect on heart rate and associated

toxicity. Therefore, the mRNA clustering generated in Chapter 2 was applied to divide the

chemicals into three groups (43, 34, 66).

Figure 3.2: Predicting heart rate fold change using molecular descriptors and 143 chemicals. A) Plotting the
predicted and the experimentally calculated heart rate fold change, R^2=0.19. B) Model Residuals calculated by
the predicted heart rate fold change values, using molecular descriptor model generated for the whole dataset
(143 chemicals).

The model generated using chemicals from mRNA cluster 1 (43 chemicals) consisted of 35

molecular descriptors and had a mean R^2 of 0.387, and an adjusted p-value of 0.072, an

indication that the model is representative of the data provided, thus more reliable (Figure

3.3, Table 3.2). The predictive accuracy of this model (using chemicals from cluster 1) is

higher compared to the model generated using a set of 143 chemicals, but still generally

weak. Descriptors such as the number tertiary amines (aliphatic) (nRNR2), along with the

presence or absence of N-O and C-N bonds (B05[N-O], F05[N-O], B02[N-O], B03[N-O],

(F01[C-N], B05[C-N], B01[C-N], B02[C-N]), the charge transfer between a pair of atoms

(JGI4), molecular mass (ATSC2m, GATS1m), ionization potential (MATS4i) and molecular

electronegativity (rGes) were found among the most important variables for the generation of

the model. In addition, the amount of van der Waals surface area having potential

pharmacophore points from atoms belonging to cycles (P_VSA_ppp_cyc) and two molecular

descriptors related to the number of atom-centred fragments C-006 (CH2RX) and C-026 (R-

- CX- -R) were identified, where “R” is defined as any group linked through carbon, “X” is any

electronegative atom (O, N, S, P, Se, halogens) and “- -” represents an aromatic bond.

Despite the improved predictive capacity the model failed to accurately predict the effect of
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terfenadine and bisphenol A on zebrafish embryo heart rate, however, this model was able

to predict the effect of triclosan more accurately compared to the model generated using the

143 chemicals (Figure 3.3).

Figure 3.3: Predicting heart rate fold change using molecular descriptors and cluster 1 chemicals. A) Plotting the
predicted and the experimentally calculated heart rate fold change (43 chemicals, R^2= 0. 39. B) Model
Residuals calculated by the predicted heart rate fold change values. C) The mean square error (%IncMSE) and
the contribution of each variable to the homogeneity of random forest nodes and leaves (IncNodePurity) of the
10 most important variables.

For predicting the heart rate fold change of the chemicals that belong to cluster 2, which

consists of 34 chemicals, 11 molecular descriptors were selected and had an R2 of 0.634,

with an adjusted p-value of 0.006, the smaller the p-value the more reliable the model is

(Figure 3.4, Table 3.2). While the number of chemicals is low and overfitting may occur, the

bootstrap-based approach used can mitigate some of these effects by using multiple

subsamples of the original dataset to evaluate the performance of the model. A set of 11

molecular descriptors were identified including the presence or absence of C-Cl and N-Cl

bonds (B08[C-Cl], B08[N-Cl]), the number of triple bonds (nTB), the number of aromatic

72



tertiary amines (nArNR2), ring fusion density (RFD), molecular descriptors related to

molecular mass (MATS1m), ionization potential (MATS4i), polarizability (MATS7p) and the

charge transfer between a pair of atoms (JGI8). Finally, atom-centred fragments C-008

(CHR2X) and C-040 (R-C(=X)-X / R-C#X / X=C=X) were selected, where “R” is any group

linked through carbon, “X” is any electronegative atom, “#” represents a triple bond and “=”

represents a double bond. Despite the relatively high predictive ability of the model (with R2

of 0.63), Figure 3.4 shows that predicting the effect of Tacrine, a chemical that causes

bradycardia in zebrafish was harder compared to the rest of the chemicals from cluster 2. On

the other hand, this model was able to better predict the effect of chlorpromazine, prochloraz

and propylene oxide compared to the model generated using the 143 chemicals.

Figure 3.4: Predicting heart rate fold change using molecular descriptors and cluster 2 chemicals. A) Plotting the
predicted and the experimentally calculated heart rate fold change (34 chemicals, R^2= 0. 634). B) Model
Residuals calculated by the predicted values of heart rate fold change.C) The mean square error (%IncMSE) and
the contribution of each variable to the homogeneity of random forest nodes and leaves (IncNodePurity) of the
10 most important variables.
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Lastly, the number of descriptors required to generate a model to predict heart-rate changes

using chemicals from mRNA hard cluster 3 (66 chemicals) highlighted 6 MDs with an R2

=0.17, and an adjusted p-value of 0.219 (Table 3.2, Figure 3.5). Indicating the inability of

structural information to predict the effect these chemicals have on zebrafish heart rate.

Incidentally, this is also the cluster where over 50% of chemicals have no or very little effect

on the zebrafish embryo, suggesting that these compounds act through a different,

non-cardiotoxicity-related pathway.

Figure 3.5: Predicting heart rate fold change using molecular descriptors and cluster 3 chemicals. A) Plotting the
predicted and the experimentally calculated heart rate fold change (66 chemicals), R^2= 0. 174 B) Model
Residuals calculated by the predicted values of heart rate fold change.

Comparing the molecular descriptors selected by the various models a minimum overlap

was observed (Figure 3.6, Table 3.3). Three of the molecular descriptors selected by the

whole dataset model (143 chemicals), were also selected by the cluster 1 model

(ChiA_X,nArCONH2, B08[Cl-Cl]), two molecular descriptors (nArNR2, B08[N-Cl]) were also

selected by cluster 2 model, and only one (CATS2D_06_AN) was shared with cluster 3

model. The model generated using chemicals only from cluster 1 shares only one molecular

descriptor (MATS4i) with the cluster 2 model and one (JGI4) with the cluster 3 model. No

common molecular descriptors were identified between cluster 2 and cluster 3 models. This

very low overlap between the molecular descriptors selected by the three models generated

using the three clusters highlights the difference between the chemicals of each cluster in

structural characteristics. The R2 values generated for each training data set indicate that

each model has the same rate of success when multiple datasets were used with only a few

outliers, showing that model performance was consistent when subsamples of each dataset

were used (Figure 3.7).
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Figure 3.6: Comparing the molecular descriptors selected by the 4 molecular descriptors models. Optimisation
of the models resulted in very different models with little to no overlap between the models.

Shared
Molecular

Descriptors

143
chemicals

Cluster 1
(n=43)

Cluster 2
(n=34)

Cluster 3
(n=66)

ChiA_X X X
nArCONH2 X X
B08[Cl-Cl] X X
nArNR2 X X

B08[N-Cl] X X
CATS2D_06_AN X X

MATS4i X X
JGI4 X X

Table 3.3: Molecular descriptors shared by the various models generated using multiple datasets, whole dataset
(143 chemicals), mRNA clusters 1,2 and 3.
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Figure 3.7: The R2 values generated using the molecular descriptor models over the 300 training datasets
(colour=red) and the results of the validation with the randomised data (colour= green), over the different
datasets, 143 chemicals, cluster 1, cluster 2 and cluster 3 chemicals.

3.4.3 Molecular response is highly predictive of heart rate

As the molecular state (gene expression profile) is much closer to the phenotypic outcome,

heart rate should be easier to be predicted both across the whole dataset and within the

defined effect clusters from chapter 2. Therefore, in order to predict the heart-rate fold

change of zebrafish embryos for all 143 chemicals, 80 genes were needed with R2 of 0.683

(adjusted p-value = 0), indicating a relatively accurate and reliable model (Table 3.2, Figure

3.8). This already highlights the significant improvement in heart-rate prediction. The 80

genes selected were associated significantly with 11 biological processes, including cardiac

jelly development, chemical stimulus detection, sensory perception of smell, immune

response regulation and cholecystokinin signalling pathway (p-value=0.096) (Table 3.4). A

total of 11 genes were identified to contribute the most towards the accuracy of the model,

including natriuretic peptide A (nppa) involved in cardiac jelly development, Cholecystokinin

A receptor (cckar) involved in muscle contraction, internexin neuronal intermediate filament

protein alpha a (inaa) and TIAM Rac1 associated GEF 2a (tiam2a) involved in neurons

morphogenesis and axogenesis, defensin beta-like 3 (defbl3), FYN binding protein b (fybb),

si:ch211-170i2.2 and Janus kinase 3 (jak3), that are involved in innate and adaptive immune

response, lens intrinsic membrane protein 2.2 (lim 2.2) involved in eye lens development,

and gap junction protein alpha 13.2 (gja13.2) and si:ch211-203k16.3 that are involved in cell

adhesion (ZFIN The Zebrafish Information Network, 2020, National Center for Biotechnology

Information, 2020). Despite the high R2, this model failed to predict the effect of Terfenadine,

Chlorpromazine, Tacrine and Prochloraz on zebrafish heart rate (Figure 3.8). These

chemicals were also identified as highly toxic previously, suggesting that exposure to these
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chemicals influences heart development and function through different mechanisms

compared to the rest.

Figure 3.8: Predicting heart rate fold change using mRNA data and 143 chemicals. A) Plotting the predicted and
the experimentally calculated heart rate fold change, R^2= 0. 683. B) Model Residuals calculated by the
predicted values of heart rate fold change. C) The mean square error (%IncMSE) and the contribution of each
variable to the homogeneity of random forest nodes and leaves (IncNodePurity) of the 10 most important
variables.

In addition, the chemicals within each cluster were used in predictive modelling using mRNA

data. Cluster 1 resulted in a model with 28 genes and R2 of 0.58, however, after bootstrap

validation the adjusted p-value calculated was 0.250, indicating that the prediction has near

a random probability of occurring (Table 3.2, Figure 3.9). The genes selected by this model

are associated with neuroactive ligand-receptor interaction, SNARE interactions in vesicular

transport, secretin family receptors, GPCR ligand binding, vasopressin-like receptors, Tie2

Signalling, signalling by GPCR and RET signalling (Table 3.5). In addition, this model also

failed to predict the effect of terfenadine on zebrafish heart rate (Figure 3.9). The model

generated using the 143 chemicals could better predict the chemical effect on zebrafish

77



embryos’ heart rate and is more reliable (adjusted p-value=0) compared to the model

generated using only chemicals from cluster 1.

Functional enrichment - 143 chemicals modelling

GO term name p-value GO term ID

Cholecystokinin signalling pathway 0.09 GO:0038188

Detection of chemical stimulus
involved in sensory perception of

smell

0.09 GO:0050911

Sensory perception of smell 0.09 GO:0007608

Detection of chemical stimulus
involved in sensory perception

0.09 GO:0050907

Germinal center formation 0.09 GO:0002467

Detection of chemical stimulus 0.09 GO:0009593

Regulation of immune response 0.09 GO:0050776

Cardiac jelly development 0.09 GO:1905072

Cell communication 0.09 GO:0007154
Table 3.4: Functional enrichment analysis performed using the genes selected to be predictive of heart-rate
changes for the whole dataset.

Figure 3.9: Predicting heart rate fold change using mRNA data and cluster 1 chemicals. A) Plotting the predicted
and the experimentally calculated heart rate fold change, (43 chemicals, R2= 0. 58. B) Model Residuals
calculated by the predicted values of heart rate fold change.
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Functional enrichment-Cluster 1 modelling

GO term name P value GO term ID

Neuroactive ligand-receptor interaction 0.04 KEGG:04080

SNARE interactions in vesicular
transport

0.04 KEGG:04130

Class B/2 (Secretin family receptors) 0.027 REAC:R-DRE-373080

GPCR ligand binding 0.04 REAC:R-DRE-500792

Vasopressin-like receptor 0.04 REAC:R-DRE-388479

Tie2 signalling 0.07 REAC:R-DRE-210993

Signaling by GPCR 0.08 REAC:R-DRE-372790

RET signalling 0.099 REAC:R-DRE-8853659
Table 3.5: Functional enrichment analysis performed using the genes selected to be predictive of heart-rate
changes when only chemicals from cluster 1 were used.

For the prediction of heart-rate fold change caused by the 34 chemicals from cluster 2, 29

genes were selected, with a mean R2 of 0.60, and an adjusted p-value of 0.353, also

indicating that this model can be generated even when using randomised data, showing that

it is unsuitable for predicting heart rate (Table 3.2, Figure 3.10). The 29 genes selected were

associated with two KEGG pathways and 26 Reactome pathways, including sphingolipid

metabolism (KEGG pathway: p value=0.04), homologous recombination (KEGG and

Reactome pathways: p-value= 0.04-0.07) and potassium and calcium ion channels

(Reactome pathways: p-value=0.05-0.09) (Table 3.6). Despite the high R2 of this model still

fails to accurately predict the effect of chlorpromazine and tacrine on zebrafish embryos'

heart rates (Figure 3.10). The model generated using the 143 chemicals could better predict

the chemical effect on zebrafish heart rate and is more reliable (adjusted p-value=0)

compared to the model generated using only chemicals from cluster 2.
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Functional enrichment-Cluster 2 modelling

GO term name P value GO term ID

Sphingolipid metabolism 0.075 KEGG:00600

Homologous recombination 0.075 KEGG:03440

Homologous DNA Pairing and Strand
Exchange

0.072 REAC:R-DRE-5693579

Homology Directed Repair 0.091 REAC:R-DRE-5693538

HDR through Homologous Recombination
(HRR) or Single Strand Annealing (SSA)

0.091 REAC:R-DRE-5693567

HDR through Homologous Recombination
(HRR)

0.086 REAC:R-DRE-5685942

Presynaptic phase of homologous DNA
pairing and strand exchange

0.072 REAC:R-DRE-5693616

Resolution of D-loop Structures through
Holliday Junction Intermediates

0.072 REAC:R-DRE-5693568

Resolution of D-Loop Structures 0.072 REAC:R-DRE-5693537

VxPx cargo-targeting to cilium 0.072 REAC:R-DRE-5620916

Activation of G protein gated Potassium
channels

0.072 REAC:R-DRE-1296041

Activation of GABAB receptors 0.072 REAC:R-DRE-991365

Classical Kir channels 0.072 REAC:R-DRE-1296053

G protein gated Potassium channels 0.072 REAC:R-DRE-1296059

GABA B receptor activation 0.072 REAC:R-DRE-977444

Phase 4 - resting membrane potential 0.072 REAC:R-DRE-5576886

Synthesis of PA 0.072 REAC:R-DRE-1483166

Inwardly rectifying K+ channels 0.072 REAC:R-DRE-1296065

Inhibition  of voltage gated Ca2+ channels
via Gbeta/gamma subunits

0.072 REAC:R-DRE-997272

Insulin processing 0.072 REAC:R-DRE-264876

GABA receptor activation 0.086 REAC:R-DRE-977443

Cargo trafficking to the periciliary membrane 0.086 REAC:R-DRE-5620920
Table 3.6: Functional enrichment analysis performed using the genes selected to be predictive of heart-rate
changes when only chemicals from cluster 2 were used.
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Figure 3.10: Predicting heart rate fold change using mRNA data and cluster 2 chemicals. A): Plotting the
predicted and the experimentally calculated heart rate fold change, (34 chemicals, R^2= 0.6. B) Model Residuals
calculated by the predicted values of Heart rate fold change.

Lastly, for cluster 3 (66 chemicals), the model generated consists of 21 genes, has an R2 of

0.64 and an adjusted p-value of 0.05, the high R2 indicates a relatively accurate model and

the low adjusted p-value the high reliability of the model (Table 3.2, Figure 3.11). The 21

genes were associated with various biological processes, KEGG and Reactome pathways,

involved in mitochondrial translation and ATP production (p-value= 0.27-0.099), regulation of

development and cell growth (p-value= 0.034-0.099), synthesis of ribonucleic acids, DNA

synthesis and repair (p-value= 0.017-0.099) and in immune responses (p-value=0.06) (Table

3.7, Supplementary materials Table S.3). This model failed to predict the effect of Diltiazem

and 2,1-Phenylethyl phenol on heart rate (Figure 3.11). The model generated using the 143

chemicals once again could better predict the chemical effect on zebrafish heart rate and is

more reliable (adjusted p-value=0) compared to the model generated using only chemicals

from cluster 3.

Looking through the genes selected by the various models, again there is very little overlap

(Figure 3.12). Two genes (ENSDARG00000092668 -F1R128, ENSDARG00000093868-

si:dkey-11o15.6p) were shared between the full data set and the model generated using only

the chemicals from cluster 1 (Table 3.8). These genes are associated with the regulation of

immune system processes and defence responses. One microRNA

(ENSDARG00000104494) was found in the models generated from the 143 chemical

dataset and the chemicals from mRNA cluster 2. Finally, one gene

(ENSDARG00000052900-zgc:153642) was selected for both models generated by using

mRNA cluster 2 and 3 chemicals, associated with ion binding and guanyl ribonucleotide

81



binding (Table 3.8). The models generated using the whole dataset (143 chemicals) and the

chemicals from cluster 3 (66 chemicals) do not have any genes in common. In addition, the

model generated using cluster 1, did not share any genes with the models generated using

chemicals from cluster 2 or cluster 3, highlighting the difference between the chemicals in

the separated clusters. A closer look through the R 2 calculated for each training dataset, the

model generated for the whole dataset, had more consistent results among the various

training sets compared to the models generated for the three clusters (Figure 3.13). In

addition, all models seem to behave similarly when multiple training datasets were used,

with very few outliers.

Functional enrichment-Cluster 3 modelling

GO term p-value

Mitochondria and ATP production 0.025-0.099

Regulation of development and cell growth 0.034-0.099

Ribonucleic acid synthesis
DNA transcription

DNA repair
0.017-0.099

Immune response 0.06
Table 3.7: Functional enrichment analysis performed using the genes selected to be predictive of heart-rate
changes when only chemicals from cluster 3 were used.
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Figure 3.11: Predicting heart rate fold change using mRNA data and cluster 3 chemicals. A) Plotting the
predicted and the experimentally calculated heart rate fold change, (66 chemicals), R^2=0. 6401664, B) Model
Residuals calculated by the predicted values of Heart rate fold change. C) The mean square error (%IncMSE)
and the contribution of each variable to the homogeneity of random forest nodes and leaves (IncNodePurity) of
the 10 most important variables.

Figure 3.12: Comparing the genes selected by the 4 mRNA models. Optimisation of the models resulted in very
different models with little to no overlap between the models.
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Shared Genes 143
chemicals

Cluster 1
(n=43)

Cluster 2
(n=34)

Cluster 3
(n=66)

F1R128 X X

si:dkey-11o15.6p X X

ENSDARG0000010449 X X

zgc:153642 X X
Table 3.8: Genes shared by the models generated using the whole dataset (143 chemicals), the chemicals from
cluster 1, cluster 2 and cluster 3.

Figure 3.13: The R2 values generated using the mRNA models over the 300 training datasets (colour= red), and
the results of the validation with the randomised data (colour=green), over the different datasets, 143
chemicals, cluster 1, cluster 2 and cluster 3 chemicals.

3.5 Discussion

3.5.1 Chemicals that cause bradycardia

Zebrafish heart development is highly controlled by cellular differentiation, migration,

proliferation and apoptosis, thus toxic chemicals that alter those processes can lead to

cardiovascular diseases, bradycardia, and deformities. Chemicals, such as clozapine,

prochloraz, terfenadine, chlorpromazine and tacrine, cause severe bradycardia in the

zebrafish embryos after exposure. Clozapine, an antipsychotic drug for treating

schizophrenia, has been found to cause cardiotoxicity in zebrafish embryos by increasing

oxidative stress and causing up-regulation of inflammatory cytokines. In addition,
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morphological abnormalities have been identified including oedema, incomplete heart

looping and bradycardia in zebrafish (Abdel-Wahab et al., 2015; Zhang et al., 2021).

Prochloraz, a widely used fungicide, has been associated with teratogenesis and induces

multiple embryonic developmental anomalies, like spine deformation, slower heart rate,

oedemas, and even hatching failure of zebrafish embryos (Domingues et al., 2013).

Terfenadine is a withdrawn antihistamine that increases the interval between heart

contracting and relaxing (inducing QT interval prolongation), causing cardiac arrhythmias.

However, stroke blood volume seems to be increased due to increased filling time, resulting

in stable cardiac output, compensating for bradycardia in zebrafish. Zebrafish embryo

terfenadine exposure was also found to be associated with pericardial oedema and ventricle

collapse (Maciag et al., 2022). Chlorpromazine is an antipsychotic drug that has been found

to suppress the current of potassium channels (hERG) causing QT prolongation (He et al.,

2021; Li, Tang and Li, 2021). Finally, tacrine has been used to treat Alzheimer’s symptoms,

by blocking the breakdown of acetylcholine neurotransmitters, increasing their abundance.

Such inhibitors cause the accumulation of acetylcholine in zebrafish embryos causing

bradycardia (Lin et al., 2007).

3.5.2 Genes associated with significant heart rate fold change

Differential expression analysis revealed a set of genes found to be up or down-regulated

after exposure to chemicals that significantly affect the heart rate of zebrafish embryos. The

upregulated genes were found to be involved in various embryonic developmental

processes, such as multiple organ development and assembly and localization of cellular

components, as toxic exposure can cause morphological abnormalities, developmental

delay and death (Yang et al., 2009; Bambino et al., 2017; Hellfeld et al., 2020).

Processes related to heart development and function, including muscle, circulatory system

and nervous system developmental processes and function were found to be altered after

exposure to toxic chemicals, as expected. Cardiac development and function are very

sensitive processes to external and internal stimuli during embryonic development (Sarmah

et al., 2016). Heart contraction is controlled by the autonomic nervous system and utilises a

large number of ATP, thus defects in muscle tissue formation, mitochondrial respiration or

nervous system development and function have been associated with cardiotoxicity in

zebrafish (Dubińska-Magiera et al., 2016; Fedele et al., 2020). In addition, cross-talk

between the heart and immune system, through hormones, neurotransmitters and cytokines,

where dysregulation of the immune system and inflammatory pathways leads to arrhythmias

and heart failure (Dal Lin et al., 2019). Finally, the genes found to be upregulated are
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involved in cell-cell communication which describes the ability of the cell to receive, process

and transmits signals with the environment and itself, in order to respond and adapt to

changes, controlling cell death and survival, cell proliferation and cellular differentiation

(Uings et al., 2000).

On the other hand, the genes identified to be downregulated by differential expression

analysis (SAM) were also associated with multiple KEGG and Reactome pathways.

Pathways involved in embryonic development, cardiovascular development and function,

nervous system development, immune responses and cell-cell communication, were found

to be significantly altered after chemical exposure. In addition, pathways involved in cellular

senescence and apoptosis were also found to be influenced by toxic exposure.

Cardiac development is coordinated by cellular, molecular, and environmental factors

(Olson, 2006). Biochemical signalling, components of extracellular matrix and cell-cell

communication (Bornhorst et al., 2019), cardiomyocyte contractility (Auman et al., 2007) and

intracardiac hemodynamic flow (Hove et al., 2003; Radisic et al., 2004) control the heart

development of zebrafish. G-protein receptors perceive multiple extracellular signals and

transduce them intracellularly. Electric currents can influence cell morphology and cardiac

organogenesis (Chi et al., 2010), and in vivo studies have shown that cardiomyocytes are

realigning based on conduction directionality (Hove et al., 2003; Radisic et al., 2004).

Disrupted cardiac conduction can lead to changes in the intracellular calcium gradient, which

causes the redistribution of integrins of N-cadherin, specifically expressed in the

myocardium, which could lead to loss of cell-cell contact between cardiomyocytes and alter

cell shape and overall cardiac morphogenesis (Chi et al., 2010). Cell surface receptors can

be redistributed in the cell membrane by electric fields, including N-cadherin which mediates

calcium-dependent homophilic cell-cell contact, after physiologic depolarization of synapses

(Tanaka et al., 2000). Various drugs have been found to block the hERG channels that

control the electrical activity of the heart by mediating the repolarization currents (potassium

ions) in the cardiac action potential that helped coordinate the heart’s beating. Blockage of

hERG channels, lead to delayed repolarization and predisposition to lethal arrhythmia

(Simpson et al., 2020). Exposure to toxic chemicals tends to increase reactive oxygen

species (ROS), nitric oxide synthase (NOS) activity and expression of cytokines. Autophagy

is the engulfment, degradation, and recycling of dysfunctional or damaged cellular

components is important for cardiac development, and cardiomyocyte differentiation (Zhang

et al., 2012; Lee et al., 2014). Apoptosis during embryogenesis is involved in cell

differentiation of heart myocardium and endocardial cushions through cell-cell interactions

(Pyati et al., 2007), thus changes in apoptosis may lead to vascular remodelling (Poelmann

et al., 2005).
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The large number of genes identified to be altered after toxic exposure are involved in

various biological processes and pathways, highlighting the complexity of cardiac

development and function, and the various mechanisms through which chemical exposure

can lead to cardiotoxicity, toxic chemicals can alter zebrafish heart rate through various

mechanisms (chemical MoA).

3.5.3 Gene expression profiles for predicting Heart rate fold

change of a highly diverse dataset

Predictive modelling indicates that structural information (molecular descriptors- QSAR

models) cannot accurately predict the heart-rate fold change of a set of highly diverse

chemicals (in structural characteristics) as efficiently as the mRNA profiles. Qsar models are

usually performed using chemicals with similar structural characteristics, from a single MoA,

in order to generate accurate and reliable models, as the use of reactive chemicals and

chemicals that act through specific mechanisms decrease the accuracy of the QSAR model

(Yuan et al., 2007; Michielan et al., 2010; Cassotti et al., 2015). The mRNA model generated

when a total of 143 chemicals were used, consists of 80 genes that are associated with

multiple biological processes including, cardiac jelly development (nppa gene), immune

responses (defbl3, fybb, si:ch211-170i2.2 genes), cholecystokinin signalling pathway (cckar

gene), detection to chemical stimulus (gja13.2, si:ch11-203k16.3) and sensory perception of

smell. Despite the relatively high R2, of the model, failed to predict the full effect of

terfenadine, chlorpromazine, tacrine, and prochloraz, chemicals identified to cause

bradycardia in zebrafish as described above.

The genes selected by this model were also associated with cardiac jelly development, the

extracellular matrix (ECM) separating the myocardium from the endocardium (Stankunas et

al., 2008; Lockhart et al., 2011) and is involved in heart morphogenesis (Taber, 1998; Segert

et al., 2018; Männer et al., 2019). Cardiac jelly components are involved in cell shape,

migration, proliferation and differentiation, through interactions with growth factors,

controlling cell behaviour, cell-to-cell communication and gene expression (Luxán et al.,

2016; Silva et al., 2020). The cholecystokinin pathway is involved in muscle contraction and

regulated blood pressure (Lovick, 2009; Mikulášková et al., 2016; Dong et al., 2017). The

immune system is activated after cardiac tissue injury or stress, caused by toxic chemical

exposure, driving acute inflammatory response and regenerative response (Epelman et al.,

2015; Carrillo-Salinas et al., 2019). Innate immune cells migrate to the affected site and

release mediators such as reactive oxygen species and proteases to remove factors

responsible for heart damage. In addition, injured cardiomyocytes release pro-inflammatory
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cytokines triggering the adaptive immune system (Monda et al., 2020; He et al., 2022).

Chemical stimuli detection and sensory perception of smell describe the process by which a

chemical stimulus is received by cell and converted into a molecular signal (EMBL-EBI,

2021). In addition, the expression of inaa and tiam2a which are involved in neurons

morphogenesis and axogenesis are found to be highly associated with heart rate changes

caused by chemical exposure, highlighting the importance of the nervous system in

controlling cardiac contractility (Gordan et al., 2015).

The 143 chemicals used in this study are characterised by high variability in structural

characteristics, where chemicals with similar structural features, such as functional groups,

number and nature of bonds, lipophilicity, electronegativity, and polarizability, may act

through different mechanisms and have a diverse effect on the zebrafish embryos. Utilising

additional information from gene expression profiles after chemical exposure allows the

identification of biological processes and pathways that are responsible for the chemical

effect.

3.5.4 Molecular descriptors for predicting Heart rate fold

change of cluster 1 and 2 chemicals

Clustering chemicals reduces the variability of the dataset since chemicals with similar gene

expression profiles are grouped together, thus the reduction of the dataset (cluster 1= 43

chemicals, cluster 2=34 chemicals) is expected to improve the accuracy and reliability of the

predictive models. However, that was not true for the models generated using the gene

expression profiles for cluster 1 (R2 =0.58, p-value=0.25) and cluster 2 chemicals (R2 =0.6,

adjusted p-value=0.353), where both models despite the high R2 were not representative of

the data provided (adjusted p-value). On the other hand, molecular descriptors generated

two models that could to some extent predict the phenotypic effect of the chemicals, cluster

1 R2=0.39, cluster 2 R2=0.63. The model generated from cluster 1 chemicals identified 35

descriptors that their combination can partially predict heart-rate fold change caused due to

exposure to toxins.

A set of 14 descriptors were identified as the ones that contribute the most towards an

accurate and reliable prediction associated with molecular mass, electronegativity, ionization

potential and presence of tertiary aliphatic amines. Toxicity of various metals has been

associated with electrochemical characteristics, such as ionisation potential (MATS4i), and

electronegativity (rGes, C-006, C-026, electronegative atoms) (Walker, Enache and

Dearden, 2003; Gajewicz-Skretna et al., 2021), based on the assumption that chemical

reactivity and toxicity are proportionally related, the most reactive chemical will be the most

88

https://paperpile.com/c/8TN32q/lXx0+B7CU
https://paperpile.com/c/8TN32q/yBQV
https://paperpile.com/c/8TN32q/yBQV
https://paperpile.com/c/8TN32q/lq3f
https://paperpile.com/c/8TN32q/HvaU
https://paperpile.com/c/8TN32q/lq3f
https://paperpile.com/c/8TN32q/i07t+WSXg
https://paperpile.com/c/8TN32q/i07t+WSXg


toxic (Fan et al., 2018). Ionisation potential is the lowest energy needed to remove an

electron from a chemical system and has been used to measure the capability of a molecule

to lose an electron and is related to electronegativity (Walker et al., 2003). JGI4 is a

topological descriptor that provides a measure of the charge transfer between pairs of atoms

and the total charge transfer in the molecule (Galvez et al., 1994). Two descriptors were

selected that are associated with molecular mass (ATSC2m, GATS1m), where molecular

size influences the retention of compounds (Ogadimma et al., 2016).

In addition, descriptors associated with chemical lipophilicity/hydrophobicity (log P) have

been widely used to predict the toxicity of inert chemicals. Hydrophobicity is the ability to

accumulate organic substances in water, and lipophilicity determines the intermolecular

relationships between an organic substance and a solvent, describing the bioavailability,

permeability, and toxicity of a drug (Kujawski et al., 2012). LogP can be used for drug

distribution estimation and provide information about the ability of a chemical to passively

diffuse across biological membranes (Kujawski et al., 2012). The results of this study

indicate the importance of P_VSA_LogP_5, which defines the amount of van der Waals

surface weighted by logP. Three descriptors were selected that have been associated with

the intrinsic state of a chemical (P_VSA_s_3, MATS5s and GATS6s) that describes the

availability of the valence electrons for intermolecular interactions that influence the half-life

of a chemical (Kujawski et al., 2012; Liu et al., 2017). The intrinsic state has been associated

with the atomic contribution to partition coefficient, molecular refractivity, and atomic partial

charge (Labute, 2000; Lavado et al., 2020).

Molecular polarizability (VE1sign_B(p)) enhances the non-covalent interaction during

molecular transport through the membrane, thus high polarizability indicates high lipophilicity

hence associated with acute aquatic toxicity (Gajewicz-Skretna et al., 2021). Chemical

toxicity has also been related to chemical size, the number and nature of bonds and the

presence of various functional groups (Gajewicz-Skretna et al., 2021). The results indicate

that the presence and frequency of nitrogen-oxygen, carbon-nitrogen, oxygen-oxygen and

chlorine-chlorine bonds, the number of aromatic primary amides (nArCONH2), are important

for predicting the chemical effect on heart-rate fold change. CATS2D descriptors are based

on the number of bonds between anions, cations, hydrogen bond acceptors, hydrogen bond

donors, and hydrophobic (lipophilic) atoms within the chemical (CATS2D_06_DA,

CATS2D_02_AP) (Chang et al., 2013).

The 11 molecular descriptors (R2= 0.63) identified to be predictive of the heart-rate effect of

cluster 2 chemicals, are also related to chemical size (MATS1m),) and the presence of

multiple functional groups number of aromatic tertiary amines (nArNR2), carbon-chlorine
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bonds, nitrogen- chlorine bond. As described above ionisation potential (MATS4i), molecular

polarizability (MATS7p) and the charge transfer between pairs of atoms, the total

charge-transfer on the molecule (JGI8) and the presence of electronegative atoms (C-040,

C-008).

Lastly, the presence of triple bonds can be used as an indicator of the reactivity of the

chemical as triple bonds are less stable than single and double bonds (nTB), and the ring

fusion density (RFD) that describes the electrophilic nature of the molecule, as it describes

the electron mobility of a compound (Mukherjee et al., 2022). The accuracy of this model is

relatively high, however, once again the effect of tacrine and chlorpromazine chemicals was

not accurately predicted. The effect of those chemicals was better predicted by this model

compared to the model generated using the 143 chemicals and the gene expression profiles,

suggesting that structural information (molecular descriptors) can be useful in predicting

cardiotoxicity when chemicals with similar profiles are used.

As it can be seen from the nature of the molecular descriptors identified by the predictive

modelling to be associated with chemical toxicity, molecular mass, ionisation potential,

electronegativity, polarizability and lipophilicity are the most important properties for

predicting cardiotoxicity in zebrafish embryos. These properties are related to the ability of a

chemical to cross the cell membrane and accumulate within the organism and the reactivity

of the chemicals that have been widely associated with chemical toxicity.

3.5.5 Gene expression profiles for Predicting Heart rate fold

change of cluster 3 chemicals

Finally, the effect of cluster 3 chemicals on zebrafish embryos' heart rate could be predicted

only by the mRNA data (R2=0.64, adjusted p-value= 0.05) and not by the molecular

descriptors (R2=0.17, adjusted p-value= 0.219). Despite the high R2 of the model generated

using the gene expression profiles, and the reduction in dataset size, the model failed to

predict the effect of diltiazem, 2-(1-phenylethyl)phenol and o-tolunitrile more accurately than

the model generated using the 143 chemicals. This model consists of 21 genes associated

with various biological processes, including mitochondria function and ATP production,

various developmental processes, signalling pathways and immune system function.

The primary function of mitochondria is energy production and supply by generating ATP

through oxidative phosphorylation, to ensure muscle contraction, metabolism, and ion

homeostasis (Chen et al., 2010; Nguyen et al., 2019). In addition, mitochondria are also

involved in cell death regulation, apoptosis, and necrotic cell death, by responding to stress

signals including growth factors, DNA damage, and oxidative stress (Gustafsson et al.,
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2008). The genes selected by this model are involved in mitochondrial function and energy

production, including genes such as eral1 which is active in the mitochondrial matrix and

enables rRNA binding activity, ribosomal small subunit binding activity and ribosome

biogenesis. The gene abcb8 is part of the mitochondrial ATP-gated potassium channel

complex and the 2hgdh gene enables 2-hydroxyglutarate dehydrogenase activity in

mitochondria and is involved in energy production. Some of the genes identified are related

to carnitine metabolism, used in the transfer of long-chain fatty acids inside the mitochondrial

for oxidation in the myocardium and other muscle tissues (Waber et al., 1982; Fu et al.,

2013), leading to the generation of adenosine triphosphate (ATP) (Park et al., 2021). Thus,

carnitine deficiency may lead to impaired ATP production, reduced ketogenesis, and lipid

accumulation in the cytosol (Fu et al., 2013). Heart failure has been associated with

defective carnitine transport and fatty acid oxidation in mitochondria (Zhou et al., 2018).

The results of this study indicate that disruption of purine synthesis and metabolism (guk1b,

ampd2a), involved in development (Wang, 2016), can be predictive of the effect a chemical

has on zebrafish heart rate. Purines are used as metabolic signals, they provide energy and

control cell growth (Fumagalli et al., 2017). Nucleotide balance is important for DNA and

RNA integrity in replicating cells, and imbalance can induce base substitutions, frameshift

mutations, delay of replication form progression and DNA replication and increase the

frequency of fragile sites (Weinberg et al., 1981; Copeland et al., 2014; Nogueira et al.,

2014; Fasullo et al., 2015). In addition, inhibition of purine synthesis can inhibit cell

proliferation through p53-cell cycle arrest (G0/G1), which can lead to cytotoxicity (Linke et al.,

1996; Quéméneur et al., 2003; Desler et al., 2010). Cytosolic and mitochondrial dNTP pools

are sensitive to oxidative stress (Wang, 2016). Oxidative stress results in DNA damage in

mitochondria, where nucleotide imbalance can lead to mitochondrial depletion (Fasullo et al.,

2015).

Cell communication and signalling pathways are involved in the cellular response to the

environment, through cell growth and division, differentiation, migration and apoptosis.

Genes associated with extracellular matrix organization (col10a1b) and

cytoskeleton-dependent intracellular transport (ccdc88b) are among the genes used by the

model. Signalling pathways such as the tyrosine phosphorylation of STAT protein and the

JAK/STAT pathway (crlf1a) have been found to be modified after exposure to chemicals that

can cause altered heart rate changes in zebrafish embryos. STAT pathways integrate inputs

from multiple signalling pathways, and responses to multiple extracellular ligands, such as

cytokines and growth factors (Decker, 1999; Levy, 1999; Mui, 1999; Yeh et al., 1999; Imada

et al., 2000; Hou et al., 2002; O’Shea et al., 2002). Stat proteins are involved in animal

development, growth, cell proliferation, differentiation, survival, immune response,
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hematopoiesis and migration in normal tissues (Darnell, 1997; Hiranoet al., 2000; Yamashita

et al., 2002; Liu et al., 2017). In addition, the transcriptional repressor gfi1b is involved in

hematopoiesis, cell proliferation, and apoptosis and influences cell fate decisions (Moore et

al., 2018).

3.5.6 Conclusion

Cardiac development and function are very sensitive processes and exposure to toxic

chemicals during embryonic development may lead to cardiotoxicity in zebrafish embryos.

Differential expression analysis revealed that the expression of genes involved in organ

development, cardiovascular system development and function, nervous and immune

system function, cell-cell communication, and cell death are significantly altered after

exposure to chemicals that significantly alter zebrafish embryo’s heart rate. These results

highlight the various mechanisms through which chemicals can cause cardiotoxicity.

In this study, during the evaluation of the ability of structural features (molecular descriptors)

and gene expression profiles to be predictive of heart rate fold change in zebrafish embryos,

we found that the use of chemicals with high variability (in structural features and molecular

responses) increases the complexity of the models. Thus, as expected, the model generated

using molecular descriptors (QSAR) failed to accurately predict the effect of the 143

chemicals, as usually, such models are MoA specific. On the other hand, using the gene

expression profiles a model with relatively high accuracy (R2=0.683) and reliability (adjusted

p-value= 0) was generated. The accuracy of this model suggests that gene expression data

can potentially be used in risk assessment for assessing chemical-induced cardiotoxicity, of

chemicals from multiple MoA classes with a single model.

Clustering chemicals, into three clusters, based on gene count profiles reduces the variability

of the data since chemicals with similar profiles are grouped together and is expected to

improve model performance, especially of the QSAR models. However, even after clustering

only one out of the three models generated using molecular descriptors was accurate and

reliable (R2= 0.63, adjusted p-value= 0.006, cluster 2). In addition, the models generated

using gene expression data for the three clusters were less accurate compared to the full

dataset model (Cluster 1: R2= 0.58, Cluster 2: R2=0.6, Cluster 3: R2=0.64), and only one of

them can be characterised as reliable (Cluster 1: adjusted p-value = 0.25, Cluster 2:

adjusted p-value =0.35, Cluster 3: adjusted p-value =0.05). Clustering chemicals in this

study did not improve the performance of the predictive models. However, the number of

chemicals used in this study is relatively small (43, 34, 66), thus increasing the number of

chemicals may improve the predictive power of those models.
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Chapter 4

Evaluating the basal toxicity

mechanisms in Danio rerio

4.1 Abstract

Exposure to various toxins influences gene expression and physiology of zebrafish embryos.

Sequencing approaches generate high-dimensional datasets containing a breadth of

molecular functions and biological processes. To improve interpretability, dimensional

reduction techniques, such as PCA, have been widely used. In this study, molecular

pathways were represented by principal components and used as inputs to predictive

modelling approaches to identify potential linkages between exposure, molecular response

and chemical toxicity, or chemical effect on zebrafish heart rate. This effectively generates

AOPs based on a high-level understanding of the underlying biology. When the data are

characterised by high heterogeneity (highly diverse chemicals in gene count profiles), no

pathway activity was able to predict the calculated LC50 or the chemical concentration

during exposure. On the other hand, most of the pathways described in this study were

found to be predictive of heart-rate fold change, indicating that a variety of mechanisms are

involved in proper heart development and function. Splitting chemicals based on gene count

profiles revealed a set of pathways whose activity was found to be predictive of LC50 and

chemical concentration during exposure.

This highlighted several links between exposure and AOs where pathways involved in

transport and catabolism, replication and repair, cell growth and death, signalling pathways,

sucrose metabolism, and vascular smooth muscle contraction were predictive of chemical

LC50 or the experimental concentration, associated with chemical toxicity. Pathways

involved in amino acid and nucleotide metabolism, signalling pathways, cellular growth and

death, endocrine-related pathways, cell motility, and immune system pathways were

associated with heart rate fold change. By considering shared genes between the pathways

a network was established highlighting the distances between the pathways associated with

chemicals and pathways associated with outcomes. From here several examples have been

extracted which highlighted potential new adverse outcome pathways. Incidentally, the
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analysis also showed that the selected pathways were connected closer than expected by

random chance.

4.2 Introduction

Zebrafish (Danio rerio) is a small tropical fish, with rapid development, a short reproduction

cycle and a large number of offspring. They are very easy to maintain in the laboratory due

to their small size and ex-utero embryonic development, reducing housing space and

husbandry costs. Zebrafish embryos are transparent, enabling fast evaluation of the

developmental process and identification of genes related to development (Kimmel et al.,

1995). Exposure of Zebrafish to contaminants affects gene expression, physiology and

behaviour, due to zebrafish's high sensitivity to environmental changes (Dai et al., 2014).

Identifying the toxicity profile of a new chemical requires long experiments and a large

number of experimental animals. The ability to predict and understand toxicity mechanisms

will consequently reduce the need for animal testing, cost, and duration for chemical

assessment.

Signature-matching approaches are based on the assumption that compounds with similar

gene expression profiles will have the same effect in a biological system. This allows the

comparison of compound-induced gene expression profiles to identify the toxicity of a new

compound using chemicals with known toxicity profiles (Alexander-Dann et al., 2018).

However, such lists do not provide information related to the underlying biological

mechanism, since gene data usually cannot explain an entire functional trait. In addition, in

some cases, compounds do not significantly influence gene expression, leading to

transcriptional signals dominated by noise that does not represent the effect of the chemicals

on the organism (Ramanan et al., 2012).

High throughput data suffer from high dimensionality since usually, the number of variables

is greater than the number of samples. These characteristics may lead to model overfitting

and false correlation that will affect the accuracy and the computational complexity of

modelling (Clarke et al., 2008). These limitations raise the need for a method that simplifies

the analysis by dimensionality reduction. Such strategies aim to reduce storage space and

computation time, remove noise, and redundant and correlated features. It also allows easier

visualisation of data and pattern identification. Variable reduction methods lower the

accuracy of the data due to some information loss, but the simplicity offered by the smaller

datasets allows easier visualisation and exploration of the data and increases the speed of

the analysis.
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There are two main types of dimensionality reduction methods, feature selection, selecting a

subset of features as an input for further analysis, and feature extraction where using all the

available variables a new feature space is generated (such as principal component analysis,

PCA). Feature selection, such as grouping the list of genes into clusters of functionally

related gene sets (pathways) has the potential to cope with such limitations. When using

RNA-sequencing data, grouping genes into pathways reduces dataset dimensionality and

allows the differentiation between response and noisy data (Alexander-Dann et al., 2018)

and improves the interpretation of the results and hypothesis generation (García-Campos et

al., 2015).

Pathway analysis is based on existing biological knowledge, quantitative data such as

RNA-seq, statistical testing, mathematical analyses, and computational algorithms; they are

used to connect ‘omics data and existing knowledge (Antczak et al., 2015; García-Campos

et al., 2015). The use of functionally derived gene sets can reveal larger effects compared to

gene-based analysis (Wang et al., 2010; Zhong et al., 2010). Pathway analysis has been

used for the identification of the biological role of candidate genes and facilitating the

understanding of the underlying mechanism (García-Campos et al., 2015). However, the

lack of guidelines increases variability between pathway studies (Ramanan et al., 2012).

To assist with risk assessment, the AOP concept has been proposed, which organises

existing knowledge between biological changes (key events) from an MIE to an AO. An AOP

begins with the interaction of a chemical with a biological target (MIE), which is followed by

cellular responses, leading to an organ response, individual phenotype, and population

response (AO) (Ankley et al.,2010). An AOP is considered active when data shows that all

the key events that lead to an AO are covered (Serra et al., 2020). However, collecting

experimental data to prove the activation of all identified key events is time-consuming, thus

in silico approaches can be used to predict the downstream or upstream key events, and

possible key events relationships. The activation of molecular mechanisms can be predictive

of a phenotypic effect, thus using toxicogenomic data can provide the necessary information

spanning through the multiple key events in an AOP (Vinken, 2019). AOPs reflect the current

state of knowledge, thus they can continue to evolve as new information becomes available.

Computational methods have been applied in identifying AOPs, by linking transcriptomics

and structural information to an AO; thus structural characteristics can be used to predict

pathway activity which can be used to predict adverse outcomes (Antczak et al.,2015).

In this study, the aim is to utilise pathway-based information to uncover the mechanism of

how chemicals impact the molecular state of zebrafish embryos. Over 140 chemicals were
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used to derive pathway-level information and aimed to establish an AOP-based network that

can be used to predict AOs such as heart rate fold changes.

4.3 Methods

4.3.1 Selecting transcriptional profiles for pathway analysis

The same 143 chemicals used for the analysis in chapters 2 and 3 were also used in this

chapter for further analysis. In addition, the 143 chemicals were grouped together into three

clusters (43, 34 and 66 chemicals) based on the gene expression profiles as described in

chapter 2 (mRNA hard clustering), thus a total of 4 datasets were used for further analysis in

this chapter. The gene expression profiles of the highest available concentration from the

mRNA-seq data, for each chemical (124 chemicals- LC5, 15 chemicals- LC5/2, 4 chemicals-

LC5/4, as described in chapter 2), were used for pathway analysis. The calculated heart rate

fold change and the experimental concentration (log format) (124 chemicals- LC5, 15

chemicals- LC5/2, 4 chemicals- LC5/4) were used as the dependent variable in the

predictive modelling.

4.3.2 Modelling of toxicity using the General Unified Threshold

model and dose-response curves

To derive a more regulatory applicable model the General Unified Threshold Model (GUTS)

was used to define the concentration at which 50% of the population is dead (LC50) of each

chemical (Jager et al., 2011). The openGUTS, a free and open-source software, calculate

the LC50 using toxicokinetic-toxicodynamic models to estimate survival. The LC50 is

negatively correlated with toxicity, where low LC50 values indicate that chemical exposure

will kill zebrafish even at low concentrations since the chemical is toxic. The more traditional

and popular method for calculating the LC50 (toxicity) in the public domain of chemicals is by

using dose-response models like the log-logistic model. In this study the drc package in R

(version 3.0.1) was used, combining the four-parameter log-logistic function (LL.4 ) with the

drm function for fitting function for dose-response analysis (Ritz et al., 2015). The GUTS and

the dose-response model predictions were compared. The LC50 of each chemical

calculated by GUTS were also used as the dependent variable in predictive modelling.

4.3.3 Data dimensionality reduction and predictive modelling

To establish pathway representations of the gene expression data the Kyoto Encyclopaedia

of Genes and Genomes (KEGG) was used. The KEGG database currently contains more
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than 500 pathways and covers 756 eukaryotes, 7011 bacteria and 389 archaea. The gene

expression data were generated using the Ensembl id for each gene and consisted of more

than 30 thousand genes. However, to be able to split the data based on the KEGG pathway,

the biomaRT R package (version 2.42.1) was used to convert the ensemble id into the

Entrez gene id (NCBI gene id) using the function getBM. The NCBI gene id was then used

on the KEGG website (KEGG Mapper – Convert ID, 2021) to get the equivalent KEGG id for

each gene. The keggGet function from the R package KEGGREST (version 1.26.1) was

used to map the genes to the available pathways, and only the pathways represented in the

dataset by more than five genes were selected for further analysis. The genes used in this

study were found to be involved in 160 pathways with at least 5 genes per pathway. Each of

the 4 datasets was then split into these pathways. To summarise the expression of each

pathway principal component analysis (PCA), an unsupervised learning method was then

performed. Here the gene expression data are linearly transformed into new, uncorrelated

observations (principal components -PC) that account for decreasing proportion of the total

variance in gene expression, the first PC explains most of the variation. PCA was performed

in R using the function prcomp (from the stats package version 3.6.1), which uses a singular

value decomposition of the covariance and correlation between variables (Jolliffe et al.,

2016), using the parameters center=TRUE, indicating that the variables should be shifter to

be zero centred, and scale=TRUE, indicating that variables should be scaled to have unit

variance before the analysis. After the PCA only the PCs that cumulatively explain up to 80%

of the variance between the gene expression profiles were selected to represent pathway

activity, in each of the 640 datasets.

Finally, the predictive capability of each pathway towards heart rate fold change, chemical

exposure concentration, and the LC50 calculated by GUTS was estimated using the same

predictive modelling function described in chapter 2. The predictive function split the dataset

into training and test sets using the Caret R package (Kuhn, 2020), and LASSO regression-

stability selection to select and sort features based on importance (parameter family=

“gaussian” (Sill et al., 2014). The selected features were added sequentially to the model

(forward selection) and using random forest regression (ranger) (Wright et al., 2017)

(classification =FALSE), the model that on average performed best across all the splits, was

selected. For model validation, the same method was repeated 1000 times, while

randomising the dependent variable every time, and the p-value (the probability of the model

to be generated even with random data), was calculated using the empirical cumulative

distribution function.
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Figure 4.1: Representation of the workflow related to the generation of putative AOPs using mRNA data. Using
the KEGG library, the gene profiles were split into 160 pathways. PCA analysis was performed on the gene
profiles for each pathway. For predictive modelling, the principal components that cumulatively explain up to
80% of the variance were used as the independent variables in predictive modelling for each pathway. The
pathways activity that can be used to predict chemicals LC50, experimental chemical concentration and
changes in heart rate fold change were identified and used in the construction of AOP networks using the
number of shared genes between pathways and Cytoscape software.

The predictive modelling function was applied 1920 times (160 X4 X3). In this study 4

datasets were used that consisted of different numbers of chemicals, the larger one

consisted of 143 chemicals, and the other 3 (43,34,66 chemicals) are the result of the

chemical clustering based on gene expression profiles, describe in chapter 2. Each of those

4 datasets consists of more than 30 thousand genes, thus after pathway analysis, each

dataset was split into 160 smaller datasets (4X160 = 640). Three dependent variables were

used, the calculated heart rate fold change (described in chapter 2), the experimental

chemical concentration after log transformation (124 chemicals- LC5, 15 chemicals- LC5/2, 4

chemicals- LC5/4), and the calculated LC50 using GUTS (4 X 640=1920).
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To evaluate how the pathways identified to be predictive of the three dependent variables

(heart rate fold change, experimental chemical concentration in log format, and chemicals

LC50) are connected, a network was developed between all the available pathways. The

connections between the selected pathways were defined by the presence of shared genes

based on the KEGG database, using the jaccardSets function, part of the R package

bayesbio (version 1.0.0) and the data downloaded from the KEGG database that describes

the genes involved in each pathway. The Jaccard index was calculated for any two

pathways, which describes the number of intersections (i.e. shared genes between each pair

of pathways) divided by the total number of elements of the two pathways. The Jaccard

index was then used to develop a network of pathways. To explore how the pathways that

can be used to predict chemical-induced heart rate changes with the pathways that can

predict chemical concentration (experimental exposure- log format) or chemical LC50, the

shortest distance was calculated between those pathways using the R package igraph

(version 1.2.6) (Csardi et al., 2006). The resulting linkages were extracted and visualised

using Cytoscape, an open-source software network visualisation tool (Shannon et al., 2003),

and the KEGGScape extension (Nishida et al., 2014).

4.4 Results

4.4.1 GUTS Modelling of toxicity

Modelling toxicity from observational data can be achieved through more traditional

dose-response models or by utilising the toxicokinetics and toxicodynamics (TKTD) inspired

modelling approaches. Here the GUTS model has established itself as an important

regulatory approach to modelling endpoint survival (Jager et al., 2011). The external

concentrations are translated to internal concentrations and associated with the likely

damage which triggers death. This, therefore, ensures that the concentrations leading to

50% of death (LC50) are directly based on the likely internal concentrations. At the same

time dose-response modelling, a log-logistic model, one of the most popular methods for

predicting the LC50 of each chemical was applied. The results show that the outcome of

those two models is similar with very few outliers (R2= 0.89) (Figure 4.2).
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Figure 4.2: Comparing the estimated LC50 of each chemical using dose-response log-logistic modelling and
GUTS (R2= 0.89).

4.4.2 Predicting LC50 of chemicals using pathway activity

Based on the gene expression data, pathway activity information can be obtained using

pathways originating from the KEGG database. Using pathway activity information (160

pathways) in the form of principal components as the independent variables, the LC50

(GUTS) of each chemical was predicted. When the whole dataset was used, no pathway

information was able to predict the LC50 accurately (highest R2 = 0.12).

The dataset was then split based on mRNA (gene count profiles) clustering described in

chapter 2. The first cluster consists of 43 chemicals, and predictive modelling identified two

pathways that can to some extent used to predict the LC50s of these chemicals, lysosomes

activity (R^2 = 0.342) and VEGF signalling pathways (R^2 = 0.202) (Table 4.1). Lysosomes

are involved in intracellular macromolecule degradation, such as lipids and damaged

organelles, where the end products can be used for energy or as building blocks for other

macromolecules (Cooper, 2000; Pei et al., 2021). On the other hand, the VEGF signalling

pathway is associated with vasculogenesis and angiogenesis, by controlling the expression

of genes involved in vascular permeability and promotion of cell migration, proliferation and

survival (Apte et al., 2019).

To predict the LC50 of the 34 chemicals from mRNA cluster 2, 10 pathways were selected

(Table 4.1). Some of these pathways are associated with lipid metabolism,

glycerophospholipid metabolism (R2 = 0.33), where glycerophospholipids are the main
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structural components of biological membranes and are involved in signal induction and

transport (Hishikawa et al., 2014) and steroid hormone biosynthesis (R2 = 0.28), that are

important in growth, development, sexual differentiation and reproduction (Adhya et al.,

2018). The non-homologous end-joining pathway (R2 = 0.3), responsible for repairing

double-strand breaks in DNA throughout the cell cycle were identified by the model (Chang

et al., 2017). Pathways involved in environmental information processing such as the

ECM-receptor interaction pathway (R2 = 0.260) that regulates cell behaviour and cell shape,

growth, survival and differentiation (Lukashev et al., 1998), Adherens junctions (R2 = 0.266),

cell-cell adhesion complexes involves in tissue architecture maintaining under external

stress and contribute to embryogenesis and tissue homeostasis (Harris et al., 2010) and

Gap junctions (R2 = 0.259) that are clusters of intercellular channels that allow ion and small

molecules diffusion between adjacent cells (Goodenough et al., 2009) can be used to predict

chemical LC50. Cellular senescence (R2 = 0.304), the cell-cycle arrest that prevents the

proliferation of damaged cells (Huang et al., 2022), the Intestinal immune network for IgA

production (R2 = 0.250), a noninflammatory immunoglobulin antibody used in the defence

against microorganisms (Gutzeit et al., 2014), and GnRH signalling pathway (R2 = 0.274)

that regulates the production and release of the gonadotropins hormones (LH, FSH),

controlling the reproductive system, and are involved in cell proliferation inhibition (Kraus et

al., 2001). Finally, the last pathway whose activity is predictive of the LC50 of the chemical is

the Herpes simplex virus 1 infection (R2 = 0.252) which links to apoptosis and multiple

signalling components (KEGG PATHWAY: dre05168, 2021). For the chemicals within mRNA

cluster 3, only one pathway was selected, starch and sucrose metabolism (R2 = 0.237),

which play an important role in development and stress response by generating sugars for

growth and essential compounds synthesis and signals that regulate microRNA expression,

transcription factors and genes involved in defence signalling (Ruan, 2014) (Table 4.1).
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Predicting LC50 of mRNA cluster 1 chemicals

KEGG Pathways R2 P value

Lysosome 0.34 0.0005

VEGF signalling pathway 0.2 0.02

Predicting LC50 of mRNA cluster 2 chemicals

Glycerophospholipid metabolism 0.33 0.008

Steroid hormone biosynthesis 0.28 0.02

Non-homologous end-joining pathway 0.3 0.006

ECM- receptor interaction pathway 0.26 0.032

Cellular senescence 0.3 0.013

Adherens junction 0.266 0.028

Gap junction 0.26 0.032

Intestinal immune network for IgA
production

0.25 0.04

GnRH signalling pathway 0.27 0.02

Herpes simplex virus 1 infection 0.25 0.037

Predicting LC50 of mRNA cluster 3 chemicals

Starch and sucrose metabolism 0.24 0.0004
Table 4.1: A list of pathways whose activity is predictive of GUTS-LC50 of each chemical using three datasets,
chemicals form mRNA cluster 1, 2 and 3 respectively.

4.4.3 Predicting chemical concentration using pathway activity

After predicting the estimated LC50 of each chemical, the experimental concentration (log)

used in this study was predicted (124 chemicals- LC5, 15 chemicals- LC5/2, 4 chemicals-

LC5/4). As with the LC50 data, using the whole dataset no pathways were identified to be

predictive of the experimental concentration. Splitting the data into mRNA clusters increases

the predictive power of the generated models. Two pathways were identified to be predictive

of the chemical concentration when 43 chemicals were used (mRNA cluster 1), lysosome

(R2=0. 282), also identified to be predictive of LC50 and selenocompound metabolism (R2=0.

205), that are essential immunonutrients as they have anti-inflammatory and antioxidant

properties and are essential components for multiple enzymes activities (Hariharan et al.,

2020) (Table 4.2).

102

https://paperpile.com/c/8TN32q/wfvc
https://paperpile.com/c/8TN32q/HvaU
https://paperpile.com/c/8TN32q/wfvc


Predicting experimental concentration (log) of mRNA cluster 1 chemical

KEGG Pathways R2 P value

Lysosome 0.28 0.004

Selenocompound metabolism 0.2 0.037

Predicting experimental concentration (log) of mRNA cluster 2 chemicals

Amino sugar and nucleotide sugar
metabolism

0.3 0.02

Glycolysis/Gluconeogenesis 0.3 0.025

Steroid biosynthesis 0.31 0.012

Fatty acid elongation 0.3 0.017

Alpha-Linolenic acid metabolism 0.26 0.04

Various types of N-glycan biosynthesis 0.29 0.03

Pantothenate and CoA biosynthesis 0.27 0.05

Metabolism of xenobiotics by
cytochrome

0.27 0.03

Ribosome biogenesis in eukaryote 0.3 0.025

Non-homologous end-joining 0.3 0.008

Apeling signalling pathway 0.31 0.016

Cellular senescence 0.34 0.008

Vascular smooth muscle contraction 0.26 0.04

Predicting experimental concentration (log) of mRNA cluster 3 chemicals

Vascular smooth muscle contraction 0.26 0.0005
Table 4.2: A list of pathways whose activity is predictive of experimental concentration (log) of each chemical
using three datasets, chemicals form mRNA cluster 1, 2 and 3 respectively.

The models generated with chemicals from mRNA cluster 2, indicate that the activity of 13

pathways is predictive of the chemical concentration (Table 4.2). Three pathways were

selected that are associated with DNA repair, translation and post-translational

modifications, Ribosome biogenesis in eukaryotes (R2 = 0.303), non-homologous end-joining

(R2 = 0.299) and post-translational modification N-glycan biosynthesis (R2 = 0.289) (Toustou

et al., 2022). Pathways involved in carbohydrate metabolism, amino sugar and nucleotide

sugar metabolism (R2 = 0.289) and glycolysis/gluconeogenesis pathways (R2 = 0.285)

(Brosnan, 1999), lipid metabolism, including steroid biosynthesis (R2 = 0.315), fatty acid
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elongation (R2 = 0.304) and alpha-Linolenic acid metabolism (R2 = 0.257), and Pantothenate

and CoA biosynthesis (R2 = 0.267) (cofactor metabolism) (Leonardi et al., 2007) ensure a

constant supply of energy through the generation of ATP. Pathways involved in the immune

system such as the metabolism of xenobiotics by cytochrome P450 enzyme (R2 = 0.274)

through iron oxidation, including drug metabolism (Stavropoulou et al., 2018), and the Apelin

signalling pathway (R2 = 0.309) which is involved in angiogenesis, heart muscle contractility,

energy metabolism and homeostasis (Chapman et al., 2014), were identified to be predictive

of chemical concentration. Finally, cellular senescence (R2 = 0.339) and the vascular smooth

muscle contraction pathway (R2 = 0.267) which is controlled by the increase of the

intracellular calcium ions (Ca2+) and upon contraction, the vascular smooth muscle is

shortened, decreasing the diameter of blood vessels regulating the blood flow and pressure

(Ets et al., 2016), was found to some extent predict the experimental concentration.

Predictive modelling with the datasets that consist of only the chemicals from cluster 3

indicated that only one pathway can predict the chemical concentration, Vascular smooth

muscle contraction (R2 = 0.257) (Table 4.2).

4.4.4 Predicting Heart rate fold change of chemical using

pathway activity

Out of the 160 Kegg pathways, 137 were found to be predictive of the heart-rate fold change

after chemical exposure across the whole dataset. In an effort to select the most important

pathway, only the ones with R2 higher than 0.35 are described here (41 pathways). As it was

expected, the activity of pathways involved in cardiac muscle and vascular smooth muscle

contraction (R2 = 0.37-0.4) and pathways involved in carbohydrate metabolism, lipid

metabolism, purine metabolism, and amino acid metabolism, were found to be predictive of

heart-rate changes. These pathways ensure a constant supply of energy through the

generation of ATP and proper cardiovascular function. Predictive modelling identified the

importance of the immune system in cardiovascular function, where pathways involved in

recognizing and responding to pathogenic microorganisms and non-self-components were

found to some extent predictive of changes in heart rate after chemical exposure (R2 =

0.36-0.4). Two pathways were also identified by the predictive modelling function, associated

with cell death, cellular senescence (R2 = 0.42) and apoptosis (R2 = 0.41), that are activated

by cellular stress. Pathways involved in the transmission of regulatory signals between the

extracellular matrix and an interacting cell (R2 = 0.35-0.39)(Table 4.3).
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Predicting heart rate of 143 chemicals

KEGG pathways R2 range

Cardiovascular muscle contraction 0.37-0.4

Metabolism 0.35-0.43

Immune system 0.36-0.4

Cell death 0.41-0.42

Cellular community 0.35-0.4

Predicting heart rate of mRNA cluster 1 chemicals

Metabolism 0.21-0.32

Immune system 0.21-0.31

Environmental information processing 0.24-0.26

Cellular processes 0.2-0.23

Infectious disease 0.23-0.27

Predicting heart rate of mRNA cluster 2 chemicals

Metabolism 0.25-0.375

MAPK signalling 0.38

Cellular processes 0.26-0.264

Organismal system 0.3-0.34

Predicting heart rate of mRNA cluster 3 chemicals

Metabolism 0.2-0.29

Environmental information processing 0.22-0.31

Cellular processes 0.2-0.27

Organismal system 0.22-0.36

Infectious disease 0.22
Table 4.3: A list of pathways whose activity is predictive of the heart-rate fold change of each chemical using
four datasets, chemicals from the whole dataset, mRNA cluster 1, 2 and 3 respectively.

While it is possible to predict heart rate fold change across the whole dataset, for direct

comparison with the toxicity-based prediction performed earlier, clustered data were also

used in predicting heart rate fold change. The heart rate fold change of the chemicals from

mRNA cluster 1, could be predicted by the activity of 20 pathways (Table 4.3). Ten of the
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pathways selected are associated with metabolism, lipid and Amino acid metabolism, glycan

biosynthesis and metabolism, the metabolism of cofactors and vitamins (R2 = 0.21-0.32) and

three pathways involved in the immune system (R2 =0.21-0.31). Two of the pathways were

related to environmental information processing, cytokine-cytokine receptor interaction, and

cell adhesion molecules (R2 =0.24-0.26). Three of the pathways are involved in cellular

processes, autophagy, necroptosis and regulation of actin cytoskeleton (R2 =0.2-0.23).

Finally, the activities of pathways associated with viral and bacterial infectious diseases were

also able to predict heart-rate fold change (R2 =0.23-0.27).

The heart-rate fold change of the chemical form cluster 2, could be predicted by 18

pathways (Table 4.3). 13 of those pathways are associated with lipid, nucleotide, amino acid,

cofactors and vitamin metabolism, and glycan biosynthesis and metabolism (R2 =

0.25-0.375). Environmental information processing (MAPK pathway) (R2 = 0.38), p53

signalling (R2 = 0.26), regulation of the actin cytoskeleton (R2 = 0.26), the intestinal immune

network for IgA production (R2 = 0.3) and the adipocytokine signalling pathway (R2 = 0.34),

were selected after predictive modelling.

The mRNA cluster 3 which consists of 66 chemicals, could be predicted by 32 pathways

(Table 4.3). 15 pathways were associated with carbohydrate, energy, lipid, nucleotide and

amino acid metabolism and glycan biosynthesis and metabolism (R2 = 0.20-0.29). Five

pathways are associated with environmental information processing, signal transduction and

signalling molecules and interaction (R2 = 0.22-0.31). Seven pathways were associated with

cellular processes, transport and catabolism, cell growth and death, and cellular community-

eukaryotes (R2 = 0.20-0.27). Five pathways were associated with organismal systems, the

immune system, endocrine system and circulatory system (R2 = 0.21-0.36). Finally, the

salmonella infection pathway activity was also able to some extent predict heart-rate fold

change (R2 = 0.22).

4.4.5 Shortest distance between pathways

After identifying the pathways that are associated with the chemical LC50 (calculated by

GUTS), experimental concentration and heart-rate fold change, the distance between the

pathways was investigated. KEGG pathways represent a molecular system, where all the

pathways are connected with each other within a larger metabolism-inspired network. First,

the shortest paths between all pathways (the path that connects the pathways in question

and consists of the least number of pathways) used in this study were identified. This

showed that the median distance between any two pathways is four, highlighting that
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although biological systems are closely related to each other, many smaller clusters exist

that drive the response (Figure 4.3).

The pathways associated with LC50 or chemical concentration could be considered to be

closer to the potential MIE, thus the distance between those pathways from those that are

associated with an adverse outcome (heart rate fold change) highlights the distance the

signal must travel to achieve its effect. As it is expected the average distance between LC50

or chemical concentration (MIE) and heart rate (AO), was smaller than the average distance

observed between the whole dataset, where the median is reduced to 2, suggesting that

only 2 connections were necessary to direct the signal from MIE to AO (Figure 4.3).

Figure 4.3: The distribution of the shortest distance between all the pathways in the dataset (grey) and the
distribution of the shortest path between the pathways that can predict chemical concentration (LC50 or
experimental concentration) and heart-rate fold change (orange).

To explore how the pathways that are found to be predictive of GUTS calculated LC50 and

the chemical concentration used in this study, are connected, the shortest distance between

them is also calculated. Figure 4.4 shows clearly that the pathways that are found close to

the MIE (pathways predictive of chemical LC50 and the concentration of the chemical) share

a significant number of genes as the pathways are directly connected (1 step) or there is

only 1 pathway in between (2 steps). This highlights that although this data is based on a

highly heterogeneous set of compounds the effect or the MIE that drive the response seem

limited to a few higher-order biological functions. This is in line with the concept that

pathways close to extracellular regions are more likely to contain MIEs than any other

available pathway, such as various signalling pathways, Including the VEGF signalling

pathway, apelin signalling pathway, extracellular matrix receptor interaction pathways and

cellular community.
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Figure 4.4: The distribution of the shortest path between pathways that can predict Guts- LC50 (grey) and
chemical concentration (orange).

4.4.6 Pathway network

To identify how the pathways found to be predictive of LC50, experimental concentration,

and heart rate fold change interact with each other, a network was developed that highlights

the shortest distances identified in the previous step. Cluster-specific networks were

developed to highlight the potentially different mechanisms represented by each.

Cluster 1 chemicals reveal the importance of lysosome activity in predicting LC50 and

chemical concentration. Downstream of the lysosome pathway, eight pathways were

identified, whose activity was predictive of change in heart rate. Four of these were linked

directly to Lysosome while the other four used a single proxy pathway. These pathways

represented lipid metabolism, biosynthesis of factors, and signalling pathways. Additionally,

the approach identified salmonella infection to be predictive of heart rate. This pathway

contains several of the other pathways identified to be directly associated with the lysosome

pathway such as the NOD-like receptor signalling pathway. On the other hand, both VEGF

signalling pathway activity that has been associated with LC50 and selenocompound

metabolism pathway activity associated with chemical concentration were directly linked to

metabolic pathways activity predictive of heart rate changes in zebrafish embryos. The
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metabolic pathways are further associated with amino acid metabolism, cell death, signalling

pathways and immune system activation (Herpes simplex virus 1 infection) (Figure 4.5).

Figure 4.5: Putative AOP for cluster 1 chemicals. Pathway network constructed using cluster 1 chemicals,
illustrating how the pathways whose activity can be used to predict LC50 (green) and experimental
concentration (red) are linked to pathways that can be used to predict heart-rate fold change (purple), using the
shortest distance. A) How pathways predictive of heart rate fold change are connected to the Lysosome
pathway and B) to the VEGF signalling pathway and selenocompound metabolism.

From cluster 2 chemicals, five pathways were found to be predictive of the chemical LC50,

steroid biosynthesis, cellular senescence, glycerophospholipid metabolism, ECM-receptor

interaction and intestinal immune network for IgA production (Figure 4.6). The steroid

biosynthesis pathway is not directly linked to pathways predictive of heart-rate effect but is

associated with amino acid and vitamin metabolism, through lipid metabolism and cofactors
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biosynthesis. The cellular senescence pathway is directly linked to the nicotinamide vitamin

metabolism pathway, which the activity was found to be predictive of zebrafish heart rate. In

addition, through metabolic pathways, cellular senescence pathway activity was found to be

associated with glycan biosynthesis, amino acid and vitamin B6 metabolism, a pathway

predictive of cardiotoxicity. Alteration in glycerophospholipid metabolism pathway activity

was found to be directly linked to purine metabolism. Furthermore, four more pathways that

have been predictive of heart rate, are associated with lipid metabolism and amino acid

biosynthesis, were found downstream of glycerophospholipid metabolism but with one to

three pathways in between. The ECM-receptor interaction pathway is linked downstream to

three pathways, related to the immune system, cell death and endocrine system, where their

activity is predictive of heart rate. In addition, the production of IgA is also directly linked to

the MAPK signalling pathway and through calcium signalling, to arginine biosynthesis

(Figure 4.6). The activity of 11 pathways was found to be predictive of chemical

concentration and 18 with heart rate fold change. Seven out of the 11 pathways were directly

linked to heart-rate-related pathways, and the rest have a single pathway in between (Figure

4.6). Comparing the pathway results from cluster 2 analysis, cellular senesce pathway

activity was predictive of both LC50 and chemical concentration. At the same time, the IgA

production pathway active was associated with LC50 and heart rate, and fatty acid

elongation with chemical concentration and heart rate.
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Figure 4.6: Pathway network constructed using cluster 2 chemicals, illustrating how the pathways whose
activity can be used to predict LC50 (green) or chemical concentration (red) are linked to pathways that can be
used to predict heart-rate fold change (purple) using the shortest distance. A) How pathways predictive of heart
rate fold change are connected to the steroid hormone biosynthesis and cellular senescence pathways (green)
and B) to glycerophospholipid metabolism, ECM-receptor interaction and the intestinal immune network for IgA
production pathways (green). C) How pathways predictive of heart rate fold change are connected to
glycolysis/gluconeogenesis, steroid biosynthesis, amino sugar and nucleotide sugar metabolism, pantothenate
and CoA biosynthesis, metabolism of xenobiotics by cytochrome P450, and ribosome biogenesis in eukaryotes
pathways (red), D) alpha-linolenic acid metabolism, fatty acid elongation pathways (red) and E) cellular
senescence, vascular smooth muscle concentration and apelin signalling pathways (red).
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Finally, looking through the pathway results from cluster 3 chemicals, only one pathway was

identified to be predictive of LC50, starch and sucrose metabolism, which is linked to several

pathways associated with heart rate changes through the cofactors biosynthesis pathway

(Figure 4.7). The cofactors biosynthesis pathway is linked to 16 pathways related to heart

rate changes, either directly (citrate cycle), or with one to three pathways in between, such

as energy metabolism, cell death, signal transduction, cellular community and immune

response. Lysosomes activity, on the other hand, is linked to 15 pathways that have been

associated with heart rate, either directly (nucleotide and carbohydrate metabolism,

salmonella infection – cell death, immune system, signalling pathway), or with one to three

pathways in between, such as vascular smooth muscle contraction and endocrine system

pathways. When looking into the pathways that were predictive of chemical concentration, it

can be seen that only one was selected. It can also be used to predict zebrafish heart rate

fold change and vascular smooth muscle contraction pathway (Figure 4.7). This pathway is

directly linked downward with the adipocytokine signalling pathway, predictive of heart rate,

which in turn is directly or indirectly (one to three pathways in between) associated with 23

pathways whose activity was found to be predictive of heart rate (cell death, metabolic

pathways, energy metabolism).
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Figure 4.7: Pathway network constructed using cluster 3 chemicals, illustrating how the pathways whose
activity can be used to predict LC50 (green) or chemical concentration (red) are linked to pathways that can be
used to predict heart-rate fold change (purple) using the shortest distance. A and B) How pathways predictive of
heart rate fold change are connected to starch and sucrose metabolism pathway (green) through the
biosynthesis of cofactors pathway and C and D) how pathways predictive of heart rate fold change are
connected to starch and sucrose metabolism pathway (green) through the lysosome pathway. E and F) How
pathways predictive of heart rate fold change are connected to vascular smooth muscle contraction pathway
(red) through the adipocytokine signalling pathway and G) how pathways predictive of heart rate fold change
are connected to vascular smooth muscle contraction pathway (red) through endocytosis pathway and herpes
simplex virus 1 infection pathway.

4.5 Discussion

4.5.1 Pathway activity for predicting heart-rate fold change

using the whole dataset and mRNA clustering

The aim of this study was to identify the link between pathway activity and heart-rate fold

change, experimental chemical concentration and chemical LC50. When the whole dataset

was used, out of the 160 KEGG pathways, 137 pathway activities were identified to be

predictive of heart-rate changes in zebrafish embryos showing the wide spectrum of

pathways that are involved in heart development and function, and the high sensitivity of
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cardiogenesis processes. This also highlights the diverse nature of the chemicals used in

this study, as chemicals can cause cardiotoxicity through multiple mechanisms. The

pathways identified are involved in energy production and cardiac muscle contraction,

nucleic acid and protein integrity, and environmental information processing. Reducing the

dimensionality of the dataset by clustering chemicals based on gene expression profiles,

resulted in 20 pathways being selected to be predictive of the effect chemicals from cluster 1

have on zebrafish heart rate, 18 pathways for cluster 2 chemicals, and 32 pathways for

cluster 3 chemicals. Clustering based on gene expression, chemicals are grouped based on

their effect on the molecular level, thus reducing the diversity among the gene expression

profiles.

Pathways that are related to cardiac muscle contraction and blood flow, including the cardiac

muscle contraction pathway, vascular smooth muscle contraction pathway and adrenergic

signalling in cardiomyocytes have been predictive of the effect chemicals have on zebrafish

heart rate. Most of the pathways selected were related to energy production. Heart muscles

have a constant need for energy, thus production and turnover of ATP are essential for

cardiac contractility. ATP is mainly generated through fatty acid oxidation and glucose

metabolism (Goldberg et al., 2012; Tran et al., 2019). Various pathways relating to DNA,

RNA and protein integrity, including nucleotide metabolism, replication and repair, folding,

sorting and degradation, have been selected showing the importance of DNA-RNA synthesis

and repair in proper embryonic development, through cell growth and repair (Diehl et

al.,2021). Protein function depends on the proper three-dimensional structures, the ability of

the protein to reach the area of action and in case of an error the degradation of such

proteins, to avoid their accumulation. Amino acid metabolism is critical in nutrient

metabolism, protein synthesis and immune responses. For example, arginine is involved in

nutrient metabolism, stimulating insulin release, is involved in nonspecific immune response,

regulates energy homeostasis (AMPK), protein synthesis (TOR signalling) and regulates

endocrine and metabolic systems (Wang et al., 2021). Branched-chain amino acids are also

involved in mTOR signalling, have a stimulatory effect on insulin secretion and have an

inhibitory effect on muscle proteolysis (Holeček, 2018). Aromatic amino acids are broken

down or converted into neurotransmitters (Holeček, 2018; Parthasarathy et al., 2018).

Cardiac development and function also rely on signal transductions, signalling molecules

and interactions. Signalling pathways such as MAPK are involved in proliferation,

differentiation, metabolism, survival, and apoptosis. ErbB is a tyrosine kinase receptor that

binds to extracellular growth factors such as neuregulin-1 (Nrg-1) and plays an important

role in cardiovascular development by regulating tissue organisation during development

and maintaining cardiac function. Dysregulation of the calcium signalling pathway has been
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involved in cardiotoxicity since it is responsible for the excitation-contraction coupling of the

heart (Salgado-Almario et al., 2020). MTOR signalling pathway regulates multiple biological

properties, including lipid metabolism, autophagy, protein synthesis, ribosome biogenesis

and proteostasis in cardiomyocytes (Bu et al., 2021). The extracellular matrix (EMC)

provides structural support and plays a crucial role in cardiac homeostasis by force

transmission and transducing key signals to cardiomyocytes, vascular cells, and interstitial

cells. Changes in the biochemistry of EMC have been associated with the expansion of the

cardiac interstitium (Frangogiannis, 2019). WNT and Notch signalling pathways control

cardiac developmental asymmetry and regulate blood vessel stability in zebrafish

(Blankesteijn, 2020).

In addition, the endocrine system is responsible for hormonal signalling pathways to control

and coordinate metabolism, energy release, reproduction growth and development. Among

the chemicals selected for this study, some are characterised as endocrine disruptors that

have been associated with cardiovascular health by hormone hype- or hypofunction.

Endocrine disruptors cause insulin production and function defects and have been linked to

type-2 diabetes, carbohydrate, and lipid metabolic disorders (Toyoshima et al., 2008; Kirkley

et al., 2014). The PPAR signalling pathway is important for heart function since it is involved

in lipid metabolism and modulates energy production by the breakdown of lipids (Den

Broeder et al., 2015), and gonadotropin-releasing hormone (GnRH) for the regulation of the

reproductive axis and neuron migration (Onuma et al., 2011). In addition, the adipocytokine

signalling pathway regulates energy balance and participates in inflammation, coagulation,

and fibrinolysis.

Reducing the diversity of the dataset using mRNA clustering, the number of pathways that

can be used to predict the effect a chemical has on zebrafish heart rate was reduced. This

decrease in the number of pathways selected was expected since mRNA clustering groups

chemicals based on their molecular effect, thus only chemicals with similar gene count

profiles were used, reducing the spectrum of the effect they have on zebrafish. Some

pathways were common among all three clusters, such as lipids, amino acids and nucleotide

metabolism, metabolism of cofactors and vitamins, cell death, signalling and energy

production. Regulation of the actin cytoskeleton is important for maintaining the cell structure

and shape and is involved in cell migration, polarity, intracellular or extracellular trafficking,

cell-cell interaction, and cell division (Balta et al., 2020). Autophagy and necroptosis are

forms of cell death in drug-induced cardiotoxicity. Autophagy maintains intracellular

metabolic homeostasis by removing unwanted or damaged cellular components, and

necroptosis cell death occurs after exposure to extreme physical or chemical insults (Ma et

al., 2020).
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The chemicals from (hard) mRNA cluster 1 (chapter 2) apart from the pathways described

above, cell adhesion molecules pathway is also associated with heart-rate fold changes. Cell

adhesion molecules are proteins on the cell surface and are involved in various biological

processes such as embryogenesis and the development of neuronal tissues. Using the

mRNA cluster 2 chemicals the adipocytokine signalling pathway, responsible for leptin

production, regulation of energy intake and metabolic rate, and adiponectin, involved in

skeletal muscle fatty acid oxidation and glucose uptake, was also predictive of heart-rate fold

change after exposure. Finally for the chemicals from mRNA cluster 3, the activity of

pathways selected after predictive modelling were related to vascular smooth muscle

contraction, cell adhesion, and the control of the cell cycle.

4.5.2 Pathway activity for predictive toxicity using the whole

dataset and mRNA clustering

On the other hand, no KEGG pathways were found to be predictive of the experimental

concentration or the LC50 of the chemical, showing the difficulty of predicting toxicity from

highly diverse datasets. The mRNA (hard) clustering was applied from chapter 2 in an effort

to reduce the diversity of the dataset. When only chemicals from mRNA cluster 1 were used,

one pathway was identified to be predictive of both toxicity phenotypes (LC50/ chemical

concentration), lysosome activity. On the other hand, selenocompound metabolism was only

identified to be predictive of the experimental concentration, and VEGF signalling for LC50

predictions. Lysosomal destabilisation can be used as an indicator of chemical stress since

organic and inorganic chemicals tend to accumulate in those organelles and damage the

lysosomes (Hwang et al., 2002). Lysosome cell organelles contain digestive enzymes that

break down excess or worn-out cell parts and macromolecules and promote cell death by

regulating apoptosis in case of cell damage (KEGG Database). Chemical toxicity has been

linked to oxidative stress by free radicals that can cause lipid peroxidation, disruption of cell

membrane and nucleic acid oxidation followed by cell damage. Antioxidant enzymes such as

selenocompounds, deactivate free radicals by reducing their energy, increasing their stability

to minimise cellular damage (Amjad et al., 2020). The VEGF signalling pathway in zebrafish

is involved in the formation and growth of blood vessels, by regulating gene expression, and

vascular permeability and promoting cell migration, proliferation, and survival (Bussmann et

al., 2008).

The LC50 of the chemicals from mRNA cluster 2, was predicted by 10 pathways. Some of

the pathways found to be predictive of chemicals LC50 were described earlier, lipid

metabolism, cell-cell interactions and signalling including extracellular matrix interactions,
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GnRH signalling pathway. In addition, pathways that are involved in steroid biosynthesis,

DNA repair and cellular senescence were identified. Environmental chemicals are found to

disrupt the endocrine system of zebrafish. Steroid hormones play a key role in sex

determination, reproduction, growth, and development alterations. Disruption of cortisol

production has been linked to growth impairment, pericardial oedema, vascular system

defects and altered somitogenesis, in zebrafish embryos (Tokarz et al., 2013).

Non-homologous end-joining is responsible for double-strand breaks in DNA repair. Double

strand breaks are introduced either by endogenous sources, such as reactive oxygen

species and replication errors, or exogenous sources, such as toxic chemicals. When those

breaks are not repaired can lead to cellular senescence (Davis et al., 2013). The 13

pathways selected to be associated with the experimental chemical concentration are

involved in lipid metabolism, carbohydrate metabolism, ATP production, vascular smooth

muscle contraction, CoA biosynthesis, DNA repair and ribosomes biogenesis, cellular

senescence, steroid biosynthesis, biodegradation of chemicals foreign to the animal, such as

drugs and pesticides. The activity of the apelin signalling pathway, which plays an important

role in angiogenesis, cardiovascular function, cell proliferation and energy metabolism

regulation is also altered under toxic conditions (Helker et al., 2020).

Finally, only one pathway activity was predictive of chemical LC50, starch and sucrose

metabolism, which is involved in development and stress response by providing sugars

necessary for growth and the synthesis of important compounds such as proteins, used as

signals regulating the expression of microRNA and transcription factors among others

(Ruan, 2014). One pathway was also selected to be predictive of the experimental

concentration, the vascular smooth muscle contraction.

4.5.3 Pathway networks

The pathways selected by the various models in this study were turned into networks

connecting the pathways related to toxicity (chemical LC50, experimental concentration) with

the pathways associated with the chemical effect on heart rate. The results show that the

distance between toxicity-related pathways and heart rate-related pathways was shorter

compared to the rest of the pathways, indicating that those phenotypes are closely related.

In addition, the results suggest that pathways found to be associated with LC50 and

chemical concentration are found closer to an MIE (receptor binding, cellular membrane

changes in fluidity and transport), and are closely related to pathways associated with an

adverse outcome such as changes in heart rate.
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4.5.4 Conclusion

Pathway analysis and more specifically the use of the KEGG pathway database allows the

identification of specific pathways associated with chemical-induced toxicity instead of a set

of genes, which provide information related to the underlying biological mechanism involved

in chemical-induced toxicity. As it can be seen, pathways identified in this study to be

predictive of chemical LC50 or chemical exposure concentration can be close to or represent

a potential MIE (e.g. receptor binding), and the pathways found to be predictive of heart rate

fold change can represent an AO. Shared genes between the pathways can be used to

generate pathway networks, linking pathways based on shared genes, which allows for the

Identification of the shortest path, i.e. the path with the least number of pathways that

connects two pathways (e.g. MIE to AO). This can potentially assist in generating

cardiotoxicity AOPs, where a pathway identified to be predictive of chemical toxicity (LC50 or

experimental concentration) represents an MIE, a pathway identified to be predictive of heart

rate fold change represents an AO and all the pathways in between (identified through the

shortest path) represent the key events. The results suggest that the use of large-scale

genomics data and pathway analysis can be used in identifying new key events or potential

AOPs and assist in the generation of AOPs networks for chemical risk assessment.
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Chapter 5

General discussion

5.1 AOP framework can assist risk assessment

Exposure to environmental toxins during embryonic development can be dangerous. Cardiac

development is a highly sensitive process and is regulated by molecular cellular and

environmental factors, thus exposure to toxic chemicals may lead to cardiotoxicity, including

changes in heart rate, and damage to the myocardium (Sarmah et al., 2016). Risk

assessment is used to evaluate the harmful effect chemicals may have on an organism, by

hazard identification (whether a chemical is harmful (e.g. MoA)), dose-response assessment

(mathematical relationship between exposure and toxic effect), exposure assessment

(frequency, duration and levels of chemical exposure required for an adverse outcome), and

risk characterization (define how the chemical should be used by combining all the

information collected) (Kang et al., 2018). Mathematical and statistical models (QSAR) have

been introduced in chemical risk assessment, identifying biochemical and physiological

factors identified through in vivo and in vitro experiments such as chemical absorption,

distribution, metabolism, and excretion (Zvinavashe et al., 2008).

Zebrafish embryos have been widely used in risk assessment and cardiotoxicity evaluation,

due to the high conservation of cardiovascular physiology and electrical properties between

vertebrates. In addition, zebrafish heart rates are similar to humans (Zhang et al., 2011;

Chen, 2013). Various toxins, including acetylcholinesterase inhibitors, organic pollutants, and

β-adrenergic receptors, reduce heart rate and cause cardiac oedema in zebrafish embryos,

through multiple mechanisms, including oxidative stress, iron overload, and DNA and

mitochondrial damage (Lymperopoulos et al., 2013; Y. Zhang et al., 2013; Watson et al.,

2014; Hoeger et al., 2020). Such chemicals, including terfenadine, tacrine, chlorpromazine

and prochloraz, are highly toxic and exposure may lead to bradycardia even at relatively low

concentrations.

The AOP concept organizes the existing knowledge related to the various biological events

that lead to an adverse effect, connecting an MIE and an AO through the identification of KE

that occur at a biological level. AOPs have been used in risk assessment for predicting an

AO caused due to chemical exposure, reducing animal testing, experimental cost, and time

(Ankley et al., 2010).
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Advances in ‘omics technologies and system-level data analysis facilitate the identification of

molecular responses (MIE, KEs) associated with chemical exposure, through gene and

pathway analysis, and provide more information about the molecular toxicity mechanisms

and the molecular effects (Antczak et al., 2015; Brockmeier et al., 2017). Pathway analysis

and the identification of pathways whose activity is altered due to exposure, uncover the

mechanisms involved in chemical toxicity and can be used to describe the molecular

responses after toxic exposure. The results of this study also suggest that pathways activity

analysis can assist in generating potential AOPs by uncovering the pathways that are

involved in the response and the potential connection between them. Pathway analysis and

predictive modelling allow the identification of pathways, whose activity is altered after

chemical exposure and can be used to predict chemical toxicity (LC50/chemical

concentration). Such pathways are found to be close to or represent a potential MIE, for

example, receptor binding and extracellular matrix activity. On the other hand, alteration of

heart rate in zebrafish is an indication of the ability of a chemical to cause cardiotoxicity after

exposure, thus pathways whose activity can be used to predict heart rate fold change can be

used as potential AOs. Pathway analysis and shared genes between pathways are used to

generate pathway networks, indicating the path that a signal needs to follow in order to

generate a response. The shortest path (least number of pathways) between pathways

associated with toxicity (LC50/experimental chemical concentration) and pathways predictive

of heart-rate fold change can potentially represent an AOP, with the pathways in between

representing the KEs. Thus, utilising pathway information and predictive modelling may

assist in the generation of cardiotoxicity AOPs, reducing extensive animal experiments and

providing insight into the underlying biological mechanisms involved in the response to

exposure to toxic chemicals.

Two putative AOPs were generated and shown here, based on the data generated in this

thesis. AOP 1 was generated using the chemicals from cluster 2, and AOP 2 from cluster 3

chemicals and they were both selected based on the predictive power of the individual

models. These models are examples of the potential use of pathway analysis in generating

cardiotoxicity AOP networks using pathways predictive of chemical toxicity, related to MIE,

and pathways predictive of heart rate fold change, AO.

5.1.1 Potential cardiotoxicity AOP example 1

The first proposed cardiotoxicity AOP described in this study, provides a link between the

ECM-receptor interaction pathway, the intestinal immune network for IgA production and the

MAPK signalling pathway and is generated using the chemicals from mRNA cluster 2

(Figure 5.1). ECM-receptor interaction pathway, which is found to be predictive of toxicity

127

https://paperpile.com/c/8TN32q/Wc3T+7GC4
https://paperpile.com/c/8TN32q/HvaU
https://paperpile.com/c/8TN32q/Wc3T+7GC4
https://paperpile.com/c/8TN32q/HvaU
https://paperpile.com/c/8TN32q/Wc3T+7GC4


(chemical L50), represented in this study by 76 genes, is related to environmental

information processing. Several drugs have been found to influence ECM metabolism and

regulate ECM composition and organisation, such as cytokine inhibitors, glucocorticoids,

ACE inhibitors and calcium channel blockers (Järveläinen et al., 2009). Multiple diseases

have been associated with ECM structure alterations, disturbances in metabolism, and

dysregulation in ECM-cell signalling (Ricard-Blum et al., 2016; Sainio et al., 2020). ECM

components are involved in tissue and organ morphogenesis and the maintenance of cell

and tissue structure and function. ECM macromolecules such as collagens, provide

structural support (Gordon et al., 2010), elastin and fibrillin are responsible for tissue

elasticity (Czirok et al., 2006), proteoglycans and hyaluronan are involved in the formation of

pericellular matrix and tissue homeostasis (Knudson et al., 1991; Smith et al., 2019), and

glycoproteins such as fibronectins are important in multiple embryogenic processes (Rozario

et al., 2009), and laminins modulate cell adhesion, differentiation, and migration (Patarroyo

et al., 2002).

ECM molecules such as growth factors, cytokines, chemokines, matrix-degrading enzymes,

and their inhibitors (Sainio et al., 2020) are involved in cell signalling regulation. ECM-cell

interactions are mediated by transmembrane molecules, such as integrins (adhesion

receptors) (Kechagia et al., 2019), discoidin domain receptor (DDR) family for collagens

(Johnson et al., 1993), proteoglycans and other cell-surface- associated components,

mediate cell signalling by ECM macromolecules. These interactions control cellular activities

including adhesion, migration, differentiation, proliferation, and apoptosis.

ECM- receptor interaction pathway was found to be directly linked to the intestinal immune

network for the IgA production pathway, which is predictive of both LC50 and heart rate fold

change and consists of 32 genes. These two pathways share two genes, integrin beta and

integrin alpha 4 proteins, that are involved in cell adhesion and transmission of signals to the

cytoplasm. The intestinal immune network for the IgA production pathway consists of

multiple genes associated with cytokine-cytokine receptor interaction, growth factors and

integrins, which are important for cell signalling.

The last part of this potential AOP is the Mitogen-activated protein kinase (MAPK) signalling

pathway, predictive of heart-rate fold change, that is represented by 310 genes. The

intestinal immune network for the IgA production pathway and MAPK pathway share four

genes associated with TGF-β, which is involved in apoptosis control and angiogenesis

(Prud’homme, 2007), ADP-ribosylation factor 2b enables GTP binding and is involved in

endocytic recycling and intracellular protein transport and Mitogen-activated protein kinase
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kinase kinase 14a, a serine/theonine protein-kinase that stimulated NF-kB activity inducing

the expression of pro-inflammatory genes.

MAPKs form complex signalling networks and are activated by a variety of stimuli following a

canonical cascade activation and are involved in proliferation, differentiation, metabolism,

survival, and apoptosis (Kyriakis et al., 2001; Bogoyevitch et al., 2006; Rincón et al., 2009;

Rose et al., 2010). Extracellular signal-regulated kinases (ERK1/2, ERK5), c-Jun N-terminal

kinase (JNK) and p38 are the most popular MAPK pathways. ERK1/2 pathway is activated

by many hormones, G proteins, growth factors and insulin (Kyriakis et al., 2001; Goldsmith

et al., 2007; Katz et al., 2007; Raman et al., 2007). This pathway is involved in multiple

biological processes, including cell cycle progression, proliferation, cytokinesis, senescence,

migration, GAP junction formation, actin and microtubule networks and cell adhesion

(Ramos, 2008). JNK and p38 are stress-activated MAPKs and are activated by growth

factors, G protein-coupled receptors (Goldsmith et al., 2007; Katz et al., 2007), but also by

physiological stressors such as oxidative stress, hyperosmolarity, cellular stress osmotic

shock, infection, cytokines, DNA damage, and ER stress (Kyriakis et al., 2001; Raman et al.,

2007). They are both involved in multiple biological processes, including cell proliferation,

differentiation, apoptosis, cell survival and cytokine production (Kyriakis et al., 2001;

Bogoyevitch et al., 2006; Rincón et al., 2009; Rose et al., 2010). Finally, the ERK5/BMK

pathway is important in growth, stress signalling (Hayashi et al., 2004; Hayashi et al., 2004),

vascular formation (Hayashi et al., 2004; Hayashi et al., 2004), cell survival, differentiation,

proliferation, and growth (Nishimoto et al., 2006; Wang et al., 2006). This pathway is

activated by growth factors, such as VEGF and nerve growth factors, and stress stimuli like

oxidative stress (Hayashi et al., 2004).

Various studies on heart formation have identified multiple signalling pathways and

transcription factors associated with MAPK pathways, including Hedgehog, bone

morphogenic protein (BMP), FGF and Wnt-JKNK (Dunwoodie, 2007). FGFs (growth factors)

and their receptors are expressed throughout development in the epicardium, endocardium,

and myocardium (Sugi et al., 2003; Lavine et al., 2005). They are important in cardiogenic

induction, and morphogenesis, and are involved in various cellular processes during

development (Böttcher et al., 2005). Wnts on the other hand is involved in many

developmental processes including cell polarity (Nelson et al., 2004) and its activation

promoted cardiac cell fate induction and inhibition (Zhou et al., 2007; Cohen et al., 2008).

VEGF (growth factor) promotes cardiomyocyte differentiation through the ERK pathway

(Chen et al., 2006). All four MAPK pathways described here have been associated with

cardiovascular diseases, cancer, and diabetes (Ramos, 2008; Rose et al., 2010). Cardiac
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hypertrophy is a common response to external stressors including mechanical overload and

oxidative stress (Rose et al., 2010).

Figure 5.1: Potential AOP example 1 representation, generated from cluster 2 chemicals. An adverse outcome
pathway, starting from ECM-receptor interaction, that is downstream linked to the Intestinal immune network
for IgA production, is linked to the MAPK signalling pathway. Some of the genes and functions related to each
pathway are also provided.

5.1.2 Potential cardiotoxicity AOP example 2

The second potential cardiotoxicity AOP constructed here using chemicals from mRNA

cluster 3, highlights the link between starch and sucrose metabolism, biosynthesis of

cofactors and citrate cycle (TCA cycle) (Figure 5.2). The first pathway identified here is

starch and sucrose metabolism, which is predictive of toxicity (LC50) and consists of 36

genes. This list of genes consists mostly of enzymes that are involved in carbohydrate

metabolism and degradation, glycogen synthesis, and glycolysis. Glycolysis is the

breakdown of glucose into pyruvate that is used further down for the generation of

acetyl-CoA, an essential cofactor (Shi et al., 2015). This pathway is directly linked to the

biosynthesis of cofactors, which is predictive of heart-rate fold change and is represented in

this study by 187 genes. Starch and sucrose metabolism and biosynthesis of cofactors

pathway share two genes encoding for UDP-glucose pyrophosphorylase uridylyltransferase,

which is involved in glycogenesis and cell wall synthesis.

Cofactors generated through the biosynthesis cofactor pathway, including coenzyme A,

NAD+, TPP and FAD are used in the next step of the AOP, the citrate cycle (TCA cycle),

which has been found to be predictive of heart rate fold change in zebrafish embryos and is

represented by 35 genes. The last two pathways of this cardiotoxicity AOP share four genes.
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Two of those genes encode for transforming growth factor beta (1a, 1b), a cytokine that

controls multiple processes during development through the activation of several signalling

pathways including MAPK pathways (Chaudhury et al., 2009). The other two genes are

encoding ADP-ribosylation factor 2b, which enables GTP binding activity, and

mitogen-activated protein kinase kinase kinase 14a, which enables MAP kinase activity. TCA

cycle utilises various molecules, such as acetyl CoA, to generate GTP, ATP, NADH2 and

FADH. The reducing equivalents (NADH2 and FADH) are then required for the electron

transport chain for oxidative phosphorylation in the mitochondria to produce ATP. The heart

demands high levels of ATP to maintain myocardial contraction and ion homeostasis, thus

inadequate ATP production in myocardium caused by Krebs cycle regulation dysfunction, or

NADH supply and activity of electron transport chain alterations leads to energy deprivation

and potential apoptotic cell death (Giordano, 2005; Sheeran et al., 2006; Doenst et al.,

2013).

Figure 5.2: Potential AOP example 2 representation generated from cluster 3 chemicals. An adverse outcome
pathway, starting from starch and sucrose metabolism, that is downstream linked to the biosynthesis of
cofactors, is associated with the citrate cycle. Some of the genes and functions related to each pathway are also
provided.

5.2 Chemical classification increases prediction

ability of pathway analysis

Pathway analysis and predictive modelling of 143 chemicals, with high variability between

gene expression profiles, failed to generate a model that can be predictive of chemical

toxicity (LC50, experimental chemical concentration). On the other hand, utilising the 143
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chemicals predictive modelling identified multiple models that to some extent can be

predictive of heart rate fold changes after chemical exposure, showing that different

chemicals can potentially alter zebrafish embryo’s heart rate through multiple mechanisms

and that a large number of biological processes are involved in cardiac development and

function. However, pathway analysis indicates that cardiotoxicity (changes in zebrafish heart

rate) and chemicals toxicity (LC50 or chemical concentration) can be, to some extent,

predicted through pathway activity when the chemicals involved in predictive modelling

share similar gene profiles (mRNA clustering from chapter 2). A popular method for

predicting chemical toxicity is identifying their MoA based on structural features, such as

Verhaar classification. However, the results of this study suggest that MoA classification is

not representative of the effect chemicals have on heart rate in this study; chemicals that

significantly alter the heart rate of zebrafish embryos are grouped in all Verhaar MoA

classes.

The models generated using pathway activity (chapter 4) are relatively weak, especially after

chemical clustering. The results of this study suggest that pathway activity can potentially be

useful in predicting toxicity and heart rate fold change, and the use of more chemicals can

increase the accuracy and predictive ability of those models.

5.3 Structural characteristics associated with

chemical exposure and cardiotoxicity

The results of this study and the various structural relationship models (QSAR) published,

have identified multiple molecular descriptors that are related to chemical toxicity, including

chemical lipophilicity, molecular polarity, branching, bond nature, functional groups (amines)

and molecular weight (Mansouri et al., 2013; Ghorbanzadeh et al., 2016; Lavado et al.,

2020). Lipophilic chemicals pass through the cell membrane easily, accumulate in the

tissues and reach their target of toxicity (Verhaar et al., 1992; Vaes et al., 1998; Klüver et al.,

2019). QSAR studies have shown that the toxicity of inert chemicals can be predicted using

only lipophilicity descriptors, but the toxicity of reactive chemicals is determined by chemical

polarizability, the ability to interact with cellular molecules including nucleic acids and

proteins (Lavado et al., 2020). In addition, topological descriptors that represent the

connections between adjacent atom pairs and provide information related to branching have

been associated with developmental toxicity (Estrada, 1996; Mansouri et al., 2013).

On the other hand, only a small number of studies have been looking into molecular

descriptors associated with cardiotoxicity in zebrafish, showing that descriptors associated
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with lipophilicity and molecular weight can be used to predict ion currents changes involved

in cardiac action potential generation (Wiśniowska et al., 2015). In this study, similar

descriptors were identified to be associated with heart rate fold change after exposure.

However, in some cases, chemicals with similar structural characteristics act through

different mechanisms, where only one of them may be toxic, thus gene and pathway

analysis can be used to provide more information about the molecular mechanisms involved

in chemical toxicity or cardiotoxicity and improve the associated AOP.

5.4 Gene ontology of genes related to chemical

toxicity and cardiotoxicity

At the same time, high throughput sequencing has identified multiple genes, biological

properties and pathways related to chemical toxicity and cardiotoxicity. The expression of

multiple micro-RNA that are involved in regulating cellular functions and development

processes were identified to be associated with chemical toxicity and cardiotoxicity. Most of

the miRNAs identified in this study were both associated with increased chemical toxicity

and cardiotoxicity, miR-126a, miR-216 and miR-155, associated with vascular integrity and

development (Fish et al., 2008; Cao et al., 2016) and miR-499 that is involved in cardiac and

muscle growth (Sluijter et al., 2010; Wilson et al., 2010; Fu et al., 2011; Chistiakov et

al.,2016).

Multiple biological processes, KEGG pathways and more miRNAs have been identified to be

altered with increased chemical concentration (lower toxicity). MiR-30 regulates muscle

phenotype, by controlling the Hedgehog signalling pathway (Ketley et al., 2013) MiR-145 is

expressed in vascular smooth muscle cells and controls cell death through regulation of

apoptosis, cell proliferation, differentiation, and organ development (Yokoi et al., 2009; J. Li

et al., 2020; Zhao et al., 2020; Lin et al., 2021) and miR-1 promotes embryonic muscle gene

expression (Chen et al., 2006; Mishima et al., 2009). Finally, genes that are involved in heart

left/right asymmetry determination, neuron differentiation and development, microtubule

stability (Díaz-Martín et al., 2021), protein degradation MAPK signalling, and cellular

senescence pathways (Da Silva-Álvarez et al., 2020) were also identified to be altered

during chemical exposure. Cardiotoxicity in zebrafish was also mediated by miR- 206-3p,

involved in muscle proliferation and differentiation (Kim et al., 2006; Chen et al., 2010;

Goljanek-Whysall et al., 2011; Lin et al., 2017), miR-430 that regulates developmental

pathways for cell movement (Liu et al., 2020) and phosphorylation of AKT targets that are

involved in muscle growth development was also associated with cardiotoxicity (Brunet et

al., 1999; Manning et al., 2007).
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5.5 Predictive modelling, Genes vs Pathway

analysis

The dataset used in this study consists of highly diverse chemicals, but the experimental

heart rate fold change could be predicted using molecular responses (genes and pathway

analysis). Predictive modelling identified 80 genes related to cell communication, cardiac

jelly development (Stankunas et al., 2008; Lockhart et al., 2011; Segert et al., 2018),

signalling pathways (Olson, 2006; Chi et al., 2010), cardiomyocyte contractility, myocardium

development (Radisic et al., 2004; Auman et al., 2007; Apaydin et al., 2020), intracardiac

hemodynamic flow (Hove et al., 2003), regulation of immune response (Dong et al., 2018;

Qiu et al., 2020) and cell death (Poelmann et al., 2005; Pyati et al., 2007; Zhang et al., 2012;

Lee et al., 2014)(R2=0.68). On the other hand, pathway analysis revealed that most of the

available pathways can be used to predict heart rate fold change indicating that for proper

heart development and function, a variety of genes and mechanisms are involved from

multiple biological levels.

Clustering chemicals using mRNA profiles, reduce the diversity within the dataset, by

grouping chemicals into three clusters. Predictive modelling using gene count profiles failed

to generate accurate and reliable models for predicting heart rate in two out of the three

clusters, (mRNA cluster). However, gene data were enough to predict the heart rate effect of

chemicals from mRNA cluster 3, generating a model with 21 genes (R2=0.64) associated

with energy production by fatty acid oxidation (Waber et al., 1982; Fu et al.,2013; Park et al.,

2021), acetylcholinesterase inhibitors that are associated with bradycardia (Watson et al.,

2014; Koenig et al., 2016; Altenhofen et al., 2019) and improper muscle development

(McCollum et al., 2011), various signalling pathways (O’Shea et al., 2002; Yamashita et al.,

2002; Liu et al., 2017) and nervous system development (Fedele et al., 2020). In contrast,

predictive modelling based on indices of pathway activity identified multiple pathways able to

predict heart rate changes in all three clusters.

Generally, however, the gene-count based model across all chemicals outperformed the

pathway-based cluster models. The results suggest that cardiotoxicity is associated with a

wide spectrum of biological responses and interactions, thus reducing the dimensionality of

the data into KEGG pathways leads to some gene (information) loss that is shared across all

chemicals.
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5.6 Application of pathway analysis in risk

assessment

The large number of uncharacterised chemicals and the effort to move away from long and

costly experiments, increase the need of utilising ‘omics and in silico approaches for

chemical risk assessment. QSAR models have been widely used in risk assessment,

however as it can be seen from the results of this study structural models although predictive

of heart rate fold change, a prior classification is required reducing the applicability domain of

the model. These results show that structural information is useful, but sometimes fails to be

predictive of cardiotoxicity, since in some cases chemicals with similar structural features

might act through different mechanisms, and vice versa (Russom et al., 1997; Martin et al.,

2015; Ellison et al., 2016), or the presence of cis and trans isomers were only one of them is

toxic (Singh et al., 1988; Blisard et al., 1991).

The utilisation of ‘omics data can be used to overcome those limitations. ‘Omics data have

been used to explore the molecular level changes and underlying cell biochemistry and

physiology alterations. In this study, a small dataset was used (143 chemicals),

characterised by high variability in chemical structure and gene expression profiles after

chemical exposure, but predictive models were generated using both gene expression data

and pathway analysis. A highly accurate and reliable model for the prediction of

chemical-induced changes in zebrafish heart rate was generated using the gene expression

profiles, but the models generated for predicting heart rate fold change using pathway

activity were relatively weak, but this can be attributed to the small number of chemicals and

the high variability between the gene expression profiles which increase the complexity of

predictive modelling.

‘Omics data and pathway analysis can be used to identify potential key events and the

relationship between them, through pathway networks, and potentially assist in the

generation of AOPs. In addition, large-scale ‘omics data can be used in generating AOP

networks that consist of two or more AOPs that share one or more key events, MIE or AO

and offers a more realistic representation of the biological interaction underlying toxic

exposure. Analysis of AOP network intersections can reveal unknown or unexpected

biological connections and provide more information about the biological mechanism

underlying chemical toxicity (Knapen et al., 2018).
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Supplementary material

Chemical concentration- Genes upregulated

GO term name P-value GO term ID

Regulation of cellular metabolic process 0.02 GO:0031323

Cell projection organization 0.02 GO:0030030

Plasma membrane bounded cell projection organization 0.02 GO:0120036

Regulation of primary metabolic process 0.02 GO:0080090

Regulation of nitrogen compound metabolic process 0.02 GO:0051171

Microtubule-based transport 0.04 GO:0099111

Metencephalon development 0.04 GO:0022037

Cerebellum development 0.05 GO:0021549

Biological_process 0.05 GO:0008150

Nervous system development 0.05 GO:0007399

Purine nucleoside monophosphate metabolic process 0.05 GO:0009126

Regulation of macromolecule biosynthetic process 0.05 GO:0010556

Cell differentiation in hindbrain 0.05 GO:0021533

Purine ribonucleoside monophosphate metabolic process 0.05 GO:0009167

Cellular process 0.05 GO:0009987

Cerebellar cortex formation 0.05 GO:0021697

Cell projection assembly 0.05 GO:0030031

Developmental growth involved in morphogenesis 0.05 GO:0060560

Regulation of cellular process 0.05 GO:0050794

Regulation of nucleobase-containing compound metabolic
process

0.05 GO:0019219

Hindbrain development 0.05 GO:0030902

Regulation of cellular biosynthetic process 0.05 GO:0031326

Regulation of biosynthetic process 0.05 GO:0009889

Cellular metabolic process 0.06 GO:0044237
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Regulation of DNA-templated transcription, elongation 0.06 GO:0032784

Primary metabolic process 0.07 GO:0044238

Axis elongation 0.07 GO:0003401

Regulation of RNA metabolic process 0.07 GO:0051252

Regulation of RNA biosynthetic process 0.07 GO:2001141

Regulation of nucleic acid-templated transcription 0.07 GO:1903506

Cilium organization 0.07 GO:0044782

Regulation of transcription, DNA-templated 0.07 GO:0006355

Macromolecule biosynthetic process 0.07 GO:0009059

Biosynthetic process 0.07 GO:0009058

Microtubule-based process 0.07 GO:0007017

Organic substance biosynthetic process 0.07 GO:1901576

Neuron differentiation 0.07 GO:0030182

Nucleobase-containing compound biosynthetic process 0.07 GO:0034654

Developmental process 0.07 GO:0032502

Ribonucleoside diphosphate biosynthetic process 0.07 GO:0009188

ADP biosynthetic process 0.07 GO:0006172

Purine nucleoside diphosphate biosynthetic process 0.07 GO:0009136

Negative regulation of transcription by RNA polymerase II 0.07 GO:0000122

Ribonucleoside monophosphate metabolic process 0.07 GO:0009161

RNA biosynthetic process 0.07 GO:0032774

Neurogenesis 0.07 GO:0022008

Transcription, DNA-templated 0.07 GO:0006351

Regulation of macromolecule metabolic process 0.07 GO:0060255

Determination of bilateral symmetry 0.07 GO:0009855

Cerebellar cortex morphogenesis 0.07 GO:0021696

Heterocycle biosynthetic process 0.07 GO:0018130

Cerebellar cortex development 0.07 GO:0021695

Nucleic acid-templated transcription 0.07 GO:0097659
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Specification of symmetry 0.07 GO:0009799

Generation of neurons 0.07 GO:0048699

Purine ribonucleoside diphosphate biosynthetic process 0.07 GO:0009180

Aromatic compound biosynthetic process 0.07 GO:0019438

Transport along microtubule 0.07 GO:0010970

Positive regulation of nitrogen compound metabolic process 0.07 GO:0051173

Selective autophagy 0.07 GO:0061912

Cellular biosynthetic process 0.07 GO:0044249

Cellular nitrogen compound biosynthetic process 0.07 GO:0044271

Determination of heart left/right asymmetry 0.08 GO:0061371

Anatomical structure development 0.08 GO:0048856

Organic cyclic compound biosynthetic process 0.08 GO:1901362

Regulation of cyclin-dependent protein serine/threonine
kinase activity

0.08 GO:0000079

Protein deubiquitination 0.08 GO:0016579

Convergent extension involved in axis elongation 0.08 GO:0060028

Regulation of cyclin-dependent protein kinase activity 0.08 GO:1904029

Engulfment of apoptotic cell 0.08 GO:0043652

Intraciliary transport 0.08 GO:0042073

Microtubule-based movement 0.08 GO:0007018

Regulation of metabolic process 0.08 GO:0019222

Negative regulation of macromolecule biosynthetic process 0.08 GO:0010558

Positive regulation of macromolecule metabolic process 0.08 GO:0010604

Cell development 0.08 GO:0048468

Brain development 0.09 GO:0007420

Nucleoside diphosphate biosynthetic process 0.09 GO:0009133

Determination of left/right symmetry 0.09 GO:0007368

Regulation of protein kinase A signaling 0.09 GO:0010738

Cerebellar granular layer development 0.09 GO:0021681
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Cerebellar granular layer morphogenesis 0.09 GO:0021683

Cerebellar granular layer formation 0.09 GO:0021684

Cerebellar granule cell differentiation 0.09 GO:0021707

Amino sugar metabolic process 0.09 GO:0006040

Plasma membrane bounded cell projection assembly 0.09 GO:0120031

Positive regulation of cell growth 0.09 GO:0030307

Neuron projection development 0.09 GO:0031175

Positive regulation of nucleobase-containing compound
metabolic process

0.09 GO:0045935

Regulation of microtubule polymerization or depolymerization 0.09 GO:0031110

Cytoskeleton-dependent intracellular transport 0.09 GO:0030705

Positive regulation of cellular process 0.09 GO:0048522

Positive regulation of cellular metabolic process 0.09 GO:0031325

Neuron development 0.09 GO:0048666

Cellular catabolic process 0.09 GO:0044248

Cerebellum morphogenesis 0.09 GO:0021587

Negative regulation of cellular biosynthetic process 0.09 GO:0031327

Multicellular organism development 0.09 GO:0007275

Negative regulation of biosynthetic process 0.09 GO:0009890

Cilium assembly 0.09 GO:0060271

Head development 0.09 GO:0060322

Catabolic process 0.09 GO:0009056

Ubiquitin-dependent protein catabolic process 0.09 GO:0006511
Table S.1: Functional enrichment analysis of the genes selected by differential expression analysis (SAM), to be
upregulated when chemical concentration is increased.
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Heart-rate fold changes -Genes upregulated

GO term name P-value GO term ID

Developmental process 9.16E-12 GO:0008150

Anatomical structure development 3.55E-11 GO:0048856

Multicellular organism development 1.67E-10 GO:0007275

System development 1.29E-09 GO:0048731

Animal organ development 1.73E-08 GO:0048513

Immune System 2.05E-08 REAC:R-DRE-168256

Signal Transduction 2.07E-07 REAC:R-DRE-162582

Cell differentiation 6.22E-06 GO:0030154

Cellular developmental process 6.61E-06 GO:0048869

Cation transport 2.27E-05 GO:0006812

Anatomical structure morphogenesis 4.35E-05 GO:0009653

Nervous system development 6.97E-05 GO:0007399

Transport of small molecules 7.35E-05 REAC:R-DRE-382551

Metal ion transport 8.19E-05 GO:0030001

Extracellular matrix organization 8.78E-05 REAC:R-DRE-1474244

Cell development 0.0001 GO:0048468

PPAR signaling pathway 0.0001 KEGG:03320

Inorganic ion transmembrane transport 0.0001 GO:0098660

Ion transport 0.0002 GO:0006811

Regulation of RNA metabolic process 0.0002 GO:0051252

Inorganic cation transmembrane transport 0.0002 GO:0098662

Regulation of developmental process 0.0004 GO:0050793

Cell projection organization 0.0004 GO:0030030

Wnt signaling pathway 0.0006 KEGG:04310

FoxO signaling pathway 0.0006 KEGG:04068

Cell adhesion molecules 0.0006 KEGG:04514

Localization 0.0010 GO:0051179
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Plasma membrane bounded cell projection
organization

0.0012 GO:0120036

Neurogenesis 0.0014 GO:0022008

Ion transmembrane transport 0.0014 GO:0034220

RNA biosynthetic process 0.0014 GO:0032774

Regulation of nucleic acid-templated transcription 0.0017 GO:1903506

Regulation of DNA-templated transcription 0.0017 GO:0006355

Regulation of RNA biosynthetic process 0.0017 GO:2001141

DNA-templated transcription 0.0019 GO:0006351

Nucleic acid-templated transcription 0.0019 GO:0097659

Inorganic ion homeostasis 0.0025 GO:0098771

mTOR signaling pathway 0.0025 KEGG:04150

Fatty acid metabolism 0.0025 KEGG:01212

Cellular ion homeostasis 0.0026 GO:0006873

Ion homeostasis 0.0036 GO:0050801

Homeostatic process 0.0040 GO:0042592

Transport 0.004 GO:0006810

Cation transmembrane transport 0.004 GO:0098655

Generation of neurons 0.004 GO:0048699

Establishment of localization 0.004 GO:0051234

Cellular cation homeostasis 0.005 GO:0030003

Adaptive Immune System 0.005 REAC:R-DRE-1280218

Circulatory system development 0.005 GO:0072359

Phosphatidylinositol signaling system 0.006 KEGG:04070

Calcium signaling pathway 0.006 KEGG:04020

Insulin signaling pathway 0.006 KEGG:04910

Regulation of actin cytoskeleton 0.006 KEGG:04810

Purine metabolism 0.006 KEGG:00230

Hindbrain development 0.006 GO:0030902

177



Cation homeostasis 0.006 GO:0055080

RNA Polymerase II Transcription 0.007 REAC:R-DRE-73857

Post-translational protein modification 0.007 REAC:R-DRE-597592

Potassium ion transmembrane transport 0.007 GO:0071805

Innate Immune System 0.008 REAC:R-DRE-168249

Protein modification process 0.009 GO:0036211

Transmembrane transport 0.009 GO:0055085

Regulation of multicellular organismal development 0.009 GO:2000026

SLC-mediated transmembrane transport 0.009 REAC:R-DRE-425407

Membrane Trafficking 0.01 REAC:R-DRE-199991

Tissue development 0.01 GO:0009888

Neuron differentiation 0.01 GO:0030182

Adipocytokine signaling pathway 0.011 KEGG:04920

Adherens junction 0.011 KEGG:04520

ECM-receptor interaction 0.011 KEGG:04512

Cell morphogenesis 0.011 GO:0000902

Gene expression (Transcription) 0.011 REAC:R-DRE-74160

Chemical homeostasis 0.015 GO:0048878

Macromolecule modification 0.015 GO:0043412

Cytokine Signaling in Immune system 0.015 REAC:R-DRE-1280215

Regulation of gene expression 0.016 GO:0010468

Embryo development 0.016 GO:0009790

Neuron development 0.018 GO:0048666

Stem cell differentiation 0.025 GO:0048863

Cellular chemical homeostasis 0.025 GO:0055082

Cell cycle 0.026 KEGG:04110

Signaling by Receptor Tyrosine Kinases 0.027 REAC:R-DRE-9006934

Somite development 0.027 GO:0061053

Apelin signaling pathway 0.029 KEGG:04371
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MAPK signaling pathway 0.03 KEGG:04010

Brain development 0.036 GO:0007420

Cardiac conduction 0.038 REAC:R-DRE-5576891

Cellular component morphogenesis 0.038 GO:0032989

Class I MHC mediated antigen processing &
presentation

0.038 REAC:R-DRE-983169

Muscle contraction 0.039 REAC:R-DRE-397014

Degradation of the extracellular matrix 0.039 REAC:R-DRE-1474228

Hematopoietic stem cell differentiation 0.039 GO:0060218

Transcription by RNA polymerase II 0.039 GO:0006366

Negative regulation of RNA metabolic process 0.039 GO:0051253

Animal organ morphogenesis 0.04 GO:0009887

Cell morphogenesis involved in differentiation 0.042 GO:0000904

Hematopoietic progenitor cell differentiation 0.042 GO:0002244

Head development 0.043 GO:0060322

Notch signaling pathway 0.044 KEGG:04330

Homologous recombination 0.044 KEGG:03440

Base excision repair 0.044 KEGG:03410

Heart process 0.045 GO:0003015

Cell adhesion 0.045 GO:0007155

Neuron projection development 0.046 GO:0031175

Sprouting angiogenesis 0.046 GO:0002040

Negative regulation of DNA-templated transcription 0.046 GO:0045892

Negative regulation of RNA biosynthetic process 0.046 GO:1902679

Negative regulation of nucleic acid-templated
Transcription

0.046 GO:1903507

Metal ion homeostasis 0.046 GO:0055065

Platelet activation, signaling and aggregation 0.048 REAC:R-DRE-76002

RNA degradation 0.049 KEGG:03018

Ion channel transport 0.05 REAC:R-DRE-983712
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Vesicle-mediated transport 0.05 REAC:R-DRE-5653656

Cell communication 0.051 GO:0007154

Cellular metal ion homeostasis 0.053 GO:0006875

Negative regulation of hematopoietic progenitor cell
differentiation

0.053 GO:1901533

Regulation of transcription by RNA polymerase II 0.053 GO:0006357

Neuron recognition 0.053 GO:0008038

NOD-like receptor signaling pathway 0.054 KEGG:04621

Protein processing in endoplasmic reticulum 0.054 KEGG:04141

Axon development 0.056 GO:0061564

Cardiac muscle contraction 0.058 KEGG:04260

Potassium ion transport 0.059 GO:0006813

Cell junction organization 0.059 GO:0034330

Cell junction organization 0.059 GO:0034330

Ferroptosis 0.061 KEGG:04216

Activation of the mRNA upon binding of the
cap-binding complex and eIFs, and subsequent
binding to 43S

0.062 REAC:R-DRE-72662

Toll-like receptor signaling pathway 0.062 KEGG:04620

Embryo development ending in birth or egg
hatching

0.062 GO:0009792

Chordate embryonic development 0.063 GO:0043009

Vasculogenesis 0.064 GO:0001570

Developmental growth involved in morphogenesis 0.064 GO:0060560

Transport to the Golgi and subsequent modification 0.064 REAC:R-DRE-948021

ER to Golgi Anterograde Transport 0.064 REAC:R-DRE-199977

Signal transduction 0.065 GO:0007165

Axonogenesis 0.065 GO:0007409

Signaling by Hedgehog 0.065 REAC:R-DRE-5358351

Mesenchymal cell differentiation 0.066 GO:0048762

Cellular homeostasis 0.066 GO:0019725
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Voltage gated Potassium channels 0.066 REAC:R-DRE-1296072

ErbB signaling pathway 0.066 KEGG:04012

Myeloid cell homeostasis 0.066 GO:0002262

Canonical Wnt signaling pathway 0.067 GO:0060070

T cell proliferation 0.067 GO:0042098

Cellular monovalent inorganic cation homeostasis 0.069 GO:0030004

Neuronal System 0.069 REAC:R-DRE-112316

C-type lectin receptor signaling pathway 0.07 KEGG:04625

Regulation of T cell activation 0.073 GO:0042129

Regulation of ion transmembrane transport 0.077 GO:0034765

TGF-beta signaling pathway 0.077 GO:0019219

Mesenchyme development 0.08 GO:0060485

Regulation of nervous system development 0.08 GO:0051960

Regulation of ion transport 0.08 GO:0043269

Heart contraction 0.08 GO:0060047

Immune system development 0.08 GO:0002520

Cell-cell signaling by wnt 0.08 GO:0198738

Wnt signaling pathway 0.08 GO:0016055

Regulation of lymphocyte proliferation 0.08 GO:0050670

Cell projection assembly 0.08 GO:0030031

Negative regulation of cell-cell adhesion 0.08 GO:0022408

Signaling by GPCR 0.081 REAC:R-DRE-372790

Presynaptic phase of homologous DNA pairing and
strand exchange

0.081 REAC:R-DRE-5693616

Nervous system development 0.081 REAC:R-DRE-9675108

G alpha (i) signalling events 0.081 REAC:R-DRE-418594

Homologous DNA Pairing and Strand Exchange 0.081 REAC:R-DRE-5693579

Receptor-type tyrosine-protein phosphatases 0.081 REAC:R-DRE-388844

Ribosomal scanning and start codon recognition 0.081 REAC:R-DRE-72702
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Regulation of RNA splicing 0.083 GO:0043484

Erythrocyte differentiation 0.083 GO:0030218

Cell junction assembly 0.083 GO:0034329

Heart development 0.085 GO:0007507

Neuron projection guidance 0.086 GO:0097485

Stabilization of membrane potential 0.087 GO:0030322

Regulation of transmembrane transport 0.087 GO:0034762

Anatomical structure formation involved in
morphogenesis

0.087 GO:0048646

Regulation of T cell proliferation 0.087 GO:0042129

IMP biosynthetic process 0.087 GO:0006188

IMP metabolic process 0.087 GO:0046040

GPCR downstream signalling 0.088 REAC:R-DRE-388396

YAP1- and WWTR1 (TAZ)-stimulated gene
expression

0.088 REAC:R-DRE-2032785

Regulation of TP53 Activity 0.088 REAC:R-DRE-5633007

Sensory system development 0.089 GO:0048880

Hemopoiesis 0.089 GO:0030097

Positive regulation of immune effector process 0.089 GO:0002699

Metencephalon development 0.089 GO:0022037

Ubiquitin mediated proteolysis 0.092 KEGG:04120

Erythrocyte homeostasis 0.092 GO:0034101

Sodium ion transport 0.094 GO:0006814

Cell projection morphogenesis 0.094 GO:0048858

Organelle assembly 0.094 GO:0070925

VEGF signaling pathway 0.096 KEGG:04370

Mitophagy - animal 0.096 KEGG:04137

Citrate cycle (TCA cycle) 0.098 KEGG:00020

Heart-rate fold changes -Genes downregulated

Endocytosis 5.42E-09 KEGG:04144
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Animal organ development 3.26E-05 GO:0048513

Anatomical structure morphogenesis 3.52E-05 GO:0009653

MAPK signaling pathway 4.42E-05 KEGG:04010

Apoptotic cleavage of cellular proteins 6.76E-05 REAC:R-DRE-111465

Metabolism of RNA 7.62E-05 REAC:R-DRE-8953854

Metabolism of proteins 0.0003 REAC:R-DRE-392499

Adrenergic signaling in cardiomyocytes 0.0005 KEGG:04261

Neuroactive ligand-receptor interaction 0.001 KEGG:04080

Nervous system development 0.001 GO:0007399

Regulation of actin cytoskeleton 0.001 KEGG:04810

Tissue development 0.001 GO:0009888

FoxO signaling pathway 0.001 KEGG:04068

Post-translational protein modification 0.001 REAC:R-DRE-597592

Developmental Biology 0.001 REAC:R-DRE-1266738

Processing of Capped Intron-Containing Pre-mRNA 0.001 REAC:R-DRE-72203

Innate Immune System 0.002 REAC:R-DRE-168249

p53 signaling pathway 0.002 KEGG:04115

Cytokine-cytokine receptor interaction 0.002 KEGG:04060

Apoptosis 0.002 REAC:R-DRE-109581

Insulin signaling pathway 0.002 KEGG:04910

Programmed Cell Death 0.002 REAC:R-DRE-5357801

Cellular senescence 0.002 KEGG:04218

Gene expression (Transcription) 0.003 REAC:R-DRE-74160

Apelin signaling pathway 0.003 KEGG:04371

Calcium signaling pathway 0.003 KEGG:04020

Oocyte meiosis 0.003 KEGG:04114

Membrane Trafficking 0.003 REAC:R-DRE-199991

Epithelium development 0.004 GO:0060429

ErbB signaling pathway 0.004 KEGG:04012
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Protein processing in endoplasmic reticulum 0.004 KEGG:04141

mRNA Splicing 0.004 REAC:R-DRE-72172

Cell development 0.005 GO:0048468

Spliceosome 0.005 KEGG:03040

Apoptotic execution phase 0.006 REAC:R-DRE-75153

mRNA Splicing - Major Pathway 0.006 REAC:R-DRE-72163

Transport 0.006 GO:0006810

Regulation of protein metabolic process 0.006 GO:0051246

Cytokine Signaling in Immune system 0.007 REAC:R-DRE-1280215

Gap junction 0.008 KEGG:04540

Vascular smooth muscle contraction 0.008 KEGG:04270

Regulation of cell junction assembly 0.008 GO:1901888

Regulation of synapse assembly 0.009 GO:0051963

Embryo development 0.012 GO:0009790

Lysosome 0.014 KEGG:04142

Neuron differentiation 0.014 GO:0030182

Ribosome 0.015 KEGG:03010

Apoptosis 0.017 KEGG:04210

Circulatory system development 0.018 GO:0072359

Pyruvate metabolism 0.018 KEGG:00620

Central nervous system development 0.018 GO:0007417

RNA Polymerase II Transcription 0.018 REAC:R-DRE-73857

Vesicle localization 0.018 GO:0051648

Response to stimulus 0.02 GO:0050896

Germ cell development 0.02 GO:0007281

Neurogenesis 0.02 GO:0022008

Tube development 0.02 GO:0035295

Actin filament-based transport 0.02 GO:0099515

Heart development 0.02 GO:0007507
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Nervous system development 0.021 REAC:R-DRE-9675108

Axon guidance 0.021 REAC:R-DRE-422475

Generation of neurons 0.021 GO:0048699

Cardiac muscle contraction 0.023 KEGG:04260

Adherens junction 0.023 KEGG:04520

Transmembrane transport 0.024 GO:0055085

GnRH signaling pathway 0.026 KEGG:04912

Tight junction 0.026 KEGG:04530

TGF-beta signaling pathway 0.026 KEGG:04350

Biosynthesis of amino acids 0.026 KEGG:01230

Signaling by Receptor Tyrosine Kinases 0.027 REAC:R-DRE-9006934

Fatty acid metabolism 0.027 KEGG:01212

Vasopressin-like receptors 0.028 REAC:R-DRE-388479

Neutrophil degranulation 0.028 REAC:R-DRE-6798695

Organelle organization 0.031 GO:0006996

Valine, leucine and isoleucine degradation 0.035 KEGG:00280

Mismatch repair 0.035 KEGG:03430

Regulation of cellular component organization 0.038 GO:0051128

Lysine degradation 0.04 KEGG:00310

Focal adhesion 0.042 KEGG:04510

Nucleotide Excision Repair 0.042 REAC:R-DRE-5696398

Neuronal System 0.043 REAC:R-DRE-112316

Signaling by VEGF 0.044 REAC:R-DRE-194138

Nucleotide excision repair 0.046 KEGG:03420

Organelle localization 0.053 GO:0051640

Signal transduction 0.053 GO:0007165

Regulation of protein modification process 0.053 GO:0031399

Ion transmembrane transport 0.053 GO:0034220

Phosphatidylinositol signaling system 0.054 KEGG:04070
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Plasma membrane bounded cell projection
organization

0.056 GO:0120036

Ribosome biogenesis in eukaryotes 0.057 KEGG:03008

Toll-like receptor signaling pathway 0.057 KEGG:04620

VEGFA-VEGFR2 Pathway 0.058 REAC:R-DRE-4420097

Signaling by Interleukins 0.058 REAC:R-DRE-449147

GPCR downstream signalling 0.058 REAC:R-DRE-388396

DNA replication 0.059 KEGG:03030

Adaptive Immune System 0.059 REAC:R-DRE-1280218

Death Receptor Signalling 0.059 REAC:R-DRE-73887

Post-translational protein phosphorylation 0.066 REAC:R-DRE-8957275

mTOR signaling pathway 0.067 KEGG:04150

Adipocytokine signaling pathway 0.067 KEGG:04920

TCR signaling 0.069 REAC:R-DRE-202403

Autophagy 0.069 REAC:R-DRE-9612973

Small GTPase mediated signal transduction 0.07 GO:0007264

VEGF signaling pathway 0.073 KEGG:04370

PPAR signaling pathway 0.073 KEGG:03320

Pantothenate and CoA biosynthesis 0.074 KEGG:00770

Fatty acid elongation 0.074 KEGG:00062

Fatty acid degradation 0.074 KEGG:00071

Cell projection organization 0.074 GO:0030030

Morphogenesis of an epithelium 0.074 GO:0002009

Cellular component morphogenesis 0.076 GO:0032989

Base excision repair 0.078 KEGG:03410

Cellular localization 0.079 GO:0051641

Cation transmembrane transport 0.079 GO:0098655

Striated Muscle Contraction 0.079 REAC:R-DRE-390522

MHC class II antigen presentation 0.081 REAC:R-DRE-2132295
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Signaling by GPCR 0.081 REAC:R-DRE-372790

FLT3 Signaling 0.082 REAC:R-DRE-9607240

Axonogenesis 0.086 GO:0007409

ncRNA metabolic process 0.086 GO:0034660

Tissue morphogenesis 0.09 GO:0048729

Wnt signaling pathway 0.09 KEGG:04310

mRNA surveillance pathway 0.09 KEGG:03015

Cell adhesion molecules 0.09 KEGG:04514

Peroxisome 0.09 KEGG:04146

Establishment of organelle localization 0.093 GO:0051656

Golgi vesicle transport 0.095 GO:0048193

Phagosome 0.095 KEGG:04145
Table S.2: Functional enrichment analysis of the upregulated and downregulated genes associated with

significant heart rate fold change.
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GO term name P-value GO term ID

Purine metabolism 0.017 KEGG:00230

Butanoate metabolism 0.025 KEGG:00650

Homologous recombination 0.026 KEGG:03440

ABC transporters 0.027 KEGG:02010

Glycerolipid metabolism 0.034 KEGG:00561

PPAR signaling pathway 0.04 KEGG:03320

Peroxisome 0.04 KEGG:04146

Interconversion of 2-oxoglutarate and
2-hydroxyglutarate

0.047 REAC:R-DRE-880009

IL-6-type cytokine receptor ligand interactions 0.06 REAC:R-DRE-6788467

Interleukin-6 family signaling 0.06 REAC:R-DRE-6783589

Triglyceride biosynthesis 0.06 REAC:R-DRE-75109

Triglyceride metabolism 0.065 REAC:R-DRE-8979227

Resolution of D-Loop Structures 0.065 REAC:R-DRE-5693537

Metalloprotease DUBs 0.065 REAC:R-DRE-5689901

Collagen chain trimerization 0.065 REAC:R-DRE-8948216

Resolution of D-loop Structures through Holliday
Junction Intermediates

0.065 REAC:R-DRE-5693568

Processing of DNA double-strand break ends 0.068 REAC:R-DRE-5693607

Presynaptic phase of homologous DNA pairing and
strand exchange

0.068 REAC:R-DRE-5693616

HDR through Single Strand Annealing (SSA) 0.068 REAC:R-DRE-5685938

Homologous DNA Pairing and Strand Exchange 0.069 REAC:R-DRE-5693579

Collagen biosynthesis and modifying enzymes 0.072 REAC:R-DRE-1650814

DNA Double Strand Break Response 0.072 REAC:R-DRE-5693606

Recruitment and ATM-mediated phosphorylation of
repair and signaling proteins at DNA double strand
breaks

0.072 REAC:R-DRE-5693565

Pyruvate metabolism and Citric Acid (TCA) cycle 0.072 REAC:R-DRE-71406

Collagen formation 0.077 REAC:R-DRE-1474290
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G2/M DNA damage checkpoint 0.077 REAC:R-DRE-69473

HDR through Homologous Recombination (HRR) 0.077 REAC:R-DRE-5685942

HDR through Homologous Recombination (HRR) or
Single Strand Annealing (SSA)

0.077 REAC:R-DRE-5693567

Homology Directed Repair 0.077 REAC:R-DRE-5693538

UCH proteinases 0.077 REAC:R-DRE-5689603

Regulation of TP53 Activity through Phosphorylation 0.077 REAC:R-DRE-6804756

Mitochondrial translation termination 0.08 REAC:R-DRE-5419276

Mitochondrial translation elongation 0.08 REAC:R-DRE-5389840

Mitochondrial translation 0.08 REAC:R-DRE-5368287

Positive regulation of tyrosine phosphorylation of
STAT protein

0.099 GO:0042531

IMP biosynthetic process 0.099 GO:0006188

Alditol phosphate metabolic process 0.099 GO:0052646

Glycerol metabolic process 0.099 GO:0006071

Purine ribonucleotide salvage 0.099 GO:0106380

Glycerol-3-phosphate metabolic process 0.099 GO:0006072

Amino-acid betaine metabolic process 0.099 GO:0006577

IMP metabolic process 0.099 GO:0046040

Carnitine metabolic process 0.099 GO:0009437

Carnitine metabolic process, CoA-linked 0.099 GO:0019254

Purine-containing compound salvage 0.099 GO:0043101

Alditol metabolic process 0.099 GO:0019400

AMP metabolic process 0.099 GO:0046033

Alditol catabolic process 0.099 GO:0019405

Glycerol catabolic process 0.099 GO:0019563

Organophosphate metabolic process 0.099 GO:0019637

Purine nucleotide salvage 0.099 GO:0032261

IMP salvage 0.099 GO:0032264

Tyrosine phosphorylation of STAT protein 0.099 GO:0007260
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Regulation of tyrosine phosphorylation of STAT
protein

0.099 GO:0042509

Glycerol-3-phosphate biosynthetic process 0.099 GO:0046167
Figure S.3: All the GO terms associated  with the genes identified by predictive modeling using cluster 3
chemicals.
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