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A B S T R A C T

Humans are able to reason from multiple sources to arrive at the correct answer. In the context of
Multiple Choice Question Answering (MCQA), knowledge graphs can provide subgraphs based
on different combinations of questions and answers, mimicking the way humans find answers.
However, current research mainly focuses on independent reasoning on a single graph for each
question-answer pair, lacking the ability for joint reasoning among all answer candidates. In this
paper, we propose a novel method KMSQA, which leverages multiple subgraphs from the large
knowledge graph ConceptNet to model the comprehensive reasoning process. We further encode
the knowledge graphs with shared Graph Neural Networks (GNNs) and perform joint reasoning
across multiple subgraphs. We evaluate our model on two common datasets: CommonsenseQA
(CSQA) and OpenBookQA (OBQA). Our method achieves an exact match score of 74.53% on
CSQA and 71.80% on OBQA, outperforming all eight baselines.

1. Introduction
Question answering (QA) is an important application of natural language processing (NLP). It is human nature to

answer questions by utilizing comprehensive knowledge. Similarly, external knowledge can also provide additional
information to QA systems for reasoning and answering questions. There are two primary sources of external knowledge
are: large pre-trained language models (LMs) (Petroni et al., 2019; Bosselut et al., 2019b) and structured knowledge
graphs (KGs) (Bollacker et al., 2008; Speer et al., 2017). It is possible to use these resources to enhance the performance
of quality assurance systems by providing a wider range of information to draw from when answering questions.

On the one hand, pre-trained language models (LMs) have been shown to improve question answering systems and
perform well (Liu et al., 2019b) due to their strong knowledge encoding abilities and a large amount of unstructured
text on which they have been trained (Bosselut et al., 2019a). Although pre-trained LMs possess a wide range of
knowledge, they perform poorly on structured reasoning tasks (Yasunaga et al., 2021; Kassner and Schütze, 2020). On
the other hand, structured knowledge graphs such as Freebase (Bollacker et al., 2008) and ConceptNet (Speer et al.,
2017), where nodes represent concept entities and edges denote relationships between them, can compensate for the
weaknesses of pre-trained LMs (Lin et al., 2019). Models that combine LMs and knowledge graphs (KGs), such as
Knowledge-aware graph networks (KagNet) (Lin et al., 2019), Multi-hop graph relation networks (MHGRN) (Feng
et al., 2020), and QA-GNN (Yasunaga et al., 2021), have achieved significant success. However, existing LM+KG
methods mainly focus on addressing the challenge of inconsistencies between knowledge graph embeddings and natural
language embeddings, and effectively utilizing both implicit and explicit knowledge for reasoning.

Besides the challenge of inconsistencies of dense question/answer-choice representations, in this paper, we explore
further on the knowledge subgraph construction and reasoning paradigm. Our idea is inspired by the way humans answer
questions. When reading a question, humans compare and reason comprehensively, using all available information,
especially all the given answer candidates. Besides the semantic information in each candidate, a comprehensive glance
at and comparison among all candidates can help in making the final decision, since the method of elimination is a
quite useful strategy for multiple choice questions. Fig. 1 illustrates the construction of the local subgraph (see Fig.
1(b) and Fig.1(c)) for each pair of question and answer candidate1, as well as a global knowledge subgraph (as shown
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1We omit the local subgraphs for “B. Hear sounds”, “D. Arthritis” and “E. Making music” to save space.
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(a) Global subgraph for all choices

(b) Local subgraph for “A. Cry” (c) Local subgraph for “C. Singing”

Question: What do people typically 
do while playing guitar?

A.Cry B.Hear sounds
C.Singing* D.Arthritis
E.Making music

Nodes from question

Nodes from choice(s)

Nodes from KGrelatedto

isa
usedfor
antonym
hassubevent

causes

Fig. 1. An example of question answering from the CommonsenseQA dataset is shown in the right top box, where
the symbol (*) marks the correct answer. The example demonstrates that there are stronger relationships among the
bolded answer candidates, and weaker or no relationships among the other candidates. Fig. 1(a) is a large global
subgraph including all entities that appear in the question and the five answer candidates. Fig. 1(b) is the local subgraph
for candidate A, and Fig. 1(c) is the local subgraph for the correct answer C. Each local subgraph only includes the
entities that appear in the question and the individual candidate. The relationships between nodes are extracted from
ConceptNet. Only 20 nodes and their edge relations are displayed for the local subgraphs and 50 for the global subgraph.

in Fig. 1(a)) for the question and all the answer candidates. Combining both global and local knowledge graphs can
provide multiple reasoning chains for answering a question, and enhance the ability of joint reasoning and potential
information mining across multiple knowledge subgraphs. Additionally, we use a gate mechanism to control the flow of
information between the multiple subgraphs.

In summary, this paper presents a novel method for addressing the problem of Multiple Choice Question Answering
(MCQA) that uses a pre-trained Language Model (PLM) and multiple knowledge subgraphs to provide multi-chain
reasoning and performs joint reasoning over all candidates. Our approach involves extracting two types of knowledge
subgraphs from a large Knowledge Graph (KG), specifically, a local subgraph and a global subgraph. The local
subgraph is constructed for a specific question-answer pair and the global subgraph is built based on the question
and all its answer candidates. We then use a pre-trained Language Model (PLM) to learn the semantic features of
the question-answer pair and a Graph Attention Network (GAT) to capture the relation features of topic entities in
the KG subgraphs. The learnt semantic features are inserted into both subgraphs as interaction nodes respectively to
implement joint reasoning over the PLM and KGs. The local subgraph focuses only on the information in the particular
question-answer pair to provide a local view while the global subgraph aggregates the information in the question and
all its answer candidates to offer a global view. The knowledge learned from the two subgraphs is complementary, thus
joint reasoning on these subgraphs facilitates answer reasoning. Additionally, we apply a gate mechanism to control the
flow of information between the multiple subgraphs.

In particular, our approach differs from most exiting LM+KG methods (Yasunaga et al., 2021; Sun et al., 2022;
Yasunaga et al., 2022), which mainly focus on the challenge of fusion of language models and knowledge graphs, and
try to solve the problem of inconsistencies between knowledge graph embeddings and natural language embeddings,
the main purpose of this paper is to explore further on the knowledge subgraph construction and answer reasoning
paradigm. In terms of knowledge graph based reasoning, the existing methods either transfer a multiple choice question
to several True/False questions (Feng et al., 2020; Lin et al., 2019; Lv et al., 2020; Yasunaga et al., 2021), i.e., whether
candidate 𝑎𝑖 is the right answer of the question 𝑞 or not ( 𝑖 = 0, ..., 𝑁 − 1), or transfer a multiple-choice question to
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an open-domain question, i.e., retrieve the knowledge subgraph and find the recommended answer then choose the
most similar candidate as the final choice (Atzeni et al., 2021; Cao and Liu, 2022). Neither of these ways make full
use of the inherent advantage of multiple choice question, i.e. there must exist a right answer and there is also only
one right answer among the candidates. Inspired by this and how humans do multiple choice question answering, we
propose our method by combining both local and global knowledge subgraphs to explore the multiple reasoning chains
of answering and make full use of the elimination paradigm. The evaluation of our method on CommonsenseQA and
OpenBookQA proves its superiority.

2. Related Work
2.1. Question Answering

In recent years, questions answering (QA) tasks have gained increasing interest in natural language processing
(NLP) (Seonwoo et al., 2020; Zhang et al., 2022a). Some researchers focus on extractive question answering (EQA),
where the answer is selected from the given context. Many EQA models (Seonwoo et al., 2020) are based on large
pre-trained language models such as BERT or RoBERTa, and rely on fine-tuning with a large training dataset to adapt to
EQA tasks. Additionally, some works (Deng et al., 2021) perform pre-training on existing pre-trained language models
with different pre-training objectives that are closer to the final EQA task, allowing the models to be fine-tuned on
smaller training datasets. Others focus on reasoning-based question answering, such as multi-choice question answering
(MCQA) (Hu et al., 2021). Unlike MCRC, our target task is multi-choice question answering (MCQA), which performs
reasoning over the given question context without explicit passage evidence.

Some works make full use of the information in the given context by computing the similarity between the question
and each candidate through an attention mechanism (Chaturvedi et al., 2018). The Generation-enhanced MCQA model
(GenMC) generates additional evidence from the question to enhance reasoning (Huang et al., 2022). However, the
evidence provided by the question context is limited, which constrains the model’s reasoning ability. To supplement
more evidence, researchers have turned to collecting structured knowledge from Wikipedia and ConceptNet (Lin et al.,
2019) or capturing unstructured information from various Internet data (Emami et al., 2018). In this paper, we leverage
evidence from the given question and candidates, as well as knowledge graphs extracted from ConceptNet, to reason
and predict the answer.

2.2. Knowledge Graph
In recent years, Knowledge Graphs (KGs) have been widely applied in natural language processing tasks for

reasoning (Xu et al., 2020; Zhang et al., 2022b; Xie et al., 2022; Ryu et al., 2022; Xu et al., 2022). They have also been
used in question answering tasks to enhance the reasoning abilities of models (Cao et al., 2019) and supplement the
limited evidence provided by the question context. Some existing QA-related works (Lin et al., 2019; Feng et al., 2020;
Yasunaga et al., 2021; Zhang et al., 2022c) have similar frameworks with our model, which perform joint reasoning
over pre-trained language models and knowledge graphs. They mainly calculate the probability of one answer candidate
being the correct answer via reasoning over a knowledge subgraph. Similar to the work of Yasunaga et al. (2021), we
use a graph attention network to learn the representations of the subgraphs. The primary distinction of our work is that
we construct an additional global knowledge subgraph based on the information of all the candidates. We utilize this
knowledge subgraph to capture additional contrastive information among answer candidates and use it to revise the
probability of one answer candidate.

2.3. Graph Neural Networks
Graph Neural Networks (GNNs), introduced as a generalization of recursive neural networks to directly deal with a

more general class of graphs, e.g. cyclic, directed and undirected graphs, are a powerful tool for machine learning on
graphs (Hu et al., 2020). The most classic models are Graph Convolution Network (GCN) (Kipf and Welling, 2016) and
Graph Attention Network (GAT) (Veličković et al., 2017). There are several works that use GNNs to model the structure
of text (Sun et al., 2018) or Knowledge Graphs (Wang et al., 2020). Recent studies have explored applying GNNs to
KG-powered QA, where GNNs naturally fit the graph-structured knowledge and show prominent results (Santoro et al.,
2017; Lin et al., 2019; Feng et al., 2020; Yasunaga et al., 2021; Sun et al., 2022; Huang et al., 2021; Wang et al., 2021).
Knowledge-aware graph networks (KagNet) proposes GCN-LSTM-HPA for path-based relational graph representation
(Lin et al., 2019). Multi-hop graph relation network (MHGRN) (Feng et al., 2020) extends relation networks (Santoro
et al., 2017) to multi-hop relation scope and unifies both path-based models. QA-GNN (Yasunaga et al., 2021) proposes
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a LM+GAT framework to joint reasoning over language and KG. Joint reasoning between LM and KG (JointLK)
focuses on further effectively fusing the information from the pre-trained language model and GNN module through a
dense bidirectional attention (Sun et al., 2022). Graph soft counter (GSC) has reported the research about how GNN
works for common sense reasoning in question answering tasks (Wang et al., 2021). The aforementioned works only
consider a single knowledge subgraph for one QA pair, whereas our work considers joint reasoning over multiple
subgraphs.

3. Problem Definition
In this paper, we focus on the problem of multi-choice question answering, where each example consists of one

question and multiple answer candidates. The goal is to identify the correct answer among the given candidates. An
example is shown in Fig. 1 as follows:

–Question: “What do people typically do while playing guitar?”
–A: “Cry”
–B: “Hear sounds”
–C: “Singing”
–D: “Arthritis”
–E: “Making music”

where the correct answer is marked in bold black.
To aid in this task, we assume the availability of a large-scale knowledge graph, such as ConceptNet (Speer et al.,

2017). The graph is designed to represent general knowledge that is useful for understanding language, and can be used
to improve natural language applications by providing additional context and information about the meanings of words.
For each example, we have a question 𝑞 and a set of answer candidates 𝐴 = {𝑎0,⋯ , 𝑎𝑖,⋯ , 𝑎𝑁−1}, where 𝑖 denotes the
index of one candidate, and 𝑁 is the total number of answer candidates. The notation used in this paper is summarized
in Table 1.

4. Method
Each QA pair is analyzed using two subgraphs constructed from ConceptNet in order to better understand the

knowledge graph facts relevant to the question and candidates: a local subgraph which allows the probability of a single
candidate being correct to be determined; and a global subgraph which facilitates joint reasoning among all candidates
and guides the adjustment of the probability of the final prediction. By combining the pre-trained LM and the gate
mechanism, we are able to take advantage of the information provided by large-scale unstructured texts and specific
structured multi-chain reasoning.

4.1. Constructing Subgraphs
We construct local subgraph 𝐺𝑖 and global subgraph 𝐺𝑐 based on the question 𝑞, candidates 𝐴 = {𝑎0,⋯ , 𝑎𝑖,⋯ , 𝑎𝑁−1},

and the external knowledge graph 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑁𝑒𝑡 (Speer et al., 2017). In light of the fact that 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑁𝑒𝑡 includes
multilingual entities, it is essential to extract the English knowledge graph 𝐺𝑒𝑛 from 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑁𝑒𝑡 and generate a
vocabulary match pattern consisting of lemma for each word. Afterwards, we match the topic entities in 𝑞 and each 𝑎𝑖
respectively using lemmas in the match pattern to generate question-node set 𝑉 𝑞 and answer-node set 𝑉 𝑎

𝑖 . For example,
in Fig. 1, choice C “Singing” has been matched with words “sing” and “singing” from 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑁𝑒𝑡 since they derive
from the same lemma “sing”.

We then search the English knowledge graph 𝐺𝑒𝑛 with 𝑉 𝑞 and 𝑉 𝑎
𝑖 to extract all two-hop neighbor nodes as

extra-node set 𝑉 𝑒𝑥
𝑖 . Meanwhile, the relationships between the node pairs in 𝑉 𝑞 ∪𝑉 𝑎

𝑖 ∪𝑉 𝑒𝑥
𝑖 from the English knowledge

graph 𝐺𝑒𝑛 are extracted together to generate the edge set 𝐸𝑖. Finally, a local subgraph 𝐺𝑖 is constructed by using
𝑉 𝑞 ∪ 𝑉 𝑎

𝑖 ∪ 𝑉 𝑒𝑥
𝑖 and 𝐸𝑖 (Lin et al., 2019), including the topic entities found in the question 𝑞 and candidate answer 𝑎𝑖.

Similarly, the global subgraph 𝐺𝑐 is constructed with 𝑉 𝑞 ∪ 𝑉 𝐴 ∪ 𝑉 𝑒𝑥 and 𝐸, which includes the topic entities extracted
from 𝑞 and 𝐴.

4.2. Reasoning over Subgraphs
cA description of our reasoning on subgraphs is presented in Fig. 2. In order to obtain representation lm𝑞𝑎

𝑖 for
each QA pair [𝑞; 𝑎𝑖], we use a pre-trained language model such as BERT or RoBERTa. Meanwhile, we construct
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Table 1
Here are notations and their definitions used in this paper.

Notations Definitions

𝛼𝑥𝑦 The attention weight for m𝑥𝑦

𝑎𝑖 The i-th answer candidate text of the given question 𝑞
𝐴 The text set of all answer candidates of 𝑞
𝐷 The dimension of embeddings or hidden states in graphs
𝐸𝑖 The edge set of nodes in 𝑉 𝑞 ∪ 𝑉 𝑎

𝑖 ∪ 𝑉 𝑒𝑥
𝑖

𝐸 The edge set of nodes in 𝑉 𝑞 ∪ 𝑉 𝐴 ∪ 𝑉 𝑒𝑥

𝐺𝑐 The global subgraph constructed from 𝐺𝑒𝑛 using nodes in𝑉 𝑞, 𝑉 𝐴, 𝑉 𝑒𝑥 and edges in 𝐸
𝐺𝑒𝑛 The knowledge subgraph including all English entities in the larger knowledge graph 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑁𝑒𝑡
𝐺𝑖 The local subgraph constructed from 𝐺𝑒𝑛 using nodes in 𝑉 𝑞, 𝑉 𝑎

𝑖 , 𝑉 𝑒𝑥
𝑖 and edges in 𝐸𝑖

g𝑐 The graph representation of global subgraph 𝐺𝑐

g𝑖 The graph representation of local subgraph 𝐺𝑖

g′
𝑖 The integrated graph representation of g𝑖 and g𝑐

g𝑞𝑎
𝑖 The node graph representation of the QA pair [𝑞; 𝑎𝑖] in the last layer

h𝑙
𝑥 The hidden state of node 𝑥 in l-th layer

h𝑇 The transpose of a vector h
𝐿 The number of layers in the QA model
lm𝑞𝑎

𝑖 The output embedding of text [𝑞; 𝑎𝑖] from a pre-trained language model
m𝑥𝑦 The message passing from node 𝑥 to node 𝑦
M𝑙

𝑦 The embedding of the aggregate message from neighbor nodes of 𝑦 in the l-th layer
𝑁 The number of answer candidates for 𝑞
𝑃 (𝑎𝑖|𝑞) The predicted probability of the answer candidate 𝑎𝑖 being the correct answer of 𝑞
𝑞 The given question text
[𝑞; 𝑎𝑖] The concatenation of texts 𝑞 and 𝑎𝑖, called QA pair
[𝑞; 𝑎0;⋯ ; 𝑎𝑁−1] The concatenation of texts 𝑞 and 𝐴, called global context
r𝑥𝑦 The edge (relation) type embedding between two nodes
u𝑥 The node type embedding of node 𝑥
𝑉 𝑎
𝑖 The node set consisting of all entities in 𝑎𝑖

𝑉 𝐴 The node set consisting of all entities nodes in 𝐴
𝑉 𝑒𝑥
𝑖 The node set consisting of all two-hop neighbors between nodes in 𝑉 𝑞 and 𝑉 𝑎

𝑖
𝑉 𝑒𝑥 The node set consisting of all two-hop neighbors between nodes in 𝑉 𝑞 and 𝑉 𝐴

𝑉 𝑞 The node set consisting of all entities in 𝑞
𝑉𝑦_𝑛𝑏ℎ𝑑 The nodes set of all neighbor of node 𝑦
⊕ The concatenation of embeddings

multiple subgraphs from the external knowledge graph: a local subgraph 𝐺𝑖 for each QA pair [𝑞; 𝑎𝑖], and a shared
global subgraph 𝐺𝑐 for the global context [𝑞; 𝑎0;⋯ ; 𝑎𝑁−1].

We combine 𝐺𝑐 with each 𝐺𝑖 respectively to establish multiple chains for better reasoning. To achieve jointly
reasoning over LM and subgraphs, similar with QA-GNN (Yasunaga et al., 2021), lm𝑞𝑎

𝑖 is inserted as a new node (QA
pair node) to 𝐺𝑖 and 𝐺𝑐 respectively. Further, we integrate the representations of the global subgraph 𝐺𝑐 and each local
subgraph 𝐺𝑖 using the gate mechanism to control information passing between the subgraphs. Finally, the probability
score of each candidate is obtained through MLP networks.

We share a common 5-layer GNN model (Yasunaga et al., 2021) for subgraphs 𝐺𝑖 and 𝐺𝑐 , and we set different
maximum node numbers for updating the state of the nodes and passing messages between the nodes. For updating
the state of node 𝑦 in layer (𝑙), we firstly aggregate the message of its neighbor nodes 𝑉𝑦_𝑛𝑏ℎ𝑑 with the self-attention
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Fig. 2. An overview of the MKSQA model. The knowledge subgraphs are extracted from 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑁𝑒𝑡 based on QA
pair [𝑞; 𝑎𝑖] and global context [𝑞; 𝑎0;⋯ ; 𝑎𝑁−1], and the QA pair is encoded by LM as a new node for joint reasoning
with subgraphs. As a next step, a shared GNN model is used to pass messages, update node states, and obtain
graph representations in the pooling layer. Following the application of a gate to graph representations for the fusion of
information between subgraphs, we combine the information from the QA pair with the subgraphs to predict the outcome.

mechanism (Vaswani et al., 2017):

M(𝑙−1)
𝑦 = 𝑓𝑛

⎛

⎜

⎜

⎝

∑

𝑥∈𝑉𝑦_𝑛𝑏ℎ𝑑

𝛼𝑥𝑦m𝑥𝑦

⎞

⎟

⎟

⎠

, (1)

Here, 𝑓𝑛 is a 2-layer MLP: 𝑅𝐷 → 𝑅𝐷, 𝛼𝑥𝑦 is an attention weight for m𝑥𝑦 ∈ 𝑅𝐷 where m𝑥𝑦 represents the message
passing from 𝑛𝑜𝑑𝑒 𝑥 to 𝑛𝑜𝑑𝑒 𝑦. Specifically, m𝑥𝑦 is conducted with three components:

m𝑥𝑦 = 𝑓𝑚(h𝑥 ⊕ u𝑥 ⊕ r𝑥𝑦), (2)

where h𝑥 ∈ 𝑅𝐷 is the hidden state embedding of 𝑛𝑜𝑑𝑒 𝑥, u𝑥 ∈ 𝑅𝐷∕2 is the node type embedding and r𝑥𝑦 ∈ 𝑅𝐷 is the
edge (relation) type embedding. A total of four types of nodes have been created: question nodes, answer nodes, extra
nodes, and QA pair nodes, as well as 34 types of edge relationships have been collected from 𝐺𝑒𝑛 and have been listed
in MHGRN (Feng et al., 2020). 𝑓𝑚 ∶ 𝑅2.5𝐷 → 𝑅𝐷 is a linear transformation, and ⊕ denotes concatenation operation.
With the aggregated message embedding M(𝑙−1)

𝑦 ∈ 𝑅𝐷, we can update node embedding h(𝑙)
𝑦 ∈ 𝑅𝐷:

h(𝑙)
𝑦 = M(𝑙−1)

𝑦 + h(𝑙−1)
𝑦 , (3)

where h(𝑙−1)
𝑦 ∈ 𝑅𝐷 is the embedding of 𝑛𝑜𝑑𝑒 𝑦 obtained by the preceding layer.

Further we apply a gate function for passing the information between subgraphs. For subgraphs 𝐺𝑖 and 𝐺𝑐 , we
have the integrated graph representation g′𝑖:

g′𝑖 = 𝑔𝑎𝑡𝑒(𝑊 ⋅ g𝑐 + 𝑏) ⋅ g𝑖, (4)

where we use 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 as 𝑔𝑎𝑡𝑒(⋅) in our experiments, 𝑊 and 𝑏 are learnable parameters. g𝑖 ∈ 𝑅𝐷 and g𝑐 ∈ 𝑅𝐷 are the
graph representations of 𝐺𝑖 and 𝐺𝑐 respectively after pooling, actually an attention mechanism, defined as:

g𝑖 = 𝑝𝑜𝑜𝑙𝑖𝑛𝑔
{

h𝐿
𝑣 |𝑣 ∈ 𝑉𝑖

}

, (5)

g𝑐 = 𝑝𝑜𝑜𝑙𝑖𝑛𝑔
{

h𝐿
𝑣 |𝑣 ∈ 𝑉 𝑐} , (6)

𝑝𝑜𝑜𝑙𝑖𝑛𝑔 =
∑

𝑣∈𝑉
𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(

(ℎ𝐿𝑣 )
𝑇 ⋅ 𝑙𝑚𝑞𝑎

𝑖
√

𝐷

)

, (7)
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4.3. Prediction & Learning
To figure out the probability of each candidate being the right answer, a one-layer MLP 𝑓 (⋅) is followed:

𝑃 (𝑎𝑖|𝑞) ∝ 𝑓 (g′𝑖 ⊕ g𝑞𝑎𝑖 ⊕ lm𝑞𝑎
𝑖 )). (8)

where lm𝑞𝑎
𝑖 is the representation of QA pair [𝑞; 𝑎𝑖], g𝑞𝑎𝑖 = h𝐿

𝑞𝑎 is the state of QA pair node in the last layer L.
Finally, cross-entropy loss is used to optimize our MKSQA model. A complete explanation of our quality assurance

model can be found in Algorithm 1.

Algorithm 1 MKSQA Algorithm

Input: global context [𝑞; 𝑎0;⋯ ; 𝑎𝑁−1], large knowledge graph 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑁𝑒𝑡
Output: probability 𝑃

1: From 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑁𝑒𝑡, extract knowledge graph 𝐺𝑒𝑛 to generate match patterns and topic entities
2: Use QA pair and global cotext [𝑞; 𝑎𝑖] and [𝑞; 𝑎0;⋯ ; 𝑎𝑁−1] to construct local subgrap 𝐺𝑖 and global subgraph 𝐺𝑐

respectively following Section 4.1
3: Encode each QA pair [𝑞; 𝑎𝑖] with a pretrained model (i.e., RoBERTa-Large) to obtain lm𝑞𝑎

𝑖
4: for 𝑖 = 0 to 𝑁 − 1 do
5: Apply lm𝑞𝑎

𝑖 as a node to subgraphs 𝐺𝑖 and 𝐺𝑐 respectively
6: for 𝑙 = 1 to 𝐿 do
7: Update node hidden states and pass messages between nodes in local subgraph 𝐺𝑖 based on Eq. (3)
8: end for
9: Output 𝐻𝐿

𝑖 =
{

ℎ𝐿𝑣 , 𝑣 ∈ 𝑉𝑖
}

, the hidden states of nodes in the final layer L
10: for 𝑙 = 1 to 𝐿 do
11: Update node hidden states and pass messages between nodes in global subgraph 𝐺𝑐 based on Eq. (3)
12: end for
13: Output 𝐻𝐿

𝑐 =
{

ℎ𝐿𝑣 , 𝑣 ∈ 𝑉 𝑐}, the hidden states of nodes in the final layer L
14: Pooling 𝐻𝐿

𝑖 and 𝐻𝐿
𝑐 to obtain the subgraph representations g𝑖 and g𝑐 based on Eqs. (5), (6), and (7)

15: Integrate subgraph representations g𝑖 and g𝑐 to gain the final graph representation g′ based on Eq. (4)
16: Compute the probability 𝑝𝑖 based on Eq. (8)
17: end for
18: Return 𝑃 =

{

𝑝𝑖
}

, 𝑖 = [0, 1, ..., 𝑁 − 1]

4.4. Effectiveness Analysis of Global Subgraph
In this section, we explore and analyze how the global subgraph can enhance answer prediction.
As shown in Fig. 3, our method constructs three kinds of chains for answer reasoning: LM, local subgraphs

𝐾𝐺1-𝐾𝐺5, and global subgraph 𝐾𝐺6. Traditionally, graph reasoning for each question-answer (QA) pair [𝑞; 𝑎𝑖]
is conducted over it local subgraph 𝐾𝐺𝑖, specifically seen in the middle box of Fig. 3. In this way, there exist no
edges among nodes of different answer candidates (yellow balls with different brightness in 𝐾𝐺1-𝐾𝐺5). Thereby, no
information has been passed among these candidate nodes and our newly constructed global subgraph 𝐾𝐺6 facilitates
this. Subgraph 𝐾𝐺6 includes the entity nodes of the question and of all candidates. In addition, we add edges for these
choice nodes (dashed double arrows in 𝐾𝐺6) in order to facilitate the flow of information between them. We use the
knowledge captured from 𝐾𝐺6 to supplement the knowledge learned from 𝐾𝐺1-𝐾𝐺5.

Specifically, in the example given in Fig. 3, we can see candidates “𝑎1. take time” and “𝑎5. make haste” are both
related to “time”, but the two candidates emphasize two almost opposing views respectively. It should be noted that
candidate “𝑎1” emphasizes spending time while candidate “𝑎5” emphasizes reducing time. So the gap of probability
values between the two candidates become larger after integrating the information in 𝐾𝐺6. Consequently, the probability
of candidate “𝑎1” is greater than that of candidate “𝑎5”, since “take time” seems more reasonable than “make haste”
in order to achieve harmony. Among the candidates, “𝑎2”, “𝑎3”, and “𝑎4” are more related to the question than the
other two candidates. Furthermore, “𝑎3” and “𝑎4” have more influence on “harmony” than “𝑎2”. This means that the
candidate “𝑎2” has the lowest probability of being selected. Finally, candidates “𝑎3” and “𝑎4” are the most relevant to
the question, and the probability value for candidate “𝑎3” is only slightly higher than that of candidate “𝑎4”.
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Although the contrasting information among choices facilitates the inference of the correct answer, it cannot be
captured only with the local subgraphs 𝐾𝐺1-𝐾𝐺5. Our global subgraph 𝐾𝐺6 can capture this information well by
passing messages among all candidate nodes.

LM[q; 𝑎 ]

[q; 𝑎 ]

[q; 𝑎 ]

[q; 𝑎 ]

[q; 𝑎 ]

[𝑞; 𝑎 ; ⋯ ; 𝑎 ]

q: If you want harmony, what is something you should try to do with the world?
𝑎 . take time          𝑎 . make noise          𝑎 . make war          𝒂𝟒. make peace (√)          𝑎 . make haste

Probabilities from 
LM + KG1 ~KG5

Probabilities from 
LM + KG1 ~KG6

0.1858 | 0.2295 | 0.1958 | 0.1863 | 0.2026

0.2102 | 0.1870 | 0.2106 | 0.2179 | 0.1743
KG6

KG1

KG2

KG3

KG4

KG5

[;] texts concatenation information fusion question nodes nodes of five choices
edge from question nodes to choice nodes edge from choice nodes to choice nodes
the change of probability of each choice

Fig. 3. The contribution of multiple subgraphs for commonsense question answering. In the subgraphs 𝐾𝐺1-𝐾𝐺6, we
do not show the intermediate nodes between the question nodes and the answer candidate/choice nodes. The two
dashed boxes on the right of the above figure depict the prediction results for each candidate before and after fusing the
information in 𝐾𝐺6, respectively.

4.5. Connection to Existing Related Methods
Connection to LM+KG based Methods. Joint reasoning with LM and KG has been widely implemented in

Multi-choice QA research and has gained prominent performance, such as QA-GNN (Yasunaga et al., 2021), JointLK
(Sun et al., 2022), GeaseLM (Zhang et al., 2022c), DRAGON (Yasunaga et al., 2022), et al. QA-GNN (Yasunaga et al.,
2021) considers the embedding of question-answer (QA) pair learnt from PLM as a new node, and utilizes it to achieve
information interaction and joint reasoning between LM and KG. JointLK (Sun et al., 2022)and GeaseLM (Zhang et al.,
2022c) implement the information bidirectional interaction between LM and KG in each layer of them. DRAGON
(Yasunaga et al., 2022) pretrains a deeply joint language-knowledge foundation model from text and KG at scale. Our
paper is most related to QA-GNN. However, QA-GNN mainly focuses on the problem of the mutually updating of the
LMs and GNNs and tries to unify the representations of these two different source models. Differently, we focus on the
strategy of knowledge subgraph construction and multiple chains of answer reasoning.

Connection to LM based Methods. To solve multiple choice question answering, some methods only rely on LMs
to get external knowledge. For example, Muppet (Aghajanyan et al., 2021) pre-finetunes PLM on around 50 datasets,
over 4.8 million total labeled examples between language model pre-training and fine-tuning so that the model can
learn more knowledge from many different tasks. To generate additional clues from the given context of a question,
GenMC ((Huang et al., 2022) employs an encoder-decoder generator. Subsequently, the question together with the
generated clues are fed into the shared encoder with the generator to predict the answer. Thus, there is a difference
between our method and these types of approaches. In our experiments, we apply both LM and KG simultaneously, and
we do not make comparisons between them due to the differences in their settings.

Other External Knowledge Utilization. Other sources of external information and sources can also be used to
improve the question answering systems, such as Wiktionary2 as well as more labeled datasets for question answers
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Besides the pretrained LMs and KGs, some other external information and sources can also be used to improve
the question answering systems, such as Wiktionary2 and more labeled question-answer datasets (Khashabi et al.,
2020; Aghajanyan et al., 2021). For example, DEKCOR (Xu et al., 2021d) extracts descriptions of question-answer
mentioned concepts from Wiktionary and encodes them together with the question, answer candidate and corresponding
concepts using ALBERT (Lan et al., 2019). KEAR (Xu et al., 2021c) introduces Wiktionary and labeled training data
(CommonsenseQA and 16 related QA datasets) to strengthen the capability of model’s answer prediction. UnifiedQA
(Khashabi et al., 2020) unifies the format of model input for diverse types question answering tasks (including MCQA
tasks) into a single one, to enable the model to learn the knowledge in all tasks. Our method is different with these
methods and we do not utilize any other external data except the LM and KG.

5. Experiments
We conduct experiments to validate the performance of our model MKSQA. The experiments are performed on a

device equipped with Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz and two GeForce RTX 2080Ti GPUs. All the
algorithms are implemented using Pytorch and trained with an RAdam optimizer (Liu et al., 2019a). In order to tune the
hyperparameters, development sets are used, and testing results are reported based on the best epoch of development
set. Additionally, we set the dimension (D=200) and the number of layers (L=5). We set the dimension (D=200) and
number of layers (L=5) of our module. To prevent model overfitting, dropout is applied to each layer with dropout rate
0.2. The parameters of the model are optimized by RAdam (Liu et al., 2019a), with batch size 128, gradient clippping
as 1.0, and learning rate as 1e-5, 1e-3 for the LM and GNN components respectively.

5.1. Datasets
We evaluate our model on two common datasets of multi-choice question answering: CommonsenseQA (CSQA)

(Talmor et al., 2019) and OpenBookQA (OBQA) (Mihaylov et al., 2018). For CSQA set, given that the official test
dataset can’t be accessed publicly, we use the IH data split (Lin et al., 2019) to perform the experiments. In the IH data
set, the development set is equal to the official one with 1221 question samples. A total of 1241 samples have been
selected from the official training set by Lin et al. (2019) for use as the IH test set, and the remaining samples are used
as the IH training set. In the case of OBQA, we use official data. Table 2 gives the experiment data scale and split of the
two datasets.

Table 2
The scale and split of experimental data. In our experiments, we use the IH data splits of CSQA (since the
official test set of CSQA is not publicly available) and the official data set (OF) of OBQA.

Dataset Source Train Set Dev Set Test Set Number of
Answer Candidates

CSQA OF 9741 1221 1140 5
CSQA IH 8500 1221 1241 5
OBQA OF 4957 500 500 4

5.2. Baselines
We compare our method with several baselines, including fine-tuned LM and LM+KG models. For fine-tuned

LM models, we use RoBERTa-Large (Liu et al., 2019b) which obtains better performance than BERT-Base LM and
BERT-Large LM (Feng et al., 2020). For LM+KG models, we compare our method with KagNet (Lin et al., 2019),
MHGRN (Feng et al., 2020), QA-GNN (Yasunaga et al., 2021), JointLK (Sun et al., 2022), GSC (Wang et al., 2021),
and GreaseLM (Zhang et al., 2022c) respectively.

Roberta-large: Roberta-large is a common baseline for multi-choice question answering tasks, which is directly
fine-tuned on the downstream tasks. It does not rely on any extra knowledge, such as knowledge graph (KG) or
generated facts (Liu et al., 2019b).

2https://www.wiktionary.org
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RN: Relation network (RN) is designed to capture the core common properties for relation reasoning (Santoro et al.,
2017).

KagNet: KagNet combines the GCN and LSTM modules. It reasons for answers based on reasoning path on the KG.

MHGRN: MHGRN utilizes KGs to achieve multi-hop multi-relation reasoning for multi-choice question answering
tasks (Feng et al., 2020).

QA-GNN: QA-GNN conducts a joint reasoning over the LM and KG in a form of pipeline, by integrating the QA pair
information into knowledge graphs as a new graph node (Yasunaga et al., 2021).

JointLK: JointLK performs a similar joint reasoning over the LM and KG, yet through a dense bidirectional attention
module (Sun et al., 2022).

GSC: GSC treats the KG as a simple edge counter and experimental results demonstate that it performs well (Wang
et al., 2021).

GreaseLM: GreaseLM fuses effectively the encoded representations from the LM and KG by passing them to a
multi-layer module for deep interaction operations (Zhang et al., 2022c).

It is important to note that the above methods only utilize one knowledge graph for reasoning for each QA pair
independently, in contrast with our method. They ignore the cross information among answer candidates.

Table 3
The test accuracy comparison with main baselines on the IH data split of CommonsenseQA dataset.

Methods IHtest-acc.(%)

RoBERTa-Large (Liu et al., 2019b) 68.69 (±0.56)
+KagNet (Lin et al., 2019) 69.01 (±0.76)
+MHGRN (Feng et al., 2020) 71.11 (±0.81)
+QA-GNN (Yasunaga et al., 2021) 73.41 (±0.92)
+GreaseLM (Zhang et al., 2022c) 74.20 (±0.40)
+JointLK (Sun et al., 2022) 74.43 (±0.83)
+GSC (Wang et al., 2021) 74.48 (±0.41)
+MKSQA (Ours) 74.53 (±0.52)

Table 4
The test accuracy comparison with main baselines on the official data of OpenBookQA dataset.

Methods OFtest-acc.(%)

RoBERTa-Large (Liu et al., 2019b) 64.80 (±2.37)
+RN (Santoro et al., 2017) 65.20 (±1.18)
+MHGRN (Feng et al., 2020) 66.85 (±1.19)
+GSC (Wang et al., 2021) 70.33 (±0.81)
+JointLK (Sun et al., 2022) 70.34 (±0.75)
+QA-GNN (Yasunaga et al., 2021) 70.58 (±1.42)
+MKSQA (Ours) 71.80 (±0.51)

5.3. Main Results
Tables 3 and 4 illustrate the main comparison results with our baselines. We can see our method outperforms all

baselines on both CommonsenseQA and OpenBookQA datasets. The improvement over QA-GNN shows that using
multiple knowledge subgraphs can benefit reasoning for question answering. Meanwhile, the standard deviations are
narrower than baselines’ on both datasets, which means the performance of our model is more stable 3.

3Although the AristoRoberta model has been proved performing better in multi-choice question answering tasks (Xu et al., 2021a; Yan et al.,
2021; Xu et al., 2021b). We do not evaluate our model based on it due to it is not publicly available.
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We make clear that there are methods on the official leaderboards perform better than our method, but the experiment
settings and external knowledge used are not totally same. For example, much larger pre-trained language models (such
as T5-11B) are employed (Khashabi et al., 2020; Huang et al., 2022), or ensemble systems are designed (Lan et al.,
2019; Xu et al., 2021d), or more extra facts are used to augment reasoning in addition to knowledge graphs (Xu et al.,
2021c,d), or generator and retrieval models are used to generate additional clues to enhance answer reasoning (GenMC
(Huang et al., 2022)). More details can be found in Section 4.5. The SOTA methods on the leaderboards: CPACE 4 on
CommonsenseQA and X-Reasoner 5 on OpenBookQA are undocumented. Therefore, we did not compare our model
with these two methods.

5.4. Ablation Studies
To better analyze the performance of our model, we conduct a series of ablation studies in terms of the effectiveness

of the global subgraph, gate design, and the size of subgraphs 𝐺𝑖 and 𝐺𝑐 , respectively.

MKSQA

MKSQA - global subgraph

MKSQA - local subgraph

LM w/o KG

74.53

73.33

70.13

68.69

CSQA

Accuracy

MKSQA

MKSQA - global subgraph

MKSQA - local subgraph

LM w/o KG

71.80

68.60

65.90

64.80

OBQA

Accuracy

Fig. 4. The effectiveness of local and global subgraphs on CSQA and OBQA. Method LM only uses a single pre-trained
LM (RoBERTa-Large) to predict the answer without an external knowledge graph. We set the parameter max_node_num
as 400 for subgraph 𝐺𝑖 and 500 for global subgraph 𝐺𝑐 .

Effectiveness of the global subgraph. To unambiguously study how the global subgraph 𝐺𝑐 acts on the
performance, we take away the local and global subgraphs from our method respectively to observe the impact
of the remaining parts on the answer prediction. As shown in Fig. 4, the results indicate that both subgraphs contribute
to the answer prediction. It is evident from this that 𝐺𝑐 is capable of providing extra information and views on the
questions and candidates, and contributing to the reasoning process. Constructing global subgraph 𝐺𝑐 normally relates
to more nodes compared with subgraph 𝐺𝑖. The limitation of global subgraph size controls the information extracted
from the external KG. Later on, a further analysis is conducted to analyze the influence of size limitation of each
subgraph.

Effectiveness of the gate mechanism. We carry out a series of exploratory experiments to evaluate different gate
designs for processing subgraph information. Specifically, we design six groups of experiments with different input
data as shown in Table 5. In Table 5, the result shows our model brings better performance when processing subgraph
information. It also shows there exist gaps between the model QA-GNN+𝐺𝑐 and our model MKSQA on both datasets,
which demonstrates that the simple combination of subgraphs 𝐺𝑖 and 𝐺𝑐 may not bring better performance.

Analysis for subgraph size. Constructing global subgraph 𝐺𝑐 normally relates to more nodes compared with
subgraph 𝐺𝑖. The limitation of global subgraph size controls the information extracted from the external KG. Fig. 5
shows the results of MKSQA under different size limitation of global subgraph, while the size of subgraph 𝐺𝑖 is fixed at
no more than 400 nodes. We can see a bigger global subgraph size brings benefits to the model at its early phase, since

4CPACE: https://www.tau-nlp.sites.tau.ac.il/csqa-leaderboard.
5X-Reasoner: https://leaderboard.allenai.org/open_book_qa/submission/cbf0f581jc49vlquuqjg.
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Table 5
The test accuracy for different gate mechanisms on datasets CSQA and OBQA with
the sizes of subgraph 𝐺𝑖 and 𝐺𝑐 as (400,500) respectively. Here, (g𝑖 ⊕ g𝑞𝑎

𝑖 ⊕ lm𝑞𝑎
𝑖 )

equals to QA-GNN method; (g𝑖 ⊕ g𝑐 ⊕ g𝑞𝑎
𝑖 ⊕ lm𝑞𝑎

𝑖 ) equals to (QA-GNN+𝐺𝑐) method,
and (𝑔𝑎𝑡𝑒(g𝑐) ⋅ g𝑖 ⊕ g𝑞𝑎

𝑖 ⊕ lm𝑞𝑎
𝑖 ) equals to our model MKSQA.

Methods CSQA OBQA

g𝑖 ⊕ g𝑞𝑎
𝑖 ⊕ lm𝑞𝑎

𝑖 73.33 68.60
g𝑖 ⊕ g𝑐 ⊕ g𝑞𝑎

𝑖 ⊕ lm𝑞𝑎
𝑖 73.81 69.20

𝑔𝑎𝑡𝑒(lm𝑞𝑎
𝑖 ) ⋅ g𝑖 ⊕ g𝑞𝑎

𝑖 ⊕ lm𝑞𝑎
𝑖 73.41 68.00

𝑔𝑎𝑡𝑒(g𝑞𝑎
𝑖 ) ⋅ g𝑖 ⊕ g𝑞𝑎

𝑖 ⊕ lm𝑞𝑎
𝑖 72.06 70.80

𝑔𝑎𝑡𝑒(g) ⋅ g𝑖 ⊕ g𝑞𝑎
𝑖 ⊕ lm𝑞𝑎

𝑖 72.76 68.40
𝑔𝑎𝑡𝑒(g𝑐) ⋅ g𝑖 ⊕ g𝑞𝑎

𝑖 ⊕ lm𝑞𝑎
𝑖 74.53 71.80
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Fig. 5. The results of MKSQA under different size limitation of global subgraph, while the size limitation of subgraph 𝐺𝑖 is
fixed at 400 nodes.

more information is introduced to the model. As the size of the global subgraph continues to grow, the performance
declines due to the irrelevant nodes involved.

Based on the results of this exploration, we limit the size of the subgraph 𝐺𝑖 and global subgraph 𝐺𝑐 (i.e., 400,
500). To ensure a fair comparison, we also fine tuned the size limitation of the subgraph 𝐺𝑖 in the method QA-GNN.
An illustration of the results can be found in Fig. 6. The original setting in QA-GNN is 200, and we can see the
performance is better when the maximum node number increased to 300 on CSQA dataset. However, it is still worse
than our method (i.e., QA-GNN: 73.65% VS MKSQA: 74.53%).

Table 6
The ablation experiments about the number of answer candidates given a question
on CSQA dataset. The numbers in round brackets indicate the degree of increasing
in terms of accuracy when the number of candidates is reduced by one.

Number of answer candidates IHtest-acc.(%)

5 74.53
4 76.15 (+1.62)
3 80.26 (+4.11)
2 88.24 (+7.98)
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Fig. 6. The results of QA-GNN under different size limitation of subgraph 𝐺𝑖.

5.5. Study on Size of Candidate Set
In this section, we further explore and study the influence of the size of answer candidate set. We conduct the

experiments on the number of answer candidates based on CSQA dataset and the results are shown in Table 6. In each
experiment, we first ensure the right answer is included, then randomly choose the required number of distractors from
the original candidate set to meet the requirements for the total number of answer candidates. The selected candidates
and the correct answer compose a new candidate set for the question. Based on the new set, we reconstructed our global
and local subgraphs and train MKSQA model. We can see MKSQA makes a big difference for the same questions
but with different size of candidates. It has been observed that the smaller the number of candidates, the higher the
prediction accuracy. There is a possibility that this is due to the fact that fewer candidates can make the elimination
strategy more effective.

6. Conclusion
In this paper, we propose a novel method MKSQA based on LM+KG, which is intended to perform a joint reasoning

among all candidates to answer multi-choice questions. We retrieve multiple subgraphs from an external knowledge
graph to establish multiple chains for reasoning, so that we can make full use of KGs and potential knowledge in
question and candidates. A shared GNN model is trained to learn the representations of the subgraphs and the QA pair,
and a gate mechanism is applied to promote information fusion between subgraphs. To the best of our knowledge,
MKSQA is the first work to consider multiple knowledge subgraphs, especially the global subgraph for Multiple Choice
Question Answering, and to take both local and global candidate information into account when reasoning for each
question-answer pair. In addition, our method achieved an exact match score of 74.53% on CSQA and 71.80% on
OBQA, which represents an outstanding performance. We believe our simple method could be served as a baseline for
the proposed task, and invoke better models in the future works.
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