
1

Towards Length-Versatile and Noise-Robust Radio
Frequency Fingerprint Identification

Guanxiong Shen, Junqing Zhang, Member, IEEE, Alan Marshall, Senior Member, IEEE,
Mikko Valkama, Fellow, IEEE, and Joseph Cavallaro, Fellow, IEEE

Abstract—Radio frequency fingerprint identification (RFFI)
can classify wireless devices by analyzing the signal distortions
caused by intrinsic hardware impairments. Recently, state-of-the-
art neural networks have been adopted for RFFI. However, many
neural networks, e.g., multilayer perceptron (MLP) and convo-
lutional neural network (CNN), require fixed-size input data.
In addition, many IoT devices work in low signal-to-noise ratio
(SNR) scenarios but the RFFI performance in such scenarios is
often unsatisfactory. In this paper, we analyze the reason why
MLP- and CNN-based RFFI systems are constrained by the
input size. To overcome this, we propose four neural networks
that can process signals of variable lengths, namely flatten-
free CNN, long short-term memory (LSTM) network, gated
recurrent unit (GRU) network, and transformer. We adopt data
augmentation during training which can significantly improve
the model’s robustness to noise. We compare two augmentation
schemes, namely offline and online augmentation. The results
show the online one performs better. During the inference, a
multi-packet inference approach is further leveraged to improve
the classification accuracy in low SNR scenarios. We take LoRa
as a case study and evaluate the system by classifying 10
commercial-off-the-shelf LoRa devices in various SNR conditions.
The online augmentation can boost the low-SNR classification
accuracy by up to 50% and the multi-packet inference approach
can further increase the accuracy by over 20%.

Index Terms—Internet of things, LoRa, LoRaWAN, device
authentication, radio frequency fingerprint, deep learning

I. INTRODUCTION

RADIO frequency fingerprint identification (RFFI) is a
promising technique for authenticating Internet of things

(IoT) devices. The analog front-end of wireless devices con-
sists of hardware components such as an oscillator, a mixer, a
power amplifier, etc. These components may have slight varia-
tions in their specifications from their standard values, known
as hardware impairments. These impairments are unique and

Manuscript received xxx; revised xxx; accepted xxx. Date of publication
xxx; date of current version xxx. The work was in part supported by
UK Royal Society Research Grants under grant ID RGS/R1/191241 and
National Key Research and Development Program of China under grant
ID 2020YFE0200600. This paper was presented in part at the Asilomar
Conference on Signals, Systems, and Computers 2021. The review of this
paper was coordinated by xxx. (Corresponding author: Junqing Zhang.)

G. Shen, J. Zhang and A. Marshall are with the Department of Elec-
trical Engineering and Electronics, University of Liverpool, Liverpool,
L69 3GJ, United Kingdom. (email: Guanxiong.Shen@liverpool.ac.uk; jun-
qing.zhang@liverpool.ac.uk; alan.marshall@liverpool.ac.uk)

M. Valkama is with the Department of Electrical Engineering, Tampere
University, 33720 Tampere, Finland (email: mikko.valkama@tuni.fi)

J. Cavallaro is with the Department of Electrical and Computer Engineering,
Rice University, Houston, USA. (email: cavallar@rice.edu)

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier xxx

can be used as identifiers, similar to how biometric fingerprints
are used for identification [1].

The RFFI system identifies wireless devices by analyz-
ing the characteristics of the received signals. Traditionally,
this is achieved by manual feature extraction algorithms in
combination with conventional machine-learning classification
models. The manually extracted features can be the estimated
hardware characteristics, such as the estimated CFO, IQ im-
balance, phase error [2]–[4], power amplifier non-linearity [5],
beam pattern [6], etc. They can also be the statistics of
the received signal, such as the kurtosis, spectral flatness,
and brightness [7], [8]. In addition to these, some domain
transformation results and variants of constellation figures can
serve as features as well, such as power density spectrum [9],
[10] and differential constellation trace figure (DCTF) [11].
For non-stationary signals such as LoRa, the received IQ
samples are often transformed into the time-frequency domain
for analysis. The well-known algorithms include short-time
Fourier transform (STFT) [12]–[15], wavelet transform [16],
and Hilbert-Huang transform [17]–[19]. These manually de-
signed features are extracted from the received signals and
then classified using support vector machine (SVM) or k-
nearest neighbor (kNN) models. However, the performance
of traditional RFFI approaches heavily depends on the quality
of the designed feature extraction algorithm, which requires
expert knowledge of specific communication protocols.

Recently, deep learning demonstrated remarkable perfor-
mance in RFFI [1], [12]–[15], [20]–[30]. Compared to conven-
tional RFFI protocols that manually design feature extraction
algorithms, deep learning-based approaches can automatically
extract discriminative features after sufficient training. Typ-
ically, a deep learning-based RFFI system uses a neural
network to directly classify received signals and predict the
device label. Previous studies demonstrated that deep learning-
based RFFI systems often outperform traditional approaches
and have attracted wide attention [30], [31].

Although deep learning-powered RFFI systems have shown
excellent identification performance, they are constrained by
the fixed input size problem. Previous studies use deep
neural networks (DNNs) [13], convolutional neural networks
(CNNs) [1], [27], [28], [32], or recurrent neural networks
(RNNs) [26] as intelligent engines. However, DNN and CNN
are designed for a specific input size. After the input size is
determined, they are unable to process signals with different
lengths, which conflicts with the fact that many wireless
signals are variable in length. To overcome this, some studies
use packet preambles/segments with a fixed length as model

2

inputs [13], [15], [26], [29], [32]. However, this rules out
the payload part, and the preamble length may not be fixed
in some wireless protocols, e.g., LoRa. The fixed-size input
problem of DNN and CNN has been indicated in previous
works but the reason and analysis are not given [28], [33].
Some studies have proposed slicing/splitting techniques, in
which the signal is split into equal-length segments and
then processed separately [23], [24], [27], [28]. However, the
use of slicing/splitting methods can lead to a decrease in
performance, which will be experimentally demonstrated in
the paper. In fact, sequential models such as RNN are able
to process variable-length inputs by design, but this important
property has never been exploited in previous RFFI studies.

Improving RFFI performance at low SNR is also challeng-
ing. The transmission power of IoT end nodes should be kept
as minimum as possible to reduce power consumption, but
this makes the received signals more vulnerable to noise. One
improvement approach is to design noise-resilient signal rep-
resentations as model inputs. For instance, Ozturk et al. found
that time-frequency data, i.e., spectrogram, is more resilient to
noise than time-series data [15]. Xing et al. proposed a stack-
ing algorithm for direct sequence spread spectrum (DSSS)
systems to improve signal quality [34]. Alternatively, we can
also obtain noise robustness by enhancing the capability of
the deep learning model. Data augmentation is a common
approach to train a channel-agnostic RFFI model [14], [27],
[33], which can also be leveraged to improve the model’s noise
robustness. However, specific analysis on the effect of data
augmentation in low SNR scenarios is still missing.

In this paper, we take LoRa/LoRaWAN, a well-known low
power wide area network (LPWAN) technology, as a case
study to investigate the above two challenges. The design
methodology is applicable to any RFFI system that needs
to tackle variable inputs and low SNR conditions and is not
limited to LoRa. LoRa defines the physical layer modulation
while LoRaWAN specifies higher layer protocols such as the
medium access control (MAC) layer and network architecture.
LoRaWAN leverages the adaptive data rate (ADR) mechanism
that enables end nodes to adjust transmission configurations on
the fly. This makes the LoRa preamble length variable. LoRa
transmission power is low, and the long-range communication
results in serious attenuation.

This paper designs RFFI protocols that can tackle input data
with variable lengths and proposes solutions for low SNR
scenarios. We investigate four neural network architectures
that are not constrained by the input size. We leverage data
augmentation to train noise-robust models and compare the
performance of different augmentation strategies. Finally, we
propose a multi-packet inference approach, which can signifi-
cantly improve classification accuracy in low SNR scenarios.
Experimental evaluation is carried out using 10 commercial-
off-the-shelf LoRa devices and a USRP N210 software-defined
radio (SDR) platform. Our contributions are highlighted as
follows:
• We summarize and discuss the input size constraint of

previously used neural networks, such as DNN and CNN.
Four length-versatile neural networks are proposed to
overcome the constraint, namely flatten-free CNN, long

short-term memory (LSTM) network, gated recurrent unit
(GRU) network and transformer. They are all capable
of classifying LoRa devices from variable-length pream-
bles. Transformer can achieve satisfactory performance
with minimum complexity. To the best knowledge of
the authors, this is the first time to explore how to
apply the state-of-the-art transformer model to RFFI. We
also compare their performance with the previously used
slicing technique, which is the state-of-the-art solution
for inputs with variable lengths. Our solution is shown to
perform better at low SNRs than the slicing technique.

• We investigate the effect of data augmentation on enhanc-
ing RFFI noise robustness. We compare the performance
of online, offline and no augmentation strategies. The
models trained with online augmentation outperform the
rest. Taking flatten-free CNN as an example, the model
trained with online augmentation, offline augmentation,
and no augmentation achieves accuracy of near 90%,
80%, and 10%, respectively, at 15 dB.

• We propose a lightweight multiple-packet inference
method that can significantly improve classification ac-
curacy in low SNR scenarios. Specifically, the accuracy
can be boosted from 20% to over 50% at 0 dB, and from
60% to about 90% at 10 dB.

In our previous work [35], we employed a transformer model
to process variable-length signals. We also investigated the
effect of data augmentation and multi-packet inference on
improving the low-SNR RFFI performance. In this paper, we
have significantly extended our contribution by studying three
additional length-versatile neural networks, namely flatten-free
CNN, LSTM and GRU. We also compare their performance
with the slicing/splitting technique.

The rest of this paper is organized as follows. Section II
presents the background and motivations. Section III intro-
duces the RFFI system in detail and Section IV shows the
architectures of the proposed length-versatile neural networks.
Section V provides experimental settings, results and discus-
sion. Section VI is the comparison with the slicing technique.
Section VII introduces related work and Section VIII finally
concludes the paper.

II. BACKGROUND AND MOTIVATIONS

A. LoRa/LoRaWAN Primer

LoRa uses chirp spread spectrum (CSS) as the physical layer
modulation technique. There are several basic up-chirps at the
beginning of a LoRa packet, named preambles. A baseband
LoRa preamble is given as

x′(t) = Aej(−πBt+π
B
T t

2) (0 ≤ t ≤ T), (1)

where A, B and SF denote signal amplitude, bandwidth and
spreading factor, respectively. T is the duration of a LoRa
symbol, given as

T =
2SF

B
, (2)

The bandwidth increases from 125 kHz to 500 kHz whenever
the SF ranges from 7 to 12. In our configuration, the entire
preamble part x(t) consists of eight repeating x′(t).

3

0 1
time (ms)

1.0

0.5

0.0

0.5

1.0
Am

pl
itu

de

0.0 0.5 1.0 1.5 2.0
time (ms)

1.0

0.5

0.0

0.5

1.0

0 1 2 3 4
time (ms)

1.0

0.5

0.0

0.5

1.0

(a) (b) (c)

Fig. 1: Waveform (in-phase branch) of a LoRa preamble under
different SF configurations. The preamble length increases
with SF. (a) SF = 7. (b) SF = 8. (c) SF = 9.

𝑇1

Device 1

Device 2

Device K

𝑇2

𝑇𝐾

5 dB

…

RFFI
Protocol

𝑟𝑖(𝑡)
Device
Label

Fig. 2: An RFFI system that can infer device labels from
variable-length signals.

The ADR mechanism is adopted in LoRaWAN, which
allows LoRa end-nodes to optimize the data rate/SF adaptively
according to the estimated SNR at the gateway. The SF will
increase whenever a LoRa end-node moves further away from
the gateway, in order to maintain a higher link budget [36]. As
formulated in (2), a higher SF leads to a longer LoRa symbol
duration. Therefore, the LoRaWAN ADR mechanism makes
the length of the preamble variable. Fig. 1 shows the waveform
of one preamble under different SF configurations.

B. RFFI

As shown in Fig. 2, an RFFI system involves K IoT devices
to be classified and a gateway as the authenticator. When the
gateway receives a packet from a device, the RFFI protocol
analyzes the received signal to infer from which end node the
packet is sent.

For a specific IoT device i, its signal x(t) is distorted by
hardware impairments and propagated in the wireless channel.
At the receiver side, the received signal ri(t) is mathematically
expressed as

ri(t) = h(t) ∗ Fi(x(t)) + v(t), (3)

where Fi(·) denotes the specific hardware distortion of de-
vice i, h(t) is the channel impulse response, v(t) is the additive
white Gaussian noise (AWGN) and ∗ denotes the convolution
operation. When the receiver captures a packet from device i,
it extracts the preamble part ri(t) and digitizes it, denoted as
ri[n]. Then an RFFI system is leveraged to accurately map
this ri[n] to the device label i, acting as a classifier. This is
formulated as

R(ri[n]) −→ i, (4)

where R(·) denotes operation of the RFFI system.

Feature maps
(𝐻1,𝑊1,𝐶)

Vector
(𝐻1 ×𝑊1× 𝐶)

Dense
Layers

Conv./Pool.
Layers

Probability

Feature maps
(𝐻2,𝑊2,𝐶)

Vector
(𝐻2 ×𝑊2× 𝐶)

Dense
Layers

Conv./Pool.
Layers

Probability

(a) (b)

Flatten Layer Flatten Layer

Fig. 3: Fixed input size of CNN. (a) The CNN is trained with
short signals. (b) The CNN cannot process longer signals as
the flattened vector is longer than the signals during training.

C. Motivation 1: Variable-length Signal v.s. Fixed Input
Length of Neural Networks

Many previous deep learning-based RFFI systems can only
process fixed-length inputs [13], [28], [31], [32]. However, the
length of ri(t) might be variable. For instance, the lengths of
LoRa preambles, i.e., Ti in Fig. 2, are different due to the
LoRaWAN ADR mechanism.

1) Input Constraints of DNN: DNN, also known as fully
connected neural network and multilayer perceptron (MLP),
is used to build RFFI protocols in some previous works [12],
[26], [31], which only accept fixed-length inputs.

The DNN is entirely composed of dense layers. A dense
layer defines a linear transformation between its input vector
x and output vector y, formulated as

y = xAT + b, (5)

where A and b denote the weights and biases learned during
training, respectively. The length of x must equal the number
of rows of AT to perform the multiplication. When an input
longer than x is fed into the DNN, the matrix and vector
dimension do not agree thus the first dense layer does not
work. Therefore, DNN is constrained by the input size.

2) Input Constraints of CNN: CNN is the most widely used
model in RFFI. Previous studies have indicated that CNN can
only handle signals of fixed size [23], [28], [33], but a proper
explanation is missing.

We show that CNN requires fixed-size input due to the
flatten and dense layers. CNN consists of two modules,
convolutional/pooling layers for feature extraction and dense
layers for classification. They are connected by a flatten layer
which converts several two-dimension (2D) feature maps to
a one-dimension (1D) vector. In fact, the feature extraction
module is not sensitive to input length. The convolutional
and pooling layers can process any size of the input but will
output feature maps of different sizes. This further makes the
flatten layer output a vector of different lengths. However, as
explained in Section II-C1, dense layers are designed for a
fixed input length, which constrains the input size of the entire
CNN.

4

Inference Stage

Channel Ind.
Spectrogram

Multi-packet
Inference

ෝ𝒑

Historical
Inferences Predicted

Label

…

Device to be
classified

K training
devices

Training Stage

Training
dataset

Preprocess

Preprocess
Training with

Aug.

Initial NN

Trained NN

Trained NN

Build NN

Fig. 4: System overview.

As in the CNN exemplified in Fig. 3(a), the input is first
processed by several convolutional/pooling layers for feature
extraction, and a (H1,W1, C) tensor is returned. This denotes
C feature maps of size (H1,W1), where C equals the number
of filters in the last convolutional layer. Since dense layers can
only process 1D vectors, a flatten layer is employed to convert
the (H1,W1, C) tensor to a vector containing (H1×W1×C)
elements. The dense layers then make predictions from it.

However, the designed CNN cannot process signals of
different lengths. As shown in Fig. 3(b), when a long signal is
an input into the CNN, the output of convolutional/pooling
layers is a (H2,W2, C) tensor. Note that H2 ≥ H1 and
W2 > W1 since the input is longer. The flatten layer then
converts the tensor to a vector with (H2×W2×C) elements,
which cannot be processed by the dense layers. Therefore,
the reason that CNN can only process fixed-size inputs is
that dense layers cannot process variable-length vectors output
from the flatten layer.

D. Motivation 2: Low SNR of Received Signals

RFFI systems should be able to identify wireless devices
from low SNR signals. The SNR of ri[n] in the decibel scale
is formulated as

γ = 10 log10

(RMS(h[n] ∗ Fi(x[n]))
RMS(v[n])

)
(6)

where RMS(·) returns the root mean square value. The IoT
devices are often configured with a low transmission power
to save energy, resulting in a low amplitude emitted signal
Fi(x[n]). Moreover, a long distance between the transmitter
and receiver results in significant attenuation, which affects the
magnitude of channel taps in h[n]. These two factors jointly
result in the low SNR of the received signal. It is necessary
and challenging to improve RFFI performance in such low
SNR scenarios.

III. RFFI PROTOCOL DESIGN

A. Overview

As shown in Fig. 4, the proposed RFFI protocol involves
two stages, namely training and inference. First, we collect
extensive labelled LoRa packets from K training devices,
preprocess and store them as the training dataset. We also build
a neural network that is capable of processing variable-size
data. Then its parameters are initialized and trained with the
collected dataset. Data augmentation is adopted during training

(a) (b) (c)

64

62 126 254

Fig. 5: Channel independent spectrograms under different SF
settings. (a) SF = 7. (b) SF = 8. (c) SF = 9.

to improve robustness to noise. Once the model training is
completed, it can classify the newly received LoRa packet,
i.e. the inference stage. The LoRa packet is preprocessed and
converted to a channel-independent spectrogram to mitigate
channel effects. Then it is fed into the trained neural network
and an inference is made. In low SNR scenarios, we can
leverage multiple packets for joint inference to obtain a more
accurate prediction.

B. Preprocessing

As shown in Fig. 4, the RFFI protocol needs to preprocess
the received LoRa packet in both the training and inference
stages. We use the same preprocessing algorithms as in [37].

We employ packet detection and synchronization algorithms
to capture LoRa transmissions. After that, we extract the
packet preamble part ri[n] for classification to prevent the
model from learning protocol-specific information. Then, car-
rier frequency offset (CFO) compensation is carried out as
CFO is sensitive to temperature variation and reduces the
system stability [12], [13]. Finally, the signal is normalized
by dividing its root mean square, to prevent the model from
classifying devices based on the received signal strength,
which is location dependent.

C. Channel-Independent Spectrogram

During both training and inference stages, the received IQ
samples ri[n] are converted to channel-independent spectro-
grams to mitigate channel effects [37]. Channel-independent
spectrogram is adopted because it has been demonstrated to
be resilient to channel variations [37].

LoRa uses CSS modulation whose frequency changes over
time. Hence STFT is used to reveal how the frequency varies
over time. A channel-independent spectrogram, Si, can be
further generated to mitigate channel effects, with each matrix
element Sik,m mathematically given as

Sik,m = 10 log10

(∣∣∣∣∣
∑N−1
n=0 ri[n]w[n−mR]e−j2π

k
N n∑N−1

n=0 ri[n]w[n− (m− 1)R]e−j2π
k
N n

∣∣∣∣∣
2)

for k = 1, 2, ..., N and m = 1, ...,M − 1, (7)

where w[n] is a rectangular window of length N , and R is the
hop size. In this paper, N and R are always set to 64 and 32,
respectively. Please refer to [37] for the detailed derivation of
the channel-independent spectrogram.

The LoRa ADR mechanism introduced in Section II affects
the size of the channel-independent spectrogram. As formu-
lated in (7), the generated channel independent spectrogram Si

5

is a N×(M−1) matrix. The height of the channel-independent
spectrogram, N , is equal to the length of the window function
w[n]. It can be configured to be the same for all SFs. However,
the width of Si, (M−1), is related to the length of the received
signal ri[n], which is formulated as

M − 1 =
8 · 2

SF

B ·
1
Ts
−N

R
, (8)

where Ts is the receiver sampling interval. As shown in the
formula, the width of Si depends on the SF configuration SF ,
receiver sampling interval Ts, and transmission bandwidth B.
Therefore, the LoRaWAN ADR mechanism results in channel-
independent spectrograms Si of different widths. Fig. 5 shows
channel-independent spectrograms when the SF is configured
to 7, 8, and 9, respectively. They have the same height but
different widths. When SF is set to 9, the channel-independent
spectrogram is about four times as wide as when SF is set to 7.
This demonstrates the input sizes of the neural network should
not be fixed in LoRa-RFFI. Moreover, it validates the need
for a neural network that can process channel-independent
spectrograms of variable size.

D. Collecting Training Dataset and Building Neural Networks

In the training stage, we collect a large number of LoRa
packets, preprocess them and generate a training dataset. Note
that we need to collect LoRa packets of various SF settings
for training so that the system can handle different SFs in the
inference stage. In this paper, we use SF 7, 8, and 9 as an
example.

We also build a neural network by defining its architecture
and initializing its parameters. The neural network architec-
tures are described in detail in Section IV. Note that all the
neural networks can accept variable-length inputs therefore
they can be trained with all the collected SF 7, 8 and 9
LoRa packets. After defining the architecture, the network
parameters are initialized.

E. Training with Augmentation

The parameters of the initial neural network can be trained
and updated with the collected training packets. We investigate
two training pipelines with different augmentation strategies,
namely offline and online augmentation, as shown in Fig. 6.
Data augmentation is usually employed in the training stage
of an RFFI protocol to increase the model robustness against
channel variations [14], [27], [33], [37]. In this paper, we
focus on different SNR scenarios, therefore an AWGN channel
model is employed for augmentation.

1) Offline Augmentation: The offline augmentation is per-
formed on the original training dataset. We pass the training
signals through AWGN channels with various SNR levels and
store the augmented ones as the augmented training dataset.
At the beginning of each epoch during training, a number of
samples are randomly selected from the augmented training
dataset to form a mini-batch. The IQ samples in the mini-batch
are then converted into channel-independent spectrograms and
fed into the initial neural network. The gradients are calculated
to update the neural network parameters. This update process

TrainingTraining

Meet stop
cond.?

End training

Y

Channel ind.
spectrogram

Calc. gradients
& update model

Mini-batch

Begin training

N

AWGN
channels

Meet stop
cond.?

End training

Y

Channel ind.
spectrogram

Calc. gradients
& update model

AWGN channels

Mini-batch

Begin training

N

Augmented
mini-batch

(a) (b)

Augmented
dataset

Training
dataset

Training
dataset

Trained NN Trained NN

Initial NN Initial NN

Fig. 6: Training pipelines. (a) Offline augmentation. (b) Online
augmentation.

continues until training stop conditions are met. In offline
augmentation, the number of noisy signals learned during
training equals the number of training samples. This can
be increased by replicating the training dataset but will be
bounded by the storage space limit.

2) Online Augmentation: Online augmentation is also
known as augmentation on-the-fly. Different from the offline
one, online augmentation is performed on the mini-batches. As
shown in Fig. 6, the mini-batch is selected from the training
dataset and fed into AWGN channels, obtaining an augmented
mini-batch. The other training steps remain the same as the
offline augmentation. In online augmentation, the model is
trained with (steps × mini-batch size) noisy signals.

The SNR used for both online and offline augmentation
should match the practical test scenarios. In the current study,
the SNR uniformly ranges from 0 dB to 40 dB when gener-
ating the AWGN channels.

F. Multi-packet Inference

Once the training is completed, the neural network can act
as a classifier to infer device identity. The received packet
is preprocessed and converted to the channel-independent
spectrogram. Then it is fed into the trained neural network
and the probability vector, p̂, will be returned by the softmax
layer. p̂ can be regarded as confidence levels over K devices.

Multi-packet inference refers to making decisions with
multiple LoRa transmissions. More specifically, we average
the inference p̂ with (Npkt−1) historical inferences to derive
a merged prediction p̂

′
, mathematically expressed as

p̂′ =
1

Npkt

Npkt∑
n=1

p̂n. (9)

6

where p̂n is the prediction from the nth packet. Then the
predicted label can be derived by selecting the index with the
highest probability, which is formulated as

label = argmax
k

(p̂′). (10)

According to the experimental results, the multi-packet in-
ference protocol is particularly effective in low SNR scenarios.
However, in high SNR scenarios, this protocol can be disabled
to save computing resources. A more detailed discussion can
be found in Section V.

IV. LENGTH-VERSATILE NEURAL NETWORKS

The neural network input is the channel-independent spec-
trogram introduced in Section III-C. As shown in Fig. 5, it
has different widths at different SF settings. In this section, we
will propose four models that can process channel-independent
spectrograms of any width, namely flatten-free CNN, LSTM,
GRU, and transformer.

A. Flatten-Free CNN

As discussed in Section II-C, CNN can only process fixed-
size inputs because dense layers cannot process the flattened
variable-length vectors. To overcome this, we replace the
flatten layer with a global average pooling 2D layer so that
the dense layers can always receive a fixed-length input. The
architecture of the proposed flatten-free CNN is shown in
Fig. 7(a), which refers to the design of ResNet [21] but is
more lightweight and optimized for the RFFI task. It consists
of ten convolutional layers, one max pooling layer, one global
average pooling 2D layer and one dense layer of K neurons
activated by the softmax function. Skip connections are em-
ployed. 1x1 convolution is performed on the output of the fifth
convolutional layer so that it can be added to the output of the
seventh convolutional layer. The output of all the convolutional
layers is zero-padded to be of the same dimension as the input
and then activated by the ReLU function.

The input channel independent spectrogram is fed into the
convolutional and max pooling layers for feature extraction,
and 128 feature maps of size (32, (M − 1)/2) are returned,
forming a (32, (M − 1)/2, 128) tensor. The first two dimen-
sions (32, (M−1)/2) depend on the size of the input channel-
independent spectrogram and the third dimension equals the
number of filters in the last convolutional layer.

A global average pooling 2D layer is leveraged to make
the input size to the dense layers independent of the channel-
independent spectrogram size. It is highlighted in orange in
Fig. 7(a). The global average pooling 2D layer calculates the
average value of each individual feature map and outputs a
fixed-length (128) vector that acts as the input to the dense
layer. In other words, the size of the dense layer input only
depends on the number of filters in the previous convolutional
layer. In this manner, regardless of the size of the input data,
the dense layer can always receive input of a fixed length
(128).

B. LSTM Network

RNN is another popular class of deep learning models,
which has been employed in some previous RFFI studies [13],
[14], [26], [30]. RNN is designed for sequential data, such
as speech and human language, whose length is naturally
variable. Therefore, RNN models are not constrained by input
size by design. However, this valuable property has never been
discussed and investigated in previous RFFI studies.

A popular variant of RNN is the LSTM network [38]. RNN-
structured neural networks can process variable-width channel-
independent spectrograms. The LSTM network is designed as
shown in Fig. 7(b), which consists of two 256-unit LSTM
layers, one global average pooling 1D layer and one softmax-
activated dense layer. The LSTM layers are configured to
return the full sequence instead of the last output. Similar to
convolutional layers, LSTM layers are insensitive to the input
size as well. Therefore, how to make the input of the dense
layer independent of the channel-independent spectrogram
width is the critical aspect of this design.

As shown in Fig. 7(b), the channel independent spectrogram
is processed by two LSTM layers and a tensor of shape (256,
M − 1) is obtained. The first dimension (features) equals the
unit number 256 of the second LSTM layer, and the second
dimension (timesteps) of the output tensor equals the width of
the channel-independent spectrogram, M − 1. Therefore, the
shape of the LSTM layers output (256, M − 1) varies with
the width of the input channel independent spectrogram.

A global average pooling 1D layer is leveraged to make
the dense layer input size constant, It is highlighted in green
in Fig. 7(b). It averages the tensor along the timesteps and
outputs a (256) vector. By this operation, the dense layers
always receive a (256) vector regardless of the width of the
input channel-independent spectrogram.

C. GRU Network

GRU network is another variant of RNN, which can also
handle variable-length inputs [39]. GRU units have fewer
parameters compared to LSTM units. The designed GRU
network is shown in Fig. 7(c), whose architecture is nearly
the same as the LSTM network, except that the LSTM layers
are replaced by the GRU layers. Similar to LSTM layers, the
GRU layers also output a (256, M − 1) tensor and the global
average pooling 1D layer can convert it to a fixed-length (256)
vector, regardless of the input size. Therefore, GRU networks
can handle variable-size inputs as well.

D. Transformer

In addition to RNN models, the transformer is another
state-of-the-art model for processing variable-length sequential
data [40]. As shown in Fig. 7(d), the proposed transformer for
RFFI consists of two multi-head attention (MHA) layers, two
point-wise feed-forward (point-wise FFN) layers, one global
average pooling 1D layer and a dense layer with softmax
activation. Similar to convolutional and LSTM layers, the
MHA layer and the point-wise FFN layer can also process
the input of any length. Hence the goal of transformer design
is to make the input of the dense layer a constant length.

7

5
x5

 C
o

n
v.

6

4

2
x2

 M
ax

Po

o
l

3
x3

 C
o

n
v.

6

4

3
x3

 C
o

n
v.

6

4

A
d

d

3
x3

 C
o

n
v.

6

4

3
x3

 C
o

n
v.

6

4

A
d

d

3
x3

 C
o

n
v.

1

2
8

3
x3

 C
o

n
v.

1

2
8

A
d

d

3
x3

 C
o

n
v.

1

2
8

3
x3

 C
o

n
v.

1

2
8

A
d

d

1x1 Conv.
128

G
lo

b
. A

vg
.

Po
o

l 2
D

D
en

se
, K

So
ft

m
ax

(128)(32, (M-1)/2, 128)

Position
Embed.

2
5

6
 L

ST
M

2
5

6
 L

ST
M

G
lo

b
. A

vg
.

Po
o

l 1
D

D
en

se
, K

So
ft

m
ax

(256)

64

M-1

64

M-1

2
5

6
 G

R
U

2
5

6
 G

R
U

G
lo

b
. A

vg
.

Po
o

l 1
D

D
en

se
, K

So
ft

m
ax

(256, M-1) (256)

64

M-1

(a)

(b) (c)

M
H

A
 L

ay
er

A
d

d
 &

N

o
rm

Po
in

t-
w

is
e

FF

N

A
d

d
 &

N

o
rm

M-1
(d)

64
M

H
A

 L
ay

er

A
d

d
 &

N

o
rm

Po
in

t-
w

is
e

FF

N

A
d

d
 &

N

o
rm

G
lo

b
. A

vg
.

Po
o

l 1
D

D
en

se
, K

So
ft

m
ax

ෝ𝒑

(64)

ෝ𝒑

ෝ𝒑

ෝ𝒑

…

(256, M-1)

…

(64, M-1)

…

Fig. 7: Architecture of the length-versatile neural networks. (a) Flatten-free CNN. (b) LSTM network. (c) GRU network. (d)
Transformer.

The model design refers to the encoder part proposed
in [40]. First, the position embedding is added to the input
channel independent spectrogram to enable the transformer
to learn the temporal correlations. The result of addition
is then fed into MHA and point-wise FFN layers for fea-
ture extraction. Skip connections and layer normalization are
leveraged to improve the feature learning ability. The output
of the second point-wise FFN layer is a tensor of shape
(M − 1, 64), which is exactly the same size as the input
channel independent spectrogram. As shown in Fig. 5, channel
independent spectrograms under different SF configurations
have the same height N = 64. Therefore, the tensor shape is
simplified to (64, M−1), which is affected by the input width.

Similar to the LSTM model, a global average pooling 1D
layer is used to average the tensor along timesteps. It converts
the (64, M − 1) tensor to a (64) vector that acts as the input
of the dense layer. The vector is fixed-length regardless of
the model input size, so the transformer can handle channel-
independent spectrograms with any SF configuration.

E. Summary

The critical design of a length-versatile classification neural
network is to make the input to the dense layer constant, which
is achieved by using global average pooling 2D/1D layers in
our schemes. The global average pooling 2D layer is used
in CNN models. It is placed after the convolutional layers
and converts the 3D tensor to a 1D vector by averaging each
individual feature map. The output size of the global average
pooling 2D layer only depends on the number of filters in the
last convolutional layer. The global average pooling 1D layer
is used in RNN and transformer models. It averages along
the time steps to convert the LSTM/GRU/FFN layer outputs
to a constant-length vector. With the help of global average
pooling layers, the dense layer always receives a fixed-length

Dragino LoRa shield

LoPy4

(a) (b)

Fig. 8: Experimental devices. (a) LoRa DUTs. (b) USRP
N210.

vector regardless of the model input size, thus being able to
process variable-length received signals ri(t).

The neural network architectures in Fig. 7 are designed
with reference to the famous deep learning models such as
ResNet [21] and transformer [40]. Their hyper-parameters,
e.g., filter number in CNN, and unit number in LSTM/GRU,
are optimized experimentally. A rule of thumb in building
neural networks is that the more parameters, the stronger the
learning ability. However, it is also worth noting this can
result in over-fitting especially when the training dataset is not
sufficiently large. Therefore, the optimization strategy used in
this work is to first build lightweight neural networks with the
minimum number of parameters and then gradually increase
them until the model performance stops improving.

V. EXPERIMENTAL EVALUATION

A. Experimental Settings

1) Data Collection Settings: 10 LoRa devices under test
(DUTs) are employed. As shown in Fig. 8(a), five of them
are LoPy4 and the others are Dragino LoRa shields, and

8

they all use Semtech SX1276 chipsets. All LoRa DUTs are
configured with a bandwidth of 125 kHz, a carrier frequency
of 868.1 MHz, and a 0.5 second transmission interval. As
shown in Fig. 8(b), a USRP N210 SDR platform is adopted
as the receiver, and its sampling rate is set to 250 kHz. The
LoRa DUTs and USRP N210 are placed half a meter apart
with no obstacle between them (line-of-sight). Data collection
was conducted device by device. Each LoRa DUT has the SF
set to 7, 8, and 9 in turn and 3,000 packets are transmitted per
SF.

2) Dataset Description: The experimental dataset contains
90,000 packets from 10 DUTs under three SF configurations.
75,000 of them (25,000 for each SF) are used for training
and the rest 15,000 packets (5,000 packets for each SF) are
for testing. The preamble part of packets with SF 7, 8, and 9
contains IQ samples with lengths of 2,048, 4,096, and 8,192,
respectively. The SNR of all the received packets is estimated
to be around 70 dB. Therefore, we treat them as noiseless
signals and add AWGN to them to simulate different SNR
conditions during the test.

3) Neural Network Training Details: The neural networks
are trained according to the pipelines described in Sec-
tion III-E. 10% training packets are randomly selected for
validation. Adam is used as the optimizer and the mini-batch
size is set to 32 [41]. A learning rate scheduler is adopted.
The initial learning rate is 0.001 and is reduced by a factor
of 0.2 every time the validation loss stops decreasing for five
epochs. The training stops when the validation loss plateaus
for ten epochs. The neural networks are implemented with the
Tensorflow and Keras libraries. The training was carried out
on a PC with an NVIDIA GeForce GTX 1660 GPU and an
Intel Core i7-9700 CPU.

B. Performance of Different SF Configurations

The proposed flatten-free CNN, LSTM, GRU, and trans-
former models can process channel-independent spectrograms
under different SF configurations (Fig. 5). Their classification
results are shown in Table I.

The four sub-figures demonstrate that there is no evident
performance gap among the four models. In addition to this,
there is also no significant difference when classifying signals
of different SFs.

In terms of accuracy, the RFFI performance is nearly perfect
when SNR is over 30 dB. The accuracy is reduced to 60%
at 10 dB, but the multi-packet inference can increase it to
90%, which will be shown in Fig. 10. Fig. 9 shows the
confusion matrices of the flatten-free CNN model at various
SNRs, which provides detailed classification results. Fig. 9(a)
indicates that the RFFI protocol cannot successfully classify
LoRa DUTs at 0 dB. The best case is DUT 4, where 218
out of the 500 packets are correctly classified. The worst case
is DUT 9, where only 17 out of 500 packets are correctly
classified. When the SNR is increased to 10 dB, as shown
in Fig. 9(b), we can see that all the predictions are in the
red boxes, which means the RFFI protocol is capable of
distinguishing the types of DUT. More specifically, a LoPy4
DUT will rarely be classified as a Dragino LoRa shield

since their characteristics are different. However, the system
still cannot classify LoRa DUTs from the same manufacturer
with high accuracy. In contrast, most DUTs can be correctly
classified at the higher 20 dB, while only the accuracy of
DUT 1 is unsatisfactory. This is probably because DUT 1 has
very similar characteristics to DUT 2 and DUT 4. Therefore,
misclassification can still occur even at 20 dB. At the nearly
ideal 40 dB shown in Fig. 9(e), the RFFI protocol achieves
perfect classification accuracy for all the DUTs.

C. Comparison of Augmentation Strategies

We trained each deep learning model (flatten-free CNN,
LSTM, GRU and transformer) using online, offline and no
augmentation strategies, respectively. For clarity, we only use
SF 7 signals during inference to compare the performance of
different augmentation strategies, since there is no significant
performance gap among different SF settings.

Their performance at different SNRs is shown in Table II.
The models trained with online augmentation outperform

the ones trained with offline augmentation since the models
can learn many more noisy signals during the online augmen-
tation compared to the offline one. We take the training of
the flatten-free CNN as an example. The training with online
augmentation stops after 140,000 steps. Therefore, the flatten-
free CNN has learned 140, 000 × 32 (mini-batch size) noisy
signals. In contrast, offline augmentation can only provide
75,000 (training set size) noisy signals to the flatten-free CNN
for learning. Although replicating the training dataset several
times may increase the number of noisy signals to the same
level as online augmentation, it will significantly increase the
disk storage size and memory requirements. In our case, when
using offline training, we need to replicate the dataset around
60 times to match the number of noisy signals provided during
online training, which is unaffordable for a large-scale dataset.
It can also be observed that the models trained without any
augmentation perform well at high SNRs but poorly at low
SNRs. This demonstrates data augmentation must be employed
during training, otherwise, the RFFI protocol may not work
even at 20 dB.

Online augmentation requires more training time than the
offline one. Take the training of flatten-free CNN as an
example, online augmentation costs 200 minutes, while offline
costs only 70 minutes. The increasing training time can be
tolerated as the neural network can be trained on a powerful
workstation or cloud server and then deployed to the gateway.

D. Effect of Multi-Packet Inference

The proposed multi-packet inference approach can signif-
icantly improve RFFI performance, particularly in low SNR
scenarios. The effect of packet number on classification accu-
racy is studied at four different SNRs, and the results are given
in Fig. 10. As shown in the figure, the multi-packet inference
can increase the classification accuracy of the four models by
over 20% at 0 dB, 5 dB, and 10 dB, while obtaining marginal
improvement at 20 dB. This demonstrates that multi-packet
inference can be adopted in low SNR scenarios to effectively
improve system performance. Furthermore, we can find that

9

TABLE I: Classification accuracy under different SFs. The models are trained with SF 7, 8, and 9 signals using online
augmentation. Inference with SF 7, 8, and 9 signals without the use of the multi-packet protocol.

Model SF 0 dB 4 dB 8 dB 12 dB 16 dB 20 dB 24 dB 28 dB 32 dB 36 dB 40 dB

Flatten-Free CNN

SF 7 22.10% 35.78% 56.60% 75.96% 87.06% 91.52% 94.22% 97.50% 99.26% 99.86% 100.00%

SF 8 20.44% 35.40% 53.96% 74.64% 90.86% 98.12% 98.92% 99.68% 100.00% 100.00% 100.00%

SF 9 18.68% 34.28% 56.64% 78.86% 91.12% 95.16% 97.56% 98.86% 99.92% 99.98% 99.98%

LSTM

SF 7 24.02% 40.00% 61.22% 78.58% 88.24% 92.12% 94.62% 97.52% 99.34% 99.96% 99.98%

SF 8 23.98% 38.66% 58.98% 78.38% 93.64% 98.66% 99.44% 99.78% 99.98% 100.00% 100.00%

SF 9 24.14% 40.90% 65.96% 85.06% 92.94% 95.72% 97.66% 98.84% 99.82% 99.96% 99.98%

GRU

SF 7 23.82% 38.56% 58.42% 77.04% 87.38% 91.54% 94.28% 97.28% 99.38% 99.90% 99.96%

SF 8 22.88% 34.56% 55.08% 75.36% 91.28% 97.88% 99.26% 99.78% 100.00% 100.00% 100.00%

SF 9 22.08% 37.48% 62.10% 81.52% 91.52% 95.28% 96.64% 98.44% 99.44% 99.90% 99.94%

Transformer

SF 7 21.98% 35.86% 56.22% 76.46% 87.78% 92.56% 94.64% 97.88% 99.26% 99.84% 99.92%

SF 8 21.52% 34.14% 51.60% 73.96% 90.98% 97.74% 99.38% 99.78% 100.00% 100.00% 100.00%

SF 9 22.08% 37.06% 61.90% 81.22% 91.58% 95.02% 96.92% 98.72% 99.54% 99.96% 99.98%

1 2 3 4 5 6 7 8 9 10
Predicted label

1
2

3
4

5
6

7
8

9
10

Tr
ue

 la
be

l

73 71 56 125 45 29 28 38 8 27
74 98 58 89 59 19 31 50 6 16
46 74 75 83 94 25 22 45 12 24
88 42 28 218 47 10 23 23 4 17
54 67 70 86 87 29 22 47 15 23
28 30 29 25 48 141 46 99 13 41
38 27 20 52 34 59 103 91 19 57
44 25 14 36 38 65 41 169 10 58
27 35 29 34 51 82 57 112 17 56
21 33 19 48 44 79 68 97 12 79

(a)

1 2 3 4 5 6 7 8 9 10
Predicted label

1
2

3
4

5
6

7
8

9
10

Tr
ue

 la
be

l

147 185 33 124 10 0 0 1 0 0
70 365 52 7 6 0 0 0 0 0
5 56 293 11 134 0 0 0 1 0
98 5 1 395 1 0 0 0 0 0
4 8 112 14 358 1 0 1 1 1
0 1 0 0 0 448 9 13 22 7
2 0 0 0 0 13 399 16 46 24
1 0 0 0 0 6 4 462 8 19
2 2 3 0 1 65 63 70 229 65
1 0 0 0 0 36 51 64 81 267

(b)

1 2 3 4 5 6 7 8 9 10
Predicted label

1
2

3
4

5
6

7
8

9
10

Tr
ue

 la
be

l

144 252 0 104 0 0 0 0 0 0
15 485 0 0 0 0 0 0 0 0
0 0 488 0 12 0 0 0 0 0
15 0 0 485 0 0 0 0 0 0
0 0 0 0 500 0 0 0 0 0
0 0 0 0 0 500 0 0 0 0
0 0 0 0 0 0 500 0 0 0
0 0 0 0 0 0 0 500 0 0
0 0 0 0 0 0 2 14 477 7
0 0 0 0 0 0 0 0 1 499

(c)

1 2 3 4 5 6 7 8 9 10
Predicted label

1
2

3
4

5
6

7
8

9
10

Tr
ue

 la
be

l

430 59 0 11 0 0 0 0 0 0
2 498 0 0 0 0 0 0 0 0
0 0 500 0 0 0 0 0 0 0
1 0 0 499 0 0 0 0 0 0
0 0 0 0 500 0 0 0 0 0
0 0 0 0 0 500 0 0 0 0
0 0 0 0 0 0 500 0 0 0
0 0 0 0 0 0 0 500 0 0
0 0 0 0 0 0 0 0 500 0
0 0 0 0 0 0 0 0 0 500

(d)

1 2 3 4 5 6 7 8 9 10
Predicted label

1
2

3
4

5
6

7
8

9
10

Tr
ue

 la
be

l

499 1 0 0 0 0 0 0 0 0
0 500 0 0 0 0 0 0 0 0
0 0 500 0 0 0 0 0 0 0
0 0 0 500 0 0 0 0 0 0
0 0 0 0 500 0 0 0 0 0
0 0 0 0 0 500 0 0 0 0
0 0 0 0 0 0 500 0 0 0
0 0 0 0 0 0 0 500 0 0
0 0 0 0 0 0 0 0 500 0
0 0 0 0 0 0 0 0 0 500

(e)

Fig. 9: Confusion matrices at various SNRs using flatten-free CNN model. The model is trained with SF 7, 8, and 9 signals
using online augmentation. Inference with SF 7 signals without the use of the multi-packet method. Each device has 500
packets to be classified. (a) The overall accuracy is 21.20% when the SNR is 0 dB after adding artificial noise. (b) The overall
accuracy is 67.26% when the SNR is 10 dB after adding artificial noise. (c) The overall accuracy is 91.56% when the SNR
is 20 dB after adding artificial noise. (d) The overall accuracy is 98.52% when the SNR is 30 dB after adding artificial noise.
(e) The overall accuracy is 99.98% when the SNR is 40 dB after adding artificial noise.

TABLE II: Comparison among augmentation strategies. The models are trained with SF 7, 8, and 9 signals using online,
offline, and no augmentation strategies, respectively. Inference with SF 7 signals without the use of the multi-packet inference
method.

Model Aug. 0 dB 4 dB 8 dB 12 dB 16 dB 20 dB 24 dB 28 dB 32 dB 36 dB 40 dB

Flatten-Free CNN

Online 22.10% 35.78% 56.60% 75.96% 87.06% 91.52% 94.22% 97.50% 99.26% 99.86% 100.00%

Offline 14.56% 23.46% 40.74% 63.40% 79.96% 89.32% 91.92% 92.76% 94.36% 95.80% 96.54%

No Aug. 9.96% 10.04% 9.98% 10.22% 10.68% 13.90% 31.66% 60.98% 82.78% 93.34% 96.88%

LSTM

Online 24.02% 40.00% 61.22% 78.58% 88.24% 92.12% 94.62% 97.52% 99.34% 99.96% 99.98%

Offline 15.76% 23.50% 41.16% 63.08% 78.10% 86.54% 90.54% 94.26% 96.44% 98.08% 98.98%

No Aug. 10.44% 11.60% 12.48% 15.46% 24.50% 37.08% 50.44% 63.58% 77.70% 90.26% 97.08%

GRU

Online 23.82% 38.56% 58.42% 77.04% 87.38% 91.54% 94.28% 97.28% 99.38% 99.90% 99.96%

Offline 15.10% 23.40% 38.86% 60.38% 78.94% 87.30% 90.80% 93.64% 95.36% 97.24% 97.00%

No Aug. 10.78% 12.02% 15.30% 21.30% 34.68% 51.62% 67.26% 80.78% 90.96% 96.50% 98.98%

Transformer

Online 21.98% 35.86% 56.22% 76.46% 87.78% 92.56% 94.64% 97.88% 99.26% 99.84% 99.92%

Offline 14.94% 23.00% 37.76% 57.44% 75.44% 85.64% 90.20% 90.98% 91.04% 90.78% 90.94%

No Aug. 10.40% 10.50% 11.14% 14.08% 23.10% 35.66% 50.04% 70.04% 87.10% 95.60% 99.12%

the classification accuracy gradually improves as the number
of packets increases. However, the improvement is relatively
limited after the number of packets exceeds 10. A trade-off
should be considered as involving more packets also leads to

higher complexity and requires more space to store historical
inferences.

10

0 10 20

Number of packets used in inferences (N
pkt

)

0

10

20

30

40

50

60

70

80

90

100

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y
 (

%
)

Flatten-free CNN 0 dB

Flatten-free CNN 5 dB

Flatten-free CNN 10 dB

Flatten-free CNN 20 dB

(a)

0 10 20

Number of packets used in inferences (N
pkt

)

0

10

20

30

40

50

60

70

80

90

100

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y
 (

%
)

LSTM 0 dB

LSTM 5 dB

LSTM 10 dB

LSTM 20 dB

(b)

0 10 20

Number of packets used in inferences (N
pkt

)

0

10

20

30

40

50

60

70

80

90

100

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y
 (

%
)

GRU 0 dB

GRU 5 dB

GRU 10 dB

GRU 20 dB

(c)

0 10 20

Number of packets used in inferences (N
pkt

)

0

10

20

30

40

50

60

70

80

90

100

C
la

s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y
 (

%
)

Transformer 0 dB

Transformer 5 dB

Transformer 10 dB

Transformer 20 dB

(d)

Fig. 10: Effect of multi-packet inference method. Each model
is trained with SF 7, 8, and 9 signals using online augmen-
tation. Inference with SF 7 signals. (a) Flatten-free CNN. (b)
LSTM network. (c) GRU network. (d) Transformer.

TABLE III: Model complexity information.

Neural network Inference time (SF 7/ 8/ 9) Parameters

Flatten-free CNN 28.3/ 32.0/ 40.3 ms 675,594

LSTM network 30.4/ 34.7/ 42.8 ms 856,586

GRU network 27.7/ 31.5 / 36.2 ms 644,618

Transformer 28.7/ 30.3/ 33.8 ms 348,938

Slicing CNN 31.3/ 33.9/ 46.4 ms 797,194

E. Complexity Analysis

We investigate the model complexity in terms of inference
time and the number of parameters. Inference time determines
the latency of the system, which is an important metric for
RFFI. The number of parameters affects the size of the neural
network. Larger models require more storage and memory for
the embedded platform. As shown in Table III, their inference
time on SF 7 signals is not much different. The difference
is at most 2 ms. However, the gap becomes apparent when
classifying the longer SF 9 signals. The transformer costs
33.8 ms, which is 9 ms faster than the slowest LSTM network.
Note that the inference time is limited by the deep learning
library used and can be further accelerated. The transformer is
also the most lightweight model, with only 348,938 learnable
parameters.

The multi-packet inference protocol requires additional stor-
age and computing resources. We need to store (Npkt − 1)
historical inferences p̂ for each of the K LoRa devices. There-
fore, the historical inference database contains K×(Npkt−1)
probability vectors. As each vector contains K probabilities,

(a) (b) (c)

8 slices 16 slices 32 slices

Fig. 11: Sliced channel independent spectrograms of LoRa
preambles. (a) SF 7 preambles are split into eight slices. (b)
SF 8 preambles are split into 16 slices. (c) SF 9 preambles
are split into 32 slices.

the system only needs to store K× (K× (Npkt−1)) floating-
point numbers in total. As described in (9), the multi-packet
inference only requires an additional averaging operation,
which is low-complexity.

F. Results Summary

1) Comparison Among Neural Networks: The transformer
can achieve competitive performance with the least parameters
and the shortest inference time. Fig. I shows that the proposed
four models are similar in classification accuracy when classi-
fying signals of different SFs. Table III demonstrates that the
transformer is the most lightweight model and its inference
speed is also the fastest. Therefore, the transformer is the
recommended neural network considering both performance
and complexity.

2) Solutions to Low SNR RFFI: The RFFI performance in
low SNR scenarios can be improved in two ways. One is ap-
plying online augmentation during training to increase model
noise robustness, and another is merging the results of multiple
packets/observations during inference. Online augmentation
increases the training overhead which can be resolved by train-
ing on a cloud server. Using multi-packet inference is effective
in low SNR scenarios, which can significantly improve the
accuracy by over 20%.

VI. COMPARISON WITH SLICING TECHNIQUE

An alternative solution to the variable-length input problem
is the slicing/splitting technique, which is employed in [23],
[24], [27], [28]. In this section, we compare the performance
of the slicing/splitting technique with our proposed length-
versatile neural networks.

A. Slicing Technique

Slicing/splitting is to divide the received signal into shorter
slices/segments with equal length. During the inference, the
CNN infers from each slice individually and the softmax
outputs of all the slices are averaged to predict the label. In
this scheme, the CNN always accepts equal-length slices as
inputs so that the variable-length problem can be avoided.

In our implementation, we divide the preamble part of each
LoRa packet into several slices of 256 IQ samples and then
convert them to (64, 6) channel-independent spectrograms as
CNN inputs. The SF 7, 8, and 9 signals contain 2,048, 4,096,
and 8,192 IQ samples, respectively. Therefore, SF 7 preamble
is split into eight slices, each corresponding to one LoRa SF

11

7 preamble. SF 8 and SF 9 preamble parts are divided into
16 and 32 slices, respectively. Each SF 8 slice contains half a
LoRa SF 8 preamble and each SF 9 slice contains a quarter of
a LoRa SF 9 preamble. The slices can be viewed in Fig 11.

We designed an ordinary CNN with a flatten layer to process
the slices, this is termed the slicing CNN, whose structure
is shown in Fig. 12. The slicing CNN has a flatten layer,
but in the flatten-free CNN, it is replaced with a global
average pooling 2D layer, which is the only difference between
these two architectures. Therefore, we can assume they have
similar learning abilities. The slicing CNN is trained using
exactly the same settings as the flatten-free CNN, including
optimizer, learning rate, mini-batch size and stop conditions,
etc. Therefore, a fair comparison can be conducted.

B. Performance Comparison

The performance comparison between the slicing CNN
and the flatten-free CNN is shown in Fig. 13. The flatten-
free CNN performs better than the slicing CNN in all three
SF configurations. Although both of them can achieve near-
perfect performance when SNRs are above 30 dB, the accuracy
of flatten-free CNN is about 10% higher than the slicing
technique at low SNRs. The reason for this performance gap
will be discussed in Section VI-C.

We also analyzed the complexity of the slicing CNN, which
is included in Table III. It has 797,194 parameters in total.
The inference time (sum of all slices) of SF 7, 8 and 9
signals is 31.3, 33.9 and 46.4 ms, respectively. Compared to
the complexity of the flatten-free CNN shown in Table III, the
slicing CNN requires more storage space and longer inference
time.

C. Characteristic Differences Among Preambles

In this section, we discuss the reason for the performance
gap between the slicing and our proposed length-versatile
techniques. We experimentally show that the characteristics of
the eight LoRa preambles are different from each other, even
though their payloads are the same. Therefore, when using
length-versatile techniques, the input to the flatten-free CNN
contains all eight preambles with different characteristics.
Then the flatten-free CNN can learn the correlation among
the eight feature-different preambles. In contrast, the slicing
technique only processes a short section of the signal each
time.

We take SF 7 signals as an example to show that the eight
preambles in a LoRa packet are different in characteristics. As
shown in Fig. 11, the SF 7 channel independent spectrogram
is splitting into eight slices, each slice corresponding to a
LoRa preamble. We then trained eight CNNs with preambles
in different positions. More specifically, CNN 1 is trained with
the first preamble of all the training packets, while CNN 2 is
trained with the second preamble, and so forth. Then we use
the preamble in different positions to test the eight trained
CNN models. The classification results are given in Table IV.

The results demonstrate that the CNN trained with pream-
bles in a specific position cannot accurately classify the
preambles in other positions. For instance, the CNN 1 model

TABLE IV: Characteristic differences among preambles.

Test Preamble

1st 2nd 3rd 4th 5th 6th 7th 8th

CNN 1 100% 49% 47% 41% 39% 38% 40% 45%

CNN 2 50% 93% 93% 93% 79% 54% 51% 54%

CNN 3 45% 87% 93% 92% 90% 82% 66% 66%

CNN 4 50% 60% 89% 92% 94% 93% 77% 74%

CNN 5 40% 58% 92% 90% 92% 93% 92% 86%

CNN 6 54% 69% 86% 76% 84% 91% 92% 93%

CNN 7 60% 71% 70% 77% 83% 85% 92% 93%

CNN 8 67% 77% 80% 73% 73% 76% 84% 91%

is trained with the first preamble and it only achieves 49%
accuracy in classifying the second preamble, which reveals
that the first preamble has different characteristics from the
second one.

Fig. 14 shows the waveform of the first and second LoRa
preambles. They are almost identical except for the part in the
purple box. The start of the first preamble shows a gradual
increase in signal amplitude. We presume this is the signal
transient part that is generated when the hardware components
are powered on, which serves as features in traditional RFFI
techniques [10], [42]. Typically, these transient-based meth-
ods require equipment with a high sampling rate to collect
sufficient IQ samples of the transient part. However, Fig. 14
demonstrates that the relatively low-cost USRP SDR can cap-
ture it as well. The first preamble contains the signal transient
part, which differs from the other preambles. Therefore, as
shown in Table IV, the CNN 1 that is trained with the first
preamble does not work well on the others.

Even though the difference from the second to the eighth
preamble cannot be observed directly from the waveform,
it can be revealed by the classification results in Table IV.
We highlight the accuracy above 90% and find that they
are distributed along the diagonal. This demonstrates that
the characteristics of the preamble in different positions are
different.

The above discussion shows that the characteristics of
slices (preambles) are different even though each preamble is
modulated with the same payload. Therefore, the flatten-free
CNN can learn the difference/correlation among them since
it processes eight preambles simultaneously. In contrast, the
slicing CNN only receives a short slice each time, and all per-
slice inferences are merged by simply averaging. This disables
the CNN’s ability to learn the correlation among feature-
different preambles, which results in the worse performance
of the slicing CNN shown in Fig. 13.

VII. CONCLUSION

The research reported here aims to tackle the variable input
size and low SNR problems in deep learning-based RFFI
protocols. We use LoRa as a case study because it suffers from
both of these challenges. LoRaWAN ADR mechanism results
in the variable lengths of LoRa preambles, which requires
the model to be able to process inputs of different lengths.
Therefore, we present four length-versatile neural networks,
namely flatten-free CNN, LSTM, GRU, and transformer. LoRa

12

5
x5

 C
o

n
v.

6

4

2
x2

 M
ax

Po

o
l

3
x3

 C
o

n
v.

6

4

3
x3

 C
o

n
v.

6

4

A
d

d

3
x3

 C
o

n
v.

6

4

3
x3

 C
o

n
v.

6

4

A
d

d

3
x3

 C
o

n
v.

1

2
8

3
x3

 C
o

n
v.

1

2
8

A
d

d

3
x3

 C
o

n
v.

1

2
8

3
x3

 C
o

n
v.

1

2
8

A
d

d

1x1 Conv.
128

Fl
at

te
n

La

ye
r

ෝ𝒑

D
en

se
, K

So
ft

m
ax

64

6

(32×3×128)(32, 3, 128)

Fig. 12: Architecture of the slicing CNN.

0 5 10 15 20 25 30 35 40

SNR (dB)

0

10

20

30

40

50

60

70

80

90

100

C
la

s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y
 (

%
)

Flatten-free CNN SF 7

Flatten-free CNN SF 8

Flatten-free CNN SF 9

Slicing CNN SF 7

Slicing CNN SF 8

Slicing CNN SF 9

Fig. 13: Performance comparison between slicing CNN and
flatten-free CNN

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (ms)

0.2

0.0

0.2

Am
pl

itu
de

1st preamble 2nd preamble 3rd preamble

Transient

Fig. 14: The first three preambles in a LoRa packet. The
waveform in the purple box is the signal transient part.

is an LPWAN technology whose received signals may have
low SNR, making LoRa-RFFI challenging. Data augmentation
can be an efficient approach to boost model noise robustness.
We compare the performance of online, offline, and no aug-
mentation strategies and found that online augmentation out-
performs the others. Furthermore, we leverage a multi-packet
inference approach that can considerably improve the system
performance in low SNR scenarios. Experiments involving 10
LoRa devices and a USRP N210 SDR were carried out for
evaluation. The results show that online augmentation and
multi-packet inference are effective in improving the RFFI
performance in low SNR conditions.

REFERENCES

[1] J. Zhang, R. Woods, M. Sandell, M. Valkama, A. Marshall, and
J. Cavallaro, “Radio frequency fingerprint identification for narrowband
systems, modelling and classification,” IEEE Trans. Inf. Forensics Secu-
rity, vol. 16, pp. 3974–3987, 2021.

[2] Y. Shi and M. A. Jensen, “Improved radiometric identification of
wireless devices using MIMO transmission,” IEEE Trans. Inf. Forensics
Security, vol. 6, no. 4, pp. 1346–1354, 2011.

[3] V. Brik, S. Banerjee, M. Gruteser, and S. Oh, “Wireless device identifi-
cation with radiometric signatures,” in Proc. Int. Conf. Mobile Comput.
Netw. (MobiCom), San Francisco, CA, USA, Sep. 2008, pp. 116–127.

[4] Z. Zhuang, X. Ji, T. Zhang, J. Zhang, W. Xu, Z. Li, and Y. Liu, “Fbsleuth:
Fake base station forensics via radio frequency fingerprinting,” in Proc.
2018 ACM Asia Conf. Comput. Commun. Secur., 2018, pp. 261–272.

[5] A. C. Polak, S. Dolatshahi, and D. L. Goeckel, “Identifying wireless
users via transmitter imperfections,” IEEE J. Sel. Areas Commun.,
vol. 29, no. 7, pp. 1469–1479, 2011.

[6] S. Balakrishnan, S. Gupta, A. Bhuyan, P. Wang, D. Koutsonikolas,
and Z. Sun, “Physical layer identification based on spatial–temporal
beam features for millimeter-wave wireless networks,” IEEE Trans. Inf.
Forensics Security, vol. 15, pp. 1831–1845, 2019.

[7] K. Joo, W. Choi, and D. H. Lee, “Hold the door! fingerprinting your
car key to prevent keyless entry car theft,” in Proc. Netw. Distrib. Syst.
Security Symposium (NDSS), Virtual Conference, Feb. 2020.

[8] U. Satija, N. Trivedi, G. Biswal, and B. Ramkumar, “Specific emitter
identification based on variational mode decomposition and spectral
features in single hop and relaying scenarios,” IEEE Trans. Inf. Forensics
Security, vol. 14, no. 3, pp. 581–591, 2018.

[9] X. Wang, P. Hao, and L. Hanzo, “Physical-layer authentication for wire-
less security enhancement: Current challenges and future developments,”
IEEE Commun. Mag., vol. 54, no. 6, pp. 152–158, 2016.

[10] B. Danev, T. S. Heydt-Benjamin, and S. Capkun, “Physical-layer identi-
fication of RFID devices.” in Proc. USENIX Security Symposium, 2009,
pp. 199–214.

[11] L. Peng, A. Hu, J. Zhang, Y. Jiang, J. Yu, and Y. Yan, “Design of a
hybrid RF fingerprint extraction and device classification scheme,” IEEE
Internet Things J., vol. 6, no. 1, pp. 349–360, 2018.

[12] G. Shen, J. Zhang, A. Marshall, L. Peng, and X. Wang, “Radio frequency
fingerprint identification for LoRa using spectrogram and CNN,” in Proc.
IEEE Int. Conf. Comput. Commun. (INFOCOM), Virtual Conference,
May 2021.

[13] ——, “Radio frequency fingerprint identification for LoRa using deep
learning,” IEEE J. Sel. Areas Commun., vol. 39, no. 8, pp. 2604–2616,
2021.

[14] A. Al-Shawabka, P. Pietraski, S. B Pattar, F. Restuccia, and T. Melodia,
“DeepLoRa: Fingerprinting LoRa devices at scale through deep learning
and data augmentation,” in Proc. ACM Int. Symposium Mob. Ad Hoc
Netw. Comput. (MobiHoc), Shanghai, China, Jul. 2021.

[15] E. Ozturk, F. Erden, and I. Guvenc, “RF-based low-SNR classifica-
tion of UAVs using convolutional neural networks,” arXiv preprint
arXiv:2009.05519, 2020.

[16] C. Bertoncini, K. Rudd, B. Nousain, and M. Hinders, “Wavelet finger-
printing of radio-frequency identification (rfid) tags,” IEEE Trans. Ind.
Electron., vol. 59, no. 12, pp. 4843–4850, 2011.

[17] J. Zhang, F. Wang, O. A. Dobre, and Z. Zhong, “Specific emitter
identification via Hilbert–Huang transform in single-hop and relaying
scenarios,” IEEE Trans. Inf. Forensics Security, vol. 11, no. 6, pp. 1192–
1205, 2016.

[18] A. M. Ali, E. Uzundurukan, and A. Kara, “Assessment of features and
classifiers for bluetooth RF fingerprinting,” IEEE Access, vol. 7, pp.
50 524–50 535, 2019.

[19] Y. Pan, S. Yang, H. Peng, T. Li, and W. Wang, “Specific emitter
identification based on deep residual networks,” IEEE Access, vol. 7,
pp. 54 425–54 434, 2019.

[20] M. Liu, X. Han, N. Liu, and L. Peng, “Bidirectional IoT device
identification based on radio frequency fingerprint reciprocity,” in Proc.
IEEE Int. Conf. Commun. (ICC). IEEE, 2021, pp. 1–6.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vision Pattern Recognition
(CVPR), 2016, pp. 770–778.

[22] L. Peng, J. Zhang, M. Liu, and A. Hu, “Deep learning based RF
fingerprint identification using differential constellation trace figure,”
IEEE Trans. Veh. Technol., vol. 69, no. 1, pp. 1091–1095, 2019.

13

[23] K. Merchant, S. Revay, G. Stantchev, and B. Nousain, “Deep learning for
RF device fingerprinting in cognitive communication networks,” IEEE
J. Sel. Topics Signal Process., vol. 12, no. 1, pp. 160–167, 2018.

[24] J. Yu, A. Hu, G. Li, and L. Peng, “A robust RF fingerprinting
approach using multisampling convolutional neural network,” IEEE
Internet Things J., vol. 6, no. 4, pp. 6786–6799, 2019.

[25] R. Xie, W. Xu, Y. Chen, J. Yu, A. Hu, D. W. K. Ng, and A. L. Swindle-
hurst, “A generalizable model-and-data driven approach for open-set
RFF authentication,” IEEE Trans. Inf. Forensics Security, vol. 16, pp.
4435–4450, 2021.

[26] D. Roy, T. Mukherjee, M. Chatterjee, E. Blasch, and E. Pasiliao, “RFAL:
Adversarial learning for RF transmitter identification and classification,”
IEEE Trans. on Cogn. Commun. Netw., vol. 6, no. 2, pp. 783–801, 2019.

[27] N. Soltani, K. Sankhe, J. Dy, S. Ioannidis, and K. Chowdhury, “More is
better: Data augmentation for channel-resilient RF fingerprinting,” IEEE
Commun. Mag., vol. 58, no. 10, pp. 66–72, 2020.

[28] A. Al-Shawabka, F. Restuccia, S. D’Oro, T. Jian, B. C. Rendon,
N. Soltani, J. Dy, K. Chowdhury, S. Ioannidis, and T. Melodia, “Ex-
posing the fingerprint: Dissecting the impact of the wireless channel
on radio fingerprinting,” in Proc. IEEE Int. Conf. Comput. Commun.
(INFOCOM), Jul. 2020, pp. 646–655.

[29] Y. Qian, J. Qi, X. Kuai, G. Han, H. Sun, and S. Hong, “Specific emitter
identification based on multi-level sparse representation in automatic
identification system,” IEEE Trans. Inf. Forensics Security, vol. 16, pp.
2872–2884, 2021.

[30] R. Das, A. Gadre, S. Zhang, S. Kumar, and J. M. Moura, “A deep
learning approach to IoT authentication,” in Proc. IEEE Int. Conf.
Commun. (ICC), 2018, pp. 1–6.

[31] P. Robyns, E. Marin, W. Lamotte, P. Quax, D. Singelée, and B. Preneel,
“Physical-layer fingerprinting of LoRa devices using supervised and
zero-shot learning,” in Proc. ACM Conf. Security Privacy Wireless
Mobile Netw. (WiSec), 2017, pp. 58–63.

[32] S. Hanna, S. Karunaratne, and D. Cabric, “Open set wireless transmitter
authorization: Deep learning approaches and dataset considerations,”
IEEE Trans. on Cogn. Commun. Netw., vol. 7, no. 1, pp. 59–72, 2020.

[33] K. Merchant and B. Nousain, “Enhanced RF fingerprinting for IoT
devices with recurrent neural networks,” in Proc. IEEE Mil. Commun.
Conf. (MILCOM), 2019, pp. 590–597.

[34] Y. Xing, A. Hu, J. Zhang, L. Peng, and G. Li, “On radio frequency
fingerprint identification for DSSS systems in low SNR scenarios,” IEEE
Commun. Lett., vol. 22, no. 11, pp. 2326–2329, 2018.

[35] G. Shen, J. Zhang, A. Marshall, M. Valkama, and J. Cavallaro,
“Radio frequency fingerprint identification for security in low-cost
IoT devices,” in Proc. Asilomar Conference on Signals, Systems, and
Computers, 2021. [Online]. Available: https://arxiv.org/abs/2111.14275

[36] “Understanding ADR,” https://lora-developers.semtech.com/
uploads/documents/files/Understanding LoRa Adaptive Data Rate
Downloadable.pdf Accessed Oct. 7, 2021.

[37] G. Shen, J. Zhang, A. Marshall, and J. R. Cavallaro, “Towards scalable
and channel-robust radio frequency fingerprint identification for LoRa,”
IEEE Trans. Inf. Forensics Security, vol. 17, pp. 774–787, 2022.

[38] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[39] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[40] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
Neural Information Processing Systems (NIPS), 2017, pp. 5998–6008.

[41] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[42] B. Danev and S. Capkun, “Transient-based identification of wireless
sensor nodes,” in Proc. ACM/IEEE Int. Conf. Inf. Process. Sensor Netw.
(IPSN), NW Washington, DC, USA, 2009, pp. 25–36.

