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Abstract

Rigid structures such as cars or any other solid objects
are often represented by finite clouds of unlabeled points.
The most natural equivalence on these point clouds is rigid
motion or isometry maintaining all inter-point distances.

Rigid patterns of point clouds can be reliably compared
only by complete isometry invariants that can also be called
equivariant descriptors without false negatives (isometric
clouds having different descriptions) and without false pos-
itives (non-isometric clouds with the same description).

Noise and motion in data motivate a search for invari-
ants that are continuous under perturbations of points in a
suitable metric. We propose the first continuous and com-
plete invariant of unlabeled clouds in any Euclidean space.
For a fixed dimension, the new metric for this invariant is
computable in a polynomial time in the number of points.

1. Strong motivations for complete invariants

In Computer Vision, real objects such as cars and solid
obstacles are considered rigid and often represented by a
finite set C ⊂ Rn (called a cloud) of m unlabeled (or un-
ordered) points, usually in low dimensions n = 2, 3, 4.

The rigidity of many real objects motivates the most fun-
damental equivalence of rigid motion [67], a composition
of translations and rotations in Rn. In a general metric
space M , the most relevant equivalence is isometry: any
map M → M maintaining all inter-point distances in M .

Any isometry in Rn is a composition of a mirror reflec-
tion with some rigid motion. Any orientation-preserving
isometry can be realized as a continuous rigid motion.

There is no sense in distinguishing rigid objects that are
related by isometry or having the same shape. Formally, the
shape of a cloud C is its isometry class [48] defined as a
collection of all infinitely many clouds isometric to C.

The only reliable tool for distinguishing clouds up to
isometry is an invariant defined as a function or property
preserved by any isometry. Since any isometry is bijective,
the number of points is an isometry invariant, but the coor-
dinates of points are not invariants even under translation.
This simple invariant is incomplete (non-injective) because
non-isometric clouds can have different numbers of points.

Any invariant I maps all isometric clouds to the same
value. There are no isometric clouds C ∼= C ′ with I(C) ̸=
I(C ′), meaning that I has no false negatives. Isometry in-
variants are also called equivariant descriptors [55].

A complete invariant I should distinguish all non-
isometric clouds, so if C ̸∼= C ′ then I(C) ̸= I(C ′). Equiv-
alently, if I(C) = I(C ′) then C ∼= C ′, so I has no false
positives. Then I can be considered as a DNA-style code or
genome that identifies any cloud uniquely up to isometry.

Since real data is always noisy and motions of rigid ob-
jects are important to track, a useful complete invariant must
be also continuous under the movement of points.

A complete and continuous invariant for m = 3 points
consists of three pairwise distances (sides of a triangle) and
is known in school as the SSS theorem [68]. But all pairwise
distances are incomplete for m ≥ 4 [9], see Fig. 1.

Problem 1.1 (complete isometry invariants with com-
putable continuous metrics). For any cloud of m unlabeled
points in Rn, find an invariant I satisfying the properties

(a) completeness : C,C ′ are isometric ⇔ I(C) = I(C ′);

(b) Lipschitz continuity : if any point of C is perturbed
within its ε-neighborhood then I(C) changes by at most λε
for a constant λ and a metric d satisfying these axioms:

1) d(I(C), I(C ′)) = 0 if and only if C ∼= C ′ are isometric,

2) symmetry : d(I(C), I(C ′)) = d(I(C ′), I(C)),

3) d(I(C), I(C ′)) + d(I(C ′), I(C ′′)) ≥ d(I(C), I(C ′′));

(c) computability : I and d are computed in a polynomial
time in the number m of points for a fixed dimension n.



Figure 1. Left: the cloud T = {(1, 1), (−1, 1), (−2, 0), (2, 0)}.
Right: the kite K = {(0, 1), (−1, 0), (0,−1), (3, 0)}. T and K
have the same 6 pairwise distances
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Condition (1.1b) asking for a continuous metric is
stronger than the completeness in (1.1a). Detecting an
isometry C ∼= C ′ gives a discontinuous metric, say d = 1
for all non-isometric clouds C ̸∼= C ′ even if C,C ′ are nearly
identical. Any metric d satisfying the first axiom in (1.1b)
detects an isometry C ∼= C ′ by checking if d = 0.

Theorem 4.7 will solve Problem 1.1 for any m in Rn.
Continuous invariants in Theorem 3.10 are conjectured to
be complete (no known counter-examples) in any metric
space. The first author implemented all algorithms, the sec-
ond author wrote all theory, proofs, examples in [38, 39].

2. Past work on cloud recognition/classification
Labeled clouds C ⊂ Rn are easy for isometry classifica-
tion because the matrix of distances dij between indexed
points pi, pj allows us to reconstruct C by using the known
distances to the previously constructed points [28, Theo-
rem 9]. For any clouds of the same number m of labeled
points, the difference between m×m matrices of distances
(or Gram matrices of pi · pj) can be converted into a contin-
uous metric by taking a matrix norm. If the given points are
unlabeled, comparing m ×m matrices requires m! permu-
tations, which makes this approach impractical.
Multidimensional scaling (MDS). For a given m×m dis-
tance matrix of any m-point cloud A, MDS [57] finds an
embedding A ⊂ Rk (if it exists) preserving all distances of
M for a dimension k ≤ m. A final embedding A ⊂ Rk

uses eigenvectors whose ambiguity up to signs gives an ex-
ponential comparison time that can be close to O(2m).
Isometry detection refers to a simpler version of Prob-
lem 1.1 to algorithmically detect a potential isometry be-
tween given clouds of m points in Rn. The best algorithm
by Brass and Knauer [10] takes O(m⌈n/3⌉ logm) time, so
O(m logm) in R3. These algorithms output a binary an-
swer (yes/no) without quantifying similarity between non-
isometric clouds by a continuous metric.
The Hausdorff distance [30] can be defined for any sub-
sets A,B in an ambient metric space as dH(A,B) =

max{d⃗H(A,B), d⃗H(B,A)}, where the directed Hausdorff
distance is d⃗H(A,B) = sup

p∈A
inf
q∈B

|p − q|. To take into ac-

count isometries, one can minimize the Hausdorff distance

over all isometries [15, 17, 32]. For n = 2, the Hausdorff
distance minimized over isometries in R2 for sets of at most
m point needs O(m5 logm) time [16]. For a given ε > 0
and n > 2, the related problem to decide if dH ≤ ε up
to translations has the time complexity O(m⌈(n+1)/2⌉) [69,
Chapter 4, Corollary 6]. For general isometry, only approx-
imate algorithms tackled minimizations for infinitely many
rotations initially in R3 [26] and in Rn [4, Lemma 5.5].

The Gromov-Wasserstein distances can be defined for
metric-measure spaces, not necessarily sitting in a com-
mon ambient space. The simplest Gromov-Hausdorff (GH)
distance cannot be approximated with any factor less than
3 in polynomial time unless P = NP [56, Corollary 3.8].
Polynomial-time algorithms for GH were designed for ul-
trametric spaces [45]. However, GH spaces are challenging
even for point clouds sets in R, see [41] and [74].

The Heat Kernel Signature (HKS) is a complete isome-
try invariant of a manifold M whose the Laplace-Beltrami
operator has distinct eigenvalues by [64, Theorem 1]. If M
is sampled by points, HKS can be discretized and remains
continuous [64, section 4] but the completeness is unclear.

Equivariant descriptors can be experimentally optimized
[47, 59] on big datasets of clouds that are split into pre-
defined clusters. Using more hidden parameters can im-
prove accuracy on any finite dataset at a higher cost but will
require more work for any new data. Point cloud registra-
tion filters outliers [58], samples rotations for Scale Invari-
ant Feature Transform or uses a basis [52,63,65,76], which
can be unstable under perturbations of a cloud. The PCA-
based complete invariant of unlabelled clouds [35] can dis-
continuously change when a basis degenerates to a lower
dimensional subspace but inspired Complete Neural Net-
works [31] though without the Lipschitz continuity.

Geometric Deep Learning produces descriptors that are
equivariant by design [13] and go beyond Euclidean space
Rn [14], hence aiming to experimentally solve Problem 1.1.
Motivated by obstacles in [1, 18, 19, 29, 40], Problem 1.1
needs a justified solution without relying on finite data.

Geometric Data Science solves analogs of Problem 1.1
for any real data objects considered up to practical equiv-
alences instead of rigid motion on clouds [23, 24, 61]: 1-
periodic discrete series [5, 6, 35], 2D lattices [12, 37], 3D
lattices [11, 34, 36, 46], periodic point sets in R3 [20, 62]
and in higher dimensions [2–4]. The applications of to crys-
talline materials [7, 53, 66, 75] led to the Crystal Isometry
Principle [70, 71, 73] extending Mendeleev’s table of ele-
ments to the Crystal Isometry Space of all periodic crystals
parametrised by complete invariants like a geographic map
of a planet.

Local distributions of distances in Mémoli’s seminal work
[43, 44] for metric-measure spaces, or shape distributions
[8,27,42,49], are first-order versions of the new SDD below.



3. Simplexwise Distance Distribution (SDD)
We will refine Sorted Distance Vector in any metric

space to get a complete invariant in Rn as shown in Fig. 2.
All proofs from sections 3 and 4 are in [38,39], respectively.

Figure 2. Hierarchy of new invariants on top of the classical SDV.

The lexicographic order u < v on vectors u = (u1, . . . , uh)
and v = (v1, . . . , vh) in Rh means that if the first i (possi-
bly, i = 0) coordinates of u, v coincide then ui+1 < vi+1.
Let Sh denote the permutation group on indices 1, . . . , h.

Definition 3.1 (RDD(C;A)). Let C be a cloud of m un-
labeled points in a space with a metric d. Let A =
(p1, . . . , ph) ⊂ C be an ordered subset of 1 ≤ h < m
points. Let D(A) be the triangular distance matrix whose
entry D(A)i,j−1 is d(pi, pj) for 1 ≤ i < j ≤ h, all other
entries are filled by zeros. Any permutation ξ ∈ Sh acts on
D(A) by mapping D(A)ij to D(A)kl, where k ≤ l is the
pair of indices ξ(i), ξ(j)− 1 written in increasing order.

For any other point q ∈ C − A, write distances from
q to p1, . . . , ph as a column. The h × (m − h)-matrix
R(C;A) is formed by these m − h lexicographically or-
dered columns. The action of ξ on R(C;A) maps any i-th
row to the ξ(i)-th row, after which all columns can be writ-
ten again in the lexicographic order. The Relative Distance
Distribution RDD(C;A) is the equivalence class of the pair
[D(A), R(C;A)] of matrices up to permutations ξ ∈ Sh.

For a 1-point subset A = {p1} with h = 1, the matrix
D(A) is empty and R(C;A) is a single row of distances (in
the increasing order) from p1 to all other points q ∈ C. For
a 2-point subset A = (p1, p2) with h = 2, the matrix D(A)
is the single number d(p1, p2) and R(C;A) consists of two
rows of distances from p1, p2 to all other points q ∈ C.

Example 3.2 (RDD for a 3-point cloud C). Let C ⊂ R2

consist of p1, p2, p3 with inter-point distances a ≤ b ≤ c
ordered counter-clockwise as in Fig. 3 (left). Then

RDD(C; p1) = [∅; (b, c)],RDD(C;

(
p2
p3

)
) = [a;

(
c
b

)
],

RDD(C; p2) = [∅; (a, c)],RDD(C;

(
p3
p1

)
) = [b;

(
a
c

)
],

Figure 3. Left: a cloud C = {p1, p2, p3} with distances a ≤
b ≤ c. Middle: the triangular cloud R = {(0, 0), (4, 0), (0, 3)}.
Right: the square cloud S = {(1, 0), (−1, 0), (0, 1), (−1, 0)}.

RDD(C; p3) = [∅; (a, b)],RDD(C;

(
p1
p2

)
) = [c;

(
b
a

)
].

We will always represent RDD for a specified order A =
(pi, pj) of points that are written as a column. Swapping
the points p1 ↔ p2 makes the last RDD above equivalent

to another form: RDD(C;

(
p2
p1

)
) = [c;

(
a
b

)
].

Though RDD(C;A) is defined up to a permutation ξ of
h points in A ⊂ C, we later use only h = n, which makes
comparisons of RDDs practical in dimensions n = 2, 3.
Metrics on isometry classes of C will be independent of ξ.

Definition 3.3 (Simplexwise Distance Distribution
SDD(C;h)). Let C be a cloud of m unlabeled points in a
metric space. For an integer 1 ≤ h < m, the Simplexwise
Distance Distribution SDD(C;h) is the unordered set of
RDD(C;A) for all unordered h-point subsets A ⊂ C.

For h = 1 and any m-point cloud C, the distribution
SDD(C; 1) can be considered as a matrix of m rows of or-
dered distances from every point p ∈ C to all other m − 1
points. If we lexicographically order these m rows and col-
lapse any l > 1 identical rows into a single one with the
weight l/m, then we get the Pointwise Distance Distribu-
tion PDD(C;m− 1) introduced in [71, Definition 3.1].

The PDD was simplified to the easier-to-compare vec-
tor of Average Minimum Distances [73]: AMDk(C) =
1

m

m∑
i=1

dik, where dik is the distance from a point pi ∈ C

to its k-th nearest neighbor in C. These neighbor-based in-
variants can be computed in a near-linear time in m [22] and
were pairwise compared for all all 660K+ periodic crystals
in the world’s largest database of real materials [71]. Defi-
nition 3.4 similarly maps SDD to a smaller invariant.

Recall that the 1st moment of a set of numbers a1, . . . , ak

is the average µ =
1

k

k∑
i=1

ai. The 2nd moment is the stan-

dard deviation σ =

√
1

k

k∑
i=1

(ai − µ)2. For l ≥ 3, the l-th

standardized moment [33, section 2.7] is
1

k

k∑
i=1

(
ai − µ

σ

)l

.



Definition 3.4 (Simplexwise Distance Moments SDM).
For any m-point cloud C in a metric space, let A ⊂ C be
a subset of h unordered points. The Sorted Distance Vec-
tor SDV(A) is the list of all h(h−1)

2 pairwise distances be-
tween points of A written in increasing order. The vector
R⃗(C;A) ∈ Rm−h is obtained from the h× (m− h) matrix
R(C;A) in Definition 3.1 by writing the vector of m − h
column averages in increasing order.

The pair [SDV(A); R⃗(C;A)] is the Average Distance
Distribution ADD(C;A) considered as a vector of length
h(h−3)

2 + m. The unordered collection of ADD(C;A) for
all
(
m
h

)
unordered subsets A ⊂ C is the Average Simplex-

wise Distribution ASD(C;h). The Simplexwise Distance
Moment SDM(C;h, l) is the l-th (standardized for l ≥ 3)
moment of ASD(C;h) considered as a probability distribu-
tion of

(
m
h

)
vectors, separately for each coordinate.

Example 3.5 (SDD and SDM for T,K). Fig. 1 shows the
non-isometric 4-point clouds T,K with the same Sorted
Distance Vector SDV = {

√
2,
√
2, 2,

√
10,

√
10, 4}, see in-

finitely many examples in [9]. The arrows on the edges
of T,K show orders of points in each pair of vertices for
RDDs. Then T,K are distinguished up to isometry by
SDD(T ; 2) ̸= SDD(K; 2) in Table 1. The 1st coordinate
of SDM(C; 2, 1) ∈ R3 is the average of 6 distances from
SDV(T ) = SDV(K) but the other two coordinates (col-
umn averages from R(C;A) matrices) differ.

Some of the
(
m
h

)
RDDs in SDD(C;h) can be identical

as in Example 3.5. If we collapse any l > 1 identical RDDs
into a single RDD with the weight l/

(
m
h

)
, SDD can be con-

sidered as a weighted probability distribution of RDDs.

The m − h permutable columns of the matrix R(C;A)
in RDD from Definition 3.1 can be interpreted as m − h
unlabeled points in Rh. Since any isometry is bijective, the
simplest metric respecting bijections is the bottleneck dis-
tance, which is also called the Wasserstein distance W∞.

Definition 3.6 (bottleneck distance W∞). For any vector
v = (v1, . . . , vn) ∈ Rn, the Minkowski norm is ||v||∞ =
max

i=1,...,n
|vi|. For any vectors or matrices N,N ′ of the same

size, the Minkowski distance is L∞(N,N ′) = max
i,j

|Nij −

N ′
ij |. For clouds C,C ′ ⊂ Rn of m unlabeled points,

the bottleneck distance W∞(C,C ′) = inf
g:C→C′

sup
p∈C

||p −

g(p)||∞ is minimized over all bijections g : C → C ′.

Lemma 3.7 (the max metric M∞ on RDDs).
For any m-point clouds and ordered h-point
subsets A ⊂ C and A′ ⊂ C ′, set d(ξ) =
max{L∞(ξ(D(A)), D(A′)),W∞(ξ(R(C;A)), R(C ′;A′))}
for a permutation ξ ∈ Sh on h points. Then the max metric
M∞(RDD(C;A),RDD(C ′;A′)) = min

ξ∈Sh

d(ξ) satisfies all

RDD(T ;A) in SDD(T ; 2) RDD(K;A) in SDD(K; 2)
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ADD(T ;A) in ASD(T ; 2) ADD(K;A) in ASD(K; 2)
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√
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√
2 +

√
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SDM2 =
6 + 2

√
2 + 4

√
10

12
SDM2 =

8 + 5
√
2 + 3

√
10

12

SDM3 =
16+ 4

√
2 + 4

√
10

12 SDM3 =
16+ 3

√
2 + 5

√
10

12

Table 1. The Simplexwise Distance Distributions from Defini-
tion 3.3 for the 4-point clouds T,K ⊂ R2 in Fig. 1. The symbol
×2 indicates a doubled RDD. The three bottom rows show co-
ordinates of SDM(C; 2, 1) ∈ R3 from Definition 3.4 for h = 2,
l = 1 and both C = T,K. Different elements are highlighted.

metric axioms on RDDs from Definition 3.1 and can be
computed in time O(h!(h2 +m1.5 logh m)).

We will use only h = n for Euclidean space Rn, so the
factor h! in Lemma 3.7 is practically small for n = 2, 3.

For h = 1 and a 1-point subset A ⊂ C, the matrix D(A)
is empty, so d(ξ) = W∞(ξ(R(C;A)), R(C ′;A′)). The
metric M∞ on RDDs will be used for intermediate costs
to get metrics between two unordered collections of RDDs
by using standard Definitions 3.8 and 3.9 below.

Definition 3.8 (Linear Assignment Cost LAC [25]). For
any k × k matrix of costs c(i, j) ≥ 0, i, j ∈ {1, . . . , k},

the Linear Assignment Cost LAC = 1
k min

g

k∑
i=1

c(i, g(i)) is

minimized for all bijections g on the indices 1, . . . , k.

The normalization factor 1
k in LAC makes this metric

better comparable with EMD whose weights sum up to 1.



Definition 3.9 (Earth Mover’s Distance on distributions).
Let B = {B1, . . . , Bk} be a finite unordered set of objects
with weights w(Bi), i = 1, . . . , k. Consider another set
D = {D1, . . . , Dl} with weights w(Dj), j = 1, . . . , l. As-
sume that a distance between Bi, Dj is measured by a met-
ric d(Bi, Dj). A flow from B to D is a k × l matrix whose
entry fij ∈ [0, 1] represents a partial flow from an object Bi

to Dj . The Earth Mover’s Distance [54] is the minimum of

EMD(B,D) =
k∑

i=1

l∑
j=1

fijd(Bi, Dj) over fij ∈ [0, 1] sub-

ject to
l∑

j=1

fij ≤ w(Bi) for i = 1, . . . , k,
k∑

i=1

fij ≤ w(Dj)

for j = 1, . . . , l, and
k∑

i=1

l∑
j=1

fij = 1.

The first condition
l∑

j=1

fij ≤ w(Bi) means that not more

than the weight w(Bi) of the object Bi ‘flows’ into all
Dj via the flows fij , j = 1, . . . , l. The second condi-

tion
k∑

i=1

fij ≤ w(Dj) means that all flows fij from Bi for

i = 1, . . . , k ‘flow’ to Dj up to its weight w(Dj). The last

condition
k∑

i=1

l∑
j=1

fij = 1 forces all Bi to collectively ‘flow’

into all Dj . LAC [25] and EMD [54] can be computed in a
near cubic time in the sizes of given sets of objects.

Theorems 3.10(c) and 4.7 will extend O(m1.5 logn m)
algorithms for fixed clouds of m unlabeled points in [21,
Theorem 6.5] to the harder case of isometry classes but keep
the polynomial time in m for a fixed dimension n. All com-
plexities are for a random-access machine (RAM) model.

Theorem 3.10 (invariance and continuity of SDDs). (a)
For h ≥ 1 and any cloud C of m unlabeled points in a met-
ric space, SDD(C;h) is an isometry invariant, which can
be computed in time O(mh+1/(h− 1)!). For any l ≥ 1, the
invariant SDM(C;h, l) ∈ Rm+

h(h−3)
2 has the same time.

For any m-point clouds C,C ′ in their own metric spaces
and h ≥ 1, let the Simplexwise Distance Distributions
SDD(C;h) and SDD(C ′;h) consist of k =

(
m
h

)
RDDs

with equal weights 1
k without collapsing identical RDDs.

(b) Using the k × k matrix of costs computed by the metric
M∞ between RDDs from SDD(C;h) and SDD(C ′;h), the
Linear Assignment Cost LAC from Definition 3.8 satisfies
all metric axioms on SDDs and can be computed in time
O(h!(h2 +m1.5 logh m)k2 + k3 log k).
(c) Let SDD(C;h) and SDD(C ′;h) have a maximum size
l ≤ k after collapsing identical RDDs. Then EMD from
Definition 3.9 satisfies all metric axioms on SDDs and is
computed in time O(h!(h2 +m1.5 logh m)l2 + l3 log l).
(d) Let C ′ be obtained from C by perturbing each point
within its ε-neighborhood. For any h ≥ 1, SDD(C;h)

changes by at most 2ε in the LAC and EMD metrics. The
lower bound holds: EMD

(
SDD(C;h),SDD(C ′;h)

)
≥

|SDM(C;h, 1)− SDM(C ′;h, 1)|∞.

Theorem 3.10(d) substantially generalizes the fact that
perturbing two points in their ε-neighborhoods changes the
Euclidean distance between these points by at most 2ε.

We conjecture that SDD(C;h) is a complete isometry
invariant of a cloud C ⊂ Rn for some h ≥ n − 1. [38,
section 4] shows that SDD(C; 2) distinguished all infinitely
many known pairs [50, Fig. S4] of non-isometric m-point
clouds C,C ′ ⊂ R3 with identical PDD(C) = SDD(C; 1).

4. Simplexwise Centered Distribution (SCD)
While all constructions of section 3 hold in any metric

space, this section develops faster continuous metrics for
complete isometry invariants of unlabeled clouds in Rn.

The Euclidean structure of Rn allows us to translate the
center of mass

1

m

∑
p∈C

p of a given m-point cloud C ⊂ Rn

to the origin 0 ∈ Rn. Then Problem 1.1 reduces to only
rotations around 0 from the orthogonal group O(Rn).

Though the center of mass is uniquely determined by any
cloud C ⊂ Rn of unlabeled points, real applications may
offer one or several labeled points of C that substantially
speed up metrics on invariants. For example, an atomic
neighborhood in a solid material is a cloud C ⊂ R3 of
atoms around a central atom, which may not be the center
of mass of C, but is suitable for all methods below.

This section studies metrics on complete invariants of
C ⊂ Rn up to rotations around the origin 0 ∈ Rn, which
may or may not belong to C or be its center of mass.

For any subset A = {p1, . . . , pn−1} ⊂ C, the distance
matrix D(A ∪ {0}) from Definition 3.1 has size (n− 1)×
(n − 1) and its last column can be chosen to include the
distances from n− 1 points of A to the origin at 0 ∈ Rn.

Any n vectors v1, . . . , vn ∈ Rn can be written as
columns in the n × n matrix whose determinant has a sign
±1 or 0 if v1, . . . , vn are linearly dependent. Any permuta-
tion ξ ∈ Sn on indices 1, . . . , n is a composition of some t
transpositions i ↔ j and has sign(ξ) = (−1)t.

Definition 4.1 (Simplexwise Centered Distribution SCD).
Let C ⊂ Rn be any cloud of m unlabeled points. For any
ordered subset A of points p1, . . . , pn−1 ∈ C, the matrix
R(C;A) from Definition 3.1 has a column of Euclidean dis-
tances |q − p1|, . . . , |q − pn−1|. At the bottom of this col-
umn, add the distance |q − 0| to the origin and the sign of
the determinant of the n×n matrix consisting of the vectors
q−p1, . . . , q−pn−1, q. The resulting (n+1)×(m−n+1)-
matrix with signs in the bottom (n+1)-st row is the oriented
relative distance matrix M(C;A ∪ {0}).



Any permutation ξ ∈ Sn−1 of n − 1 points of A acts on
D(A), permutes the first n− 1 rows of M(C;A∪{0}) and
multiplies every sign in the (n+ 1)-st row by sign(ξ).

The Oriented Centered Distribution OCD(C;A) is the
equivalence class of pairs [D(A ∪ {0}),M(C;A ∪ {0})]
considered up to permutations ξ ∈ Sn−1 of points of A.

The Simplexwise Centered Distribution SCD(C) is the
unordered set of the distributions OCD(C;A) for all

(
m

n−1

)
unordered (n− 1)-point subsets A ⊂ C. The mirror image
SCD(C) is obtained from SCD(C) by reversing signs.

Definition 4.1 needs no permutations for any C ⊂ R2 as
n−1 = 1. Columns of M(C;A∪{0}) can be lexicograph-
ically ordered without affecting the metric in Lemma 4.6.
Some of the

(
m

n−1

)
OCDs in SCD(C) can be identical as in

Example 4.2(b). If we collapse any l > 1 identical OCDs
into a single OCD with the weight l/

(
m
h

)
, SCD can be con-

sidered as a weighted probability distribution of OCDs.

Example 4.2 (SCD for clouds in Fig. 3). (a) Let R ⊂ R2

consist of the vertices p1 = (0, 0), p2 = (4, 0), p3 = (0, 3)
of the right-angled triangle in Fig. 3 (middle). Though p1 =
(0, 0) is included in R and is not its center of mass, SCD(R)

still makes sense. In OCD(R; p1) = [0,

 4 3
4 3
0 0

], the

matrix D({p1, 0}) is |p1 − 0| = 0, the top row has |p2 −

p1| = 4, |p3−p1| = 3. In OCD(R; p2) = [4,

 4 5
0 3
0 −

],

the first row has |p1 − p2| = 4, |p3 − p2| = 5, the second

row has |p1 − 0| = 0, |p3 − 0| = 3, det
(

−4 0
3 3

)
<

0. In OCD(R; p3) = [3,

 3 5
0 4
0 +

], the first row has

|p1−p3| = 3, |p2−p3| = 5, the second row has |p1−0| = 0,

|p2 − 0| = 4, det
(

4 4
−3 0

)
> 0. So SCD(R) consists

of the three Oriented Centered Distributions OCDs above.
If we reflect R with respect to the x-axis, the new cloud

R̄ of the points p1, p2, p̄3 = (0,−3) has SCD(R̄) =
SCD(R) with OCD(R̄; p1) = OCD(R), OCD(R̄; p2) =

[4,

 4 5
0 3
0 +

], OCD(R; p̄3) = [3,

 3 5
0 4
0 −

] whose

signs changed under reflection, so SCD(R) ̸= SCD(R̄).

(b) Let S ⊂ R2 consist of m = 4 points (±1, 0), (0,±1)
that are vertices of the square in Fig. 3 (right). The center
of mass is 0 ∈ R2 and has a distance 1 to each point of S.

For each 1-point subset A = {p} ⊂ S, the distance ma-
trix D(A ∪ {0}) on two points is the single number 1. The
matrix M(S;A∪{0}) has m−n+1 = 3 columns. For p1 =

(1, 0), we have M(S;

(
p1
0

)
) =

 √
2

√
2 2

1 1 1
− + 0

,

where the columns are ordered according to p2 = (0,−1),
p3 = (0, 1), p4 = (−1, 0) in Fig. 3 (right). The sign in the
bottom right corner is 0 because the points p1, 0, p4 are in a
straight line. Due to the rotational symmetry, M(S; {pi, 0})
is independent of i = 1, 2, 3, 4. So SCD(S) can be consid-

ered as one OCD = [1,M(S;

(
p1
0

)
)] of weight 1.

Example 4.2(b) illustrates the key discontinuity chal-
lenge: if p4 = (−1, 0) is perturbed, the corresponding sign
can discontinuously change to +1 or −1. To get a con-
tinuous metric on OCDs, we will multiply each sign by a
continuous strength function that vanishes for any zero sign.

Definition 4.3 (strength σ(A) of a simplex). For a set A
of n + 1 points q = p0, p1, . . . , pn in Rn, let p(A) =

1
2

n+1∑
i ̸=j

|pi − pj | be half of the sum of all pairwise distances.

Let V (A) denote the volume the n-dimensional simplex on
the set A. Define the strength σ(A) = V 2(A)/p2n−1(A).

For n = 2 and a triangle A with sides a, b, c in R2,

Heron’s formula gives σ(A) =
(p− a)(p− b)(p− c)

p2
,

p =
a+ b+ c

2
= p(A) is the half-perimeter of A.

For n = 1 and a set A = p0, p1 ⊂ R, the volume is
V (A) = |p0 − p1| = 2p(A), so σ(A) = 2|p0 − p1|.

The strength σ(A) depends only on the distance matrix
D(A) from Definition 3.1, so the notation σ(A) is used only
for brevity. In any Rn, the squared volume V 2(A) is ex-
pressed by the Cayley-Menger determinant [60] in pairwise
distances between points of A. Importantly, the strength
σ(A) vanishes when the simplex on a set A degenerates.

Theorem 4.7 will need the continuity of sσ(A), when
a sign s ∈ {±1} from a bottom row of ORD discontin-
uously changes while passing through a degenerate set A.
The proof of the continuity of σ(A) in Theorem 4.4 gives
an explicit upper bound for a Lipschitz constant cn below.

Theorem 4.4 (Lipschitz continuity of the strength σ). Let a
cloud A′ be obtained from another (n+1)-point cloud A ⊂
Rn by perturbing every point within its ε-neighborhood.
The strength σ(A) from Definition 4.3 is Lipschitz contin-
uous so that |σ(A′)− σ(A)| ≤ 2εcn for a constant cn.

Example 4.5 (strength σ(A) and its upper bounds). [39,
Theorem 4.2] proves upper bounds for the Lipschitz con-
stant of the strength: c2 = 2

√
3, c3 ≈ 0.43, c4 ≈ 0.01,

which quickly tend to 0 due to the ‘curse of dimensionality’.
The plots in Fig. 4 illustrate that the strength σ() behaves
smoothly in the x-coordinate of a vertex and its derivative
|∂σ∂x | is much smaller than the proved bounds cn above.



Figure 4. The strength σ (solid curve) and its derivative ∂σ
∂x

(dashed curve) in the x-coordinate of a point from A were av-
eraged over 3000 random triangles (top) and tetrahedra (bottom).

The strength σ(A) from Definition 4.3 will take care of
extra signs in ORDs and allows us to prove the analogue of
Lemma 3.7 for a similar time complexity with h = n.

Lemma 4.6 (metric on OCDs). Using the strength σ
from Definition 4.3, we consider the bottleneck distance
W∞ on the set of permutable m − n + 1 columns of
M(C;A∪{0}) as on the set of m−n+1 unlabeled points(
v,

s

cn
σ(A ∪ {0, q})

)
∈ Rn+1. For another OCD′ =

[D(A′ ∪ {0});M(C ′;A′ ∪ {0})] and any permutation ξ ∈
Sn−1 of indices 1, . . . , n− 1 acting on D(A∪{0}) and the
first n−1 rows of M(C;A∪{0}), set do(ξ) = max{L,W},

where L = L∞

(
ξ(D(A ∪ {0})), D(A′ ∪ {0})

)
,

W = W∞

(
ξ(M(C;A ∪ {0})),M(C ′;A′ ∪ {0})

)
.

Then M∞(OCD,OCD′) = min
ξ∈Sn−1

do(ξ) satisfies all met-

ric axioms on Oriented Centered Distributions (OCDs) and
is computed in time O((n− 1)!(n2 +m1.5 logn m)).

The coefficient 1
cn

normalizes the Lipschitz constant cn
of σ to 1 in line with changes of distances by at most 2ε
when points are perturbed within their ε-neighborhoods. An
equality SCD(C) = SCD(C ′) is interpreted as a bijection
between unordered sets SCD(C) → SCD(C ′) matching
all OCDs, which is best detected by checking if metrics in
Theorem 4.7 between these SCDs is 0.

Theorem 4.7 (completeness and continuity of SCD). (a)
The Simplexwise Centered Distribution SCD(C) in Defini-
tion 4.1 is a complete isometry invariant of clouds C ⊂ Rn

of m unlabeled points with a center of mass at the origin
0 ∈ Rn, and can be computed in time O(mn/(n− 4)!).

So any clouds C,C ′ ⊂ Rn are related by rigid motion
(isometry, respectively) if and only if SCD(C) = SCD(C ′)
(SCD(C) equals SCD(C ′) or its mirror image SCD(C ′),
respectively). For any m-point clouds C,C ′ ⊂ Rn, let
SCD(C) and SCD(C ′) consist of k =

(
m

n−1

)
OCDs.

(b) For the k×k matrix of costs computed by the metric M∞
between OCDs in SCD(C) and SCD(C ′), LAC from Def-
inition 3.8 satisfies all metric axioms on SCDs and needs
time O((n− 1)!(n2 +m1.5 logn m)k2 + k3 log k).

(c) Let SCDs have a maximum size l ≤ k after collapsing
identical OCDs. Then EMD from Definition 3.9 satisfies
all metric axioms on SCDs and can be computed in time
O((n− 1)!(n2 +m1.5 logn m)l2 + l3 log l).

(d) Let C ′ be obtained from a cloud C ⊂ Rn by perturb-
ing each point within its ε-neighborhood. Then SCD(C)
changes by at most 2ε in the LAC and EMD metrics.

If we estimate l ≤ k =
(

m
n−1

)
= m(m − 1) . . . (m −

n + 2)/n! as O(mn−1/n!), Theorem 4.7(b,c) gives time
O(n(mn−1/n!)3 logm) for metrics on SCDs, which is
O(m3 logm) for n = 2, and O(m6 logm) for n = 3.

Though the above time estimates are very rough upper
bounds, the time O(m3 logm) in R2 is faster than the only
past time O(m5 logm) for comparing m-point clouds by
the Hausdorff distance minimized over isometries [16].

Definition 4.8 (Centered Distance Moments CDM). For
any m-point cloud C ⊂ Rn, let A ⊂ C be a subset of
n − 1 unordered points. The Centered Interpoint Distance
list CID(A) is the increasing list of all (n−1)(n−2)

2 pairwise
distances between points of A, followed by n − 1 increas-
ing distances from A to the origin 0. For each column of the
(n+1)×(m−n+1) matrix M(C;A∪{0}) in Definition 4.1,
compute the average of the first n−1 distances. Write these
averages in increasing order, append the list of increasing
distances |q − 0| from the n-th row of M(C;A ∪ {0}), and
also append the vector of increasing values of

s

cn
σ(A∪{0})

taking signs s from the (n + 1)-st row of M(C;A ∪ {0}).
Let M⃗(C;A) ∈ R3(m−n+1) be the final vector.

The pair [CID(A); M⃗(C;A)] is the Average Centered
Vector ACV(C;A) considered as a vector of length
n(n−1)

2 + 3(m− n+ 1). The unordered set of ACV(C;A)
for all

(
m

n−1

)
unordered subsets A ⊂ C is the Average Cen-

tered Distribution ACD(C). The Centered Distance Mo-
ment CDM(C; l) is the l-th (standardized for l ≥ 3) mo-
ment of ACD(C) considered as a probability distribution
of
(

m
n−1

)
vectors, separately for each coordinate.



Example 4.9 (CDM for clouds in Fig. 3). (a) For n =
2 and the cloud R ⊂ R2 of m = 3 vertices p1 =
(0, 0), p2 = (4, 0), p3 = (0, 3) of the right-angled tri-
angle in Fig. 3 (middle), we continue Example 4.2(a) and

flatten OCD(R; p1) = [0,

 4 3
4 3
0 0

] into the vector

ACV(R; p1) = [0; 3, 4; 3, 4; 0, 0] of length n(n−1)
2 +3(m−

n+1) = 7, whose four parts (1+ 2+ 2+ 2 = 7) are in in-
creasing order, similarly for p2, p3. The Average Centered
Distribution can be written as a 3×7 matrix with unordered

rows: ACD(R) =

 0 3 4 3 4 0 0
4 4 5 0 3 0 −6/c2
3 3 5 0 4 0 6/c2

.

The area of the triangle on R equals 6 and can be normal-
ized by c2 = 2

√
3 to get 6/c2 =

√
3, see [39, section 4].

The 1st moment is CDM(R; 1) = 1
3 (7; 10, 14; 3, 11; 0).

(b) For n = 2 and the cloud S ⊂ R2 of m = 4 ver-
tices of the square in Fig. 3 (right), Example 4.2(a) com-

puted SCD(R) as one OCD = [1,

 √
2

√
2 2

1 1 1
− + 0

],

which flattens to ACV = (1;
√
2,
√
2, 2; 1, 1, 1;− 1

2 ,
1
2 , 0) =

ACD(S) = CDM(S; 1) ∈ R10, where 1
2 is the area of the

triangle on the vertices (0, 0), (1, 0), (0, 1).

Corollary 4.10 (time for continuous metrics on CDMs).
For any cloud C ⊂ Rn of m unlabeled points, the Centered
Distance Moment CDM(C; l) in Definition 4.8 is com-
puted in time O(mn/(n − 4)!). The metric L∞ on CDMs
needs O(n2 +m) time and EMD

(
SCD(C),SCD(C ′)

)
≥

|CDM(C; 1)− CDM(C ′; 1)|∞ holds.

5. Experiments and discussion of future work

This paper advocates a scientific approach to any data ex-
emplified by Problem 1.1, where rigid motion on clouds can
be replaced by another equivalence of other data. The scien-
tific principles such as axioms should be always respected.
Only the first coincidence axiom in (1.1b) guarantees no du-
plicate data. If the triangle inequality fails with any additive
error, results of clustering can be pre-determined [51].

The notorious m! challenge of m unlabeled points in
Problem 1.1 was solved in Rn by Theorem 4.7, also up to
rigid motion by using the novel strength of a simplex to
smooth signs of determinants due to hard Theorem 4.4.

The results above sufficiently justify re-focusing future
efforts from experimental attempts at Problem 1.1 to higher
level tasks such as predicting properties of rigid objects, e.g.
crystalline materials, using the complete invariants with no
false negatives and no false positives for all possible data
since no experiments can beat the proved 100% guarantee.

To tackle the limitation of comparing only clouds hav-
ing a fixed number m of points, the Earth Mover’s Distance
(EMD) continuously can compare any distributions (SDD
or SCD) of different sizes. Using EMD instead of the bot-
tleneck distance W∞ on m − h (or m − n + 1) columns
of matrices in Definitions 3.3 and 4.1 increases a time from
O(m1.5 logm) to O(m3 logm) but the total time remains
the same due to a near cubic time in the last step.

The running time in real applications is smaller for sev-
eral reasons. First, the shape (isometry class) of any rigid
body in R3 is determined by only m = 4 labeled points in
general position. Even when points are unlabeled, dozens
of corners or feature points suffice to represent a rigid
shape well enough. Second, the key size l (number of dis-
tinct Oriented Centered Distributions) in Theorem 4.7 is of-
ten smaller than m, especially for symmetric objects, see
l = 1 < m = 4 in Example 4.2. The SCD invariants are on
top of others due to their completeness and continuity.

The past work [71, 73] used the simpler Pointwise Dis-
tance Distribution (PDD) to complete 200B+ pairwise com-
parisons of all 660K+ periodic crystals in the world’s largest
database of real materials. This experiment took only a cou-
ple of days on a modest desktop and established the Crystal
Isometry Principle saying that any real periodic crystal is
uniquely determined by the geometry of its atomic centers
without chemical elements. So the type of any atom is prov-
ably reconstructable from distances to atomic neighbors.

The new invariants allow us to go deeper and compare
atomic clouds from higher level periodic crystals. Fig. 5 vi-
sualizes all 300K+ atomic clouds extracted from all 10K+
crystalline drugs in the Cambridge Structural Database
(CSD) by using SDV invariants for 5 + 1 atoms including
the central one. Future maps will use stronger invariants.

Figure 5. Two principal directions of SDVs for all 300K+ atomic
clouds from all 10K+ drugs in the CSD, colored by 25 elements.
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