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The SARS-CoV-2 virus, which causes the COVID-19 pandemic, has had an

unprecedented impact on healthcare requiring multidisciplinary innovation and novel

thinking to minimize impact and improve outcomes. Wide-ranging disciplines have

collaborated including diverse clinicians (radiology, microbiology, and critical care), who

are working increasingly closely with data-science. This has been leveraged through the

democratization of data-science with the increasing availability of easy to access open

datasets, tutorials, programming languages, and hardware which makes it significantly

easier to create mathematical models. To address the COVID-19 pandemic, such

data-science has enabled modeling of the impact of the virus on the population and

individuals for diagnostic, prognostic, and epidemiological ends. This has led to two large

systematic reviews on this topic that have highlighted the two different ways in which

this feat has been attempted: one using classical statistics and the other using more

novel machine learning techniques. In this review, we debate the relative strengths and

weaknesses of each method toward the specific task of predicting COVID-19 outcomes.
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INTRODUCTION

The novel coronavirus SARS-CoV-2 (COVID-19) has placed a significant strain on global
healthcare systems. A particular challenge for COVID-19 is the difficulty in predicting individuals
who will progress from a viral upper respiratory tract infection to more severe complications
(including a dysregulated host response, coinfections, or thrombotic complications). Patients who
progress often require critical care and are at significant risk of mortality. With the emergence
of potential treatments for both the viral and inflammatory phases of COVID-19, the ability to
predict those at high risk and deliver appropriate, prompt therapy could have a significant impact
on patient outcomes.

Yet, to help address these critical questions, there is an ever-increasing multimodal pool of
“big-data”, with clinical, physiological, radiological, and laboratory parameters to develop, test,
and optimize our decision-making pathways. As we consider which input variables may have the
greatest influence on patient outcomes, we have a range of techniques, both from classical statistics
through to novel artificial intelligence techniques, which we can apply to our clinical questions.
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Several prognostic models have already been developed and
reported for COVID-19 (1). Many have been developed using
traditional statistics, yet machine learning has also been applied
to prognostication against a variety of different clinical outcomes
(2–4). These machine-learning models bring together statistics
and computational programming, with the aim of data analysis
without the intrinsic biases inherent in human approaches
(Box 1). Before the COVID-19 pandemic, the application of
machine learning to infectious diseases had been gaining
traction, but to date, very few machine learning programmes
are used clinically for prediction and prognostication (5–7). In
contrast, prognostic scoring systems developed using traditional
statistical methods have been widely implemented in front-
line healthcare, including for infectious diseases (8–10). Perhaps
foremost among these classical statistics is linear regression,
itself a precursor of supervised machine learning, where a
model is trained on a set of data with known outcomes with
the aim of using what this model learns to predict on data
it has not seen before, thus providing clinical insights. What
classical statistical methods perhaps lack, however, is flexibility
in exploring “unknown” clinical associations, particularly useful
in the context of emerging infections, a need that algorithms like
neural networks may address.

To explore the potential strengths and weaknesses of both
traditional statistical methods and machine learning, we present
a pro-con debate looking at the current state of the art in these
fields, in the context of the wider clinical need for COVID-
19 prognostication.

IN DEFENSE OF CLASSICAL STATISTICS

Classical Statistics Are the Foundation of
Evidence-Based Medicine
The artificial intelligence (AI) “revolution” in healthcare
continues to be promulgated in both scientific and consumer
media; yet few, if any, of these innovations have been
adopted in day-to-day clinical medicine. Meanwhile, linear
regression models like the Acute Physiology and Chronic
Health Evaluation (APACHE) score in Intensive Care, CURB-
65 score for pneumonia, and the Model of End-Stage Liver
Disease (MELD) are in daily clinical use and influence decision
making across the globe (8–10). Linear regression models
underpin these prognostic scores, acting as the foundation
of evidence-based medicine randomized controlled trials.
Therefore, before AI techniques are adopted at a large scale
into clinical prognostication, we must consider in some detail
how they compete with or are perhaps synergistic with, classical
statistical techniques.

Neural Networks Are Opaque and
Obfuscate
One of the more recent AI methods to challenge classical
statistics has been the resurgence of an approach termed neural
networks (Box 1). Neural nets have been investigated for use
in clinical medicine since 1976 but suffered a lull due to
computational restrictions (11). The recent renewed clinical
interest in neural networks has been heralded by the development

of convolutional neural networks (CNN) with the concurrent
optimisation of matrix multiplication on graphics processing
units (GPU), leading to fast training times and faster inference
on easy and cheap to acquire hardware. The development of
programming frameworks has reduced the barrier of entry
for the experimentation in neural networks, leading to the
democratization of this technology fromwhat was once a difficult
subject (12, 13).

The combination of readily available neural network
programming frameworks, large curated clinical datasets,
easy-to-learn programming languages, and CNNs have opened
a wide window into the regression and classification of highly
uncorrelated data, such as clinical radiographic images of
computed tomography scans or X-rays (4). While such advances
in AI seem potentially attractive, particularly for clinical
prognostication, AI systems have been found to have learnt
spuriously correlated data, such as a skin cancer classification
neural network learning that the presence of a ruler in the image
of the lesion accurately classified the presence of melanoma
(14, 15).

Neural networks learn exquisite correlations between input
variables and the output of interest. It can be argued that
the above deficiencies of neural networks are secondary to
faults in the dataset, but these faults are very hard to find.
While the danger posed by this can be mitigated to some
extent by supervision of systems, one might argue that this in
some ways defeats the object of AI. Beyond this philosophical
argument, in practical terms, supervised systems are difficult to
clinically correlate as learnt latent (hidden) variables are difficult
to interrogate, difficult to visualize, and impossible to prove
coverage of data. In addition, it is currently not mathematically
proven that new data entering a system is appropriately
represented within themodel’s internal mechanisms, and reliance
on cross-validation is a poor marker of this. It is believed that
with sufficient “big data” the neural network may learn an
implicit representation of its learning dataset to be sufficiently
applied to out-of-sample data, but this is currently impossible
to demonstrate, unlike regression models that have closed-form
solutions to approximate out of sample performance. This leaves
us back at the starting criticism of neural networks, where
their hidden mechanics may provide outcomes we as clinicians
think useful, but are based upon inputs with no plausible
biological relevance.

Regression Analysis Can Provide Causality
and Is Easily Interpretable
In contrast with classical statistical methods, such as
multivariable regression, there are decades of research and
validation, and when appropriately used can provide robust,
simple yet genuine insights into clinical prognosis (8–10).
Coefficients in classical multivariate regression have a literal
translation, the bigger the coefficients the more important that
variable is related to the outcome of interest. Negative coefficients
are negatively correlated with the outcome of interest. This allows
clinicians to tailor clinical decision-making based on the patient’s
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BOX 1 | Data-science tools potentially applicable to COVID-19 prognostication.

Artificial Intelligence (AI) An overarching umbrella term used to denote software that demonstrates intelligence such as learning or problem solving.

Machine Learning (ML) A specific subset of artificial intelligence that deals with the creation and validation of models that learn through experience,

whether that is supervised (through informing the model of the correct answer during learning) or unsupervised.

Neural Network (NN) A common framework that is inspired by the way neurons work in brains. A “neuron” receive inputs from other neurons,

sums their outputs adds a bias element (and optionally normalizes the output to given range) and sends its output to

another neuron. Useful in supervised tasks where the neuron’s inner workings can be tuned to output a specific result given

a set of inputs.

Deep learning/Deep neural

networks (DL/DNN)

The finding that layering multiple neurons on-top of each other results in more accurate and precise neural networks.

Convolutional neural

networks (CNN)

A subset of deep neural networks that use the convolutional operator as their basis for learning data features. These have

revolutionized working with image and video datasets including the diagnosis of COVID-19 on radiography.

Graphics Processing Unit

(GPU)

Historically used to render graphics in 3D intensive applications like computer games and computer aided design (CAD)

where GPUs contain specific matrix multiplication machinery. This matrix multiplication machinery has been repurposed for

General Processing on the GPU (GPGPU) leading to quick optimisation of neural networks and very efficient inference.

Matrix An array of numbers arranged in a rectangle that can be together a single unit. In the training of ML techniques, these

matrices typically represent the weights and biases of each neuron.

Tensor A multidimensional array, similar to a multidimensional matrix, where each dimension would represent a different quality of

the data. An example is a set of images batched together with a tensor of NxCxWxH where N is the number of images, C is

the number of channels in the image, W is the width and H is the height of the image.

FIGURE 1 | Strengths and weaknesses of machine learning and classical statistics in their domains, training requirements, and outputs.

personal factors making precision, individualized, medicine
a reality.

Finding out which variables are related to the outcome of
interest from linear regression is inherent in their method, while
neural network methods require multiple ablation studies to hint
at which variables are correlated to an outcome. Training of
linear regression is simple, and ordinary least squares is efficient,
fast to train, and is mechanistically transparent. Multilevel,
hierarchical, regression models have been successfully trained on
tens of thousands of parameters and prior domain knowledge

can be inserted into the models using Bayesian techniques
(16, 17). Causality (rather than just correlation) can also be
demonstrated using classical statistical methods through directed
acyclic graphs, a big win if genuine knowledge of the world is
required rather than just improved accuracy performance (18).

Classical Statistics Have Direct
Applicability in COVID-19 Prognostication
For COVID-19, many publications have used neural networks
to claim unprecedented accuracy for the prediction and
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Table 1 | Uses and strengths of classical statistics vs. machine learning in

COVID-19 prognostic modeling.

Classical statistics Machine learning

In active clinical use Useful for non-correlated data,

like text or images

Foundation of modern

medicine

Increasing in use across all areas

of medicine

Mechanistically

transparent

Requires little data

pre-engineering

Easy to interrogate and

can provide causality

Explainability is an active area of

research with SHAP values

explaining per patient predictions

Best non-biased

estimator of mortality

for COVID-19

Provided state of the art

prognostic models across many

domains

classification of COVID-19 outcomes including mortality, ICU
admission, and length of stay (2–4, 19). Such an explosion of
models has led to the publication of two “living” systematic
reviews of those models, the findings of which have been pretty
clear: many of those models exhibit “high bias” and are of little
clinical use (1, 20). Gupta et al. applied many of the published
models to their COVID-19 patient data, highlighting that the best
performing, non-biased, model is a simple, well-specified, linear
regression composed of age and oxygen saturations alone (20).
This makes sense with clinical intuition, where older patients
with COVID-19 have higher mortality, and patients who present
in worse respiratory failure, as evidenced by lower hemoglobin
oxygen saturation (SpO2), also have higher mortality. This is
not ground-breaking, but it is a transparent finding, which
proves that clinical intuition is biologically plausible and is
mechanistically probable. While such a simple prognostic model
may not add to our understanding, it does perhaps allow us
to finesse our pathways and risk stratification more efficiently
care for patients when our healthcare services are at near-
maximal capacity.

The Machine Learning Revolution Is
Inevitable
Why Is Machine Learning So Powerful?
Consider a computerized tomography (CT) scan of the chest for
a patient with COVID-19. The principal finding will be atypical
or organizing pneumonia in up to 97% of patients with a severe
infection (21–24). However, the images produced by the CT
scanner are large, highly dimensional images, and therefore the
data within them must be highly structured in some way so as
to represent organizing pneumonia, and not random noise, or
indeed a picture of something else.

The manifold hypothesis aims to explain this phenomenon.
It posits that natural data lies on a low-dimensional manifold
within the high-dimensional space where it is encoded (25). In
other words, data pertaining to a particular class (for example,
CT images of the chest) are a highly structured subset of all
possible inputs for that class (i.e., all possible images/pixel values
which can exist in the same size of image). This means that

machine learning algorithms only need to learn a few key features
from the data to be effective. This is analogous to physicians
carefully picking a few important variables in multivariable
regression analysis to answer a particular research question. The
key difference is that the best possible features from any given
highly dimensional dataset may turn out to be complicated
functions of the original variables. The function of machine
learning algorithms is to find these complex key features within
a forest of data, which is a task that is not possible with classical
statistical techniques.

Minimizing Bias While Maximizing Data Utilization
Bias, defined as a feature of a statistical technique or of its
results whereby the expected value of the results differs from
the true underlying quantitative parameter being estimated, is of
paramount importance during all phases of model development,
including training and validation. Christodolou et al. conducted a
metaregression analysis that failed to demonstrate the improved
discriminative performance of machine learning algorithms over
logistic regression for clinical prediction models (6). While the
area under the receiver operating curve (AUC) was on average
no different between the two techniques when comparisons had
a low risk of bias, machine-learning algorithms had improved
performance among studies where there was a higher risk of
bias, a potential advantage of machine learning algorithms over
human-led statistical analysis. However, the systematic review
was unable to report on measures of calibration due to poor
reporting of this metric in the studies considered. There is a clear
need therefore that future machine learning prognostic studies
report calibrationmetrics and include a full report of all modeling
steps, with particular adherence to the TRIPOD guidelines (26).

Predictive models in healthcare that utilize large datasets
and a large number of parameters have demonstrated improved
performance with machine-learning algorithms. A predictive
model designed to forecast the development of acute kidney
injury (AKI) analyzed data from 703,782 adults across 172
inpatient and 1,062 outpatient sites and considered 3,599
clinically relevant features that were provided to the baseline at
each step (27). In all stages of AKI, classical logistic regression
yielded lower precision-recall and receiver operator areas under
the curve (PR AUC and ROC AUC, respectively) than Random
Forest and Gradient Boosted Trees, which themselves yielded
lower PR AUCs and ROC AUCs than deep learning approaches,
such as intersection recurrent neural networks and long-short-
term-memory networks (27).

In a systematic review and critical appraisal of current
predictive models for COVID-19, Wynants et al. noted that
all the 145 predictive models considered were at some risk of
bias for a variety of reasons, ranging from lack of accounting
for censoring (leading to selection bias), to using small sample
sizes and subjective variables, and not reporting on calibration
measures. They echo the importance of using the TRIPOD
guidelines in future predictive work (1).When using the TRIPOD
guidelines to develop statistical and machine learning predictive
models for COVID-19 prognosis, including the use of Cox
regression analysis to account for censoring, reporting the
validation, discrimination, and calibration of both techniques;
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and comparing both model ROC AUCs on the same dataset,
there is evidence that machine-learning techniques outperform
classical methods, even in moderately sized datasets (19).

Machine Learning; Not Quite as Opaque as Initially

Thought
A key advantage frequently attributed to classical regression
analysis is that each variable in the regression is assigned
a coefficient by the model. The direction and magnitude of
this coefficient directly relate to the direction and magnitude
of the association between the variable considered and the
outcome investigated. In contrast, the renewed interest in
neural networks has been met with a steady criticism that
such networks are non-transparent and that their predictions
are not traceable by humans due to their multilayer, non-
linear structure (28). However, explainable deep learning has
recently become an active area of intense research which has
produced three principled branches of explanatory methods,
each with two subdivisions. Namely, visualization methods
through perturbation or back-propagation, distillation methods
through model translation or local approximation, and intrinsic
techniques such as the use of attention mechanisms or joint
training (29, 30).

Lundberg et al. utilized Shapley additive explanation, which
is a variant of explanation through back-propagation work
proposed by Shrikumar et al. which predicts near-term risk of
hypoxaemia during anesthesia care, whilst explaining the patient-
and surgery-specific factors leading to that risk in real-time
(31, 32). Indeed, this technique can be applied to arbitrarily
complex network architectures and has been used with success
in deep learning prognostic models for COVID-19 to highlight
salient patient characteristics leading to individual mortality
predictions (2).

Optimizing Workflow Is Essential With Clinical

“Big-Data”
Machine-learning algorithms can be easily implemented into
end-to-end programmes capable of taking any desired data
type as their input and producing relevant results (e.g., by
scanning a dermatologic image through a phone app to produce
a prediction of whether a skin lesion is malignant). While the
important hazards of using inaccurate or potentially biased data
cannot be overstated, such systems have nonetheless been able to
outperform panels of expert specialists (33).

Furthermore, machine-learning algorithms can be used to
predict multiple endpoints from a single feature set, which is

difficult with classical statistical analysis. For example, Hofer et al.

developed and validated a neural network from 59,981 surgical
procedures capable of predicting postoperative mortality, AKI,
and reintubation from a single feature set (34). Their model
achieved a greater ROC AUC for their outcomes than the well-
established ASA physical status score alone. This feature is
particularly applicable to COVID-19, where predictive models
need to be able to respond to changing management paradigms,
changing outcomes, and evolving diseases complications.

CONCLUSION

There is little doubt that our ability to collect increasingly
multimodal, highly dimensional clinical data will increase
dramatically in the next few years, as typified by the formation
andmandate of government bodies such as theUnited Kingdom’s
NHSX unit. Machine-learning techniques can produce models
which are capable of utilizing a large array of multimodal data
to produce multiple predictions simultaneously. This has been
demonstrated by its promising use in the COVID-19 pandemic
to produce ever more accurate predictions. However, the
application of these complexmodels does not obviate the need for
classical statistical analysis; causality and biological mechanistic
plausibility remain in the realm of classical statistics (Figure 1;
Table 1). Each technique has its merits, and blind application of
either method has significant scientific ramifications.
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