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Abstract

A consistent seismic hazard and fragility framework considering combined capacity-demand uncertainties
is proposed, in light of the probability density evolution method (PDEM). The PDEM has solid theoreti-
cal basis in the reliability field, and it is integrated within the performance-based earthquake engineering
(PBEE) for hazard-fragility assessment in this paper. During the analysis, the sample sets with different
assigned probability are required to determine in advance, and the equivalent extreme events with virtual
stochastic process are required to establish for solution. Both the uncertainties of capacity and demand are
considered, and a combined performance index (CPI) is defined as concerned physical variable in PDEM,
through pushover static and timehistory dynamic analyses. A non-stationary stochastic earthquake model
is introduced using spectral representation of random functions, and the real characteristics of ground mo-
tions are reflected by one or two variables for each probability space. The peak ground acceleration (PGA)
and spectral acceleration of the first period [Sa(T1)] of non-stationary stochastic ground motions are then
obtained for each earthquake level, and the equivalent extreme events are also performed to discuss the sta-
tistical information of PGA or Sa(T1) through PDEM. The exceeding probability of PGA or Sa(T1) for each
earthquake level is acquired, and a connection between the fragility value and hazard extent is built. The
final 3D consistent hazard-fragility curves are then given, and the exceeding probability for different limit
states, earthquake levels as well as intensity exceeding conditions can be predicted. Moreover, a comparison
with the four classic approaches in the state-of-the-art is performed to verify the accuracy of PDEM proce-
dure. In general, the framework avoids the pre-defined lognormal fragility shape and proves the combined
efficiency and accuracy with the Monte Carlo simulation (MCS). The consistency from probabilistic hazard
to fragility is realized without re-selecting earthquake waves, which is mainly attributed to the application of
PDEM and non-stationary ground motions. The proposed framework provides new ideas for the consistent
non-parametric hazard and fragility assessment scheme in the PBEE.

Keywords: Probabilistic performance, Seismic fragility, Seismic hazard, Stochastic earthquake, Structural
assessment, PDEM

1. Introduction1

With the development of performance-based earthquake engineering (PBEE) in seismic community in2

recent decades, researchers are focusing more on the service-period capacity and life-cycle maintenance of3
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engineering structures, more than the instantaneous structural behaviors. At this stage, the risk-based4

PBEE framework has received extensive attention, which obtains quantitative data of earthquake damage5

at various levels and other undesirable consequences based on the full probability theory. The risk-based6

PBEE framework was proposed by Cornel et al. [1], and the framework takes risk assessment as output,7

which is very important for strategy formulating before hazards and decision making after hazards, so as to8

reduce the earthquake losses of all parties [2, 3].9

In the risk-based PBEE framework, the first step is the probabilistic seismic hazard analysis (PSHA),10

which refers to the evaluation of the probability level of different earthquake impacts that the engineering11

construction site may be subjected to in different years in the future [4]. The earthquake impacts can be12

generally expressed as intensity measures such as ground motion acceleration (PGA) and spectral accelera-13

tion of the first period [Sa(T1)]. McGuire [5] reviewed the early history of PSHA and mentioned that it is14

the basis for seismic design of engineering structures from common buildings to critical facilities. Tothong15

et al. [6] extended the PSHA concept and incorporated the occurring possibility of velocity pulse in the16

near-fault earthquake. The disaggregation of PSHA explained the probability caused by pulse-like compo-17

nents and the conditional distribution associated with the pulse period. The research provided basis for18

appropriate earthquake selections in near-fault zones and improved the PSHA accuracy. Iervolino et al.19

[7] performed the aftershock PSHA to evalute the short-term risk management of structures, conditional20

to mainshock events. The combining results for mainshockaftershocks seismic sequences were also derived21

to realize a seismic hazard integral, which helped to evaluate the hazard occurrence rate of exceeding a22

specific limitation. Convertito and Herrero discussed [8] the seismic focal mechanism and source parameters23

in PSHA, and a theoretical corrective coefficient for different faulting types was analyzed through the atten-24

uation law. The results concluded the significance of seismic strike-slip activity in hazaed assessment and25

compared with the regular faulting events through an application. In addition, Rahman et al. [9], Bhatti26

et al. [10], Ebrahimian et al. [11], Mahsuli et al. [12], Stirling et al. [13] performed the PSHA of different27

countries such as Bangladesh, Pakistan, Italy, Iran and New Zealand, and recommended the corresponding28

earthquake selection strategy in align with the country codes.29

Although the current seismic hazard analyses can evaluate the earthquake intensities with different ex-30

ceeding probabilities for a certain time period and specific site, a noteworthy issue during the process is31

the selection of ground motions and the uncertainty transmission from hazards to structures. Under the32

present probabilistic framework, the earthquakes adopted for PSHA generally differ from the earthquakes33

used for fragility analysis, which indicates that a re-selecting procedure of ground motions is commonly34

needed for structural dynamic analysis to acquire the performance index as well as to establish the seismic35

fragility curves. Therefore, the probability relationship from hazard to fragility is not consistent and it is36

difficult to directly meet the conditional probability in the full-probability formula of the risk-based PBEE37

framework. How to choose appropriate ground motions in seismic fragility analysis has become a long-term38

unresolved problem. With the development of stochastically generated ground motion in seismic risk assess-39

ment procedure, its applicability and superiority has been gradually recognized. Commonly, a stochastic40

earthquake model can characterize the stochastic process via a few variables and parameters, which criti-41

cally incorporates the concerned factors and efficiently simplifies the excitation procedure. In this way, the42

stochastically generated ground motions can be well adopted into the PBEE framework for probabilistic43

evaluation. Jalayer and Beck [14] adopted seismic source parameters and proposed a stochastic earthquake44

model to realize the entire probabilistic time-history representation. Subset simulation was combined to45

derive small failure probabilities under different limit states, and the influence of two alternative represen-46

tations of earthquake uncertainty was well compared via practical hazard cases. Rezaeian and Kiureghian47

[15] introduced a procedure of stochastically generated ground motions under specified site characteristics,48

and a parameterized stochastic model in light of white-noise process was well realized. A series of the s-49

tochastic model factors were ideally identified, including the fundamental frequency, acceleration bandwidth,50

and intensity tendency, which provided an important reference for the earthquake selections in probabilistic51

performance assessment. Gidaris et al. [16] utilized the stochastic ground motions and proposed an efficient52

probabilistic risk assessment framework. A kriging surrogate model was incorporated into the framework,53

and a benchmark four-story frame building was well applied to verify the efficiency of stochastic ground54

motions and the accuracy of risk assessment framework, which laid a significant basis for the subsequent55
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researches.56

Furthermore, the second step in the risk-based PBEE framework is the probabilistic seismic fragility57

analysis (PSFA), which refers to the evaluation in the probability of structural responses exceeding different58

limit states under the earthquake impacts [17]. This work quantitatively describes the seismic performance59

of engineering structures in a probabilistic sense, and reflects the relationship between the intensity of ground60

motion and the degree of structural damage from a macro perspective [18, 19]. The conventional empir-61

ical PSFA is established based on the previous seismic survey data and is generally used for performance62

evaluation of group buildings in a regional range. At this stage, the analytical PSFA is the mostly adopted63

approach, and a lognormal distribution assumption is commonly adopted for both structural capacity and64

demand. After performing a series of incremental dynamic analyses or multiple stripe analyses, the engi-65

neering demand parameters such as the maximum drift ratios are acquired, and the analytical fragilities are66

then generated through linear regression or maximum likelihood estimation. Lupoi et al. [20] evaluated the67

seismic fragility of realistic systems through nonlinear dynamic analyses and the probabilistic distributions68

of structural demands were analyzed. Two applications into concrete girders and buildings verified the69

efficiency of the method. Shinozuka et al. [21] established the analytical fragility procedure via the max-70

imum likelihood estimation, and a lognormal distribution shape of the fragility model was analyzed with71

two parameters. The results were compared with the empirical fragility through history data, indicating72

an ideal matching degree. Schotanus et al. [22] developed a statistical approach for fragility estimation of73

time-changing systems, and a statistical model was proposed to judge the limit state function of structural74

capacity analytically. An application into three dimensional frames was carried out to verify the robustness75

of the approach. Choi et al. [23] discussed the seismic fragility of four typical bridges through synthetic76

earthquakes, and a first-order reliability principle was introduced to convert the individual components into77

entire structures. The vulnerability of bridges with different spans and types was compared and concluded.78

In addition, the PSFA into different structures and infrastructures were performed by researchers broadly,79

such as offshore wind turbine [24], unreinforced masonry structures [25], geostructures [26], concrete dams80

[27], external substructures [28], which predicted the tendency of structural performances under various81

earthquake levels and provided the basis for structural risk assessments in the probability perspective.82

Worth noticing herein is that the current procedure in the PSFA is commonly based on the lognormal83

distribution assumption for variables, and this may be different with the accurate conditions. According to84

Ning [29], the lognormal distribution assumption for engineering demand parameter is idealized and is not85

applicable under a larger intensity condition. According to Karamlou et al. [30], the lognormal distribution86

assumption is lack of accuracy, especially for the real environment with strong material-geometric nonlin-87

earity. Mangalathu and Jeon [31] also carried out relevant researches of seismic fragility and pointed out88

that the lognormal distribution assumption of variables can result in unrealistic predictions. Moreover, the89

accuracy of fragility results under the lognormal distribution assumption is mainly related to the number90

of samples. For instance, in the linear regression approach, the accuracy of fragility is affected by the slope91

and intercept of the regression relationship, and the values of the two parameters can be quite different for92

different sample number, thus the obtained fragility curve is still questionable. With the development of the93

non-parametric PSFA, a series of non-parametric strategies in failure probability characterization have been94

proposed by researchers, among which the probability density evolution method (PDEM) is an important95

subdivision. The PDEM has solid theoretical basis and verified mathematical derivations in the reliability96

field. It divides the sample space with different assigned probability, and summarizes the evolution ten-97

dency through numerical difference. The target variables with clear physical meanings are analyzed and98

the reliability trends with non-parametric characteristics are developed. Li et al. [32, 33] first proposed the99

PDEM theory and established the analyzing framework for nonlinear stochastic systems. Chen et al. [34, 35]100

developed the PDEM theory, and proposed the efficient point-selection approaches for different assigned-101

probability space with uncertain parameters. Moreover, Fan et al. [36] introduced a Bayesian updating102

approach for deteriorating engineering structures via PDEM, Wan et al. [37] performed the life-cycle relia-103

bility evaluation through combining PDEM and probability measure change, Zhou and Peng [38] adopted104

the active learning technique and enhanced the active subspace for high-dimensional reliability assessment105

of structures via PDEM, and Feng et al. [39] proposed an enhanced PDEM and reliability procedure in-106

corporating multiple limit states and failure patterns. However, the strategy to establish the 3D consistent107
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non-parametric seismic hazard-fragility framework via PDEM is not well researched at this stage, and the108

corresponding influence under the combined capacity-demand uncertainties via PDEM still requires further109

in-depth exploration.110

Confronted with the above aspects, a consistent seismic hazard and fragility framework considering111

combined capacity-demand uncertainties is proposed in this paper, in light of the PDEM theory. The PDEM112

is integrated within the risk-based PBEE framework, and an equivalent extreme event with virtual stochastic113

process of PDEM is adopted for both PSHA and PSFA. Then a consistent three dimensional hazard-fragility114

relationship is established. During the process, a non-stationary stochastic earthquake model is introduced115

through spectral representation of random functions, and the real characteristics of ground motions are116

reflected by one or two variables for each probability space. The combined uncertainties of structural117

responses and limit states are considered for each probability space, with a combined performance index118

(CPI) expressed as demand minus capacity. Moreover, a comparison with the four classic approaches in the119

state-of-the-art is performed to verify the accuracy of PDEM procedure. In general, the framework avoids120

the pre-defined lognormal fragility shape and proves the combined efficiency and accuracy with the Monte121

Carlo simulation (MCS) [40]. Both the uncertainties of capacity, demand and earthquake are considered,122

and the consistency from probabilistic hazard to fragility is realized through the PDEM and non-stationary123

ground motions, which provides new ideas for the consistent non-parametric risk-based assessment scheme124

in the PBEE.125

2. Consistent seismic hazard and fragility analysis via PDEM126

In light of the risk-based PBEE framework with full probability theory [1], the uncertainty propagation127

from hazard to decision can be expressed as (Eq. 1):128

ζ(DV ) =

∫ ∫ ∫
P (DV |DM) · dP (DM |EDP ) · dP (EDP |IM) · dζ(IM) (1)

where IM is the intensity measure and denotes the hazard extent of earthquakes, EDP is the engineering129

demand parameter and denotes the concerned physical demand (D) of the structural system, DM is the130

damage measure and denotes the capacity level (C) of the structural system, DV is the decision variable and131

denotes the risk or loss of the integrated system. P[X|Y] represents the conditional probability of variable X132

under the limitation Y, and ζ(·) denotes the exceeding frequency of the corresponding variable for a certain133

time period [41].134

In Eq. 1, the section ζ(IM) is commonly regarded as PSHA and the section P(DM|EDP)·dP(EDP|IM)135

is commonly regarded as PSFA as follows (Eq. 2):136

P (DM |IM) =

∫
P (DM |EDP ) · dP (EDP |IM) = P (D > C|IM) (2)

The Eq. 2 constitutes the primary link in Eq. 1 and provides the basis for final decision making, which137

reflects the transmission of randomness from hazard to structure. To be specific, Eq. 2 means the seismic138

fragility with the exceeding probability of structural demand over structural capacity under a given earth-139

quake level. The uncertainty of demand (resulting from ground motions) is commonly more intense than140

that of structural capacity, thus a great many researches of seismic fragility neglect the capacity uncertainty141

for simplification. According to Yu [42], capacity uncertainty may lead to obvious difference in calculation142

especially for new structural type, and adopting the deterministic thresholds as recommended in codes may143

underestimate the structural performance level. Thus, in this paper, both the uncertainties of demand and144

capacity are considered. The structural demand is obtained through time history analysis, and the structural145

capacity is obtained through pushover analysis. Then, a combined performance index (CPI) is introduced146

as demand minus capacity (D-C), and Eq. 2 can be transformed into (Eq. 3):147

P (DM |IM) = P (D − C > 0|IM) = P (CPI > 0|IM) = 1− P (CPI 6 0|IM) (3)
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Figure 1: The flowchart of the consistent seismic hazard and fragility analysis via PDEM

The utilizations of combined demand-capacity functions as performance index are available in the liter-148

ature and can be expressed in different versions. For instance, Jalayer et al. [43, 44] adopted the demand149

to capacity ratio to reflect its combined influence in structural dynamic behaviors and systematic fragility150

assessment, and their recent research provided a comprehensive description of the reason why the use of151

demand to capacity ratio as performance index is indeed critically beneficial [45]. More references related152

to this aspect can be found in Vamvatsikos and Cornell [46], Surahman [47], and Hernandez et al. [48].153

According to the Eq. 3, the PSFA of a structural system is connected to the distribution of variable CPI154

under the earthquake level IM. More generally, for a variable X, P(X60) indicates the value of cumulative155

distribution function (CDF) at the X=0, thus, Eq. 3 can be further re-written as (Eq. 4):156

P (DM |IM) = 1− CDFCPI|IM (0) = 1−
∫ 0

−∞
pCPI|IM (4)

where pCPI|IM denotes the probability density function (PDF) of variable CPI under the earthquake level157

IM. To better reflect the PDF of the concerned variable and avoids the pre-defined shape of the distribution158

type, the well-known probability density evolution method (PDEM) is then introduced, which has solid159

theoretical basis and verified mathematical derivations in the reliability field. Without the loss of generality,160

the dynamic-motion balance equation of a structural system under earthquake excitation can be presented161

as (Eq. 5):162

MẌ(Θ, t) +CẊ(Θ, t) +KX(Θ, t) = −M ẍg(Θ, t) (5)

where M , C and K represent the n×n mass matrix, damping matrix and stiffness matrix of structural163

system, respectively. Ẍ(Θ, t), Ẋ(Θ, t) and X(Θ, t) represent the n × 1 acceleration, velocity and dis-164

placement vectors of the structural system, respectively. ẍg(Θ, t) represents the non-stationary stochastic165

seismic earthquakes which are generated by the spectral representation approach. The randomness of the166
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structural parameters and ground motions is embedded in the random vector, Θ, which includes N groups167

of independent random variables (e.g., material, load, phase angle).168

The Eq. 5 is suitable for arbitrary structural systems, and the theory of probability preservation is169

satisfied during the analysis with the randomness depicted by Θ. More generally, the X(Θ, t) can be170

referred to any concerned physical response in the structural systems relying on the random vector Θ. Call171

for the generalized PDEM equation based on the principle of probability preservation (Eq. 6):172

∂pXΘ(X, Θ, t)

∂t
+ Ẋ(Θ, t) · ∂pXΘ(X, Θ, t)

∂X
= 0 (6)

in which t represents the generalized time that reflects the evolutional direction. Worth noticing is that173

with regard to the equivalent extreme-value event in PDEM, a virtual stochastic process is required to be174

constructed, and t can be the virtual time. Besides, the initial condition of the structural system can be175

obtained as (Eq. 7):176

pXΘ(X, Θ, t)|t=t0 = δ(X −X0)pΘ(Θ) (7)

in which δ(·) represents the Dirac function. X0 represents the deterministic value of the concerned phys-177

ical response at the initial t0. Then the PDF of the concerned physical response along with the generalized178

time t can be written as (Eq. 8):179

pX(X, t) =

∫
ΩΘ

pXΘ(X, Θ, t)dΘ (8)

The above-mentioned generalized PDEM equation can be solved by a numerical approach or analytical180

approach. Considering that the target variable X(Θ, t) is affected by complicated dynamic behaviors of181

the structural system, Eq. 6 is difficult to express in an explicit form. Thus, the numerical procedure is182

adopted consequently. During the analysis, the representing points are required to be determined first, and183

a generalized F-Discrepancy method proposed by Li and Chen is selected [35, 49]. Assuming that for each184

earthquake level IMα, the number of stochastic variables is m, the number of representing points is nset185

in the domain Ωθ, then the point sets can be expressed as θi = {θ1,i,θ2,i, ...,θm,i}, i = 1, 2, ..., nset. The186

concerned physical variable in the structural system (e.g., CPI in this paper) is re-written as CPI(θ, t), and187

the corresponding assigned probability for each probability space is denoted as Pi. For each point set θi,188

the deterministic dynamic and static analyses are performed to get the derivative of the concerned physical189

variable, i.e., ˙CPI(θi, t), and the value is brought into Eq. 6 to realize the discretized form of the generalized190

PDEM equation, say (Eq. 9):191

∂pCPI,θi(CPI, θi, t)

∂t
+ ˙CPI(θi, t) ·

∂pCPI,θi(CPI, θi, t)

∂CPI
= 0 (9)

The numerical solution of Eq. 9 can be then realized via difference method [e.g., Lax-Wendroff (L-W)192

form or total variation (TV) form [50]] to acquire the pCPI,θi(CPI, θi, t). The numerical integration is193

conducted afterwards to get the PDF of the target variable of the structural system as follows (Eq. 10):194

pCPI(CPI, t) =

nset∑
i=1

pCPI,θi(CPI, θi, t) (10)

In this stochastic analysis, an equivalent extreme-value event in PDEM is constructed and t is the virtual195

time without physical meaning. The results in Eq. 10 is then substituted into Eq. 4 for each earthquake196

level IMα to acquire the PDEM-based probabilistic fragility relationship.197

It is noteworthy that the above-mentioned analysis is set for the earthquake level IMα, α = 1, 2, ..., Tar,198

and Tar represents the total number of earthquake levels in the analysis. The number of the representing199

points nset is also for the earthquake level IMα, followed with the number of generated non-stationary200

stochastic earthquake of nset at this intensity. Thus, the information of the non-stationary stochastic201

earthquake [e.g., peak ground acceleration (PGA)] can also be the treated as the concerned physical variable202
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and meets the principle of probability preservation, say, PGAα = {PGA1,α, PGA2,α, ..., PGAnset,α}, α =203

1, 2, ..., Tar. Thus, the PGAα can also be brought into Eq. 6 to realize the discretized form of the generalized204

PDEM equation, as presented in Eq. 11 and 12.205

∂pPGAα,θi(PGAα, θi, t)

∂t
+ ˙PGAα(θi, t) ·

∂pPGAα,θi(PGAα, θi, t)

∂PGAα
= 0 (11)

pPGAα(PGAα, t) =

nset∑
i=1

pPGAα,θi(PGAα, θi, t) (12)

Herein the equivalent extreme-value event in PDEM is also constructed to acquire the PDEM-based206

probabilistic hazard relationship. With this step, the representative hazard value for the earthquake level207

IMα with different exceeding probability is obtained, which responds to the corresponding fragility (via CPI)208

as presented in Eq. 9 and 10. Because the calculated probabilistic hazard results and probabilistic fragili-209

ty results are derived from same probability space, a consistent 3-dimensional PDEM-based probabilistic210

hazard-fragility curves can be established. Compared with the traditional 2-dimensional fragility curves, the211

consistent 3-dimensional hazard-fragility curves increase a new axis as the exceeding probability of hazard212

intensity, and directly combines the hazard level to the fragility results through the same ground motions.213

The PDEM avoids the pre-defined distribution types and is more accurate than the lognormal assumption.214

The non-stationary stochastic ground motion avoids the wave selection process and reflects more reality215

than natural ground motions. The PDEM and non-stationary stochastic ground motions are the core links216

in the analysis to realize the consistency. The principles of the non-stationary stochastic ground motions are217

introduced in the following subsection. Fig. 1 shows the distinct flowchart of the proposed consistent seismic218

hazard and fragility analysis via PDEM, and Fig. 2 shows the detailed schematic steps in the analysis.219

3. Modeling of non-stationary ground motions220

In this paper, the non-stationary stochastic acceleration time series are obtained through the spectral221

representation of random functions as well as the stochastic process theory [51, 52]. In comparison with the222

natural ground motions and the stationary ground motions, the non-stationary stochastic ground motions223

contain more adjustable factors such as soil damping and angular frequency, and regard the spectral density224

as a time-changing element, thus a more accurate earthquake input process can be realized with combined225

intensity and frequency uncertainty [53, 54]. In addition, a modication procedure is adopted to adjust the226

spectral representation function, thus the mean acceleration spectra of individual earthquake samples and227

the target spectra can match ideally with less discreteness. The relevant generating equations are shown as228

follows.229

The core part in the spectral representation approach to generate non-stationary stochastic earthquakes230

is the evolutionary power spectral density (EPSD). In this paper, the Clough-Penzien bilateral EPSD func-231

tion [SẌg (t, ω)] which contains the intensity non-stationarity and frequency non-stationarity is adopted, as232

presented in Eq. 13 [55, 56]:233

SẌg (t, ω) = A
2

(t) ·
ω4
g(t) + 4ξ2

g(t)ω2
g(t)ω2[

ω2 − ω2
g(t)

]2
+ 4ξ2

g(t)ω2
g(t)ω2

· ω4[
ω2 − ω2

f (t)
]2

+ 4ξ2
f (t)ω2

f (t)ω2

· S0(t) (13)

where ωg(t), ξg(t), ωf (t) and ξf (t) represent the site non-stationarity of EPSD with time-varying char-234

acteristics of earthquake frequency, as presented in Eq. 14 and Eq. 15:235

ωg(t) = ω0 − a
t

T
, ξg(t) = ξ0 + b

t

T
(14)

ωf (t) = 0.1ωg(t), ξf (t) = ξg(t) (15)
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Figure 2: The detailed schematic steps of the consistent seismic hazard and fragility analysis via PDEM
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where ω0 and ξ0 reflect the information of primary site angular frequency and soil damping ratio, re-236

spectively. T denotes the duration time of the non-stationary stochastic earthquakes. a denotes the field237

classification parameter, while b denotes the seismic group parameter.238

In addition, the A(t) and S0(t) in Eq. 13 denote the intensity adjusting parameter and spectral intensity239

parameter, respectively. According to Ou and Wang [57], a unimodal envelope expression is adopted herein,240

as expressed in Eq. 16 and Eq. 17.241

A(t) =

[
t

c
· exp(1− t

c
)

]d
(16)

S0(t) =
ā2

max

γ2πωg(t) ·
[
2ξg(t) + 1/(2ξg(t))

] (17)

where c denotes the peak ground acceleration arrival point, and d denotes the shape controlling indicator242

of the intensity adjusting function [A(t)]. γ denotes the equivalent maximum parameter of peak ground243

acceleration, and āmax reflects the average value of peak ground acceleration. Under different design group244

and site classification, the values of the above parameters will vary, and the summarization of the relevant245

recommendation values can be available from Liu et al [58].246

With the expression of Clough-Penzien bilateral EPSD function in Eq. 13, the zero-mean non-stationary247

stochastic acceleration time series can be formed, as expressed in Eq. 18 [59, 60]:248

Ẍg(t) =

N∑
k=1

√
2SẌg (t, k∆ω) ·∆ω ·

[
cos(k∆ωt)Xk + sin(k∆ωt)Yk

]
(18)

where ∆ω denotes the interval frequency that is determined by the truncated frequency and items (N). In249

Eq. 18, the total number of random variables is 2N (i.e., {X1, Y1} ... {XN , YN}), and {Xk, Yk} (k = 1, 2, ..., N)250

denote the standard orthogonal stochastic variables. To reduce the random variables in the earthquake251

generation process and to improve the calculation efficiency, a deterministic mapping procedure of two252

standard orthogonal stochastic variables
{
X̄n, Ȳn

}
(n = 1, 2, ..., N) is introduced to rearrange the values of253

{Xk, Yk}. Worth mentioning is that if this process is ignored, the non-stationary stochastic earthquakes254

will show unreasonable bumps.
{
X̄n, Ȳn

}
can be composed with multiple forms, and in this paper, the non-255

Gaussian orthogonal expression with two independent stochastic variables (i.e., Θ1 and Θ2) are adopted256

as shown in Eq. 19, thus the number of random variables is reduced from 2N to 2 [61, 62]. The values of257

fundamental variables Θ1 and Θ2 vary from 0 to 2π under the assumption of uniform distributions.258

X̄n = sin(nΘ1) + cos(nΘ1), Ȳn = sin(nΘ2) + cos(nΘ2) (19)

Moreover, to enhance the fit-extent between the mean acceleration spectra of individual earthquake259

samples and the target spectra, a modication procedure to the spectral density function is added in light of260

an iterative solution, as illustrated in Eq. 20:261

SẌg (t, ω)|i+1 =

{
SẌg (t, ω), 0 < ω ≤ ωc
SẌg (t, ω)|i · AST (ω,ξ)2

ASM (ω,ξ)2|i , ω > ωc
(20)

where SẌg (t, ω)|i+1 and SẌg (t, ω)|i denote the (i+1)th and ith iterative expression of spectral density262

functions, respectively. ωc represents the limited frequency, and the exceeding sections (i.e., ω > ωc)263

of the non-stationary stochastic earthquakes are required for adjustment. AST (ω, ξ) indicates the target264

acceleration spectrum, while ASM (ω, ξ)|i indicates the mean acceleration spectrum of generated stochastic265

motions after ith-iteration. ξ represents the damping ratio and the commonly-used recommendation is 0.05266

for buildings. ω = 2π/Ts, and Ts represents the fundamental structural period.267

In this paper, 200 non-stationary stochastic ground motions are generated, and the phase angles (i.e., Θ1268

and Θ2) of each ground motion are sampled according to the generalized F-Discrepancy method in PDEM.269

The fundamental earthquake level is set as 0.1 g, the soil type classification is type-C and the structural270
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importance class is type-II according to the ASCE/SEI 7-10 [63], thus the corresponding values of stochastic271

parameter can be given (i.e., ω0 is 13.5 s−1, ξ0 is 0.65, γ is 2.6, T is 25 s, a is 5 s−1, b is 0.2, c is 6 s, and272

d is 2). The interval frequency ∆ω is chosen as 0.15 rad/s, the truncated item N is determined as 1000,273

and the limited frequency ωc is adopted as 1.57 rad · s−1. Fig. 3(a) displays the samples of non-stationary274

stochastic ground motions, and Fig. 3(b) compares the mean and target acceleration response spectra after275

modification. Fig. 3(c) and 3(d) show the mean values and standard deviations of non-stationary stochastic276

ground motions, respectively.277
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Figure 3: Non-stationary stochastic ground motions

4. Modeling of structures and associated uncertainties278

To evaluate the damage states and conduct the performance calculations of reinforced concrete structures279

through non-stationary stochastic ground motions, a fiber-based numerical model using OpenSees software280

is established in this paper [64, 65]. The fiber-based numerical model is regarded to be computationally281

efficient and analytically accurate, and is widely accepted in the earthquake community for decades. In282

comparison with the macro model based on the solid elements, the fiber-based model reduces the time cost283

and meanwhile maintains the structural features, thus is especially significant for seismic fragility evaluation.284

Fig. 4 displays the typical modelling strategy of reinforced concrete frames (RCFs).285

To characterize the nonlinear behaviors of beam and column components, the force-based fiber elements286

with distributed plasticity are adopted (i.e., nonlinearBeamColumn element in OpenSees), which is integrat-287

ed through flexibility theory and distributes the element force along the length direction [66, 67]. Compared288

with the displacement-based fiber elements, the force-based fiber elements are more stable with the guar-289

anteed equilibrium constraint, thus can be rather effective under intense nonlinearity and can reflect the290

structural property with fewer element number. The fiber cross-sectional models are assigned to the force-291

based elements, which divide the sections as steel and concrete fibers, respectively. The Steel02 constitutive292

material in OpenSees is defined for steel fibers, and the Concrete02 constitutive material in OpenSees is293
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defined for Concrete fibers. As for the hoop effects of stirrups, a confined concrete model is considered for294

the core zones within stirrups [68]. An amplification factor (k) is introduced to increase the stress-strain295

relationship at these zones, as shown in Eq. 21. Besides, the ultimate strain of concrete will obviously affect296

the convergence performance and capacity variations of the structural system. Scott et al. [69] conservative-297

ly recommended the ultimate concrete strain in compression when the stirrups in core zones begin to break,298

and the equation is used as Eq. 21 for calculation, in which ρs and εmax denote the volume stirrup ratio and299

the ultimate strain of confined concrete in compression, respectively. fyh and f
′

c denote the stirrup yielding300

strength and the cylinder compressive strength of concrete, respectively. As for the unconfined concrete, the301

corresponding ultimate compressive strain is adopted as 0.004.302

k = 1 +
ρsfyh
f ′
c

, εmax = 0.004 + 0.9ρs ·
fyh
300

(21)

To characterize the shear and bond-slip properties of beam-column joints, the Joint2D element in303

OpenSees is adopted herein to simulate the connections. The Joint2D element contains one central spring304

and four side springs, and can be regarded as a parallelogram shear board. The central spring controls the305

shear performance in the core zones, while the side springs control the bond-slip behaviors in the interface306

[70]. The pinching4 material in OpenSees is allocated to the central spring to reflect the core moment-307

rotation, and the hysteretic material in OpenSees is allocated to the side spring to reflect the interface308

moment-rotation. To be specific, the pinching4 material defines four points in each loading direction and309

incorporates the parameters to reflect stiffness degeneration as well as strength pinching. The corresponding310

point values can be determined through modified compression field theory [71]. The hysteretic material de-311

fines three points in each loading direction, accompanied with damage due to ductility and energy, and the312

corresponding point values can be determined through the unit-length fiber section analysis, in which the313

stress-strain model of Steel02 is substituted by stress-slip model (e.g., Bond SP01 model in OpenSees) to314

discuss the bond-slip functions [72]. The stress-slip model can refer to Eq. 22, in which Sy and Su represent315

the yielding slip and ultimate slip, respectively. β represents the local bond-slip parameter and is commonly316

recommended as 0.4. Compared with the rigid connections of beam and column elements at joints, which317

commonly overestimate the structural behaviors, the Joint2D element reflects more details and includes318

higher authenticity in the dynamic analysis. In addition, the EqualDOF constraint in OpenSees is used at319

the two outer Joint2D elements of each storey, for the purpose of binding the horizontal displacements under320

the rigid-storey assumption. The Joint2D element is the critical point in the simulation of RCFs, and the321

validation with experimental data [73] is given in the Fig. 4, which indicates an ideal fitting accuracy.322

Sy = 2.54 ·

[
d

8437
· fy√

f ′c
· (2β + 1)

]1/β

+ 0.34, Su = 35 · Sy (22)

As for the associated uncertainties in the modelling, two types of uncertainties are considered, which323

are the earthquake-related uncertainty and structural-related uncertainty. As mentioned before, the non-324

stationary stochastic earthquake model based on the spectral representation is adopted in this paper, and325

the ground motions are controlled by the phase angles (i.e., Θ1 and Θ2), thus the phase angles constitute326

the earthquake-related uncertainty. As for the structural-related uncertainty, three subtypes are considered327

(i.e, materials, dimensions, and loads). The material uncertainty includes the yielding strength, compressive328

strain, hardening ratio and so on. The dimension uncertainty includes the rebar diameter, storey height,329

sectional size, and so on. The load uncertainty includes the consistent live load, temporary live load,330

gravity load, and so on. After determining the uncertainty variables and distributions, the generalized F-331

Discrepancy method in PDEM is used to generate the samples, and the corresponding structural analysis332

with the numerical model as mentioned above is conducted. The detailed implementation of the proposed333

method will be introduced in the following parts.334
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Figure 4: Modeling of structures and strategy of details

5. Implementation of the proposed method: Application into RCF335

5.1. Design information and uncertainty336

To implement the consistent seismic hazard and fragility analysis via PDEM, an application into RCF is337

conducted correspondingly. The prototype is designed through the code for concrete structures in China [74],338

which is a 3-span-6-storey RCF located in the site with fortification level of seven degree. The corresponding339

fortification PGA is 0.1 g, which means the exceeding probability of 10 % during 50 years. The span length is340

6300 mm, and the storey heights for the first and other storeys are 4200 mm and 3500 mm, respectively. The341

soil type classification is type-C, and the structural importance class is type-II according to the ASCE/SEI 7-342

10 [63]. The design sectional sizes of beams and columns are 350 × 550 mm and 650 × 650 mm, respectively.343

For the storey 1 to 3, the rebar diameters are designed as 25 mm at both sectional sides for columns, and344

designed as 20 mm at both sectional sides for beams. For the storey 4 to 6, the rebar diameters are designed345

as 20 mm at both sectional sides for columns, and designed as 18 mm at both sectional sides for beams.346

The concrete is type-C30, with the design compressive strength of 14.3 MPa, and the reinforcing steel is347

type-HRB335, with the design yielding strength of 300 MPa. As for the constructional steel and stirrup,348

the adopted type is HPB300 with the design yielding strength of 270 MPa. The detailed design information349

and constructional dimensions are presented in Fig. 5.350

The numerical model of the prototype 3-span-6-storey RCF is established by the approach in Section 4.351

Lumped mass is considered at joints and the damping ratio is delimited as 5 %. The fundamental period352

with the designed information is 0.956 s. With regard to the earthquake-related and structural-related un-353

certainties, totally 26 random variables are selected and the distribution parameters are listed in Tab. 1.354

For the initial earthquake level, 200 sample sets (i.e., earthquake and structure pairs) with different assigned355

probability are generated for numerical simulation. Then the deterministic static pushover analysis is per-356

formed to capture the limit states (i.e., capacity) in each probability space, and the deterministic dynamic357

time-history analysis is performed to capture the structural responses (i.e., demand) in each probability358

space. Both the capacity and demand are reflected by the maximum interstorey drift ratio (MIDR), which359

is a commonly used index for RCF assessment. As for the capacity, four performance levels are defined, i.e.,360

slight, moderate, extensive, and collapse. The slight state corresponds to the MIDR of first steel yield, the361

moderate state corresponds to the MIDR via equivalent energy principle, the extensive state corresponds362

to the MIDR of the peak capacity, and the collapse state corresponds to the MIDR of the 85 % of peak363
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capacity. The detailed definition methods are not elaborated herein and can be accessible from Cao et364

al [75, 76]. After that the CPI as mentioned in Section 2 is calculated and summarized for subsequent365

analysis via PDEM. In addition, the PGA and Sa(T1) of the 200 non-stationary stochastic earthquakes for366

this earthquake level are also obtained correspondingly. The earthquake level continues to increase until the367

target level and the above steps are repeated for each earthquake level.368

A noteworthy point herein is that in this paper, the global capacities of the overall structures are369

adopted (i.e., via the damage measure of MIDR). The global capacities contain certain advantages such as370

rapid assessment of structural performance after hazards or efficient evaluation of damage levels for decision371

making, as recommended in Hazus [77]. At this stage, a series of approaches of employing local member /372

section / joint capacity checks have been proposed by researchers. These local-capacity based approaches373

are commonly more accurate and authentic. For instance, according to the FEMA P-58 procedure [78], the374

structural losses and risks are calculated via the accumulation of component-induced probabilistic behaviors.375

Villaverde [79] gave the state-of-the-art review of the seismic collapsing capacities for structural buildings,376

in which the balance and significance between the local and global capacities were detailedly analyzed and377

systematically summarized. Kazantzi et al. [80] performed the seismic evaluation of a moment resisting378

frame under the combined strength-ductility uncertainties, and the local failure indexes as well as the local379

demand-capacity correlations were both considered. The research found that the local damage estimations380

affected the overall structural responses to some degree. Freddi et al. [81] adopted the local indexes381

to give a more thorough and realistic characterization of failure patterns of low ductility frames without382

seismic reinforcements. The corresponding probabilistic seismic demand models were established, and during383

the process the distribution types as well as the regression models were well investigated. In this paper,384

the authors just hope to adopt the global capacities as an example to present the strategy of how to385

establish the 3D consistent non-parametric seismic hazard-fragility framework via PDEM, as well as to386

analyze the corresponding influence under the combined capacity-demand uncertainties via PDEM. In the387

further in-depth research, the extensions to the local member / section / joint capacities via PDEM can be388

straightforward for a better application and clearer interpretation.389
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Figure 5: The detailed design information and constructional dimensions in application
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Table 1: The random variables and distribution parameters

Random variables Symbol Distribution Mean COV Source

Stochastic motion parameter Θ1 Uniform 3.142 (1) 0.577 [82]

Stochastic motion parameter Θ2 Uniform 3.142 (1) 0.577 [82]

Concrete bulk density γ Normal 26.5 (kN/m3) 0.0698 [75]

Storey consistent live load Lc1 Gumbel 0.386 (kN/m2) 0.464 [83]

Storey temporary live load Lt1 Gumbel 0.356 (kN/m2) 0.683 [83]

Roof consistent live load Lc2 Gumbel 0.504 (kN/m2) 0.321 [83]

Roof temporary live load Lt2 Gumbel 0.468 (kN/m2) 0.538 [83]

Beam span sb Normal 6300 (mm) 0.003 [84]

First storey height hf Normal 4200 (mm) 0.003 [84]

Standard storey height ha Normal 3500 (mm) 0.003 [84]

Column height hc Normal 650 (mm) 0.01 [84]

Beam height hb Normal 550 (mm) 0.01 [84]

Beam width wb Normal 350 (mm) 0.01 [84]

Slab height hs Normal 120 (mm) 0.01 [42]

Core concrete compressive strength fcp,core Lognormal 33.6 (MPa) 0.21 [42]

Core concrete peak strain εcp,core Lognormal 0.0022 (1) 0.17 [42]

Core concrete ultimate strain εcu,core Lognormal 0.0113 (1) 0.52 [42]

Cover concrete compressive strength fcp,cover Lognormal 26.1 (MPa) 0.14 [42]

Cover concrete ultimate strain εcu,cover Lognormal 0.004 (1) 0.2 [42]

Rebar diameter in columns d25 Normal 25 (mm) 0.04 [84]

Rebar diameter in beams d20 Normal 20 (mm) 0.04 [84]

Rebar diameter in beams d18 Normal 18 (mm) 0.04 [84]

Rebar yielding strength fy Lognormal 378 (MPa) 0.074 [85]

Rebar elastic modulus E Lognormal 201000 (MPa) 0.033 [85]

Rebar hardening ratio b Lognormal 0.02 (1) 0.2 [85]

Damping ratio ς Normal 0.05 (1) 0.1 [42]

5.2. Virtual stochastic process of PDEM390

During the equivalent extreme-value event in PDEM, a virtual stochastic process is commonly required391

to be constructed for the extreme-value analysis. As mentioned in the Eq. 6, the parameter t represents392

the generalized time that reflects the evolutional direction. In the virtual stochastic process of PDEM, t393

is commonly regarded as the virtual time varying from 0 to 1. As for different stochastic conditions in394

consideration, the actual time to achieve the extreme-value is not the same (e.g., the earthquake time to395

reach MIDR in this example), so we assume that all the extreme-values of different stochastic conditions396

appear at the virtual time 1 under the virtual stochastic process of PDEM (and time 0 is the initial state).397

During the virtual stochastic process of PDEM, the PDF or CDF of extreme-value is the primary focus,398

and the corresponding time-history development is not the main point. More details related to the virtual399

stochastic process of PDEM can be found in Li et al. [86] and Chen et al. [87].400

Fig. 6 and Fig. 8 present the PDF, CDF and hazard curves of PGA for different earthquake levels via401

PDEM, and Fig. 7 and Fig. 9 present the PDF, CDF and hazard curves of Sa(T1) for different earthquake402

levels via PDEM. During the analysis, the virtual stochastic process is well established. To be specific,403

Fig. 6(a) to 6(f) present the CDF and exceeding probability of PGA for intensity of 0.1 g, 0.2 g, 0.3 g, 0.5 g,404

1.0 g, and 2.0 g, respectively, and Fig. 7(a) to 7(f) present the CDF and exceeding probability of Sa(T1) for405

these intensities. The black dotted line indicates the CDF value while the red lines indicate the exceeding406

probability of intensity [PGA or Sa(T1)]. Totally three levels of exceeding probability of PGA or Sa(T1)407

for each intensity are marked (i.e., 63.2 %, 10 % and 2 %), which corresponds to the frequent earthquake408

level, fortification earthquake level, and rare earthquake level, respectively. For instance, for the intensity409

of 1.0 g, the PGA of frequent earthquake level is given as 1.0134 g, the PGA of fortification earthquake410

level is given as 1.3007 g, and the PGA of rare earthquake level is given as 1.4039 g. For the intensity of411

1.0 g, the Sa(T1) of frequent earthquake level is given as 0.8504 g, the Sa(T1) of fortification earthquake412

level is given as 1.3693 g, and the Sa(T1) of rare earthquake level is given as 1.6542 g. Through this way,413

the representative PGA or Sa(T1) for each earthquake level is assigned with the probabilistic meaning and414

14



can be connected to the subsequent fragility analysis to constitute the consistent hazard-fragility curves.415

Fig. 8(a) and 9(a) present the PDF of PGA or Sa(T1) for each earthquake level, and it can be observed416

that the PDF tendency becomes flattened from intensity of 0.1 g to 2.0 g. Although the shape of the PDF417

via PDEM is similar to the lognormal assumptions in the smaller intensity, the tendency shows difference418

with the intensity increasing (e.g., non-smooth curve), which can also be found in Ning [29]. Fig. 8(b) and419

9(b) present the hazard curves of PGA or Sa(T1) for each earthquake level. From these two subfigures, it420

can be observed that the curves move towards right with the intensity increasing, and the representative421

values for different earthquake levels with the various probabilistic meaning can be acquired, in order to422

combine with the later fragility evaluation. A noteworthy point is that the hazard curve herein is reflected423

as the exceeding probability of PGA or Sa(T1) for each earthquake level according to the PDEM theory,424

and it differs from the mean annual rate or annualized probability of exceeding a given level of the intensity425

measure in expression.426
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Figure 6: The CDF of PGA for different earthquake levels via PDEM

Fig. 10 presents the CDF of CPI (i.e., demand of MIDR minus capacity of MIDR) and fragility for427

different limit states and earthquake levels via PDEM, and the virtual stochastic process is established428

during the analysis. Fig. 10(a) to 10(d) present the results of slight state for intensity of 0.1 g, 0.5 g, 1.0429

g and 2.0 g. Correspondingly, Fig. 10(e) to 10(h), Fig. 10(i) to 10(l), and Fig. 10(m) to 10(p) present the430

results of moderate state, extensive state, and collapse state for different intensities, respectively. The black431

dotted line indicates the CDF value of CPI while the red solid line indicates the fragility result at this level.432

According to Section 2, the values should correspond to the CPI=0. After connecting the fragility results433

(i.e., red lines) in Fig. 10 and linking to the PGA (in Fig. 6) or Sa(T1) (in Fig. 7) with the same exceeding434

probability, the fragility curves are generated, as displayed in Fig. 11. The subfigures 11(a), 11(c) and 11(e)435

indicate the fragility with different PGA exceeding probability of 63.2 %, 10 %, and 2 %, respectively, and436

the subfigures 11(b), 11(d) and 11(f) indicate the fragility with different Sa(T1) exceeding probability of437

63.2 %, 10 %, and 2 %, respectively. The median values (with fragility of 50 %) are also marked in Fig. 11.438

Take the Fig. 11(a) and earthquake level of 1.0 g as an example, the corresponding fragility results of slight,439
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Figure 7: The CDF of Sa(T1) for different earthquake levels via PDEM
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Figure 8: The PDF and hazard curves of PGA for different earthquake levels via PDEM
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Figure 9: The PDF and hazard curves of Sa(T1) for different earthquake levels via PDEM

moderate, extensive and collapse states can be obtained as 0.9951, 0.9944, 0.6414, and 0.0912 from Fig. 10(c),440

10(g), 10(k) and 10(o), respectively. For the PGA exceeding probability of 63.2 % at this earthquake level441

(i.e., frequent earthquake level), the corresponding representative PGA is obtained as 1.0134 g, as displayed442

in Fig. 6(e), and for the Sa(T1) exceeding probability of 63.2 % at this earthquake level, the corresponding443

representative Sa(T1) is obtained as 0.8504 g, as displayed in Fig. 7(e). These data are also marked in Fig. 11444

in gray lines and then the fragility points to curves are generated subsequently.445

5.3. Consistent 3D hazard-fragility curves446

In light of the PDEM-based consistent seismic hazard and fragility theories introduced in Section 2,447

Fig. 12 and 13 present the consistent 3D PDEM-based probabilistic hazard-fragility curves for different448

limit states, based on the PGA and Sa(T1), respectively. The red lines in each subfigure indicate the449

fragility curves with the PGA or Sa(T1) exceeding probability of 63.2 % (frequent level), 10 % (fortification450

level) and 2 % (rare level), as depicted in Fig. 11. The color bar reflects the fragility values from 0 to451

1. Through the 3D consistent hazard-fragility curves, the exceeding probability for different limit states452

under different earthquake levels can be predicted, and the earthquake levels are assigned with different453

exceeding probability to build a connection with the hazard extent. With the introduction of the PDEM and454

non-stationary stochastic process into the PBEE, the 3D non-parametric hazard-fragility curve is realized,455

and the probabilistic relationship from hazard to fragility is consistent, directly meeting the conditional456

probability in the full-probability formula of the risk-based PBEE framework. Generally, this approach457

provides new ideas for the consistent risk-based assessment scheme in the PBEE, and provides references458

for the non-parametric probabilistic hazard analysis or fragility analysis in the future study.459

Worth mentioning herein is that the implementation of the PDEM-based hazard or fragility approach460

relies on the representative points in probability space, and its superiority is that there is no need to pre-461

define the shape of the curve forms, and at the same time it has the ideal calculation results. To be specific,462

the PDEM-based approach avoids the lognormal distribution assumption of demand or capacity in the463

classic expression, while the lognormal distribution assumption may not be satisfied under highly nonlinear464

scenarios thus leading to inaccurate probabilistic curves in PBEE [88, 89]. However, as for the problems465

such as the efficiency to accuracy ratio or total calculation times, the PDEM-based approach may not be466

competitive. For example, when the classic lognormal-based approach is coupled with the cloud analysis,467

the calculation efficiency may be better than the PDEM-based approach. Some references can be available468

in Kennedy and Ravindra [90], Jalayer and Cornell [91], Lallemant et al. [92], Baker [93], and Bakalis and469

Vamvatsikos [94]. This aspect is not further discussed in this study, because this paper aims at providing470
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Figure 10: The CDF of CPI and fragility for different limit states and earthquake levels via PDEM
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(b) Fragility with Sa(T1) exceeding probability of
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(c) Fragility with PGA exceeding probability of 10
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(d) Fragility with Sa(T1) exceeding probability of 10
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Figure 11: The fragility curves with different exceeding probability of PGA or Sa(T1)
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a novel and accurate non-parametric PDEM-based approach for the consistent hazard-fragility analysis in471

the PBEE.472

 
 

 
  

(a) For slight state

 
 

 
  

(b) For moderate state
 

 

(c) For extensive state

 
 

(d) For collapse state

Figure 12: Consistent 3D PDEM-based probabilistic hazard-fragility curves based on PGA

5.4. Comparison with the classic approaches in the state-of-the-art473

To verify the accuracy of the proposed 3D consistent PDEM-based probabilistic curves, a comparison with474

the classic approaches in the state-of-the-art is performed in this subsection. The PDEM-based hazard curves475

are first compared with the theoretical hazard curves via both the PGA and Sa(T1), and the corresponding476

deviation coefficients are also calculated for analysis. Then, as the fragility result is the most important link477

in the full probabilistic framework and the critical connection in the proposed 3D consistent hazard-fragility478

expression, four classic fragility approaches are selected and well discussed, which are the linear regression479

method (LRM), maximum likelihood estimation (MLE), kernel density estimation (KDE), and Monte Carlo480

Simulation (MCS). Among the four selected approaches, the LRM and MLE are based on the parametric481

lognormal assumption, and the KDE and MCS are generated in light of the non-parametric theories without482

predefined shapes. The LRM is one of the most classic solutions, and in this analysis, it adopts the classic483

least-squares principle as well as the lognormal distribution. More details of the LRM equation can be found484

in Cornell et al. [1], Lallemant et al. [92], Bakalis and Vamvatsikos [94]. The MLE is under the lognormal485

assumption via a two-parameter-based equation (i.e., median value and logarithmic standard deviation),486

and its principle mainly lies in the differential calculation of the likelihood function. Shinozuka et al. [21]487

explained its theory detailedly, and more references of MLE are available in Baker [93] and Lelièvre et al488

[95]. The KDE is expressed in a pure non-parametric analytical form, and during the process, the marginal489
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Figure 13: Consistent 3D PDEM-based probabilistic hazard-fragility curves based on Sa(T1)
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PDF of intensity and the joint PDF between intensity-demand are both required. Sudret and Mai [88, 96]490

introduced its application into civil engineering, and more references of KDE can be found in Trevlopoulos et491

al. [97] and Lee [98]. As for the MCS, it is a commonly-used benchmark approach to evaluate the unknown492

statistical distributions and to verify the accuracy of a novel method by mass sampling. The approach is493

computationally consuming but can acquire the accurate results through sufficient data. More references of494

MCS are accessible in Echard et al. [99] and Naess et al [100]. In this analysis, the stochastic non-stationary495

earthquakes for LRM, MLE and KDE are in accordance with the inputs of PDEM (i.e., 200 samples for each496

earthquake level), and for MCS, 10000 sample sets are generated for each earthquake level as the benchmark.497
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Figure 14: Comparison between the PDEM-based and theoretical hazard curves

Fig. 14 displays the comparison between the PDEM-based and theoretical hazard curves for the 0.5498

g, 1.0 g, 1.5 g, and 2.0 g levels, respectively. In general, good agreements can be observed between the499

two approaches. As for the intensity measure of PGA [Fig. 14(a)], the corresponding deviation coefficients500

for the four levels are calculated as 0.823 %, 1.535 %, 2.576 %, and 4.184 %, respectively, and for the501

intensity measure of Sa(T1) [Fig. 14(b)], the corresponding results for the four levels are given as 1.365502

%, 2.176 %, 3.801 %, and 5.792 %, respectively. The average deviation is 2.782 %, indicating an ideal503

fitting degree between the two approaches in a sense. Besides, the PDEM-based hazard approach avoids504

the predefined shapes as well as the distribution types, and its corresponding assigned probability space505

can be directly connected to the subsequent fragility analysis to constitute a consistent hazard-fragility506

assessment. Fig. 15 to 18 display the LRM-based, KDE-based, MLE-based and MCS-based theories and507

application approaches for fragility, respectively. Both the static and dynamic results are integrated (i.e.,508

CPI) for fragility assessment in this comparison study, and the PGA of non-stationary stochastic earthquake509

is adopted as the intensity measure for display in the following figures. To be specific, Fig. 15(a) and 15(b)510

reflect the lognormal fitting for capacity and least square regression for demand in the LRM, respectively.511

Fig. 16(a) and 16(b) reflect the marginal PDF of earthquake level and joint PDF between intensity-CPI512

in the KDE, respectively. Fig. 17(a) and 17(b) reflect the partial differential results of the two parameters513

in the lognormal equation in the MLE, respectively (via CPI). Fig. 18(a) to 18(d) display the scattered514

points for different limit states in the MCS, respectively (via CPI). For a clearer view, Fig. 19 presents515

the comparison with the classic approaches in the state-of-the-art (i.e., PDEM with the LRM, MLE, KDE516

and MCS), and the corresponding fitting coefficient (α) is summarized in Tab. 2. The expression of α =517 √∑n
x(Pf−app1−x − Pf−app2−x)2/(n− 1), in which Pf−app1−x and Pf−app2−x denote the fragility of the518

approach 1 and approach 2 under the xth earthquake level, and n denotes the total intensity numbers. In519

general, it can be seen that the fragility tendency shows ideal consistency between the PDEM and MCS.520

For all the four limit states, the α-PDEM to the MCS is given as 0.0134, 0.0163, 0.0113 and 0.0107, which521

22



are all the smallest values in comparison with other approaches. As for the average α of PDEM (0.0129),522

its reducing ratios than the α-MLE (0.0316), α-LRM (0.0415) and α-KDE (0.0477) are calculated as 59.18523

%, 68.92 % and 72.96 %, respectively, which indicates the accuracy of the PDEM-based fragility framework.524

Meanwhile, the computational efficiency of the PDEM-based method is significantly improved with less525

sample sets when compared with the benchmark MCS approach (i.e., 200 vs 10000), which demonstrates526

the superiority of the combined accuracy and efficiency of the non-parametric PDEM procedure, and further527

proves the applicability and fidelity of the 3D consistent non-parametric seismic hazard-fragility framework528

in a sense.529
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Figure 15: LRM-based theory and application approach for fragility

-1 0 1 2 3 4 5 6 7 8
Earthquake level [PGA (g)]

0

0.065

0.13

0.195

0.26

PD
F

0

0.25

0.5

0.75

1

C
D

F

PDF
CDF
Kernel
Histogram

(a) Marginal PDF of earthquake level

 

(b) Joint PDF between intensity and
CPI

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

K D E  a p p r o a c h

 S l i g h t
 M o d e r a t e
 E x t e n s i v e
 C o l l a p s e

�

�

Fra
gil

ity

E a r t h q u a k e  l e v e l  ( g )

(c) KDE-based fragility

Figure 16: KDE-based theory and application approach for fragility

Table 2: Comparison with the classic approaches in the state-of-the-art (PDEM with the LRM, MLE, KDE and MCS)

Number Limit state α-MCS α-PDEM α-MLE α-LRM α-KDE

1 Slight benchmark (0) 0.0134 0.0335 0.0542 0.0713

2 Moderate benchmark (0) 0.0163 0.0425 0.0427 0.0614

3 Extensive benchmark (0) 0.0113 0.0205 0.0382 0.0301

4 Collapse benchmark (0) 0.0107 0.0297 0.0307 0.0278

5 Average benchmark (0) 0.0129 0.0316 0.0415 0.0477
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Figure 17: MLE-based theory and application approach for fragility

(a) MCS for slight state (via CPI) (b) MCS for moderate state (via CPI) (c) MCS for extensive state (via CPI)

(d) MCS for collapse state (via CPI)
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Figure 18: MCS-based theory and application approach for fragility
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Figure 19: Comparison with the classic approaches in the state-of-the-art (PDEM with the LRM, MLE, KDE and MCS)

6. Conclusions530

In this paper, a consistent seismic hazard and fragility framework with combined capacity-demand un-531

certainties is proposed. The well-known PDEM is applied, which has solid theoretical basis in the reliability532

field, and it is ideally integrated within the PBEE for hazard-fragility assessment. A non-stationary stochas-533

tic earthquake model is introduced, and the final 3D consistent hazard-fragility curves are given for predicting534

the structural performance considering multiple uncertainties. Different limit states, different earthquake535

levels as well as different intensity exceeding conditions can all be incorporated, and a comparison study with536

the classic approaches in the state-of-the-art (i.e., theoretical approach for hazard, LRM, MLE, KDE and537

MCS-based approaches for fragility) is performed to verify the accuracy of PDEM procedure, from which538

the following conclusions may be drawn:539

As for the PDEM-based framework, the sample sets with different assigned probability are required to540

determine in advance through generalized F-Discrepancy method, which is a key step for the subsequent541

structural analysis and data summarization. The equivalent extreme events with virtual stochastic process542

are established during the process. Both the uncertainties of capacity and demand are considered, and a543

combined performance index (CPI) is defined as the concerned physical variable in PDEM, through pushover544

static and timehistory dynamic analyses. The information of earthquakes [e.g., PGA or Sa(T1)] is also545

acquired as the concerned physical variable for each earthquake level, and then brought into the generalize546

PDEM equation for solution. The PDEM-based framework avoids the pre-defined lognormal curve shape547

and proves the combined efficiency and accuracy with the MCS.548

As for the hazard-fragility analysis, the non-stationary stochastic ground motion is a key step in calcu-549

lation, which is generated by spectral representation of random functions. The non-stationary stochastic550

ground motion avoids the limitations of natural ground motions and reflects more actual characteristics of551

ground motions by one or two variables. With the one or two variables, the earthquake model can be con-552

nected with the PDEM through each probability space and the statistical distributions of PGA or Sa(T1) for553

different earthquake levels can be constituted. The relationship between the fragility value and hazard extent554

is directly built without re-selecting ground motions, and the conditional probability in the full-probability555

formula can be directly satisfied. The probabilistic hazard-fragility analysis and the consistent 3D curves in556

this paper are mainly attributed to the application of PDEM and non-stationary earthquake models, which557

provides new ideas for the risk-based assessment scheme in the PBEE.558
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