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The decision on when it is appropriate to stop antimicrobial treatment in an
individual patient is complex and under-researched. Ceasing too early can
drive treatment failure, while excessive treatment risks adverse events. Under-
and over-treatment can promote the development of antimicrobial resistance
(AMR). We extracted routinely collected electronic health record data from the
MIMIC-IV database for 18,988 patients (22,845 unique stays) who received
intravenous antibiotic treatment during an intensive care unit (ICU) admission.
A model was developed that utilises a recurrent neural network autoencoder
and a synthetic control-based approach to estimate patients’ ICU length of
stay (LOS) and mortality outcomes for any given day, under the alternative
scenarios of if they were to stop vs. continue antibiotic treatment. Control
days where our model should reproduce labels demonstrated minimal
difference for both stopping and continuing scenarios indicating estimations
are reliable (LOS results of 0.24 and 0.42 days mean delta, 1.93 and 3.76 root
mean squared error, respectively). Meanwhile, impact days where we assess
the potential effect of the unobserved scenario showed that stopping
antibiotic therapy earlier had a statistically significant shorter LOS (mean
reduction 2.71 days, p-value <0.01). No impact on mortality was observed. In
summary, we have developed a model to reliably estimate patient outcomes
under the contrasting scenarios of stopping or continuing antibiotic treatment.
Retrospective results are in line with previous clinical studies that demonstrate
shorter antibiotic treatment durations are often non-inferior. With additional
development into a clinical decision support system, this could be used to
support individualised antimicrobial cessation decision-making, reduce the
excessive use of antibiotics, and address the problem of AMR.
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Introduction

Bacterial antimicrobial resistance (AMR) is a global threat

(1, 2), which resulted in an estimated 1.27 million deaths in

2019 (3). One key strategy to tackle AMR is to optimise

antimicrobial use and prolong current antimicrobials’

therapeutic life. Clinical decision support systems (CDSSs) are

software designed to provide information to healthcare

professionals, patients, or other individuals in order to make

informed clinical decisions. With the advent of artificial

intelligence (AI) and the ever increasing prevalence of

electronic health records (EHRs), numerous CDSSs utilising

machine learning (ML) trained on historical patient data have

been developed to assist with managing infections (4). Recent

research has focused on the diagnoses of bacterial infections

(5–7), resistance prediction (8), and antimicrobial therapy

selection (9, 10).

One challenge when treating a patient who has a bacterial

infection is determining when it is appropriate to stop

antibiotic treatment (11). The decision to cease antibiotics too

early can result in the patient’s condition worsening, while

unnecessary exposure increases the risk of toxicity (12) and

drives the evolution of AMR (13). Even over-treating for a

short duration can have a significant impact on a population

level and enhances the development of resistance (14).

Furthermore, excessive treatment is responsible for most

avoidable antibiotic adverse events including gastrointestinal

distress and allergic reactions (15, 16). Numerous studies have

shown that on a population level, shorter treatment durations

are often non-inferior to longer ones (17–21). The challenge

is that the resulting recommendations do not take into

account the individual patient’s characteristics or specific

scenarios. It is difficult for clinicians to have confidence in

individualised treatment decisions for their patient, when

there is a poor understanding of the factors that facilitate or

inhibit an individual from receiving a short duration of

antibiotic therapy. Therefore, durations are often unnecessarily

extended (22) and decided by habit or arbitrarily based on

population evidence. Antibiotic cessation should be a

collective, data-driven decision, given choices are made in a

more favourable environment once time has passed from

presentation and significant amounts of information have

been gathered. Despite this, systems to help support

individualised antibiotic duration and cessation decision-

making are often neglected and under-researched with little

innovation in this area (23, 24).

Given the current standard of care uses clinical factors to

determine if a patient should stop antibiotics or not, we

hypothesise that an AI-based CDSS using routinely collected

EHR data may be able to support individualised antibiotic

cessation decision making and overcome prescriber concerns

of poor patient outcomes that is likely a major driver of over
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treatment (25, 26). We approach this problem by estimating

clinical outcomes under alternative scenarios with the aim of

showing non-inferiority or a direct benefit of antibiotic

cessation. More specifically, a machine learning and synthetic

control-based approach was developed to estimate patients’

LOS and mortality outcomes for any given day, if they were

to stop vs. continue antibiotic treatment. Figure 1 shows a

graphical abstract of the approach and methodology employed

in this retrospective research study.
Methods

Dataset

MIMIC-IV is a large de-identified real-world clinical

dataset that is publicly available for clinical research (27, 28).

It contains EHR information for over 40,000 patients

admitted to the Beth Israel Deaconess Medical Center

(BIDMC) in Boston, MA, Unites States, between 2008 and

2019. The patient population was filtered to those who

received intravenous antibiotic treatment for a duration

between 1 and 21 days during an ICU stay. Input features

were extracted, analysed, and selected based on prevalence,

correlation, as well as infectious disease doctors and critical

care consultants advice. Length of stay (LOS) (continuous

value) and mortality (binary) labels were extracted for each

patient stay; however, it should be noted that these are not

temporally dynamic. An overview of statistics for each dataset

is shown in Table 1

Some features were calculated based on other variables.

Cumulative overall antibiotic treatment length was determined

for each day of each ICU stay that considered consecutive

treatment days irrespective of the antibiotic given. In addition,

whether the patient had received re-treatment for antibiotics

or not and their age at the time of ICU admission were also

computed. Standard pre-processing was applied to features

including outliers being removed and values normalised, as

well as missing values forward filled or highlighted. Features

were aggregated by day for each unique stay to create a

regular temporal dataset. In general, there was a high degree

of missingness, and so patients with greater than 50% of

values missing each day were removed. The resulting dataset

contained 43 input features (supplementary Table S1)

including lab test results, clinical parameters, ventilation

settings, and demographics.
Model architecture

The objective of our model is to estimate the patients’ LOS

and mortality outcomes for any given day, if they were to stop
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FIGURE 1

Overview of the steps taken in this research study to develop a model for antimicrobial cessation synthetic outcome estimation.
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vs. continue antibiotic treatment. It uses a bi-directional long

short-term memory (LSTM) autoencoder, which takes in a

sequence of patient input features (xh1i, xh2i . . . xhTi), creates
an embedding representation, and outputs a sequence of

reconstructed features (~xhTi . . . ~xh2i, ~xh1i). This autoencoder is

trained through two loss functions (29), which are summed

together to create a combined loss for backpropagation. First,

the reconstruction loss Lr is calculated by the root mean

squared error (RMSE) between outputs that are trying to

reproduce the inputs and the real input data. Second, a
Frontiers in Digital Health 03
supervised learning loss Ls is calculated by doing a linear

transformation of the embedding representation (~Y) to try

and predict the real label (Y) and taking either the RMSE loss

for the LOS outcome or the binary cross-entropy loss for

mortality classification. Ls ensures that the embedding space

created by the autoencoder is a good linear predictor of the

outcome of interest, which is important for the subsequent

adapted synthetic control method. Overall, an embedding

representation is created that considers a patient’s past and is

representative of their state on that day.
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TABLE 1 Datasets statistics.

Dataset

Statistic Overall Train Validation Test Pneumonia UTI

Number of stays 22,845 15,991 3,427 3,427 2,473 923

Mortality rate 18.60 18.47 18.30 19.52 24.02 18.96

Mean LOS 5.63 5.62 5.74 5.55 9.05 5.50

LOS standard deviation 4.23 4.24 4.31 4.15 5.19 4.32

Mean length of treatment 4.38 4.38 4.48 4.30 6.95 4.77

Length of treatment standard deviation 3.32 3.32 3.48 3.18 4.28 3.55

Spearman’s correlation between LOS and treatment length 0.72 0.72 0.72 0.73 0.73 0.74

Percentage of patients that stopped treatment during their ICU stay 41.56 41.64 41.17 41.55 31.95 26.54

LOS, length of stay; ICU, intensive care unit; UTI, urinary tract infection.
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Once the antoencoder is trained and an embedding

representation for each antibiotic day in all patient stays have

been created, an adapted synthetic control approach (30) is

utilised, where the act of stopping or continuing treatment on

a particular day is considered an intervention and each

patient acts as a singular unit. This method is useful when

evaluating an intervention using randomised controlled trials

is challenging, as is the case with antibiotic cessation, and

hence retrospective observational data are assessed. Synthetic

controls have frequently been applied to understand public

health interventions (31, 32), but their use within digital

health research is limited. In this study, we want to know

what are the predicted outcomes if a given patient was to stop

vs. continue antibiotics on a given day within their ICU stay.

To this extent, two synthetic controls are created, one can be

labelled the “stop synthetic control,” which is based on

subjects who stopped antibiotics on that particular day, and

the second labelled the “continue synthetic control,” which is

created from subjects who continue antibiotic treatment on

that particular day. To achieve this for each day (t), two

separate donor pools are created based on subjects associated

embedding representation and antibiotic treatment status. In

other words, those who continue antibiotics on day t are

partitioned into the “continue” embedding space while those

who stop antibiotics are placed in the “stop” embedding

space. In this way, the estimated outcomes for stopping and

continuing on day t are driven by representative donors who

experienced analogous treatment. To create the stop and

continue synthetic controls for a particular patient i, the k

most closely related to embedding representations from each

relevant donor pool are selected based on a distance metric

(in this study k ¼ 10 and Euclidean distance were used for

both stop and continue estimations). Given that

embeddings are representative of the patients’ state, those

selected donors will be similar, giving a considered

insight into potential alternative outcomes under

antibiotic temporality. A ridge regression function
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for continue estimations, where d are the

embedding dimensions, j are the donors, and z represents the

particular patient i0s embedding for a given dimension and

time) is then applied to the subject and their respective stop

and continue donor embeddings. This returns two sets of

weights (wS,t
i,j for “stop” and wC,t

i,j for “continue”) that

minimise the square difference between the subject of interest

and the selected units in the donor pools (YS,t
i,j for “stop” and

YC,t
i,j for “continue”). The objective of this L2 regularisation is

to fairly distribute weights across the donors for stop and

continue estimations. Finally, the stop and continue synthetic

control outcomes (~Y
S,t
i and ~Y

C,t
i , respectively) for the

particular patient i are computed from the weighted average

of donor labels. To this extent during outcome estimation for

a given patient i, we assume that we know the outcomes for

all other patients within the dataset. Overall outcomes are

estimated for each patient on each relevant antibiotic day of

their stay if they were to stop vs. continue antibiotic

treatment. An overview of the model’s architecture and this

process for stop and continue outcome estimation is shown in

Figure 2.
Model development and software

The model was applied on the MIMIC-IV EHR dataset,

which was randomly split based on patients’ “stay_id” into

training, validation, and testing sets (70%, 15%, and 15%,

respectively). PyTorch (33) was used to create a bi-directional

LSTM recurrent neural network (RNN) with a custom dataset

class to extract labels and features. In order to address the

mortality class imbalance (Table 1), over-sampling was used

during training. To be specific, those cases with positive

mortality were replicated three times within the custom

dataset class to achieve a more balanced mortality rate of
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FIGURE 2

Model illustration. (A) The encoder is trained using both a supervised loss (Ls) and reconstruction loss (Lr) (3). (B) To estimate outcomes during testing,
an embedding is created for every day of each patient’s stay; embedding spaces are partitioned temporally and based on if the patient stopped or
continued antibiotics. The closest k neighbours are selected as donors from each embedding space and L2 regression returns weights that minimise
the square difference between the patient and the donors. A stop and continue synthetic control outcome is estimated as a weighted average of the
donors’ outcomes.
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51.90% within the train dataset. The Adam optimiser (34) was

used with binary cross-entropy loss for classification, mean

squared error loss for regression, and Ray Tune for

hyperparameter optimisation (35). Training utilised 50

epochs, during which the model with the best performance on

the validation dataset (RMSE or area under the receiver

operating characteristic curve for LOS and mortality

prediction, respectively) was selected as the final model. Two

separate LSTM autoencoder models were trained on the

whole training dataset to create embedding representations

relevant to patients’ LOS and mortality outcomes. Models

were evaluated using functions and metrics from the

TorchMetrics, Scikit-learn, and SciPy libraries. Further details

of the two models’ hyperparameters and their optimisation

are shown in the supplementary material (supplementary

Figure S1 and Table S2).
Model evaluation and metrics

Commonly with the synthetic control method, the delta

difference between the single unit and the counterfactual in

the pre-intervention period is minimised and the treatment

effect is then observed in the post-intervention period. For

our research question, this is not possible due to the nature of

stopping antibiotics being the final event at one point in time,

after which the patient is not applicable to our research

population or question. An analogue can be applied for this

study where we define “control” and “impact” days that are

equivalent to the pre- and post- intervention periods. For

estimating outcomes when continuing antibiotics, all the days

the patient actually continues antibiotics are “control” days

where we expect minimal difference between the true and

estimated outcomes. On the other hand, on the single day the

patient stops antibiotics, we can assess the “impact” if they

were to instead continue. When estimating outcomes upon

stopping antibiotics, the reverse is true, whereby each day

antibiotics were continued the “impact” of stopping can be
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assessed and the final day where the patient stops treatment

acts as a “control.” Note that it is not possible to define this

for every patient, given not every individual will stop

antibiotics during their ICU stay. The percentage of patients

who stopped antibiotic treatment during their ICU stay is

shown in Table 1. Outcomes are estimated in the same way

for impact and control days as discussed in the “Model

architecture” subsection. However, for control days, we know

the real outcome and so can compare our estimations, while

for impact days, the real outcome is unknown. Each day,

therefore, acts as both a “control” and “impact” across the

two “stop” and “continue” scenario outcome estimations. An

outline of this is shown in Figure 3 and the number of

continue and stop donors for each day in the test dataset is

illustrated in supplementary Figure S2.

For outcome estimation, the mean delta is calculated to

evaluate the difference between the real labels and the

estimations, through the following formula:

mDS ¼ (1=n)
Pn

i¼1 [(1=Ti)
PTi

t¼1 [Y
S,t
i � ~Y

S,t
i ]] for stop

estimations and mDC ¼ (1=n)
Pn

i¼1 [(1=Ti)
PTi

t¼1 [Y
C,t
i � ~Y

C,t
i ]]

for continue estimations, where Ti is the number of days that

the patient receives antibiotics. Minimal difference should be

seen on control days where our model aims to reproduce

labels, while on impact days you can assess the effect of the

unobserved scenario. Statistical analysis can be used to

determine if the difference between the true LOS labels and

the estimated outcomes are statistically significant. Given the

non-normal data distribution, the non-parametric Wilcoxon

rank-sum (Mann–Whitney U) test was used with the

alpha set at 0.05. Furthermore, the mean absolute

percentage error (MAPE) and mean absolute error (MAE)

can be calculated through the following notations:

MAPES ¼ (1=n)
Pn

i¼1 [(1=Ti)
PTi

t¼1 jYS,t
i � ~Y

S,t
i j=YS,t

i ] and

MAES ¼ (1=n)
Pn

i¼1 [(1=Ti)
PTi

t¼1 jYS,t
i � ~Y

S,t
i j], respectively,

for stop estimations and MAPEC ¼ (1=n)
Pn

i¼1 [(1=Ti)
PTi

t¼1

jYC,t
i � ~Y

C,t
i j=YC,t

i ] and MAEC ¼ (1=n)
Pn

i¼1 [(1=Ti)
PTi

t¼1 j
YC,t
i � ~Y

C,t
i j], respectively, for continue estimations. Standard

ML metrics can also be used to evaluate model prediction
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FIGURE 3

Demonstration of the impact and control evaluation process for stop and continue scenarios. An antibiotic day is defined as each day the patient
receives treatment as well as the day they stop. After starting antibiotics, each day the patient receives treatment acts as a stop impact and
continue control. This continues until antibiotic cessation or ICU discharge. If the patient stops antibiotics during their ICU stay, that initial day
where no antibiotics are administered acts as a stop control and a continue impact.
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performance. For LOS regression estimation, the RMSE is used,

while for the mortality classification task, Area Under the

Receiver Operating Characteristic curve (AUROC) is most

appropriate given the class imbalance (Table 1), but accuracy,

precision, recall, sensitivity, F1 score, and Area Under the

Precision Recall curve (AUPRC) can also be calculated.

Metrics were calculated as global averages, across all samples,

meaning every day of antibiotic treatment within each

patients stay is considered equally. 95% confidence intervals

were calculated through 1,000 bootstrapped samples on the

test set with n ¼ 1, 000 for mortality metrics and the sum of

the squared errors method for LOS RMSE.

To validate our findings beyond the hold out test set, we

applied our model to patients who were diagnosed with

pneumonia or a urinary tract infection (UTI). The effects of

short vs. longer antibiotic treatment regimes have been

extensively studied in pneumonia and UTIs. In general,

research supports the notion that shorter antibiotic

treatments durations are non-inferior to longer ones in these

infections, especially for non-complicated cases (19, 36–40).

Based on this evidence and the latest antimicrobial

prescribing guidelines (41, 42), we defined a long treatment

duration as any patient receiving antibiotics for longer than 7

days, and applied our model to estimate their outcomes if

they were to instead stop treatment after 7 days. In addition,

there is increasing evidence that even shorter courses of

antibiotics can be used in such infections, in

particular, pneumonia (19, 41). Hence, we investigated the

estimated outcomes of those patients who received the
Frontiers in Digital Health 06
standard of care 7 days treatment, for slightly shorter

treatment durations (5 or 6 days).
Results

Autoencoder

In total, 18,988 patients, associated with 22,845 unique ICU

stays, were included across datasets. Through a linear

transformation of a given patient day embedding, outcome

estimations could be made on the unseen test set (3427

unique ICU stays). The LOS model achieved an RMSE of 3.88

(95% CI 3.84–3.92), while the mortality estimation model

obtained an AUROC of 0.77 (95% CI 0.73–0.80) [accuracy

0.73 (95% CI 0.71–0.75), precision 0.44 (95% CI 0.36–0.46),

recall 0.67 (95% CI 0.61–0.72), specificity 0.75 (95% CI 0.72–

0.78), F1 0.53 (95% CI 0.46–0.56), and AUPRC 0.55 (95% CI

0.42–0.56)] (Figure 4), indicating that the model was

relatively effective at balancing false-positive and false-negative

mortality predictions.
Synthetic outcome estimation

LOS and mortality estimation results on the unseen test set

are shown in Table 2. For LOS estimation on control days, the

mean delta under both stopping and continuing scenarios was

0.24 and 0.42 days, respectively, showing a minimal difference
frontiersin.org
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FIGURE 4

ROC and PRC results for the RNN autoencoder on mortality classification.
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between predictions and the ground truth labels. Furthermore,

a MAPE of 0.26, MAE of 1.32, and RMSE of 1.93 for stop

control days show that the corresponding impact estimations

are more reliable. On impact days, stopping earlier had a

statistically significant shorter LOS (mean difference 2.71

days, p-value <0.01). This indicates that on average LOS

estimations for stopping antibiotics earlier are shorter in

duration than those when the patient continues antibiotics.

For mortality, no impact was observed by stopping or

extending antibiotic treatment. Estimations had modest

performance with an average AUROC of 0.67 and accuracy

of 0.82; however, the model clearly struggled with false-

negative predictions.

Estimations were made for each day of each patient’s stay

within all the extracted data (i.e., train, validation, and testing

sets combined) to understand if results would deviate by

dataset size. For LOS, reliable estimations were once again

obtained (mean stop control difference of 0.33 days and mean

continue control difference of 0.42 days). Continuing showed

no given impact (mean difference of �0.30 days), while

stopping once again showed a significant impact with a mean

reduction of 1.87 days. Little difference in mortality

estimations was seen between stop and continue controls and

impacts (stop impact�0.03, stop control�0.03, continue

control�0.05, continue impact�0.05). Mortality predictions

were relatively reliable with a mean AUROC of 0.72.

To show the importance of the temporality in our predictions,

we created estimations for each antibiotic day of each patients stay,

without segregating the embedding space (by time or by antibiotic

treatment given they are mutually dependent). The resulting

estimations had a mean LOS difference of 2.60 days from the

true labels, an RMSE of 5.05, and a statistically significant

difference in medians (p-value <0.01).
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The performance of the model on subjects towards the

edges of the distribution in terms of the correlation between

LOS and overall antibiotic treatment length was investigated.

Subjects in the 10th and 90th percentiles were selected leading

to a smaller Spearman’s correlation of 0.35. As expected,

given the dataset size (n=686) and donor distribution, results

were quite poor with a mean stop control difference of 2.92

days and a mean continue control difference of 2.13 days. The

impact of stopping early though was still much greater than

the control at 4.36 days mean difference.
Pneumonia and UTIs

A total of 2,473 stays where patients were diagnosed with

pneumonia were identified, with a mean LOS of 9.05 days

and a mean antibiotic treatment length of 6.95 days. Overall

estimation of the results on this whole pneumonia population

reflected the wider dataset and are shown in Table 3. When

focusing on those with long treatment durations and the

question of what if they stopped after 7 days of treatment,

statistically significant results show that average LOS were 2.82

days shorter when stopping earlier. No difference in estimated

mortality was observed; however, estimations were consistent

across groups with an average AUROC of 0.75. No significant

difference in LOS or mortality was estimated for pneumonia

patients who received the standard of care 7 days treatment, if

they had slightly shorter treatment durations of 5 or 6 days.

For UTIs, 923 patient stays were selected having a mean

LOS and antibiotic treatment length of 5.50 and 4.77 days

respectively. Once again, overall estimation results (Table 3)

were similar to previous findings with trustworthy controls,

stopping early being associated with a shorter LOS and no
frontiersin.org
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TABLE 2 Outcome estimation results for patients in the unseen test set.

LOS Mortality

Scenario Day(s) Mean delta (days, p-value) MAPE MAE RMSE Mean delta MAE AUROC

Stop Impact 2.71*, <0.01 0.36 3.30 4.80 0.06 0.25 0.66
Control 0.24, 0.60 0.26 1.32 1.93 0.05 0.15 0.72

Continue Impact �2.09*, <0.01 0.77 2.85 3.16 0.05 0.18 0.67
Control 0.42*, 0.01 0.48 2.72 3.76 0.07 0.24 0.64

*Statistical significance with alpha set at 0.05.

LOS, length of stay; MAPE, mean absolute percentage error; MAE, mean absolute error; RMSE, root mean squared error; AUROC, Area Under the Receiver Operating

Characteristic curve.

TABLE 3 Outcome estimation results for patients with pneumonia and UTIs.

LOS Mortality

Infection Analysis Scenario Day
(s)

Mean delta (days, p-value) RMSE Mean delta AUROC

Pneumonia Whole dataset Stop Impact 3.72*, <0.01 5.87 0.00 0.71
Control 0.26, 0.47 2.14 0.07 0.76

Continue Impact �2.79*, <0.01 3.65 0.10 0.69
Control 0.49*, <0.01 4.01 0.05 0.68

Long treatment durations stopping after 7 days Stop Impact 2.82*, <0.01 4.65 �0.03 0.74
Control 0.43, 0.08 2.11 0.05 0.80

Continue Impact — — — —

Control 0.41, 0.21 3.47 0.05 0.73

UTI Whole dataset Stop Impact 2.36*, <0.01 4.70 0.14 0.63
Control 0.36, 0.89 2.04 0.07 0.87

Continue Impact �1.91*, <0.01 3.26 0.03 0.79
Control 0.38, 0.05 3.82 0.04 0.71

Long treatment durations stopping after 7 days Stop Impact 2.08*, <0.01 4.35 0.30 0.52
Control 1.04, 0.23 2.42 0.17 0.93

Continue Impact — — — —

Control 0.26, 0.05 3.48 0.05 0.76

Results are shown for both the whole population and analysis of what if those who received long treatment durations stopped after day 7.

*Statistical significance with alpha set at 0.05.

LOS, length of stay; RMSE, root mean squared error; AUROC, Area Under the Receiver Operating Characteristic curve; UTI, urinary tract infection.
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difference in mortality but reliable estimations (AUROC

ranging from 0.63 to 0.87). Estimations for stopping after 7

days for those with long treatment durations did show a

positive impact in terms of reduced LOS (mean difference

2.08 days, p-value <0.01). The stop control where we expect

to see minimal difference showed a larger mean deviation of

1.04 days, but statistical analysis showed the medians between

control estimations and labels were not significantly different.

Mortality estimations here were for the most part dependable;

a high predictive performance on stop and continue controls

was achieved with an AUROC of 0.93 and 0.78, respectively,

but a lower score for the stop impact of 0.52. When analysing

those patients who received the standard of care 7 days

treatment, for slightly shorter treatment durations (5 or 6

days). A statistically significant result was observed where

estimated LOS outcomes were on average longer by 1.45 days

if the patients stopped antibiotics slightly earlier (p-value

<0.01, RMSE 2.72).
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Discussion

We demonstrate that our RNN autoencoder and synthetic

control-based approach trained on a large ICU EHR dataset

can estimate patient outcomes under the alternative scenarios

of stopping vs. continuing antibiotic treatment. Results across

experiments were consistent, with stop control days often

showing the greatest performance indicating our stop impact

estimations, which occur on days where the true outcome

upon stopping is unknown, are more reliable. The stop

impact results from this retrospective study show that

stopping antibiotics earlier can be associated with a

statistically significant average LOS reduction of 2.71 days.

Overall minimal impact on mortality was observed, which is

to be expected given death can be caused by a large number

of factors beyond those included as model features. Figure 5

shows some specific illustrative examples of patient LOS and

mortality estimations. The pneumonia dataset demonstrated
frontiersin.org
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FIGURE 5

LOS and mortality synthetic outcome estimation results for particular patients. These cases were selected as illustrative examples of four distinct
patient scenarios: (A) the patient has a long course of antibiotics, (B) the patient has short course of antibiotics, (C) the patient dies, (D) the
patient survives. In A/B control estimation results show minimal deviation from the true LOS label while the stop impact estimations have a
reduced LOS. Results in C/D indicate mortality estimations are temporally dynamic but with little difference between stop vs. continue.
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particularly positive results with overall and stopping on day 7

analysis indicating antibiotic cessation can have a significant

impact on LOS in this population (mean difference 3.72 and

2.82 days, respectively). This reflects current clinical thinking

that shorter treatments are optimal for this infection (19, 36,

37, 41). However, there is a balance to be made with

antibiotic treatment durations. The UTI analysis indicated

courses shorter than 7 days may be detrimental to the patient

and that the current standard of care treatment duration is

likely appropriate. As such, care must be taken to consider the

patients and the public’s best interests with respect to current

infections and the threat of AMR.

Our methodological approach to the problem of antibiotic

cessation is novel. This model can in principal assist with

individualised antibiotic cessation decisions as it takes into

account numerous patient characteristics and the specific

treatment scenario with regards to patient outcomes, factors

that previously could not be considered together in their

entirety. This study has approached the problem of antibiotic

cessation from the perspective of making a clinically useful

tool designed to support decision-making by estimating direct

measures that may influence clinical decision-making under
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alternative scenarios. We believe it could be useful for

prescribing physicians during their daily clinical round to

compare between stop and continue estimated outcomes and

understand when it is appropriate to cease antibiotic

treatment. In particular, this system should help show shorter

treatment durations can be safe and support individualised

antimicrobial decision-making through hard outcome

estimation. From a behaviour change perspective, this

approach may provide reassurance to support early cessation

of therapy, while promoting improved knowledge and

understanding on the issue of antimicrobial optimisation and

stewardship (43). It should be noted though that too short a

course of antibiotics can cause harm and have negative

knock-on effects. As such, the aim of this research is to

optimise antimicrobial use and determine the most

appropriate antibiotic treatment duration for each individual

patient. One significant outstanding question is how clinicians

treating a patient would adopt recommendations provided by

such a system and if it would influence antimicrobial clinical

decision-making. Holistically, we believe antibiotic cessation is

a collective, data-driven decision, meaning a CDSS in this

area can have a larger influence and acceptance by end users.
frontiersin.org

https://doi.org/10.3389/fdgth.2022.997219
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Bolton et al. 10.3389/fdgth.2022.997219
However, the degree to which this tool would be accepted and

work alongside clinical decision-making behaviour requires

investigation.

We have shown that our model is able to reliably estimate

alternative patient outcomes depending on their antibiotic

treatment status. Based on our results, the size and

consistency of the dataset used and, hence, the number of

available donors are strongly related to the reliability of

outputs. Experiments utilising small datasets often led to poor

results given there were not enough suitable patients within a

given embedding space to create an appropriate synthetic

estimation. On the other hand, there does seem to be a

ceiling above which more instances are not necessary. For

example, similar results were obtained across the pneumonia,

test, and whole datasets even though they had sizes of 2,476,

3,427, and 22,845 patient stays, respectively. As such, we can

infer that this method is likely to produce suitable estimations

if several thousand patient examples are available. Although

this should be reasonable for most clinical scenarios, it does

act as a dataset constraint when evaluating less common

infections, where potentially more interesting nuanced

findings could be made.

The quality of the initial autoencoder model is another

significant implication that determines performance. The

standard autoencoder model without the synthetic control

methods applied achieved higher performance on the LOS

prediction task than estimations generated without segregating

the embedding space (RMSE of 3.88 and 5.05, respectively).

This confirms first that the model has been trained to

appropriately represent the patient in the embedding space

with respect to their outcome. Second, the temporal aspect of

the embeddings assists with synthetic outcome estimations

and finally the subsequent synthetic outcome estimation

methodology applied ensures that outputs can be clinically

applicable with regards to antibiotic treatment. As such, the

autoencoder is critical for appropriate temporal

representations and subsequent estimations.

It is important to note that there is a high degree of

correlation between LOS and overall treatment length in the

datasets (Table 1, supplementary Figure S3). This is to be

expected given those patients who are less sick will likely

receive fewer antibiotics and leave the ICU sooner. Although

the model architecture is designed to account for this,

through representative and segregated embeddings, it is still

likely that the model “learned” this association causing some

confounding. Results on outliers when there is reduced

correlation still illustrate that stopping can impact LOS

outcomes, even if the predictions themselves are not reliable

in this situation given the skewed dataset analysed. Numerous

factors influence ICU LOS; hence, even if the model predicts

that stopping antibiotics could be neutral or beneficial, other

random factors may make this an impossibility. Nevertheless,

our results and the strong correlation observed between
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antibiotic treatment length and LOS in this dataset mean this

model can act as a proxy with the ultimate aim of reducing

the unnecessary use of antibiotics.

This study has several limitations. We focused on

addressing what would happen if antibiotic cessation

occurred earlier during a patient’s ICU stay. The synthetic

control methodology was chosen and adapted as it allows

us to address this problem while more traditional causal

discovery seems intractable. MAPE and MAE LOS

estimation results are in the region of days which could

limit clinical utility but are comparable to that of recent

research (44). Unlike most synthetic control applications,

we do not have an extensive pre-intervention period

making confidence in results more challenging.

Furthermore, one of our analogues stop “control” days

would not be available on a patient-specific level during

clinical use due to the nature of cessation occurring after

treatment. Other types of interpretability such as being able

to investigate selected donors to see if they are clinically

meaningful could counteract this. Second, the use of

historical EHR data to estimate the synthetic outcome

means all our estimations are biased based on past

antibiotic prescribing policies. These methodological

approaches were required to answer our question of interest

but mean that historical approaches towards antimicrobial

stewardship govern our model’s outputs. The analysis of

such a large dataset along with estimations being the

weighted average of donors does, however, mitigate this to

some extent. In conjunction with this, the analysis

presented here is of a macro-scale; however, to realise the

potential of this approach for true antimicrobial

optimisation, more nuanced, relative, and individualised

studies will be required, which we plan to conduct in

future. Finally, given the high degree of missingness in the

dataset, a number of clinically important features have to

be excluded. In particular, research shows that

procalcitonin (PCT) and C-reactive protein (CRP) are

useful biomarkers for determining when it is safe and

appropriate to stop antibiotic therapy (45–48). Neither of

these were included as features due to insufficient data. As

such, this approach and the subsequent results could

potentially be more powerful if applied to a complete

dataset focused on a narrow type of infection with defined

variables of interest.

In conclusion, we have developed an AI-driven model to

estimate patient outcomes if they were to stop or continue

antibiotic treatment in the ICU. With further development

into a CDSS, we envisage that this can assist clinicians with

antimicrobial optimisation and reduce the excessive use of

antibiotics to tackle AMR. Future research will investigate

which variables promote or hinder cessation and discern

the ability of this tool to influence antimicrobial decision-

making.
frontiersin.org

https://doi.org/10.3389/fdgth.2022.997219
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Bolton et al. 10.3389/fdgth.2022.997219
Data availability statement

Publicly available datasets were analysed in this study. These

data can be found here: https://physionet.org/content/mimiciv/

1.0/.
Author contributions

WB, TR, BH, RW, and DA contributed to study concept

and design. WB and BH contributed to data acquisition. WB,

BH, and TR contributed to data analysis and accessed and

verified the underlying data. WB, TR, and BH contributed to

the initial manuscript drafting, discussion of the results, and

review of the data. All authors contributed to data

interpretation and final revisions of the manuscript. DA, PG,

and AH contributed to study supervision. All authors

contributed to the article and approved the submitted version.
Funding

WB was supported by the UKRI CDT in AI for Healthcare

http://ai4health.io (Grant No. P/S023283/1).
Acknowledgments

The authors would also like to acknowledge (1) the National
Institute for Health Research Health Protection Research Unit
(NIHR HPRU) in Healthcare Associated Infection and
Antimicrobial Resistance at Imperial College London and (2)
The Department for Health and Social Care funded Centre
Frontiers in Digital Health 11
for Antimicrobial Optimisation (CAMO) at Imperial College
London. The views expressed in this publication are those of
the authors and not necessarily those of the NHS, the
National Institute for Health Research or the UK Department
of Health.
Conflict of interest

TR was employed by Sandoz (2020), Roche Diagnostics Ltd

(2021), and bioMerieux (2021–2022). These commercial entities

were not involved in the study design, collection, analysis,

interpretation of data, the writing of this article, or the

decision to submit it for publication. All authors declare no

other competing interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the editors

and the reviewers. Any product that may be evaluated in this

article, or claim that may be made by its manufacturer, is not

guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fdgth.

2022.997219/full#supplementary-material.
References
1. Nations U. Political declaration of the high level meeting of the general
assembly on antimicrobial resistance: draft resolution/submitted by the president
of the general assembly New York: UN (2016) 6 p.

2. World Health Organization. Global action plan on antimicrobial resistance.
World Health Organization (2015) 28 p.

3. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, et al.
Global burden of bacterial antimicrobial resistance in 2019: a systematic
analysis. Lancet. (2022) 399:629–55. doi: 10.1016/S0140-6736(21)02724-0

4. Rawson TM, Moore LSP, Hernandez B, Charani E, Castro-Sanchez E, Herrero
P, et al. A systematic review of clinical decision support systems for antimicrobial
management: are we failing to investigate these interventions appropriately? Clin
Microbiol Infect. (2017) 23:524–32. doi: 10.1016/j.cmi.2017.02.028

5. Hernandez B, Herrero P, Rawson TM, Moore LSP, Evans B, Toumazou C,
et al. Supervised learning for infection risk inference using pathology data.
BMC Med Inform Decis Mak. (2017) 17:168. doi: 10.1186/s12911-017-0550-1

6. Rawson TM, Hernandez B, Moore LSP, Blandy O, Herrero P, Gilchrist M,
et al. Supervised machine learning for the prediction of infection on admission
to hospital: a prospective observational cohort study. J Antimicrob Chemother.
(2019) 74:1108–15. doi: 10.1093/jac/dky514

7. Rawson TM, Hernandez B, Wilson RC, Ming D, Herrero P, Ranganathan N,
et al. Supervised machine learning to support the diagnosis of bacterial infection
in the context of COVID-19. JAC-Antimicrob Resist. (2021) 3:dlab002. doi: 10.
1093/jacamr/dlab002

8. Hernandez B, Herrero-Viñas P, Rawson TM, Moore LSP, Holmes AH,
Georgiou P. Resistance trend estimation using regression analysis to enhance
antimicrobial surveillance: a multi-centre study in London 2009–2016.
Antibiotics. (2021) 10:1267. doi: 10.3390/antibiotics10101267

9. Hernandez B, Herrero P, Rawson T, Moore L, Charani E, Holmes A, et al.
Data-driven web-based intelligent decision support system for infection
management at point-of-care: case-based reasoning benefits and limitations. In
Proceedings of the 10th International Joint Conference on Biomedical
Engineering Systems and Technologies – HEALTHINF, (BIOSTEC 2017). (2017).
p. 119–27.

10. Rawson TM, Hernandez B, Moore LSP, Herrero P, Charani E, Ming D, et al.
A real-world evaluation of a case-based reasoning algorithm to support
antimicrobial prescribing decisions in acute care. Clin Infect Dis. (2021)
72:2103–11. doi: 10.1093/cid/ciaa383

11. Tamma PD, Miller MA, Cosgrove SE. Rethinking how antibiotics are
prescribed: incorporating the 4 moments of antibiotic decision making into
clinical practice. JAMA. (2019) 321:139–40. doi: 10.1001/jama.2018.19509

12. Langford BJ, Morris AM. Is it time to stop counselling patients to “finish the
course of antibiotics”? Can Pharm J. (2017) 150:349–50. doi: 10.1177/
1715163517735549
frontiersin.org

https://physionet.org/content/mimiciv/1.0/
https://physionet.org/content/mimiciv/1.0/
http://ai4health.io
https://www.frontiersin.org/articles/10.3389/fdgth.2022.997219/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fdgth.2022.997219/full#supplementary-material
https://doi.org/10.1016/S0140-6736(21)02724-0
https://doi.org/10.1016/j.cmi.2017.02.028
https://doi.org/10.1186/s12911-017-0550-1
https://doi.org/10.1093/jac/dky514
https://doi.org/10.1093/jacamr/dlab002
https://doi.org/10.1093/jacamr/dlab002
https://doi.org/10.3390/antibiotics10101267
https://doi.org/10.1093/cid/ciaa383
https://doi.org/10.1001/jama.2018.19509
https://doi.org/10.1177/1715163517735549
https://doi.org/10.1177/1715163517735549
https://doi.org/10.3389/fdgth.2022.997219
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Bolton et al. 10.3389/fdgth.2022.997219
13. Holmes AH, Moore LSP, Sundsfjord A, Steinbakk M, Regmi S, Karkey A,
et al. Understanding the mechanisms, drivers of antimicrobial resistance.
Lancet. (2016) 387:176–87. doi: 10.1016/S0140-6736(15)00473-0

14. Spellberg B. The new antibiotic mantra—“shorter is better”. JAMA Intern
Med. (2016) 176:1254–5. doi: 10.1001/jamainternmed.2016.3646

15. Curran J, Lo J, Leung V, Brown K, Schwartz KL, Daneman N, et al. Estimating
daily antibiotic harms: an umbrella review with individual study meta-analysis. Clin
Microbiol Infect. (2022) 28:479–90. doi: 10.1016/j.cmi.2021.10.022

16. Vaughn VM, Flanders SA, Snyder A, Conlon A, Rogers MA, Malani AN,
et al. Excess antibiotic treatment duration and adverse events in patients
hospitalized with pneumonia. Ann Intern Med. (2019) 171:153–63. doi: 10.
7326/M18-3640

17. Spellberg B, Rice LB. Duration of antibiotic therapy: shorter is better. Ann
Intern Med. (2019) 171:210–1. doi: 10.7326/M19-1509

18. Yahav D, Franceschini E, Koppel F, Turjeman A, Babich T, Bitterman R,
et al. Seven versus 14 days of antibiotic therapy for uncomplicated gram-
negative bacteremia: a noninferiority randomized controlled trial. Clin Infect
Dis. (2019) 69:1091–8. doi: 10.1093/cid/ciy1054

19. Royer S, DeMerle KM, Dickson RP, Prescott HC. Shorter versus longer
courses of antibiotics for infection in hospitalized patients: a systematic review
and meta-analysis. J Hosp Med. (2018) 13:336–42. doi: 10.12788/jhm.2905

20. Wald-Dickler N, Spellberg B. Short-course antibiotic therapy—replacing
Constantine units with “shorter is better”. Clin Infect Dis. (2019) 69:1476–9.
doi: 10.1093/cid/ciy1134

21. Hanretty AM, Gallagher JC. Shortened courses of antibiotics for bacterial
infections: a systematic review of randomized controlled trials.
Pharmacotherapy. (2018) 38:674–87. doi: 10.1002/phar.2118

22. Janssen RME, Oerlemans AJM, Van Der Hoeven JG, Ten Oever J, Schouten
JA, Hulscher MEJL. Why we prescribe antibiotics for too long in the hospital
setting: a systematic scoping review. J Antimicrob Chemother. (2022) 77(8):
dkac162. doi: 10.1093/jac/dkac162

23. Charani E, McKee M, Ahmad R, Balasegaram M, Bonaconsa C, Merrett GB,
et al. Optimising antimicrobial use in humans: review of current evidence and an
interdisciplinary consensus on key priorities for research. Lancet Reg Health Eur.
(2021) 7:100161. doi: 10.1016/j.lanepe.2021.100161

24. Peiffer-Smadja N, Rawson TM, Ahmad R, Buchard A, Georgiou P, Lescure
FX, et al. Machine learning for clinical decision support in infectious diseases: a
narrative review of current applications. Clin Microbiol Infect. (2020) 26:584–95.
doi: 10.1016/j.cmi.2019.09.009

25. Pandolfo AM, Horne R, Jani Y, Reader TW, Bidad N, Brealey D, et al.
Understanding decisions about antibiotic prescribing in ICU: an application of
the Necessity Concerns Framework. BMJ Qual Saf. (2022) 31:199–210. doi: 10.
1136/bmjqs-2020-012479

26. Rawson TM, Charani E, Moore LSP, Hernandez B, Castro-Sánchez E,
Herrero P, et al. Mapping the decision pathways of acute infection management
in secondary care among UK medical physicians: a qualitative study. BMC Med.
(2016) 14:208. doi: 10.1186/s12916-016-0751-y

27. Johnson A, Bulgarelli L, Pollard T, Horng S, Celi LA, Mark R. MIMIC-IV
(2021)[Dataset]. doi: 10.13026/s6n6-xd98

28. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG,
et al. PhysioBank, PhysioToolkit, and PhysioNet. Circulation. (2000) 101:e215–20.
doi: 10.1161/01.CIR.101.23.e215

29. Qian Z, Zhang Y, Bica I, Wood A, van der Schaar M. SyncTwin: treatment
effect estimation with longitudinal outcomes. In: Advances in Neural Nnformation
Processing Systems 34 (NeurIPS 2021). Vol. 34. Vancouver Canada: Curran
Associates, Inc. (2021). p. 3178–3190.

30. Abadie A, Gardeazabal J. The economic costs of conflict: a case study of the
Basque country. Am Econ Rev. (2003) 93:113–32. doi: 10.1257/000282803321455188

31. Bouttell J, Craig P, Lewsey J, Robinson M, Popham F. Synthetic
control methodology as a tool for evaluating population-level health interventions.
J Epidemiol Community Health. (2018) 72:673–8. doi: 10.1136/jech-2017-210106
Frontiers in Digital Health 12
32. Kreif N, Grieve R, Hangartner D, Turner AJ, Nikolova S, Sutton M.
Examination of the synthetic control method for evaluating health policies with
multiple treated units. Health Econ. (2016) 25:1514–28. doi: 10.1002/hec.3258

33. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. Pytorch:
an imperative style, high-performance deep learning library. In: Advances in
Neural Information Processing Systems 32 (NeurIPS 2019). Vol. 32. Vancouver
Canada: Curran Associates, Inc. (2019). p. 8024–8035.

34. Kingma DP, Ba J. Adam: a method for stochastic optimization (2014).
Available from: https://arxiv.org/abs/1412.6980

35. Liaw R, Liang E, Nishihara R, Moritz P, Gonzalez JE, Stoica I. Tune: A
research platform for distributed model selection and training [Preprint] (2018).
Available at: http://arxiv.org/1807.05118.

36. Dimopoulos G, Poulakou G, Pneumatikos IA, Armaganidis A, Kollef MH,
Matthaiou DK. Short- vs long-duration antibiotic regimens for ventilator-
associated pneumonia: a systematic review and meta-analysis. Chest. (2013)
144:1759–67. doi: 10.1378/chest.13-0076

37. Pugh R, Grant C, Cooke RPD, Dempsey G. Short-course versus prolonged-
course antibiotic therapy for hospital-acquired pneumonia in critically ill adults.
Cochrane Database Syst Rev. (2015) (8):CD007577. doi: 10.1002/14651858.
CD007577.pub3

38. Drekonja DM, Trautner B, Amundson C, Kuskowski M, Johnson JR. Effect
of 7 vs 14 days of antibiotic therapy on resolution of symptoms among afebrile
men with urinary tract infection: a randomized clinical trial. JAMA. (2021)
326:324–31. doi: 10.1001/jama.2021.9899

39. de Gier R, Karperien A, Bouter K, Zwinkels M, Verhoef J, Knol W, et al. A
sequential study of intravenous and oral fleroxacin for 7 or 14 days in the
treatment of complicated urinary tract infections. Int J Antimicrob Agents.
(1995) 6:27–30. doi: 10.1016/0924-8579(95)00011-V

40. Peterson J, Kaul S, Khashab M, Fisher AC, Kahn JB. A double-blind,
randomized comparison of levofloxacin 750 mg once-daily for five days with
ciprofloxacin 400/500 mg twice-daily for 10 days for the treatment of
complicated urinary tract infections and acute pyelonephritis. Urology. (2008)
71:17–22. doi: 10.1016/j.urology.2007.09.002

41. National Institute for Health and Care Excellence. Pneumonia (hospital-
acquired): antimicrobial prescribing NICE guideline [NG139]. (2019). Available
from: https://www.nice.org.uk/guidance/ng139

42. National Institute for Health and Care Excellence. Urinary tract infection
(lower): antimicrobial prescribing NICE guideline [NG109]. (2018). Available
from: https://www.nice.org.uk/guidance/ng109

43. Pauwels I, Versporten A, Vermeulen H, Vlieghe E, Goossens H. Assessing
the impact of the Global Point Prevalence Survey of Antimicrobial
Consumption and Resistance (Global-PPS) on hospital antimicrobial
stewardship programmes: results of a worldwide survey. Antimicrob Resist Infect
Control. (2021) 10:138. doi: 10.1186/s13756-021-01010-w

44. Rocheteau E, Liò P, Hyland S. Temporal pointwise convolutional networks
for length of stay prediction in the intensive care unit. Proceedings of the
Conference on Health, Inference, and Learning, CHIL ’21. 2021 April 8 – 10;
New York, NY: Association for Computing Machinery (2021). p. 58–68.
Available at: https://doi.org/10.1145/3450439.3451860

45. Schuetz P, Wirz Y, Sager R, Christ-Crain M, Stolz D, Tamm M, et al.
Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract
infections. Cochrane Database Syst Rev. (2017) 2017:CD007498. doi: 10.1002/
14651858.CD007498.pub3

46. Rhee C. Using procalcitonin to guide antibiotic therapy. Open Forum Infect
Dis. (2016) 4:ofw249. doi: 10.1093/ofid/ofw249

47. Oliveira CF, Botoni FA, Oliveira CRA, Silva CB, Pereira HA, Serufo JC, et al.
Procalcitonin versus C-reactive protein for guiding antibiotic therapy in sepsis: a
randomized trial. Crit Care Med. (2013) 41:2336–43. doi: 10.1097/CCM.
0b013e31828e969f

48. Coelho L, Póvoa P, Almeida E, Fernandes A, Mealha R, Moreira P, et al.
Usefulness of C-reactive protein in monitoring the severe community-acquired
pneumonia clinical course. Crit Care. (2007) 11:R92. doi: 10.1186/cc6105
frontiersin.org

https://doi.org/10.1016/S0140-6736(15)00473-0
https://doi.org/10.1001/jamainternmed.2016.3646
https://doi.org/10.1016/j.cmi.2021.10.022
https://doi.org/10.7326/M18-3640
https://doi.org/10.7326/M18-3640
https://doi.org/10.7326/M19-1509
https://doi.org/10.1093/cid/ciy1054
https://doi.org/10.12788/jhm.2905
https://doi.org/10.1093/cid/ciy1134
https://doi.org/10.1002/phar.2118
https://doi.org/10.1093/jac/dkac162
https://doi.org/10.1016/j.lanepe.2021.100161
https://doi.org/10.1016/j.cmi.2019.09.009
https://doi.org/10.1136/bmjqs-2020-012479
https://doi.org/10.1136/bmjqs-2020-012479
https://doi.org/10.1186/s12916-016-0751-y
https://doi.org/10.13026/s6n6-xd98
https://doi.org/10.1161/01.CIR.101.23.e215
https://doi.org/10.1257/000282803321455188
https://doi.org/10.1136/jech-2017-210106
https://doi.org/10.1002/hec.3258
https://arxiv.org/abs/1412.6980
https://doi.org/10.1378/chest.13-0076
https://doi.org/10.1002/14651858.CD007577.pub3
https://doi.org/10.1002/14651858.CD007577.pub3
https://doi.org/10.1001/jama.2021.9899
https://doi.org/10.1016/0924-8579(95)00011-V
https://doi.org/10.1016/j.urology.2007.09.002
https://www.nice.org.uk/guidance/ng139
https://www.nice.org.uk/guidance/ng109
https://doi.org/10.1186/s13756-021-01010-w
https://doi.org/10.1145/3450439.3451860
https://doi.org/10.1002/14651858.CD007498.pub3
https://doi.org/10.1002/14651858.CD007498.pub3
https://doi.org/10.1093/ofid/ofw249
https://doi.org/10.1097/CCM.0b013e31828e969f
https://doi.org/10.1097/CCM.0b013e31828e969f
https://doi.org/10.1186/cc6105
https://doi.org/10.3389/fdgth.2022.997219
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

	Machine learning and synthetic outcome estimation for individualised antimicrobial cessation
	Introduction
	Methods
	Dataset
	Model architecture
	Model development and software
	Model evaluation and metrics

	Results
	Autoencoder
	Synthetic outcome estimation
	Pneumonia and UTIs

	Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


