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Abstract

The celebrated Skolem-Mahler-Lech Theorem states that the set of zeros of a linear recurrence
sequence is the union of a finite set and finitely many arithmetic progressions. The corresponding
computational question, the Skolem Problem, asks to determine whether a given linear recurrence
sequence has a zero term. Although the Skolem-Mahler-Lech Theorem is almost 90 years old,
decidability of the Skolem Problem remains open. The main contribution of this paper is an
algorithm to solve the Skolem Problem for simple linear recurrence sequences (those with simple
characteristic roots). Whenever the algorithm terminates, it produces a stand-alone certificate that
its output is correct—a set of zeros together with a collection of witnesses that no further zeros
exist. We give a proof that the algorithm always terminates assuming two classical number-theoretic
conjectures: the Skolem Conjecture (also known as the Exponential Local-Global Principle) and
the p-adic Schanuel Conjecture. Preliminary experiments with an implementation of this algorithm
within the tool Skolem point to the practical applicability of this method.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Skolem Problem, Skolem Conjecture, Exponential Local-Global Principle,
p-adic Schanuel Conjecture

Digital Object Identifier 10.4230/LIPIcs.MFCS.2022.62

Supplementary Material Software: https://skolem.mpi-sws.org

Funding Yuri Bilu: Supported by ANR project JINVARIANT, by the Max Planck Institute for
Software Systems, Saarland Informatics Campus, Germany, and by the Max Planck Institute for
Mathematics, Bonn, Germany.
Joël Ouaknine: Also affiliated with Keble College, Oxford as emmy.network Fellow, and supported
by DFG grant 389792660 as part of TRR 248 (see https://perspicuous-computing.science).

© Yuri Bilu, Florian Luca, Joris Nieuwveld, Joël Ouaknine, David Purser, and James Worrell;
licensed under Creative Commons License CC-BY 4.0

47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022).
Editors: Stefan Szeider, Robert Ganian, and Alexandra Silva; Article No. 62; pp. 62:1–62:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yuri@math.u-bordeaux.fr
https://orcid.org/0000-0002-9595-4223
mailto:Florian.Luca@wits.ac.za 
https://orcid.org/0000-0003-1321-4422
mailto:jnieuwve@mpi-sws.org
mailto:joel@mpi-sws.org
https://orcid.org/0000-0003-0031-9356
https://orcid.org/0000-0003-0394-1634
mailto:jbw@cs.ox.ac.uk
https://orcid.org/0000-0001-8151-2443
https://doi.org/10.4230/LIPIcs.MFCS.2022.62
https://skolem.mpi-sws.org
http://emmy.network/
https://perspicuous-computing.science
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


62:2 Skolem Meets Schanuel

1 Introduction

1.1 The Skolem Problem
A (rational) linear recurrence sequence (LRS) u = ⟨un⟩∞

n=0 is a sequence of rational numbers
satisfying the equation

un+d = c1un+d−1 + · · · + cd−1un+1 + cdun (1)

for all n ∈ N, where the coefficients c1, . . . , cd are rational numbers and cd ̸= 0. We say that
the above recurrence has order d. We moreover say that an LRS is simple if the characteristic
polynomial of its minimal-order recurrence has simple roots.

The celebrated theorem of Skolem, Mahler, and Lech (see [15]) describes the structure of
the set {n ∈ N : un = 0} of zero terms of an LRS as follows:

▶ Theorem 1. Given a linear recurrence sequence u = ⟨un⟩∞
n=0, the set of zero terms is a

union of finitely many arithmetic progressions, together with a finite set.

The statement of Theorem 1 can be refined by considering the notion of non-degeneracy of
an LRS. An LRS is non-degenerate if in its minimal recurrence the quotient of no two distinct
roots of the characteristic polynomial is a root of unity. A given LRS can be effectively
decomposed as an interleaving of finitely many non-degenerate sequences, some of which may
be identically zero. The core of the Skolem-Mahler-Lech Theorem is the fact that a non-zero
non-degenerate linear recurrence sequence has finitely many zero terms. Unfortunately, all
known proofs of this last assertion are ineffective: it is not known how to compute the finite
set of zeros of a given non-degenerate linear recurrence sequence. It is readily seen that the
existence of a procedure to do so is equivalent to the existence of a procedure to decide
whether an arbitrary given LRS has a zero term. The problem of deciding whether an LRS
has a zero term is variously known as the Skolem Problem or the Skolem-Pisot Problem.

Decidability of the Skolem Problem is known only for certain special cases, based on the
relative order of the absolute values of the characteristic roots. Say that a characteristic root
λ is dominant if its absolute value is maximal among all the characteristic roots. Decidability
is known in case there are at most 3 dominant characteristic roots, and also for recurrences
of order at most 4 [26, 34]. However for LRS of order 5 it is not currently known how to
decide the Skolem Problem.

The Skolem Problem, along with closely related questions such as the Positivity Problem,
is intimately connected to various fundamental topics in program analysis and automated
verification, such as the termination and model checking of simple while loops [3, 18, 27] or
the algorithmic analysis of stochastic systems [1, 2, 5, 13, 28]. It also appears in a variety of
other contexts, such as formal power series [29, 33] and control theory [9, 16]. The Skolem
Problem is often used as a reference to establish hardness of other open decision problems; in
addition to some of the previously cited papers, the articles [4, 14], for example, specifically
invoke hardness of the Skolem Problem for simple LRS of order 5. Thus far, the only known
complexity bound for the Skolem Problem is NP-hardness [10].

1.2 The Skolem Conjecture and the Bi-Skolem Problem
The notion of linear recurrence equally well makes sense for a bi-infinite sequence u =
⟨un⟩∞

n=−∞ of rational numbers: one defines u to be a linear recurrent bi-sequence (LRBS)
if it satisfies the recurrence (1) for all n ∈ Z. Note that every LRS u extends uniquely to
an LRBS satisfying the same recurrence (one obtains such an extension by “running the
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recurrence backwards”). The notions of simplicity and non-degeneracy carry over in the
obvious way to LRBS. We remark also that the Skolem-Mahler-Lech Theorem remains
valid for LRBS—a non-degenerate LRBS has finitely many zeros. The analog of the Skolem
Problem for LRBS is the Bi-Skolem Problem, which asks, for a given LRBS u = ⟨un⟩∞

n=−∞,
whether there exists n ∈ Z with un = 0.

A major motivation to consider the Bi-Skolem Problem is the existence of the Exponential
Local-Global Principle, a conjecture introduced by Thoralf Skolem in 1937 [32]. To formulate
the conjecture we first make some observations about the value set of an LRBS. Given a
non-zero integer b, let Z[ 1

b ] be the subring of Q obtained by adjoining 1
b to Z. We note

that every rational LRBS takes values in Z[ 1
b ] for some b. Indeed, if u = ⟨un⟩∞

n=−∞ satisfies
recurrence (1) and Z[ 1

b ] contains the coefficients c1, . . . , cd, the reciprocal c−1
d of the last

coefficient, and the initial terms u0, . . . , ud−1, then by running the recurrence forwards and
backwards from the initial terms we see that un ∈ Z[ 1

b ] for all n ∈ Z.

▶ Skolem Conjecture. Let u be a simple rational LRBS taking values in the ring Z[ 1
b ] for

some integer b. Then u has no zero iff, for some integer m ≥ 2 with gcd(b, m) = 1, we have
that un ̸≡ 0 mod m for all n ∈ Z.

In other words, the Skolem Conjecture asserts that if a simple LRBS fails to have a zero,
then this is witnessed modulo m for some m. The truth of this conjecture immediately entails
the existence of an algorithm to solve the Bi-Skolem Problem for simple LRBS: simply search
in parallel either for a zero of the LRBS, or for a number m substantiating the absence of
zeros. If the Skolem Conjecture holds, then the search must necessarily eventually terminate.

There exists a substantial body of literature on the Skolem Conjecture, including proofs
of a variety of special cases. In particular, the Skolem Conjecture has been shown to hold
for simple LRBS of order 2 [6], and for certain families of LRBS of order 3 [30, 31]. In a
different but related vein, Bertók and Hajdu have shown that, in some sense, the Skolem
Conjecture is valid in “almost all” instances [7, 8].

1.3 Main Results
It is immediate that the Bi-Skolem Problem reduces to the Skolem Problem: an LRBS
⟨un⟩∞

n=−∞ has a zero term if and only if at least one of the one-way infinite sequences ⟨un⟩∞
n=0

and ⟨u−n⟩∞
n=0, both of which are LRS, has a zero term. However it is open whether there is a

reduction in the other direction (equivalently, it is open whether an oracle for the Bi-Skolem
Problem can be used to determine all the zeros of a non-degenerate LRBS). Indeed, an
oracle for the Bi-Skolem Problem would appear to be of little utility in deciding the Skolem
Problem for an LRS whose bi-completion happens to harbour a zero at a negative index. It
is likewise not known (in spite of the similar nomenclature) whether the truth of the Skolem
Conjecture implies decidability of the Skolem Problem.

Our first main result is as follows:

▶ Theorem 2. The Skolem Problem reduces to the Bi-Skolem Problem subject to the weak
p-adic Schanuel Conjecture.

Schanuel’s Conjecture [21, Pages 30-31] is a unifying conjecture in transcendental number
theory that plays a key role in the study of the exponential function over both the real and
complex numbers. In particular, a celebrated paper of Macintyre and Wilkie [23] obtains
decidability of the first-order theory of the structure (R; <, · , +, exp) assuming Schanuel’s
Conjecture over R. A p-adic version of the Schanuel Conjecture, referring to the exponential
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function on the ring Zp of p-adic integers, was formulated in [12]. This conjecture was shown
in [24] to imply decidability of the first-order theory of the structure (Zp; <, · , +, exp).

Since the reduction in Theorem 2 specialises to simple LRBS we obtain:

▶ Theorem 3. The Skolem Problem for simple LRS is decidable subject to the weak p-adic
Schanuel Conjecture and the Skolem Conjecture.

The proof of Theorem 3 gives an algorithm that computes the set of zeros of a non-degenerate
simple LRBS. The algorithm moreover produces an unconditional certificate that its output
is correct, i.e., that all zeros have been found. This certificate consists of a partition of the
input LRBS into finitely many subsequences such that each subsequence contains at most
one zero. For a subsequence with no zero, the algorithm finds an integer m such that the
subsequence is non-zero modulo m; for a subsequence with a zero, the algorithm provides a
prime p such that p divides the non-zero terms a well-described (upper-bounded) number of
times. The conjectural aspect of Theorem 3 solely concerns the proof that the algorithm
terminates on all input sequences.

We have implemented our algorithm within the Skolem tool,1 which enumerates the set
of zeros of a given non-degenerate simple LRS, and produces an independent (conjecture-free)
certificate that all zeros have been found. Preliminary experiments, which we present in
Section 5, point to the practical applicability of our algorithm.

1.4 Related Work
The decidability of the Skolem Problem is generally considered to have been open since the
early 1930s, as the p-adic techniques underpinning the Skolem-Mahler-Lech Theorem were
well understood already at the time not to be effective. As noted earlier, a breakthrough
establishing decidability at order 4 occurred in the mid-1980s [26, 34], making key use of
Baker’s Theorem on linear forms in logarithms of algebraic numbers. Very recently, we
have shown that the Skolem Problem is decidable at order 5 assuming only the Skolem
Conjecture; and in the same paper we also obtained unconditional decidability for reversible
LRS2 of order 7 or less [22]. A minor contribution of the present paper is to improve on the
former result by establishing a Turing reduction from the Skolem Problem at order 5 to the
Bi-Skolem Problem for simple LRBS of order 5; this is the content of Theorem 12.

2 Technical Background

2.1 Computation in Number Fields
A number field K is a finite-degree extension of Q. For computational purposes, such a field
can be represented in the form Q[X]/(g(X)), where g(X) is the minimal polynomial of a
primitive element of K. With such a representation it is straightforward to do arithmetic
in K, including solving systems of linear equations with coefficients in K. Moreover, given
a polynomial f(X) ∈ Q[X], one can compute a representation in the above form of the
splitting field K of f over Q, together with representations of the roots of f as elements of
K [20].

In addition to basic arithmetic and linear algebra in K, we wish to determine whether
some given elements λ1, . . . , λs ∈ K are multiplicatively independent and, if not, to exhibit

1 Skolem can be experimented with online at https://skolem.mpi-sws.org/ .
2 An integer LRS is reversible if its completion as an LRBS only takes on integer values.
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a1, . . . , as ∈ Z such that λa1
1 · · · λas

s = 1. For this we can use the following result, which shows
that if such a multiplicative relation exists then there exists one in which the exponents
a1, . . . , as have absolute value at most B for some bound B computable from the height of
the λi and the degree of the number field K.

▶ Theorem 4 (Masser [25]). Let K be a number field of degree D over Q. For s ≥ 1 let
λ1, . . . , λs be non-zero elements of K having absolute logarithmic Weil height at most h over
Q. Then the group of multiplicative relations

L = {(k1, . . . , ks) ∈ Zs : λk1
1 · · · λks

s = 1} (2)

is generated (as an additive subgroup of Zs) by a collection of vectors all of whose entries

have absolute value at most (csh)s−1Ds−1 (log(D + 2))3s−3

(log log(D + 2))3s−4 , for some absolute constant
c.

2.2 p-adic Numbers
Let p be a prime. Define the p-adic valuation vp : Q → Z ∪ {∞} by vp(0) = ∞ and
vp

(
pν · a

b

)
= ν for all a, b ∈ Z \ {0} such that gcd(ab, p) = 1. In other words, vp(x) gives

the exponent of p as a divisor of x ∈ Q. The map vp determines an absolute value | · |p on
Q, where |x|p := p−vp(x) (with the convention that |0|p = p−∞ = 0). Due to the fact that
vp(a + b) ≥ min(vp(a), vp(b)), we have the strong triangle equality: |a + b|p ≤ max(|a|p, |b|p)
for all a, b ∈ Q. In other words, | · |p is a non-Archimedean absolute value. The field
Qp of p-adic numbers is the completion of Q with respect to | · |p. The absolute value
| · |p extends to a non-Archimedean absolute value on Qp. The ring of p-adic integers is
Zp := {x ∈ Qp : |x|p ≤ 1}. The ring Zp contains a unique maximal ideal pZp, with the
quotient Zp/pZp being isomorphic to Fp (the finite field with p elements). When we refer to
elements of Zp modulo p we refer to their image under this quotient map.

Given a sequence of numbers ⟨an⟩∞
n=0 in Zp, the infinite sum

∑∞
n=0 an converges to

an element of Zp if and only if |an|p → 0 (equivalently, vp(an) → ∞) as n → ∞. It
follows that given a sequence ⟨an⟩∞

n=0 in Zp with |an|p → 0, the corresponding power series
f(X) =

∑∞
j=0 ajXj defines a function f : Zp → Zp.

Consider a monic polynomial g(X) ∈ Z[X] with non-zero discriminant ∆(g). Let p be a
prime that does not divide ∆(g). Denote by g(X) ∈ Fp[X] the polynomial obtained from
g by replacing each coefficient with its residue modulo p. It is well known that a sufficient
condition for g to split completely over Zp is that g split over Fp. Indeed, in this situation
one can use Hensel’s Lemma [17, Theorem 3.4.1] to “lift” each of the roots of g in Fp to a
distinct root in Zp. Moreover, by the Chebotarev density theorem [19] there are infinitely
many primes p for which g splits over Fp. Hence there are infinitely many primes p such
that g splits over Zp. Note that the last statement holds even without the assumption that
∆(g) ̸= 0, since g ∈ Z[X] splits over Zp whenever g

gcd(g,g′) ∈ Z[X] splits over Zp (and the
latter has non-zero discriminant).

Let p be an odd prime.3 The p-adic exponential is defined as exp(x) =
∞∑

k=0

xk

k! , which

converges for all x ∈ pZp. The p-adic logarithm is defined as log(x) =
∞∑

k=0
(−1)k+1 (x − 1)k

k
,

3 We omit the prime p = 2 to avoid special cases in the facts below.

MFCS 2022
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which converges for all x ∈ 1 + pZp. For x, y ∈ pZp we have exp(x + y) = exp(x) exp(y) and
for x, y ∈ 1 + pZp we have log(xy) = log(x) + log(y). Indeed we have that exp and log yield
mutually inverse isomorphisms between the additive group pZp and multiplicative group
1 + pZp.

Schanuel’s Conjecture for the complex numbers is a powerful unifying principle in
transcendence theory. We will need the following p-adic version of the weak form of Schanuel’s
Conjecture, which can be found, e.g., as [12, Conjecture 3.10].

▶ Conjecture 5. (Weak p-adic Schanuel Conjecture.) Let α1, . . . , αs ∈ 1 + pZp be al-
gebraic over Q and such that log α1, . . . , log αs are linearly independent over Q. Then
log α1, . . . , log αs are algebraically independent over Q, i.e., for every non-zero polynomial P ∈
Qp[X1, . . . , Xs] whose coefficients are algebraic over Q, we have that P (log α1, . . . , log αs) ̸= 0.

A known special case of Conjecture 5 is the following result of Brumer [11], which is a
p-adic analog of Baker’s Theorem on linear independence of logarithms of algebraic numbers.

▶ Theorem 6. Let α1, . . . , αs ∈ 1+pZp be algebraic over Q and such that log α1, . . . , log αs are
linearly independent over Q. Then β0 + β1 log α1 + · · · + βs log αs ̸= 0 for all β0, . . . , βs ∈ Qp

that are algebraic over Q and not all zero.

3 p-adic Power-Series Representation of LRBS

Let u = ⟨un⟩∞
n=−∞ be an LRBS of rational numbers satisfying the linear recurrence

un+d = c1un−d−1 + · · · + cdun (n ∈ Z),

where cd ̸= 0. For the purposes of computing the zeros of u we can assume without loss
of generality that the coefficients c1, . . . , cd of the recurrence are integers. (It is easy to see
that for any integer ℓ such that ℓci ∈ Z for i ∈ {1, . . . , d}, the scaled sequence ⟨ℓnun⟩∞

n=−∞
satisfies an integer recurrence.) Write g(X) := Xd − c1Xd−1 − · · · − cd for the characteristic
polynomial of the recurrence and let

A :=


c1 · · · cd−1 cd

1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

 , α :=
(
0 · · · 0 1

)
, and β :=


ud−1

...
u1
u0

 .

We now have the matrix-exponential representation un = αAnβ for all n ∈ Z. (Here A is
known as the companion matrix of the recurrence.)

The key tool in our approach—which also underlies the proof of the Skolem-Mahler-Lech
Theorem—is the representation of the LRBS u in terms of a power series f(X) =

∑∞
j=0 ajXj

with coefficients in Zp. In defining f we work with an odd prime p such that (i) p does
not divide the constant term cd of the recurrence; (ii) p does not divide the discriminant
∆
(

g
gcd(g,g′)

)
; (iii) the characteristic polynomial g splits over Zp. As explained in Section 2.2,

there are infinitely many such primes. Moreover, for a particular prime p that does not
divide ∆

(
g

gcd(g,g′)

)
, we can easily verify whether g splits over Zp, since this is equivalent to

g
gcd(g,g′) splitting over Fp.

Write λ1, . . . , λs ∈ Zp for the distinct roots of g. Let K be the subfield of Qp generated by
λ1, . . . , λs. Then K is a number field and thus we can compute symbolically in K as described
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in Section 2.1. It is well known that the sequence u admits an exponential-polynomial
representation

un =
s∑

i=1
Qi(n)λn

i (n ∈ Z) , (3)

where Qi ∈ K[X] has degree strictly less than the multiplicity of λi as a root of g. The
coefficients of each polynomial Qi can be computed as the unique solution of the system of
linear equations that arises by substituting n = 0, . . . , d − 1 in Equation (3) (where, recall, d

is the order of the recurrence).
The companion matrix has determinant det(A) = ±cd, which is non-zero modulo p; hence

A is invertible modulo p. Let L be the least positive integer such that AL ≡ I mod p. Being
an eigenvalue of AL, λL

i ≡ 1 mod p for all i ∈ {1, . . . , s} and hence the p-adic logarithm
log λL

i is defined for all i ∈ {1, . . . , s}. We thus obtain the following representation of the
subsequence ⟨uLn⟩∞

n=−∞ in terms of the p-adic exponential and logarithm functions:

uLn =
s∑

i=1
Qi(Ln)λLn

i =
s∑

i=1
Qi(Ln) exp(n log λL

i ) .

Now consider the power series f(X) =
∑∞

j=0 ajXj such that

f(x) :=
s∑

i=1
Qi(Lx) exp(x log λL

i ) (4)

for all x ∈ Zp. Then we have uLn = f(n) for all n ∈ Z. Moreover, since aj = 1
j! f

(j)(0), by
taking derivatives in (4) we obtain the following expression for the coefficients of f :

aj = 1
j!

s∑
i=1

j∑
k=0

(
j

k

)
LkQ

(k)
i (0)

(
log λL

i

)j−k
. (5)

In the remainder of this section we recall an alternative formula for the coefficients of f as
p-adically convergent sums of rational numbers. This provides a simple method to compute
vp(aj) that avoids computing p-adic approximations of the characteristic roots, as would be
needed if we were to directly use (5).

Recall that we have AL ≡ I mod p. Let us say that AL = I +pB for some integer matrix
B. Then we have:

uLn = αALnβ

= α(I + pB)nβ

=
n∑

k=0

(
n

k

)
pkαBkβ

=
n∑

k=0

n(n − 1) . . . (n − k + 1)
k! pkαBkβ

=
∞∑

k=0

n(n − 1) . . . (n − k + 1)
k! pkαBkβ

=
∞∑

k=0

∞∑
j=0

ck,jnj pk

k! for certain ck,j ∈ Z with ck,j = 0 for j > k

=
∞∑

j=0

∞∑
k=j

ck,jnj pk

k! .
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It remains to see why one can reverse the order of summation in the last line above and why
the resulting sums converge in Zp. For this we can apply [17, Proposition 4.1.4], for which
we require that the summand ck,jnj pk

k! converge to 0 as j → ∞ and converge to 0 uniformly
in j as k → ∞. But this precondition follows from the fact that vp(k!) < k

p−1 , from which

we have vp

(
ck,jnj pk

k!

)
≥ (p−2)k

p−1 for all k ≥ j.

Now consider the power series f̃(X) :=
∑∞

j=0 bjXj where

bj :=
∞∑

k=j

ck,j
pk

k! ∈ Zp . (6)

By the above considerations we have that vp(bj) ≥ (p−2)j
p−1 and hence f̃ converges on Zp and

satisfies f̃(n) = uLn for all n ∈ Z. In particular, the power series f and f̃ agree on Z and
hence (e.g., by [17, Proposition 4.4.3]) are identical, i.e., aj = bj for all j ∈ N. Thus we can
use Equation (6) to exactly compute vp(aj) for any j such that aj ̸= 0.

4 Computing all the Zeros of an LRBS

In this section we show, assuming the weak p-adic Schanuel Conjecture, that the set of all
zeros of a non-degenerate LRBS is computable using an oracle for the Bi-Skolem Problem. In
particular, this gives a Turing reduction of the Skolem Problem to the Bi-Skolem Problem.

▶ Proposition 7. Let f : Zp → Zp be given by a convergent p-adic power series f(X) =∑∞
k=0 akXk, with coefficients in Zp. Suppose that ℓ is a positive integer such that a0 = · · · =

aℓ−1 = 0 and aℓ ≠ 0. Then, writing ν := vp(aℓ), we have f(pν+1x) ̸= 0 for all non-zero
x ∈ Zp.

Proof. Let x ∈ Zp be non-zero. For every m > ℓ we have

vp(aℓ(pν+1x)ℓ) = ν + ℓ(ν + 1) + vp(xℓ)
< m(ν + 1) + vp(xm) (since ℓ < m and x ̸= 0)
≤ vp(am(pν+1x)m) .

It follows that for all m ≥ ℓ,

vp

(
m∑

k=0
ak(pν+1x)k

)
= vp(aℓ(pν+1x)ℓ) .

Letting m tend to infinity, we have vp(f(pν+1x)) = vp(aℓ(pν+1x)ℓ) < ∞ and we conclude
that f(pν+1x) ̸= 0. ◀

▶ Proposition 8. Let u = ⟨un⟩∞
n=−∞ be a non-zero LRBS consisting of rational numbers.

Assuming the weak p-adic Schanuel Conjecture, one can compute a positive integer M such
that uMn ̸= 0 for all n ∈ Z \ {0}.

Proof. As explained in Section 3, there exists a prime p and a positive integer L such that
uLn = f(n) for all n ∈ Z, for the p-adic power series f(X) =

∑∞
j=0 ajXj whose coefficients

are given by the formula (4). Recall that in this formula the λi are the characteristic roots
of u and the Qi are the coefficients appearing in the exponential polynomial formula (3).

Pick a maximal multiplicatively independent subset of characteristic roots. Without loss
of generality we can write this set as {λ1, . . . , λt} for some t ≤ s. As discussed in Section 2,
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given the characteristic polynomial of the recurrence, we can compute such a set, as well as
integers mi and ni,j for i ∈ {1, . . . , s} and j ∈ {1, . . . , t}, where the mi are non-zero, such
that for all i ∈ {1, . . . , s} we have

λmi
i = λ

ni,1
1 · · · λ

ni,t

t .

Raising the left- and right-hand sides in the above equation to the power L and then taking
(p-adic) logarithms, we get that

log λL
i = ni,1

mi
log λL

1 + · · · + ni,t

mi
log λL

t

for all i ∈ {1, . . . , s}. In other words, for all i ∈ {1, . . . , s} we have that log λL
i =

ℓi(log λL
1 , . . . , log λL

t ) for an effectively computable linear form ℓi(X1, . . . , Xt) with rational
coefficients.

For j ∈ N, define Fj ∈ K[X1, . . . , Xt] by

Fj(X1, . . . , Xt) := 1
j!

s∑
i=1

j∑
k=0

(
j

k

)
LkQ

(k)
i (0)ℓi(X1, . . . , Xt)j−k .

Then by Equation (5) we have

aj = Fj

(
log λL

1 , . . . , log λL
t

)
. (7)

We claim that aj ̸= 0 if Fj is not identically zero. Since the coefficients of Fj are algebraic
over Q and the set {log λ1, . . . , log λt} is linearly independent over Q, the claim follows
immediately from Equation 7 and the weak p-adic Schanuel Conjecture (Conjecture 5).

We can now use the following procedure to compute a positive integer M such that
uMn ̸= 0 for all n ∈ Z:
1. Successively compute the polynomials F0, F1, . . . .
2. Let j0 be the least index j such that Fj is not identically zero. Compute ν := vp(aj0)

using the series (6). The weak p-adic Schanuel Conjecture implies that aj0 ̸= 0 and hence
the computation of vp(aj0) terminates.

3. Set M := Lpν+1. Applying Proposition 7, we have uMn ̸= 0 for all non-zero integers n.

Note that j0 is well defined in Line 2, since if all the aj were zero, then u would be the
identically zero sequence, contradicting our initial assumption. ◀

A couple of remarks about the proof of Proposition 8 are in order.

▶ Remark 9. Observe that the p-adic Schanuel Conjecture is only required for termination of
the procedure described at the end of the proof. If the procedure terminates then it is certain
that aj0 is the first non-zero coefficient of the power series (6) and hence the outputted value
of M is guaranteed to be such that uMn ̸= 0 for all non-zero integers n.

▶ Remark 10. Examining the expression (5) and noting that Q
(k)
i (0) = 0 for k > deg(Qi),

we see that the sequence ⟨j!aj⟩∞
j=0 is given by an exponential polynomial corresponding to

a (non-rational) LRS of order d and hence at least one of a0, a1, . . . , ad−1 is non-zero. This
means that the index j0 in Line 2 of the above procedure is at most d − 1.

▶ Theorem 11. Assuming the weak p-adic Schanuel Conjecture, there is a Turing reduction
from the Skolem Problem to the Bi-Skolem Problem.
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Proof. We present a recursive procedure that uses an oracle for the Bi-Skolem Problem to
compute all the zeros of a non-degenerate LRBS that is not identically zero.

Given a non-degenerate LRBS u = ⟨un⟩∞
n=−∞, we use the oracle for the Bi-Skolem

Problem to determine whether there exists n ∈ Z with un = 0. If the oracle outputs that
no such n exists then the procedure terminates. Otherwise one searches for n0 ∈ Z such
that un0 = 0; clearly the search is guaranteed to terminate. Having found n0, by reindexing
the sequence u we can suppose that n0 = 0. Now we use Proposition 8 to compute a
positive integer M such that uMn ̸= 0 for all n ̸= 0. We then divide the sequence u into
M subsequences u(0), . . . , u(M−1), where for j ∈ {0, . . . , M − 1}, the j-th subsequence is
given by u

(j)
n = uMn+j for all n ∈ Z. We know that n = 0 is the only zero of u(0). We now

recursively call the procedure to find all zeros of the remaining subsequences u(1), . . . , u(M−1).
Observe that the computation must terminate since each recursive call involves discovering a
new zero of the original sequence u, and by the version of the Skolem-Mahler-Lech Theorem
for LRBS, there are only finitely many such zeros. ◀

If we restrict to recurrences of order at most 5 then we obtain an unconditional version
of Theorem 11.

▶ Theorem 12. There is a Turing reduction from the Skolem Problem for LRS of order at
most 5 to the Bi-Skolem Problem for simple LRBS of order at most 5.

Proof. As summarised in Appendix A, the Skolem Problem can be decided for all LRS
⟨un⟩∞

n=0 of order at most 5 except those that (after scaling) have a closed form un =
∑5

i=1 αiλ
n
i

satisfying the following three conditions, where λ1, . . . , λ5 are algebraic integers that generate
a number field K := Q(λ1, . . . , λ5):
1. α1 ̸= −α3;
2. λ1λ2 = λ3λ4;
3. there is a prime ideal p in OK that divides λ1 and λ3 but not λ2, λ4, λ5.

The theorem at hand is proven using the procedure described in the proof of Theorem 11,
which uses as a subroutine the procedure described in Proposition 8. To avoid relying on the
weak p-adic Schanuel Conjecture, it suffices to give an unconditional proof of the termination
of the latter procedure when invoked on LRBS whose closed-form representation satisfies the
above three conditions. In other words, we must show (unconditionally) that for such LRBS
one can compute a positive integer M such that uMn ̸= 0 for all n ∈ Z \ {0}.

Let p be a prime satisfying Conditions (i)–(iii) listed in Section 3. In particular, we have
an embedding of K into Qp. Recall from Section 3 that there exists a positive integer L such
that uLn = f(n) for a p-adic power series f(X) =

∑∞
j=0 ajXj such that a1 =

∑5
i=1 αi log λL

i .
The termination of the procedure described in the proof of Proposition 8 will be assured
if a1 ̸= 0. We claim that for an LRBS satisfying the above three conditions, one has
a1 =

∑5
i=1 αi log λL

i ̸= 0.
To prove the claim, suppose for a contradiction that

∑5
i=1 αi log λL

i = 0. Raising to the
L-th power and then taking logarithms in Condition 2 above, we also have log λL

1 + log λL
2 −

log λL
3 − log λL

4 = 0. Combining the two previous equations to cancel log λL
1 we have

(α2 − α1) log λL
2 + (α3 + α1) log λL

3 + (α4 + α1) log λL
4 + α5 log λL

5 = 0 . (8)

From Condition 1 (α1 ̸= −α3), we have that the coefficient of log λL
3 in Equation (8) is

non-zero. Applying Theorem 6, possibly several times, we eventually obtain an equation∑5
i=2 βi log λL

i = 0 such that the βi are integers and β3 ≠ 0. Equivalently, we have a
multiplicative relation among the characteristic roots that involves λ3 but not λ1. But this
contradicts Condition 3 and the proof is concluded. ◀
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▶ Theorem 13. The Skolem Problem for simple LRS is decidable assuming the Skolem
Conjecture and the weak p-adic Schanuel Conjecture. The Skolem Problem for LRS of order
at most 5 is decidable assuming the Skolem Conjecture.

▶ Remark 14. Given that the Skolem Conjecture remains open in general, it is worth
remarking that the proof of Theorem 13 sustains the following more general formulation:
Consider a class C of simple LRBS that is closed under taking subsequences and under
translations. If the Skolem Conjecture holds for C then, assuming the weak p-adic Schanuel
Conjecture, the Skolem Problem is decidable over LRS in C.

5 The Skolem Tool

We have implemented our algorithm in the Skolem tool, which finds all zeros (at both
positive and negative indices) for simple integer LRS, and produces independent certificates
guaranteeing that there are no further zeros. Even though we do not have complexity
bounds, Skolem can efficiently handle many interesting examples, including several from the
literature for which no proof technique was previously known to apply. Our tool is available
online at https://skolem.mpi-sws.org and includes several built-in examples.

The implementation is written in Python, using the SageMath computer-algebra extension.
This allows for the efficient and exact manipulation of mathematical objects, including
elements of Zp. Python handles integers of arbitrary sizes seamlessly, making it especially
suitable for our purposes, since even small examples can give rise to very large numbers
within the inner workings of our algorithm.

▶ Example 15. Consider the LRS from [22, Example 2.4]:

un+5 = 9un+4 − 10un+3 + 522un+2 − 4745un+1 + 4225un

with initial terms (for n = 0, 1, 2, 3, 4) of ⟨−30, −27, 0, 469, 1762⟩. It is shown in [22] to have
a unique zero at index 2 by being non-zero modulo 12625 at all indices larger than 2. The
Skolem tool establishes this in a simpler way: after finding u2 = 0, the tool calculates that
there are no zeros in ⟨u2+14n⟩∞

n=−∞ for n ̸= 0. Then the tool computes that ⟨uk+14n⟩∞
n=−∞

is non-zero modulo 29 for each even k ̸= 2, and non-zero modulo 2 for each odd k (where
0 ≤ k ≤ 13). Observe that the computed modulo classes, and thus the resulting certificate,
is much smaller than those arising from 12625 as used in [22].

▶ Example 16. Consider the LRS from [22, Example 2.5]:

un+6 = 6un+5 − 26un+4 + 66un+3 − 130un+2 + 150un+1 − 125un

with initial terms (for n = 0, 1, 2, 3, 4, 5) of ⟨0, 3, 11, −12, −125, −177⟩, which was established
at the time of writing to lie beyond the reach of existing known techniques. The Skolem
tool is able to show using the methods developed in the present paper that there are indeed
no further zeros (other than u0 = 0).

▶ Example 17. Consider the reversible order-8 LRS from [22, Example 3.5]:

un+8 = 6un+7 − 25un+6 + 66un+5 − 120un+4 + 150un+3 − 89un+2 + 18un+1 − un

with initial terms (for n = 0, . . . , 7) of ⟨0, 0, −48, −120, 0, 520, 624, −2016⟩, which likewise
was established at the time to lie beyond the reach of existing techniques. Skolem shows
that there are no zeros other than those lying at indices 0, 1, and 4.

MFCS 2022
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Timeout of 60 seconds Timeout of 60 · order seconds
Order Total Success Degen-

erate
Not

simple
Timeout Timeout

%
Total Success Timeout Timeout

%
2 9250 8836 358 50 0 0.00% 1245 1200 0 0.00%
3 8995 8919 74 2 0 0.00% 1327 1322 0 0.00%
4 9195 9157 35 2 1 0.01% 1395 1392 0 0.00%
5 9188 8700 15 3 470 5.12% 1303 1290 11 0.84%
6 9172 4905 10 6 4251 46.35% 1318 952 366 27.77%
7 9213 1339 12 0 7862 85.34% 1328 310 1016 76.51%
8 9157 378 10 0 8769 95.76% 1249 73 1173 93.92%
9 9143 87 4 3 9049 98.97% 1330 18 1312 98.65%
10 9047 25 8 1 9013 99.62% 1294 7 1286 99.38%

Total 82360 42346 526 67 39415 47.86% 11789 6564 5164 43.80%
Table 1 Table showing the distribution of outcomes by order. The line between orders 6 and 7

shows the boundary beyond which more than 50% of runs timeout. The second experiment shows
the timeout rate when the timeout is increased to 60s · order (‘degenerate’ and ‘not-simple’ counts
omitted as the distribution is similar to the 60s timeout experiment and unaffected by the timeout).

5.1 Testing

The Skolem tool was tested on a suite of random LRS, with the order taken uniformly
between 2 and 10 and the coefficients taken uniformly at random between −20 and 20. Tests
were run for 48 hours using a 60-second timeout4, generating 82367 test instances.5

The results are presented in Tables 1 and 2. In particular, from order 7 onwards the tool
is unable to handle more than half of the instances within one minute, with the timeout
percentage jumping significantly from order 6. Both degenerate and non-simple LRS instances
are very sparse, and as expected the higher the order the fewer such instances were randomly
produced.

The experiments were re-run using a timeout of 60 · order seconds (i.e., ranging from 2–10
minutes) in order to determine whether the 60-second timeout was too strict. The timeout
percentage does decrease, but the overall pattern shows that the vast majority of LRS of
order 7 and above could not be handled to completion before the timeout.

Table 2 presents statistical information. In the main experiment the average time is below
9 seconds for order-6 examples that succeed within 60 seconds. However, the decrease from
order-8 onwards is explained by there being significantly fewer examples succeeding within
60 seconds. On average there are very few zeros (as can be expected) and those that do
occur are almost always those occurring within the initial terms (the largest zero is nearly
always at index less than the order).

The average maximum jump step used (i.e., M such that ⟨uMn⟩ has no zeros for n ̸= 0
and u0 = 0) is observed on average to grow with the order (except at order 10 with only 25
successful samples).

4 Testing was conducted using SageMath 9.5 in Docker on a Dell PowerEdge M620 blade equipped with
2× 3.3 GHz Intel Xeon E5-2667 v2 (2×8 cores, 32 with hyper-threading) and 256GB ram. Testing was
restricted to 16 parallel threads (50% of the computer’s resources) for institutional reasons.

5 7 instances were discarded: 6 happened to be the zero sequence, one resulted in an exception (outside
of the main tool code) which was later fixed.
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Order mean
time

(seconds)

mean
count of

zeros

max
count of

zeros

mean
max
zero

max
zero

index

mean
tree

depth

mean
max

jump

mean time
(seconds)

60s · order
2 0.03 0.06 1 0.63 6 1.06 5.11 0.03
3 0.05 0.08 3 1.03 5 1.08 13.56 0.06
4 0.19 0.10 3 1.58 7 1.10 37.05 0.22
5 4.82 0.11 2 2.05 6 1.11 107.39 10.07
6 8.95 0.20 2 2.58 7 1.20 254.12 55.36
7 11.72 0.30 2 2.80 9 1.30 482.34 70.19
8 8.07 0.35 2 3.51 8 1.35 533.92 68.21
9 7.38 0.38 1 4.24 8 1.38 689.33 138.40

10 5.71 0.40 1 5.20 9 1.40 249.60 112.11
Table 2 Table listing statistical information for successful runs, by order. Line between orders

6 and 7 shows the boundary beyond which more than 50% of runs timeout, resulting in skewed
analysis for the subsequent rows. For the second experiment, with timeout of 60 · order seconds,
only the mean time is shown as there are fewer data points.

A Hard Cases of the Skolem Problem at Order 5

As explained in [22], the Skolem Problem is known to be decidable for all LRS of order at most
5 except for those sequences u = ⟨un⟩∞

n=0 having an exponential-polynomial representation

un = α1λn
1 + α1λ1

n + α2λn
2 + α2λ2

n + α3λn
3 (9)

such that α1, α2, α3, λ1, λ2, λ3 ∈ Q satisfy |λ1| = |λ2| > |λ3| and λ1, λ2, λ3 are not all units.
It is further shown in [22] that by scaling sequences of this form we can assume that there
exists a prime ideal p in the ring of integers of the number field generated by λ1, λ1, λ2, λ2, λ3
such that p divides λ1 and λ2, but not λ1, λ2 and λ3.

Here we make the further observation that for non-degenerate LRS of the form (9), under
the assumption that |α1| = |α2|, there is a computable upper bound on n such that un = 0.

By scaling we can assume without loss of generality that |λ1| = |λ2| = 1 and |α1| = |α2| =
1. Thus we can write λ1 = eiθ1 and λ2 = eiθ2 for θ1, θ2 ∈ [0, 2π) and we can put α1 = eiϕ1

and α2 = eiϕ2 for ϕ1, ϕ2 ∈ [0, 2π). Then we have

un = α1λn
1 + α1λ1

n + α2λn
2 + α2λ2

n + α3λn
3

= 2 cos(nθ1 + ϕ1) + 2 cos(nθ2 + ϕ2) + α3λn
3

= 4
(

cos
(

n(θ1 + θ2) + ϕ1 + ϕ2

2

)
cos
(

n(θ1 − θ2) + ϕ1 − ϕ2

2

))
+ α3λn

3 .

By non-degeneracy of u, the terms cos
(

n(θ1+θ2)+ϕ1+ϕ2
2

)
and cos

(
n(θ1−θ2)+ϕ1−ϕ2

2

)
are

respectively zero for at most one value of n ∈ N. Furthermore, using Baker’s Theorem on
linear forms in logarithms (see [26, 34] for details), each of these terms has a lower bound
(when non-zero) of the form c

nd for explicitly computable constants c and d. Since |λ3| < 1 it
follows that un ̸= 0 for all n ≥ n0 for some effective threshold n0.
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