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Abstract

Deep neural networks (DNNs) are known to be vulnerable
to adversarial geometric transformation. This paper aims to
verify the robustness of large-scale DNNs against the com-
bination of multiple geometric transformations with a prov-
able guarantee. Given a set of transformations (e.g., rotation,
scaling, etc.), we develop GeoRobust, a black-box robust-
ness analyser built upon a novel global optimisation strat-
egy, for locating the worst-case combination of transforma-
tions that affect and even alter a network’s output. GeoRo-
bust can provide provable guarantees on finding the worst-
case combination based on recent advances in Lipschitzian
theory. Due to its black-box nature, GeoRobust can be de-
ployed on large-scale DNNs regardless of their architectures,
activation functions, and the number of neurons. In practice,
GeoRobust can locate the worst-case geometric transforma-
tion with high precision for the ResNet50 model on Ima-
geNet in a few seconds on average. We examined 18 Im-
ageNet classifiers, including the ResNet family and vision
transformers, and found a positive correlation between the
geometric robustness of the networks and the parameter num-
bers. We also observe that increasing the depth of DNN is
more beneficial than increasing its width in terms of improv-
ing its geometric robustness. Our tool GeoRobust is available
at https://github.com/TrustAI/GeoRobust.

Introduction
Although deep neural networks have achieved human-level
performance, concerns are raised about their safety and re-
liability (Huang et al. 2020; Ruan et al. 2019; Wang et al.
2022; Ruan, Yi, and Huang 2021). In computer vision tasks,
while deep learning models are known to be vulnerable
to adversarial perturbations in pixel values (Szegedy et al.
2014; Croce and Hein 2020; Yin, Ruan, and Fieldsend 2022;
Mu et al. 2021, 2022), Engstrom et al. (2019) show that a
slight rotation of an input example can also fool DNNs. Al-
though modern DNNs are believed to be able to learn geo-
metric information from training data (Bakry et al. 2016),
they are not yet invariant to simple adversarial geometric
transformations (Zhang et al. 2020).

*This work was done when Peipei was visiting the University
of Exeter.
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Although additive adversarial perturbation has received
tremendous attention, geometric transformations are more
common and applicable in the physical world but have
been less studied. There is no efficient solution for search-
ing the worst-case adversarial transformation with provable
guarantees for large-scale DNNs. Engstrom et al. (2019)
showed that, although adversarial geometric transformation
can be discovered through the random pick, it is a highly
non-convex task that gradient-ascent-based adversarial at-
tacks perform poorly. Pei et al. (2017) adopt the exhaustive
search to find the worst-case transformation that alters the
target model’s prediction, but its computational complex-
ity grows exponentially with the dimension of the consid-
ered transformations. Some researchers have adopted ver-
ification techniques (Weng et al. 2018; Singh et al. 2019;
Cohen, Rosenfeld, and Kolter 2019) to analyse geometric
transformations.Relaxation-based approaches (Weng et al.
2018; Balunović et al. 2019; Mohapatra et al. 2020) require
the Lp-norm based constraint on pixel space for an input ex-
ample. However, as shown in Fig. 1, geometric transforma-
tion can significantly change the values of the pixels, leading
to severe violence against the constraint in the pixel space
while still preserving human imperceptibility. Therefore,
the scalability of Lp norm-based verification is limited for
dealing with geometric transformation. Recently, Fischer,
Baader, and Vechev (2020); Li et al. (2021) showed that
randomised smoothing could be utilised to verify robust-
ness against a single geometric transform, but their methods
cannot handle the combination of multiple geometric trans-
formations. In addition, current methods can only provide a
verifiable lower bound for verification purposes but cannot
identify the worst-case geometric transformation that would
actually minimise the model’s confidence and potentially al-
ter its prediction.

In this paper, we develop a novel black-box evalua-
tion framework, GeoRobust, to study the geometric robust-
ness, i.e., the robustness of the model against adversar-
ial geometric transformations. GeoRobust takes advantage
of both recent developments in Lipschitzian optimisation
methods (Jones, Perttunen, and Stuckman 1993; Gablon-
sky 2001) that provide provable guarantees on locating the
worst-case transformation and the efficient parallel compu-
tation on Graphic Processing Units (GPUs). The workflow
of GeoRobust is presented in Fig. 1. Given a set of geo-
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Figure 1: Schematic illustration of GeoRobust framework. After normalising the parameter space to a unit search space, GeoRo-
bust performs a sequence of space divisions to find the global worst-case transformation.

metric transformations and an input example, GeoRobust
converges to the worst-case combination for minimising an
adversarial loss within a finite number of queries. We en-
able GeoRobust to better utilise GPUs by easing its sam-
pling condition. Besides, a lower bound estimation method
is also introduced to make GeoRobust an anytime verifica-
tion, which can produce the lower and upper bound of the
worst-case loss value whenever the algorithm stops.

In summary, our key contributions lie in three aspects.
1. We prove the geometric transformation done by spatial

transformation network (STN) (Jaderberg et al. 2015) is
Lipschitz continuous. By stacking STN module in front
of Lipschitz-continuous neural networks, we can analyse
their geometric robustness with guaranteed convergence.

2. We develop GeoRobust, a black-box geometric robust-
ness analyser, by taking advantage of Lipschitzian opti-
misation theory (Jones, Perttunen, and Stuckman 1993).
The convergence of GeoRobust is theoretically guaran-
teed, and it is also highly efficient in practice. In our ex-
periment, GeoRobust could find the worst-case adversar-
ial transformations on an ImageNet image to evaluate a
ResNet50 classifier with desirable precision in seconds.

3. We use GeoRobust to benchmark the geometric robust-
ness of state-of-the-art ImageNet classifiers, including
the ResNet family and vision transformers. There are two
main takeaways from our experiments: i) the geometric
robustness of DNNs has a positive correlation with the
number of parameters; and ii) increasing the number of
layers seems to be more effective than adding more hid-
den units in each layer in improving the geometric ro-
bustness of DNNs.

Preliminaries
Lipschitz continuity and Lipschitzian optimisation Pre-
vious studies indicate that the majority of modern DNNs are
Lipschitz continuous (Szegedy et al. 2014; Ruan, Huang,
and Kwiatkowska 2018; Virmaux and Scaman 2018). The
Lipschitz constant for a DNN gives an upper bound on how
fast its output could change when small perturbations are
applied to its input (Szegedy et al. 2014; Ruan, Huang, and
Kwiatkowska 2018). Such a concept is closely related to the

robustness of DNN, but exactly computing the smallest Lip-
schitz constant of a DNN is proven to be an NP-hard prob-
lem (Virmaux and Scaman 2018).

Relying on the Lipschitz continuity, Lipschitzian opti-
misation is a query-based optimisation method that uses
the Lipschitz constant of the objective function to grad-
ually narrow the search space and locate the global op-
timum (Piyavskii 1972; Shubert 1972; Ruan, Huang, and
Kwiatkowska 2018; Xu, Ruan, and Huang 2022; Zhang,
Ruan, and Xu 2023). While the Lipschitz constant of the
objective function is necessary for classic Lipschitzian op-
timisation, a novel Lipschitzian optimisation solution, DI-
RECT (Jones, Perttunen, and Stuckman 1993; Jones and
Martins 2021a), does not require the Lipschitz constant to
find the global optimum. As detailed in the methodology
section, we improve the DIRECT method for studying the
geometric robustness of DNNs.

Geometric transformations Geometric transformations
are element-wise manipulation that can be conducted via
several physically meaningful parameters (Szeliski 2022).
Given an image example, x ∈ RH×W×C with height H ,
width W , and colour channels C, the geometric transfor-
mation Tθ is carried out on each channel equally. Let xc ∈
RH×W be any channel of x and the output of Tθ be x′c. For a
pixel in x′c with index (x′i, y

′
i), its value Vi is mapped to the

pixel indexed by (xj , yj) in xc via a transformation matrix
Aθ, i.e.,[

xj
yj

]
= Aθ

 x′i
y′i
1

 =

[
θ11 θ12 θ13

θ21 θ22 θ23

] x′i
y′i
1

 . (1)

We adopt Spatial Transformation Network (STN) (Jaderberg
et al. 2015) to conduct the geometric transformation and use
the bilinear sampling kernel to handle the projection of the
non-integer index, which gives the transformation result:
Vi =

H∑
h

W∑
w

Uhw max (0, 1− |xi − w|) max (0, 1− |yi − h|) ,

(2)
whereUhw denotes the value of a pixel, indexed by (xh, yw),
in xc, and the index does not need to be an integer.



Problem formulation
Given a neural network F : RN → RK , an input example
x ∈ RN , and its label y ∈ {1, . . . ,K}, we aim to find the
optimal combination of several geometric transformations
Tθ that can minimise ` : Rn → R, i.e.,

min
θ∈Θ

`(θ;F, x, y), (3)

where Θ is the adversarial space that contains all feasible θ,
and ` denotes the margin loss defined as

`(θ;F, x, y) = Fy(Tθ(x))− max
k∈{1,...,K}\{y}

Fk(Tθ(x)), (4)

which allow us to determine whether the model F can be
fooled by Tθ(x) via verifying the lower bound of `. Specif-
ically, if infθ∈Θ `(θ;F, x, y) > 0 is satisfied, the robustness
of the model F on the example x would be verified.

Regarding geometric transformation, we consider rota-
tion, translation, and isotropic scaling. The corresponding
transformation matrix Aθ can be written as

Aθ =

[
θ11 θ12 θ13

θ21 θ22 θ23

]
=

[
λ cos γ − sin γ thor

sin γ λ cos γ tvrt

]
,

(5)
where λ is the scaling factor, γ is the rotation angle, and thor
and tvrt control the horizontal and vertical translation.

Methodology
This section introduces a Lipschitzian optimisation-based
approach, GeoRobust, to search for the worst-case trans-
formation. GeoRobust is composed of four components: 1)
a Lipschitz continuous module for performing geometric
transformations; 2) a space division procedure; 3) a mech-
anism to select Potential Optimal (PO) subspaces that are
more likely to contain the global minimum points than oth-
ers; 4) and an anytime estimation of the global minimum.
While the space division procedure and the PO subspace se-
lection are adopted from the DIRECT algorithm, we extend
the definition of PO subspace and encourage the algorithm
to query more subspaces at each iteration. Because all evalu-
ations at the same iteration can be done parallelly in a single
forward propagation, our method could reach convergence
within reduced iterations. Furthermore, GeoRobust can esti-
mate the model’s Lipschitz constant and produce a reason-
able lower bound of the given loss function. The pseudocode
of GeoRobust and related proofs are provided in Appendix1.

Notations Given a matrix P ∈ R2×n, one can define an n-
dimensional parameter space, in which the upper and lower
bounds on i-th transformation factors are given by Pi, where
i ∈ {1, . . . , n}. GeoRobust normalises the parameter space
into an n-dimensional unit hypercube, namely the search
space, whose centre point corresponds to the identical trans-
formation. For a hyperrectangle with index q, denoted by
Hq , in the search space, the value of the objective function
at its centre point cq is denoted by `(cq). We denote by lqi
the side length w.r.t. the i-th dimension, and by ei the unit
vector along i-th dimension. The size of Hq is defined as

1Appendix can be found at https://github.com/TrustAI/
GeoRobust/blob/main/appendix.pdf

σq = maxi∈{1,...,n}
1
2 l
q
i , which is the same L∞ norm based

measurement used by Gablonsky (2001). For all hyperrect-
angles within the search space, we denote by H the set of
hyperrectangles’ indexes, and by `min = minp∈H `(cp) the
current best query result. The Lipschitz constant of the ob-
jective function w.r.t. the search space is denoted by K̃.
GeoRobust computes the slope K̂ between queried points
w.r.t. the parameter space during optimisation and produces
`∗min, an estimation of the lower bound of `min.

Geometric transformations module
The convergence guarantee of GeoRobust is related to the
Lipschitz continuity of the target model. We give the fol-
lowing lemma to show that geometric transformations with
bilinear sampling kernel are Lipschitz continuous, which
means, as long as a DNN model is Lipschitz continuous,
stacking a geometric transformation module in front of it
would not compromise the Lipschitz continuity (Tsuzuku,
Sato, and Sugiyama 2018).

Lemma 1. Given an input image example x ∈ RH×W×C
and the ranges of transformation factors, the first-order
derivative of geometric transformation with bilinear sam-
pling w.r.t. each transformation factor is bounded.

Finding optimal geometric transformation
GeoRobust first divides the search space into subspaces ac-
cording to the query results at their centre points. Then some
subspaces that are more likely to contain the global mini-
mum than others will be chosen as PO subspaces. GeoRo-
bust separates selected PO spaces and identifies new ones
throughout each iteration of the optimisation process till the
termination criteria are satisfied.

Space division As the only hypercube after initialisation,
the initial PO subspace is the united search space itself.
GeoRobust trisects the subspace and assigns the generated
new subspace according to the query result, where the larger
hyperrectangles include the better query result. Without loss
of generality, let Hp be a PO subspace, which is an n-
dimensional hyperrectangle containing m dimensions with
long sides of a length 3−d, wherem ≤ n, and n−m dimen-
sions with short sides of a length 3−d−1. GeoRobust ignores
short sides and queries the value of the object function at
the points c ± 3−d−1ei, where i ∈ {1, . . . ,m}. For each
dimension with long sides, the best query result is given by

wi = min
(
`(c+ 3−d−1ei), `(c− 3−d−1ei)

)
. (6)

As GeoRobust performs trisection only during division, the
sizes of new subspaces are deterministic. By dividing the
above Hp, GeoRobust creates 2m + 1 new subspaces, in-
cluding 3 sub-hypercubes with the side length of 3−d−1 and
m−1 pairs of hyperrectangles, which have 1 tom−1 dimen-
sions with long sides of length 3−d. The point corresponding
to the best query result, mini∈{1,...,m} wi, is a centre point
of a hyperrectangle with m − 1 long sides. A visualisation
of this space division procedure is presented in Appendix.
Overall, such a division strategy encourages GeoRobust to
divide the search space uniformly and further explore the



area around the current best result, which we will detail later
in the PO subspace selection.

Identifying potential optimal subspaces The space di-
vision procedure creates new subspaces, and the next step
is to locate new PO subspaces for further division. Ideally,
a PO hyperrectangle Hp is expected to satisfy two condi-
tions (Jones, Perttunen, and Stuckman 1993):

` (cp)− K̃σp ≤ ` (cq)− K̃σq,∀q ∈ H, (7)

` (cp)− K̃σp ≤ `min − τ |`min| . (8)
Inequation (7) indicates that only the hyperrectangles with
the potential to improve the current `min can be chosen as
PO subspaces. Meanwhile, the second condition (8) ensures
that the possible improvement in the chosen subspaces is
greater than τ |`min|, where a reasonable choice of τ is be-
tween 10−3 and 10−7 (Jones and Martins 2021b). Taking
advantage of DIRECT optimisation, GeoRobust does not
need to know the Lipschitz constant. The following lemma
demonstrates how to search for PO hyperrectangles in the
absence of K̃.
Lemma 2. (Gablonsky 2001) Given the index set H and a
positive tolerance τ > 0. Let `min denote the current best
query result. LetHp1 = {q ∈ H : σq < σp},Hp2 = {q ∈ H :
σq > σp} and Hp3 = {q ∈ H : σq = σp}. A hyperrectangle
Hp is said to be potentially optimal if

`(cp) ≤ `(cq),∀q ∈ Hp3, (9)

and there is a K̃ > 0 such that

max
q∈Hp1

` (cp)− ` (cq)

σp − σq
≤ K̃ ≤ min

q∈Hp2

` (cq)− ` (cp)

σq − σp
, (10)

andτ ≤
`min−`(cp)
|`min|

+
σp
|`min|

minq∈Hp2
`(cq)−`(cp)
σq−σp , if `min 6= 0,

` (cp) ≤ σp minq∈Hp2
`(cq)−`(cp)
σq−σp , otherwise.

(11)

Generalising PO conditions to unleash the power of
parallel computation
The conditions in Lemma 2 are meant to select a small num-
ber of subspaces to reduce the total number of function eval-
uations, which is typically the most time-consuming proce-
dure. However, by leveraging modern deep learning frame-
works, one can easily query multiple examples on a target
DNN via a single forward propagation on GPUs, where the
computational time difference between evaluating a single
sample and a batch of samples is marginal. Therefore, re-
laxing the constraint given by inequation (9), we define the
following α candidate set to select more subspaces.
Definition 1 (α candidate set). Following the same notions
in Lemma 2, we define the α candidate set as

Hα =

{
∅, if maxp∈Hp3 sp ≤ 0,

{p1, . . . , pα′ : max
∑α′

j=1 spj}, otherwise,
(12)

where α′ ≤ α and the optimal score sp is given by

sp = min
q∈Hp2

` (cq)− ` (cp)

σq − σp
− max
q∈Hp1

` (cp)− ` (cq)

σp − σq
. (13)

Modifying the condition (10) into the score described in
Eq. (13) allows us to rank the potential minimum contained
by subspaces with the same size. The proposed α candidate
set is easy to control. When α = 1, Definition 1 degrades
to condition (10), while increasing α, GeoRobust explores
more subspaces in each iteration. As we will describe in the
next section, all subspaces will get subdivided by GeoRobust
after several iterations. Instead of only partitioning spaces
satisfying inequation (7), α candidate set also selects hyper-
rectangles that would likely satisfy Lemma 2 in the next few
rounds. While the number of queries would rise, using the
α candidate set enables GeoRobust to discover the optimal
subspace quickly. On the other hand, because the function
evaluations can be done in parallel on GPUs, replacing con-
dition (10) with α candidate set only has a small influence
on the computational time cost.

Stop criteria and convergence analysis
In practice, GeoRobust is limited by three factors: the max-
imal number of iteration T , the maximal number of queries
Q, and the maximal number of trisection along each dimen-
sion, which is denoted by depthD. The first two stop criteria
are straightforward. We stop the optimisation once the com-
putational budget runs out. The limitation on depth is ap-
plied for two reasons (Gablonsky 2001). On the one hand, it
puts a limitation on the smallest size of subspaces. By doing
so, GeoRobust is compelled to halt local search and encour-
aged to conduct global exploration when the current optimal
subspace is sufficiently small, which accelerates the conver-
gence. On the other hand, defining the smallest subspace size
also sets an upper bound for the number of queries. For an
n-dimensional search space, GeoRobust could conduct up to
3nD times of queries, which is equivalent to a grid search.
Besides, our implementation adopted the L∞ norm to mea-
sure hyperrectangles’ size (Gablonsky 2001). Such a mea-
surement simplifies both space division and PO space se-
lection. For the former, the L∞ norm is more computation-
ally efficient than the Euclidean norm (Jones and Martins
2021b). For the latter, hyperrectangles are grouped by their
longest side length under the L∞ norm, which introduces
less number of different sizes to consider.

Convergence analysis GeoRobust is guaranteed to con-
verge to the global minimum within a pre-defined small tol-
erance after a finite number of queries if the objective func-
tion is continuous (Jones, Perttunen, and Stuckman 1993).
This guarantee comes from the following observation shown
in Remark 1.

Remark 1. (Gablonsky 2001) Following the same notions
in Lemma 2, there is at least one hyperrectangle Hp will be
identified as PO subspace at each iteration, where Hp satis-
fies Hp2 = ∅ and makes inequation (9) holds so that every
hyperrectangle will be subdivided after finite iterations.

Note that theoretically proving a specific DNN is Lips-
chitz continuous is beyond the scope of this paper, and ex-
isting works demonstrate the Lipschitz continuity of convo-
lutional neural networks (Ruan, Huang, and Kwiatkowska
2018) and vision transformers (Vuckovic, Baratin, and des



Combes 2021; Wang and Ruan 2022) used in the image clas-
sification task. In addition, given by Lemma 1, we prove that
the geometric transformation is Lipschitz continuous. So, as
long as the neural network satisfies a Lipschitz condition, the
objective function (3) is Lipschitz continuous, and GeoRo-
bust is guaranteed to locate to the global minimum after a
sufficient number of queries. The convergence complexity
is described in Theorem 1.
Theorem 1. Let C be the n-dimensional united search
space and K̃ be the Lipschitz constant of ` w.r.t. C. The gap
between current minima and global minima after T itera-
tions can be written as

`min −min
c∈C

`(c) ≤ ε < K̃ · (T + 1)−
1
n . (14)

Therefore, to achieve any desired ε, we need up to
O
(
(K̃/ε)n

)
iterations.

Estimating the global minimum
While GeoRobust is guaranteed to find the global minimum
eventually, we enable it to be an anytime analyser that can
utilise intermediate query results to estimate the lower bound
of the global minimum at each iteration.

Recall that the parameter space is defined via the matrix
P ∈ R2×n that contains the upper and lower bounds of n
transformation factors. To divide m dimensions of a hyper-
rectangle, GeoRobust samples and evaluates new points at
c ± 3−1 · liei, where i ∈ {1, . . . ,m}. The slopes along the
i-th dimension are given by

K̂c+i
=
‖`(c)− `(c+i )‖

dci
and K̂c−i

=
‖`(c)− `(c−i )‖

dci
,

where c+i and c−i are short hands for c ± 3−1 · liei, and we

denote by dci = 3−1 · liPi ·
[

1
−1

]
the distance between

c and c+/−i within the parameter space. Then K̂c, the local
slope of c, is updated to be the largest local slope, i.e.,

K̂c = max{K̂c+1
, K̂c−1

, . . . , K̂c+m
, K̂c−m

}.

GeoRobust updates the local slope after space division so
that it can estimate the global minimum based on the query
results at that time. Let co denote the centre of the current
optimal hyperrectangle Ho that has `(co) = `min and K̂ =

maxq∈H K̂cq , the lower bound of global minimum can be
estimated via

`∗min = `(co)− K̂maxσ̄o, (15)

where we take a relaxation on σo and compute it via the
Manhattan distance, i.e., σ̄o = 1

2

∑n
i=1 d

o
i . Therefore, as

long as GeoRobust can locate a Ho containing the global
minimum ˆ̀

min, we have `∗min ≤ ˆ̀
min.

Experiments
Our experiments include three parts. First, we compare
GeoRobust to state-of-the-art baseline methods for verify-
ing robustness against three geometric transformations, i.e.,

rotation, translation, and scaling. Then, we take advantage
of GeoRobust to efficiently benchmark popular large-scale
networks on ImageNet regarding their robustness over the
combination of all three transformations. Finally, we con-
duct an empirical analysis to study the impact of the depth
and α conditions on the convergence of GeoRobust.

General setup For geometric transformations, we denoted
by R(γ) the rotation angle between ±γ, by S(λ) the scal-
ing range between 1±λ, and by T (thor, tvrt) the translation
that moves an example up to thor and tvrt pixels horizontally
and vertically, respectively. For the model architectures, the
MNIST classifier is a network with four convolutional layers
and three linear layers, and the CIFAR10 classifier’s archi-
tecture is ResNet101. We adopted the pretrained MNIST and
CIFAR10 models released by Li et al. (2021) and utilised
TIMM (Wightman 2019), a model zoo of ImageNet clas-
sifiers, to investigate the geometric robustness of popular
large-scale DNNs. Our experiment is performed on a ma-
chine with an Intel i7-10700KF CPU, an RTX 3090 GPU,
and 48 gigabytes of memory. More implementation details
can be found in Appendix.

Comparison with previous works
Since GeoRobust only requires querying the target models’
output, it can be easily deployed on any pretrained neural
network. We follow the same setup used in TSS (Li et al.
2021) and GSmooth (Hao et al. 2022) and apply GeoRo-
bust on their pretrained models to conduct robustness veri-
fying on MNIST and CIFAR10, where, for GeoRobust, the
robustness of an example is verified if the corresponding
lower bound `∗min > 0. Because exhaustive search is com-
putationally infeasible, we implement a grid search with a
sufficient computational budget to run through the param-
eter space to test whether the model’s prediction on each
input example can be altered, which serves as the ground
truth on the verified accuracy. Please note that GeoRobust
works on L∞-norm based parameter space, while Li et al.
(2021) uses L2-norm based constraint on the translation,
which is currently inapplicable for GeoRobust. Therefore,
the comparison is done on rotation and scaling transforma-
tions. Although DeepG (Balunović et al. 2019) and TSS (Li
et al. 2021) can analyse the geometric robustness of Ima-
geNet classifiers, but they are time-consuming and ineffi-
cient when dealing with transformation combinations. Be-
sides, we failed to properly reload the ImageNet classifiers
evaluated by TSS (see Appendix for details). Therefore, the
evaluation on ImageNet is done on a ResNet50 model, the
same architecture used by Li et al. (2021), against different
combinations of transformations, and we compare the per-
formance with grid search and random pick.

The comparison results on MNIST and CIFAR10 are
summarised in Tab. 1, where we report the verified accuracy
determined by each baseline method. GeoRobust outper-
forms previous methods under all scenarios and reports the
same verified accuracy as grid search. Such a performance
demonstrates the effectiveness of GeoRobust in verifying
the geometric robustness against 1-dimensional transforma-
tion. The evaluation on ImageNet is summarised in Tab. 2,



Table 1: Comparing with baseline methods on MNIST and CIFAR-10 against rotation and Scaling. We denote by − an unsup-
ported setting and by 0% a failed verification. Baselines’ performance is adopted from (Li et al. 2021; Hao et al. 2022).

Dataset Geo. Trans. GeoRobust Gsmooth TSS DeepG Interval Semantify-NN DistSPT TSS attack Grid search

MNIST
R(50◦) 98.2% 95.7% 97.4% ≤ 85.8% (R(30◦)) ≤6.0% (R(30◦)) ≤ 92.48% 82% 98.2% 98.2%
S(0.3) 99.2% 95.9% 97.2% 85.0% 16.4% - - 99.2% 99.2%

CIFAR10
R(10◦) 74.8% 65.6% 70.6% 62.5% 20.2% - 37% 76.4% 74.8%
R(30◦) 66.4% - 63.6% 10.6% 0.0% 49.37% 22% 69.4% 66.4%
S(0.3) 63.4% 54.3% 58.8% 0.0% 0.0% - - 67.0% 63.4%

Table 2: Verifying geometric robustness on ImageNet.
The target model is ResNet50, which vanilla accuracy is
74%. Geometric transformations are R(20◦), S(0.1), and
T (22.4, 22.4).

Methods
Transformation

R T S + T R+ T + S

GeoRobust 58% 57% 57% 46%
Random pick 58% 59% 60% 49%
Grid search 58% 59% 57% 46%

Figure 2: Comparing the global minimum found by grid
search, random pick, and GeoRobust. The geometric trans-
formations are the same as in Tab. 2. We mark an example as
a match if its corresponding minimum found by a method is
equal to or smaller than the minimum found by grid search.

where we can see that the accuracy verified by GeoRobust
is comparable to or better than the grid search. At the same
time, random pick with sufficient queries can achieve a sim-
ilar performance as grid search on locating geometric adver-
sarial examples. Still, it tends to perform worse as the di-
mension of parameter space becomes larger. In addition, as
the minimum found by grid search is more likely to be the
ground truth minimum, we mark an example as a match if
its corresponding minimum found by a method is equal to or
smaller than the minimum found by grid search. As shown
in Fig. 2, we can see that the estimated lower bound achieves
considerable precision with a limited number of queries. The
performance on verifying only translation is slightly worse
than other transformations, where the reason might be the
distortion introduced by bilinear sampling.

Runtime The effectiveness of GeoRobust is highly related
to the transformation’s dimensions. In Tab. 1, GeoRobust is

Table 3: Benchmarking the geometric robustness of eighteen
ImageNet classifiers.

Models Vanilla Attack Verified #Parameters

Inception v3. 73.60% 28.20% 24.20% 2.4×107

Inception v3adv 75.00% 30.60% 27.00% 2.4×107

Inception v4 78.40% 40.20% 36.40% 4.3×107

ResNet34 64.40% 10.60% 9.00% 2.2×107

ResNet50 78.40% 54.00% 31.12% 2.6×107

Wide ResNet50. 81.60% 49.40% 40.00% 6.9×107

ResNet101 80.00% 54.20% 48.20% 4.5×107

ResNet152 79.40% 53.80% 46.20% 6.0×107

Vit32×32 75.60% 23.40% 19.00% 8.8×107

Vit16×16 81.40% 41.20% 34.20% 8.6×107

Large Vit16×16 83.40% 49.20% 40.20% 3.0×108

Beit16×16. 83.80% 56.40% 52.00% 6.5×107

Large Beit16×16 85.60% 65.60% 58.20% 2.3×108

Gmlp 77.96% 40.80% 36.80% 1.9×107

Mixer 72.20% 27.20% 23.40% 6.0×107

Swin 80.20% 34.60% 13.20% 8.8×107

Xcit 76.80% 40.40% 20.60% 8.4×107

Pit 79.40% 36.60% 20.00% 7.4×107

only performed on 1-dimensional transformation. Its aver-
age runtime is 0.18 seconds and 0.72 seconds per example
on MNIST and CIFAR10, respectively. Furthermore, the av-
erage runtime for analysing the ResNet50 ImageNet clas-
sifier from 1-dimensional to 4-dimensional transformations
are 2.4 seconds, 3.6 seconds, 4.0 seconds, and 4.5 seconds.
In comparison, according to (Li et al. 2021), it takes TSS
17.7 and 1201.2 seconds, respectively, to analyse an MNIST
example and an ImageNet example on the same model ar-
chitectures w.r.t. a 1-dimensional transformation.

Benchmarking geometric robustness
In this section, we investigate the robustness of some popular
DNN classifiers against geometric transformations. The pre-
vious section demonstrates that GeoRobust can efficiently
find a worst-case combination of transformations in a black-
box manner. We utilise such an advantage to test large-
scale ImageNet classifiers regarding their geometric robust-
ness against the combination of rotation R(20◦), translation
T (22.4, 22.4), and scaling S(0.1).

The results are summarised in Tab. 3, and we can see
that 1) models with more parameters appear to have bet-
ter geometric robustness than those with fewer; 2) widening
a network seems less beneficial than deepening it in terms



(a) (b)

Figure 3: Carrying out GeoRobust with different combinations of candidates set size α and depth D on ResNet50. The black
dot line in 3(a) corresponds to a global minimum found in a grid search with 2.5× 105 function evaluations.

of improving the geometric robustness; 3) the large version
of Beit showed the best geometric robustness, whereas the
basic Beit model is the second most robust model. This
phenomenon suggests that bidirectional modelling could be
helpful for DNNs learning geometric information and ob-
taining geometric robustness; 4) comparing the performance
between Inception V3 and Inception V3adv , an adversarially
trained model, we can see that adversarial training does not
significantly improve the model’s geometric robustness.

Empirical analysis
In Fig. 3, we carry out GeoRobust with different combina-
tions of candidates set size α and depth D on ResNet50.
Increasing the size of α candidates set enables GeoRobust
to be more efficient in exploring the search space and locat-
ing the optimal subspace. Due to the limitation on the sub-
spaces’ minimal size, as the depth gets larger, the optimal
transformation combination found by GeoRobust is closer to
the ground truth worst-case, and the estimated lower bound
is closer to the global minimum as well. It can be observed
that the upper bound remains unchanged after convergence,
while the estimated lower bound would be updated when-
ever GeoRobust finds a larger local slope, which is why the
estimations change in the right side plot of Fig. 3(a). As
shown in Fig. 3(b), while the impact of depth on computa-
tional cost is trivial, increasing the α candidates set would
significantly raise the total number of function queries in
fixed iterations. The runtime of GeoRobust with α = 1 and
D = 5 is 6.9 seconds, and the runtime is 16.1 seconds when
it is carried out at α = 3 and D = 7. We can see that the
runtime increases sub-linearly with the number of queries
because the queries are done parallelly on GPUs.

Related works
In this paper, we compared GeoRobust to Interval (Singh
et al. 2019), DeepG (Balunović et al. 2019), Semantify-
NN (Mohapatra et al. 2020), TSS (Li et al. 2021),
GSmooth (Hao et al. 2022), and DistSPT (Fischer, Baader,
and Vechev 2020). DeepG, Semantify-NN, and Interval ex-
tend verification techniques designed for Lp-norm based ad-
ditive perturbation. Both Semantify-NN and GSmooth in-

troduce small networks to simulate the geometric manipula-
tion, where Semantify-NN adopts a linear relaxation based
verification (Weng et al. 2018) and GSmooth applies random
smoothing. DistSPT and TSS are also randomised smooth-
ing based approaches, where TSS is a black-box analyser
that is scalable to large DNNs. Besides, although the pa-
rameter space of control factors for most geometric ma-
nipulations is continuous, the image pixels’ coordinates are
bounded integers, which means the possible outcomes for
a particular set of transformations are finite. Pei et al. (Pei
et al. 2017) empirically evaluated the robustness of DNNs
against geometric transformations by enumerating all pos-
sible values. In contrast, our GeoRobust is a query-based
black-box analyser that is fundamentally different to the
above method. We demonstrated that as long as the target
model is Lipschitz continuous, GeoRobust can verify the ro-
bustness of large-scale DNNs against a combination of ge-
ometric transformations in seconds. The collaboration with
probabilistic approaches (Zhang, Ruan, and Fieldsend 2022)
will be explored in our future works.

Conclusion
In this paper, we propose a black-box analyser, GeoRo-
bust, to efficiently verify the robustness of large-scale
DNNs against geometric transformation. Given the bound
of multiple geometric transformations and an input exam-
ple, GeoRobust is guaranteed to find the worst-case manipu-
lation that can minimise an adversarial loss without knowing
the internal structures of the target model. Theoretically, we
prove the Lipschitz continuity of geometric transformations
operated by STN and analyse the convergence complexity of
the proposed method. On the methodology side, we gener-
alise the sampling strategy from DIRECT to better leverage
GPU parallel computation and design an anytime estimation
method to produce a reasonable lower bound. With GeoRo-
bust, we systematically benchmark the geometric robustness
of popular ImageNet classifiers. Our empirical study shows
that larger neural networks are more robust against geomet-
ric manipulation. Deepening a network improves its geomet-
ric robustness better than increasing its width.
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Appendix
Algorithm pseudocode

Algorithm 1: GeoRobust
Input: An input example x, the objective function `, the

bound of the parameter space P , the number of
function evaluation Q, the number of iterations T ,
the maximum depth D, the size of candidates set α

Output: `min with the corresponding solution cmin and an
estimation of the ground truth minimum `∗min

1 Normalise the parameter space to a unit hypercube with
centre point c0

2 t← 0, q ← 0
3 Initialise the index set of hyperrectanglesH = {0}
4 Initialise the set of potential optimal space P = {0}
5 while (t ≤ T ) ∩ (q < Q) ∩ (P 6= ∅) do
6 Initialise X = {}
7 for each potential optimal hyperrectangle p in P do
8 if hyperrectangle size σp = 3−D then
9 Continue

10 else
11 for each dimension i with long edge of

hyperrectangle p do
12 Append(X , cp ± δcpj ei)

13 Append(H, {q + 1, q + 2})
14 q += 2

/* Conduct function evaluation via a
single forward propagation */

15 Y = `(X )
/* Space division */

16 for each potential optimal hyperrectangle p in P do
17 Subdivide hyperrectangle p based on query results

in Y
18 Recording the size σ and local slope K̂ for all new

generated subspaces
19 Update p’s size σp and local slope K̂cp

/* Record current best evaluation
and corresponding solution */

20 `min = minq∈H `(cq), and cmin = arg mincq `(cq)
21 Estimate the ground truth `∗min via Eq. (15)

/* Select potential optimal
subspaces */

22 Reset P = {}
23 for d ∈ {0, 1, . . . , D − 1} do
24 Build candidates setHα from hyperrectangles

with σ = 1/3d

25 for each hyperrectangle q inHα do
26 if q satisfies condition (11) then
27 Append(P, q)

28 t = t+1

Proofs
Proof of Lemma 1

Lemma 1. Given an input image example x ∈ RH×W×C
and the ranges of transformation factors, the first-order
derivative of geometric transformation with bilinear sam-
pling w.r.t. each transformation factor is bounded.

Proof. The derivative of pixel value Vi w.r.t. xi is given by

∂Vi
∂xi

=

H∑
n

W∑
m

Unm max(0, 1− |yi − n|)

×


0 if |m− xi| ≥ 1,

1 if |m− xi| < 1 and m ≥ xi,

−1 if |m− xi| < 1 and m < xi.

(16)

There are only four neighbouring pixels satisfy |m−xi| < 1
and |yi − n| < 1, so Eq. (16) can then be written as

∂Vi
∂xi

= U
¯
nm̄ · (1− yi +

¯
n) + Un̄m̄ · (1− n̄+ yi)

− Un̄
¯
m · (1− n̄+ yi)− U

¯
n

¯
m · (1− yi +

¯
n)

= (1− yi +
¯
n)
(
U

¯
nm̄ − U

¯
n

¯
m

)
+ (1 + yi − n̄)

(
Un̄m̄ − Un̄

¯
m

)
,

(17)

where (n̄, m̄) = (dyie, dxie) and (
¯
n,

¯
m) = (byic, bxic). We

can see that

(1− yi +
¯
n) + (1 + yi − n̄) = 1, (18)

which means Eq. (17) is taking a weighted average of the
difference between two pairs of pixels. Without loss of gen-
erality, suppose the eligible pixel value is in [0, 1]. We have

sup
x∈x

(
∂Vi
∂x

) = 1, (19)

and following a similar deduction, the same result can be ob-
tained for ∂Vi

∂y . Then, the derivatives of x and y w.r.t. trans-
formation matrix Aθ are

∂xi
∂Aθ

=

[
∂xi
∂θ11

∂xi
∂θ12

∂xi
∂θ13

0 0 0

]
=

[
x′i y′i 1
0 0 0

]
,

(20)
and

∂yi
∂Aθ

=

[
0 0 0
∂yi
∂θ21

∂yi
∂θ22

∂yi
∂θ23

]
=

[
0 0 0
x′i y′i 1

]
.

(21)
For each θ, we have

sup
θ∈Aθ

(
∂xi
∂θ

) = W, and sup
θ∈Aθ

(
∂yi
∂θ

) = H. (22)

In the final step, let us take the scaling factor λ as an exam-
ple. Following the chain rule, the partial derivative is given
by

∂Vi
∂λ

=
∂Vi
∂xi

∂xi
∂θ11

∂θ11

∂λ
+
∂Vi
∂yi

∂yi
∂θ22

∂θ22

∂λ
. (23)

Let R be the set of all eligible γ, we can substitute Eq. (19)
and (22) into Eq. (23) and bound the derivative as

∂Vi
∂λ
≤ sup
γ∈R

(cos γ) · (W +H). (24)

Because there are finite numbers of pixels, the overall
derivative has an upper bound as well. Similarly, by spec-
ifying the range of each transformation factor, their deriva-
tives are upper bound correspondingly, and this completes
the proof.
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Figure 4: A visualisation about potential optimal condi-
tion (7) and α candidate set (α = 2). A partition of the
search space is presented in the upper figure, and the rela-
tionship between the sizes and corresponding function val-
ues of all subspaces is plotted in the lower figure. GeoRobust
would select both cp and c′p as PO subspaces.

Proof of Lemma 2

Lemma 2 ((Gablonsky 2001)). Given the index set H and
a positive tolerance τ > 0. Let `min denote the current best
query result. LetHp1 = {q ∈ H : σq < σp},Hp2 = {q ∈ H :
σq > σp} and Hp3 = {q ∈ H : σq = σp}. A hyperrectangle
Hp is said to be potentially optimal if

`(cp) ≤ `(cq),∀q ∈ Hp3, (9)

and there is a K̃ > 0 such that

max
q∈Hp1

` (cp)− ` (cq)

σp − σq
≤ K̃ ≤ min

q∈Hp2

` (cq)− ` (cp)

σq − σp
, (10)

and{
τ ≤ `min−`(cp)

|`min| +
σp
|`min| minq∈Hp2

`(cq)−`(cp)
σq−σp , if `min 6= 0,

` (cp) ≤ σp minq∈Hp2
`(cq)−`(cp)
σq−σp , otherwise.

(11)

Proof. For a hyperrectangle p, we can group all hyperrect-
angles into Hp1, Hp2, and Hp3, then inequation (7) can be
rewritten into three inequalities,

K̃ ≥ ` (cj)− ` (ci)

σj − σi
,∀i ∈ Hj1, (25)

K̃ ≤ ` (ci)− ` (cj)

σi − σj
,∀i ∈ Hj2, (26)

and inequation (9). Putting inequalities (25) and (26) to-
gether gives inequity (10). If a hyperrectangle satisfies in-
equalities (9) and (10) at the same time, then the PO con-
dition (7) is satisfied. While we do not know the true K̃ in
Eq. (8), it can be replaced by an upper bound given in (26).
Substituting condition (26) into condition (8) gives us in-
equalities (11). This completes the proof.

Explanation of Definition 1
We encourage GeoRobust to select more PO subspace via
remove inequation (9). A visualisation of α candidate set
is presented in Fig. 4, where both cp and c′p would be se-
lected and queried by GeoRobust, while DIRECT optimisa-
tion would only choose cp.

Explanation of Remark 1
In every iteration, there is a hyperrectangle p satisfies σp =
maxq∈H σq and `(cp) = minq∈Hp3 `(cq). Please recall that
Hp3 contains the indexes of hyperrectangles with the same
size as p and Hp1 contains the indexes of hyperrectangles
that are smaller than p, while Hp2 is empty because no hy-
perrectangle larger than p exists. BecauseHp2 = ∅, PO con-
dition (10) only produces a lower bound on K̃, i.e.,

max
i∈Hj1

` (cj)− ` (ci)

σj − σi
≤ K̃, (27)

which means we can always find a slope that is large enough
to satisfy PO conditions, making hyperrectangle p a PO
subspace. Therefore, GeoRobust would identify and parti-
tion at least one PO hyperrectangle throughout each itera-
tion. Furthermore, for any hyperrectangle q, there is only
a finite number of hyperrectangles in its Hq2 and Hq3. Un-
der the worst situation, hyperrectangle q will be selected
as a PO space and get divided in the next iteration when
Hq2 ∪Hi3 = {q}.
Proof of Theorem 1
To prove Theorem 1, we need a relationship between the
depth of the largest subspace and the number of queries,
which is given in the Theorem 4.2 from (Gablonsky 2001).
Theorem 4.2. (Gablonsky 2001) Assuming that only one
hyperrectangle gets divided in every iteration, the number of
iterations T after which no hyperrectangle of depth d− 1 is
left is given by

T = 3n−1
(3nd − 1

3n − 1

)
< 3nd − 1. (28)

We can now prove Theorem 1.
Theorem 1. LetC be the n-dimensional united search space
and K̃ be the Lipschitz constant of ` w.r.t. C. The gap be-
tween current minima and global minima after T iterations
can be written as

`min −min
c∈C

`(c) ≤ ε < K̃ · (T + 1)−
1
n . (14)

Therefore, to achieve any desired ε, we need up to
O
(
(K̃/ε)n

)
iterations.



Proof. As the global minima must be contained in one of
the subspaces, and the objective function is Lipschitz con-
tinuous in the search space, we have

`min −min
c∈C

`(c) ≤ ∀q ∈ H, `(cq)−min
c∈C

`(c) (29)

≤ ε ≤ K̃ · 3−d, (30)

where d is the depth of the current largest subspace in the
unit search space. According to Eq. (28), we have d ≥
log3(T+1)

n , and substituting it into Eq. (29) gives

ε ≤ K̃ · 3−
log3(T+1)

n = K̃ · (T + 1)−
1
n , (31)

which leads to Eq. (14). The relationship between any de-
sired ε and the number of iterations T is then given by

T ≤ (K̃/ε)n − 1. (32)

We can see that the number of iterations is bound by
O
(
(K̃/ε)n

)
. This completes the proof.

Detailed related works
Numerous studies have been conducted to find the worst-
case adversarial perturbation. While several adversarial at-
tacks, such as the projected gradient descent attack (Madry
et al. 2018), and Auto Attack (Croce and Hein 2020), can
generate strong adversarial examples, they cannot ensure
finding the worst-case perturbation (Huang et al. 2020).
Some complete verification technologies can be used to find
the worst-case perturbation (Liu et al. 2021), where com-
pleteness means that a method is guaranteed to find adver-
sarial examples within a given norm ball unless no adversar-
ial example exists, but most of them are computationally in-
efficient and have specific requirements for their target mod-
els. ExactReach (Xiang, Tran, and Johnson 2017) and Relu-
Val (Wang et al. 2018), for example, perform layer-by-layer
propagation through target models with only linear or ReLU
activations, requiring their target models to be fully accessi-
ble. Therefore, these methods only work under the white-
box setting and are unsuitable for large-scale neural net-
works. Apart from the limitation on scalability, the layer-by-
layer propagation operation needs a Lp norm based pixel-
level or element-level bounding box of the input. As illus-
trated in Fig. 1, it is difficult to establish such a bounding box
for geometric transformations because even a small transfor-
mation could affect a huge number of pixels and drastically
alter their value. DeepGo (Ruan, Huang, and Kwiatkowska
2018) is a global optimisation based method that operates
under the grey-box environment, i.e., requiring no knowl-
edge of the model’s parameters but a pre-estimation of the
model’s Lipschitz constant, which is difficult to get in real-
ity. Due to space limitations, we cannot cover all complete
verification methods here and refer readers to a recent survey
on verification techniques (Liu et al. 2021).

On the other hand, there are also some studies on the
geometric robustness of DNNs, and we summarise the dif-
ference between our method and related works in Table 4
on finding the worst-case geometric transformation. Jader-
berg et al. (2015) proposed a differential module called

spatial transformer network (STN) to enhance neural net-
works’ learning ability regarding geometric transformations.
Although the parameter space of control factors for most ge-
ometric manipulations is continued, the image pixels’ coor-
dinates are discrete, bounded integers, which means the pos-
sible outcomes for a particular set of transformations are fi-
nite. Pei et al. (Pei et al. 2017) empirically evaluated DNNs’
resistance toward geometric transformations by enumerat-
ing all possible values. Similarly, Engstrom et al. (Engstrom
et al. 2019) employed random pick and grid search to dis-
cover the adversarial translation and rotation to deceive tar-
get models. DeepG (Balunović et al. 2019) computes a con-
vex relaxation of the bounding box for a set of geometric
transformations and then certifies the robustness property
via existing robustness verifier (Singh et al. 2019). Mopha-
patra et al. (Mohapatra et al. 2020) introduced a small net-
work, called Semantify-NN, to simulate the geometric ma-
nipulation and adopted existing verifier (Weng et al. 2018)
to examine the hybrid model composed of Semantify-NN
and a target network. Because FastLin (Weng et al. 2018)
and DeepPoly (Singh et al. 2019) are incompleteness ver-
ifiers, these two works may certify whether a set of geo-
metric transformations can affect the predictions of a tar-
get classifier but are unable to determine the worst-case
transformations precisely. Besides, these two verifiers use
layer-by-layer propagation, which is computationally inef-
ficient and limited to small networks in the white-box set-
ting. DistSPT (Fischer, Baader, and Vechev 2020), TSS (Li
et al. 2021), and GSmooth (Hao et al. 2022) utilise ran-
dom smoothing techniques to verify the geometric robust-
ness. TSS is a black-box verification method that is based
on random smoothing. DistSPT combines random smooth-
ing and interval bound propagation together to conduct the
verification on tasks beyond Lp norm. GSmooth also uses
an image-to-image network to simulate the geometric trans-
formation.

Parallel to geometric transformation, several works (Alai-
fari, Alberti, and Gauksson 2019; Xiao et al. 2018) inves-
tigated spatial transformation, which is a spatial distortion
of the coordinates of pixels. Please note that spatial trans-
formations performed using vector fields remain pixel-level
perturbation. Thus, it is fundamentally distinct from geomet-
ric transformation and beyond the scope of this paper.

Experiments
Implementation details within Tab. 1
To make the comparison, we use GeoRobust to verify the
same models used in (Li et al. 2021) on the same subsets of
MNIST, CIFAR-10, and ImageNet. In Tab. 5, we present the
benign accuracy reported by (Li et al. 2021) and obtained on
our machine. It can be seen that the reproduced accuracy of
MNIST and CIFAR-10 models are basically consistent with
the reported accuracy, while the ImageNet models are much
less accurate than expected (corresponding code is provided
for reviewing). Since we failed to load the ImageNet mod-
els properly, the comparison was only done on MNIST and
CIFAR-10 datasets in Tab. 1.

GeoRobust is carried out with D = 5 and α = 2, and
its computational budget is up to 200 iterations and 2000



Table 4: Comparison of methods for finding the worst-case transformation and providing the lower bound for verification.

Method Approach Requirement Efficiency
Scalability Guarantee

Architecture Scale Lower bound Worst-case

Exhaustive search (Pei et al. 2017) Query None # ! ! # !

Random pick (Engstrom et al. 2019) Query None ! ! ! # #

DeepG (Balunović et al. 2019) Layer-by-layer
propagation

Specify transformation
access all parameters # # # ! #

Semantify-NN (Mohapatra et al. 2020)
Surrogate network
and layer-by-layer

propagation

Specify transformation
access all parameters # # # ! #

DistSPT (Fischer, Baader, and Vechev 2020)
Random smoothing
and Layer-by-layer

propagation

Specify transformation
access all parameters # ! ! ! #

TSS (Li et al. 2021) Random smoothing Specify transformation # ! ! ! #

GSmooth (Hao et al. 2022) Surrogate network
and random smoothing

Specify transformation
access all parameters # ! # ! #

GeoRobust (ours) Query None ! ! ! ! !

Table 5: Benign accuracy of models trained and verified
by Li et al. (2021). The small CNN used for MNIST clas-
sification has 4 convolutional layers and 3 fully connected
layers.

Model Dataset Transf. Reported acc. Reproduced acc.

small CNN MNIST
R(50◦) 99.4% 99.4%
S(0.3) 99.4% 99.4%

ResNet101 CIFAR-10
R(10◦) 83.2% 84%
R(30◦) 82.6% 81.2%
S(0.3) 79.8% 80.8%

ResNet50 ImageNet
R(30◦) 46.2% 20.8%
S(0.3) 50.8% 26.6%

queries. In practice, GeoRobust only conducted 244 queries
on average to verify the 1-dimensional adversarial geomet-
ric transformations. The average runtime on MNIST and
CIFAR-10 are 0.18 and 0.74 seconds, respectively. The grid
search, here, is carried out with 2000 queries, which is suf-
ficient for exploring 1-dimension transformation.

Additional experiments on all combinations of geomet-
ric transformation In Tab. 2, we compared GeoRobust

to random pick and grid search under four combinations
of geometric transformations, while the comparison on all
combinations of geometric transformations is summarised in
Tab. 6. GeoRobust is carried out withD = 6 and α = 2, and
the computational budget is up to 150 iterations and 2000
queries. It can be seen from Tab. 6 that GeoRobust is sig-
nificantly more efficient than random pick and grid search
under all settings. While three methods perform similarly on
verifying 1-dimensional geometric transformations, GeoRo-
bust can achieve the same and sometimes even better perfor-
mance than grid search when verifying multiple transforma-
tions together.

Detailed benchmark on ImageNet classifiers We present
a completed version of Tab. 3, presenting the average num-
bers of queries and runtime. Here GeoRobust can run up to
150 iterations and 3000 queries per example. The depth and
candidate set are set to be D = 6 and α = 2. The geomet-
ric transformations are R(20◦), S(0.1), and T (22.4, 22.4).
In Tab. 7, we can see that GeoRobust can conduct super ef-
ficient analysis on all ImageNet classifiers, and it only takes
GeoRobust less than 11 seconds to analyse one example on
the large Vit with 3 × 108 parameters, which is the largest
model here.



Table 6: Verifying geometric robustness on ImageNet against all combination of three transformations:R(20◦), S(0.1), and
T (22.4, 22.4). The target model is ResNet50, which achieves 74% classification accuracy. To make a fair comparison on
efficiency, the random pick and grid search are also implemented on GPU, where the batch size is 128.

Transformations
GeoRobust Random pick Grid search

Verified Acc. #Queries Runtime (s) Verified Acc. #Queries Runtime (s) Verified Acc. #Queries Runtime (s)

R 58% 667 ± 29 2.4 58%
2000

4.8 58%
2000

4.7
S 59% 679 ± 30 2.4 59% 4.7 59% 4.7

R+ S 54% 1096 ± 151 3.8 56%
4000

9.6 56%
5000

12.1
T 57% 1046 ± 99 3.6 57% 9.4 59% 11.9

R+ T 46% 1187 ± 112 4.1 51%
6000

14.4 49%
1× 104

29.3
S + T 57% 1170 ± 111 4.0 60% 14.1 57% 28.6

R+ S + T 46% 1295 ± 117 4.5 49% 8000 19.1 46% 1× 105 251.3

Table 7: A completed version of Tab. 3: Benchmarking Geometric Robustness on ImageNet

Models Clean Attack Verified #Parameters # Queries Runtime (s)

Inception v3. 73.60% 28.20% 24.20% 2.4×107 1405±205 4.6±0.5
Inception v3adv 75.00% 30.60% 27.00% 2.4×107 1398±192 4.6±0.5
Inception v4 78.40% 40.20% 36.40% 4.3×107 1444±256 6.3±0.9

ResNet34 64.40% 10.60% 9.00% 2.2×107 1475±245 3.1±0.4
ResNet50 78.40% 54.00% 31.12% 2.6×107 805±110 4.8±0.6
Wide ResNet50. 81.60% 49.40% 40.00% 6.9×107 1283±125 6.0±0.5
ResNet101 80.00% 54.20% 48.20% 4.5×107 1291±134 5.8±0.5
ResNet152 79.40% 53.80% 46.20% 6.0×107 1278±129 7.3±0.6

Vit32×32 75.60% 23.40% 19.00% 8.8×107 1528±297 3.3±0.5
Vit16×16 81.40% 41.20% 34.20% 8.6×107 1471±268 5.0±0.8
Large Vit16×16 83.40% 49.20% 40.20% 3.0×108 1410±244 10.4±1.6

Beit16×16. 83.80% 56.40% 52.00% 6.5×107 1403±215 4.9±0.7
Large Beit16×16 85.60% 65.60% 58.20% 2.3×108 1363±190 10.5±1.3

Gmlp 77.96% 40.80% 36.80% 1.9×107 1661±417 4.3±0.9
Mixer 72.20% 27.20% 23.40% 6.0×107 1566±337 4.5±0.9
Swin 80.20% 34.60% 13.20% 8.8×107 1292±136 5.4±0.5
Xcit 76.80% 40.40% 20.60% 8.4×107 1497±355 6.5±1.1
Pit 79.40% 36.60% 20.00% 7.4×107 1538±371 11.0±1.1


