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Abstract—This paper develops optimal procedures for point
estimation with Bernoulli filters. These filters are of interest
to radar and sonar surveillance because they are designed for
stochastic targets that can enter and exit the surveillance region
at random instances. Because of this property they are not
served by the minimum mean square estimator, which is the
most widely used approach to optimal point estimation. Instead
of the squared error loss, this paper proposes an application-
oriented loss function that is compatible with Bernoulli filters,
and it develops two significant practical estimators: the minimum
probability of error estimate (which is based on the rule of
ideal observer), and the minimum mean operational loss estimate
(which models a simple defence scenario).

I. INTRODUCTION

Radar and sonar processing chains often use a Bayesian
filter that outputs a probability distribution describing the
state of a time-varying stochastic world. Such a probabilistic
representation is unintelligible in many practical applications
and to human decision makers alike. More interpretable results
are obtained by collapsing the full distribution into the best
possible estimate (called an optimal point estimate), which is
then used by the dependent application as if it were the true
state of the world. The best estimate, from the perspective
of Bayesian decision theory, is the one which minimises the
expected amount of loss in the application. This loss emerges
due to the discrepancy between the revealed true state of
the world and its estimate, and is typically quantified by the
squared error (SE) (loss) function (shown on Fig. 1). This
function leads to the minimum mean SE (MMSE) estimate,
which happens to coincide with the expected value of the
random variable, and is often easy to compute.

This paper studies optimal point estimation for Bernoulli
filters [1]. These filters are designed for stochastic dynamic
systems that randomly switch on and off and of interest to
radar and sonar surveillance [2], [3] where the target of interest
may not always exist in the surveillance region. The MMSE
estimator is known to be incompatible with such random finite
set filters [4] since in the SE loss the underlying definition of
error is based on the Euclidean distance, which does not extend
to the cardinality errors, i.e., errors in the number of targets.
In Bernoulli filtering, this latter errors are the equivalents of
false alarm and missed detections.

Nevertheless, there have been efforts to adopt the SE loss
regardless. Some authors have proposed using alternative set
distance definitions (such as the optimal subpattern assignment
(OSPA) distance), which combine errors in location and car-
dinality after redefining the SE loss [5], [6] (see also [7]). To
the best of our knowledge, these approaches have not reached
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Fig. 1. The SE loss (solid) and the UC loss [13], [14] (dashed) with tolerance
r0 (r0 = 0.5 shown). These losses are symmetric, i.e., they equally penalise
errors of over- and underestimation. Note that only the UC loss is bounded.

widespread use (see, e.g., [8], [9] for relevant developments).
One difficulty for their use is that the resulting estimates
are not as easy to compute as other sub-optimal ones. For
example, a commonly used alternative is to test the target’s
probability of existence against a pre-defined threshold, and,
only if it exceeds, use the SE loss to extract an estimate of the
kinematic state from the localisation density [10], [11], [12].
This approach is ad hoc in its nature as there is no criterion to
uniquely select the threshold, and the resulting estimate is not
endowed with properties of optimality in some prespecified
sense.

This paper proposes a loss function that is directly com-
patible with Bernoulli filters. The proposed approach can
be configured to model losses in different applications. In
particular, the loss function is constructed to integrate the
loss resulting from the error in the target’s kinematic state
(quantified with the uniform cost (UC) loss shown on Fig. 1)
and the loss due to the error in cardinality. The approach is
validated with two examples, which are irreducible to each
other, and yield practical optimal point estimates:

• the minimum probability of error (MPE) estimate, and
• the minimum mean operational loss (MMOL) estimate.

To the best of our knowledge, precursors of our approach
combine other loss functions, and do that in different contexts,
such as joint signal detection and estimation [15, Ch.6], [16],
or joint tracking of a target and its classification [17].

The developments in this paper are for a single Bernoulli
variable. Technically, the resulting expressions can be applied
to individual Bernoulli components of a multi-Bernoulli pro-
cess output by a multi-object filter (e.g., [12], [18], [19]).
However, investigation of optimality in, and extension of, our
optimal estimation approach to multi-Bernoulli systems is the
subject of future work.



The paper is organised as follows. Section II introduces
a Bernoulli point process, which models a stochastic target,
and outlines the procedure of Bayes-optimal point estimation.
Section III proposes an application-oriented loss function,
and develops an optimal point estimator that thresholds the
probability of existence to declare a target. Section IV develops
two practical estimators and studies their thresholds.

II. BACKGROUND

A. Bernoulli point process

In this article, the objects of interest, i.e., the targets,
have individual states x in some dx-dimensional state space
X ⇢ Rdx , typically consisting of position, velocity and class
variables. A point process (p.p.) � on X is a random variable
on the process space X =

S1
n=0 Xn, i.e. the space of all

finite sequences of points in X , whose number of elements
and element states are unknown and (possibly) time-varying.
A realisation of � is a sequence x1:n 2 Xn, representing a
population of n objects with states xi 2 X , 1  i  n, where
n 2 N. A more formal definition can be found in [20]. In the
context of Bayesian filtering, this sequence depicts a specific
multi-object configuration.

As for regular real-valued random variables, a p.p. is de-
scribed by its probability distribution P� on X; the projection
measure P (n)

� describes the realisations of � with n elements,
n � 0. The projection measures are assumed to be symmetrical
functions, so that the order of points in a realisation is
irrelevant for statistical purposes and the permutations of a
realization of the p.p.—such as (x1, x2) and (x2, x1)—are
equally probable. In addition, a p.p. is called simple if the
probability distribution is such that realisations are sequences
of points that are pairwise distinct almost surely, i.e., a
realization does not contain repetitions. For the rest of the
paper, all of the point processes are assumed to be simple.
The density of the projection measure P (n)

� , n � 0, is then
denoted by p(n)� .

Definition II.1 (Bernoulli point process [21], [12]). A

Bernoulli point process � on X with parameter 0  p  1 and

spatial distribution s is an i.i.d. cluster process with spatial

distribution s, whose size is 1 with probability p and 0 with

probability 1� p. Its probability density is given by:

p(n)� (') =

8
><

>:

1� p, if ' = ;,
p · s(x), if ' = {x},
0, otherwise.

, (1)

where n = |'| is the set cardinality, and ; is the empty set.

Its probability generating functional (p.g.fl.) is given by
1

G�[h] = 1� p+ p

Z
h(x)s(dx), (2)

where h : X ! [0, 1] is a test function.

In the context of target tracking, the parameter p is typically
referred to as the target’s probability of existence. Note that
the definition above describes a system with at most a single
target, and does not cover more complex systems.

1Here and in the following, notation s(dx) = s(x)dx is used for the sake
of compactness.

B. Bayes-optimal point estimation

In the Bayesian framework, the optimal solution to a point
estimation problem is obtained following the minimum ex-
pected loss principle [22], [23], where a loss function

L : X⇥ X ! R+
0 (3)

assigns a non-negative real number to every possible pair of
an estimate and the true state on the state space X.

Proposition II.2 (Optimal Bernoulli point estimation). For

a Bernoulli p.p. � from Definition II.1, the solution to the

optimal point estimation problem is a pair (↵⇤
�, ⇢

⇤
�) of, re-

spectively, the optimal estimate and associated expected loss

↵⇤
� =argmin

↵2X
E [L(↵,�)] , (4)

⇢⇤� =E [L(↵⇤
�,�)] , (5)

where L is defined in (3), and its expected value for some

↵ 2 X is computed as

E [L(↵,�)] =
X

n�0

Z
L(↵,')P (n)

� (dx1:n) (6a)

=p(0)� (;)L(↵, ;) +
Z

L(↵, {x})p(1)� (x)dx

+
X

n�2

Z
L(↵, {x1:n})p(n)� (x1:n)dx1:n (6b)

=(1� p)L(↵, ;) + p

Z
L(↵, {x})s(dx). (6c)

III. APPLICATION-ORIENTED POINT ESTIMATION

A. Proposed loss function

We propose an estimation loss compatible with Bernoulli
p.p. that, as will be shown in Section IV, can be configured
to model loss in particular applications.

Definition III.1 (Application-oriented loss function). The es-

timation loss function is defined as

L(↵,') :=

8
>>><

>>>:

c00, if ↵ = ;,' = ;,
c01, if ↵ = ;,' = {x},
c10, if ↵ = {a},' = ;,
c11 + c · 1Ba(x), if ↵ = {a},' = {x}.

, (7)

where c00, c01, c10, c11, c 2 R+
, and 1Ba is the indicator

function on a region Ba ⇢ X such that

1Ba(x) :=

(
1, if x 2 Ba,

0, if x /2 Ba.
, (8)

and where Ba is the rejection region

Ba := {x | d(a, x) > r0}, 8 x 2 X , (9)

where d is the Euclidean distance.
2

The proposed loss function is a combination of a set of coef-
ficients {c00, c01, c10, c11} and the loss in (8). The set encodes
a cost matrix (hence the subscripts), which is essentially a loss

2We note that here, Ba does not denote the ball of radius r0 around a, but
rather it indicates the complement of the ball in X .



TABLE I
COST ASSIGNMENT IN (7) FOR THE MPE AND MMOL ESTIMATORS.

Estimator c00 c01 c10 c11 c
MPE 0 1 1 0 1
MMOL 0 cA cM cM cA

function on the state space comprising just two points [24,
Ch. 8.11]; (8) is effectively the UC loss function (Fig. 1) [13],
[14]. The UC loss assigns cost 1 to every pair of a and x with
distance between them higher than the tolerance parameter r0,
and 0 otherwise. In principle, the UC loss is appropriate for
modelling effectors with a limited impact region, e.g., pencil-
beam radars, low-power sensing nodes in a network [25], [26],
[27], precise defensive countermeasures [28], [29], or rescue
supplies [30, p. 40].

Remark III.2. The loss in (7) and the squared OSPA er-

ror loss (discussed in the introduction) are distinct and not

reducible to each other as, in the latter, c00 and c11 are

set to 0, c01 and c10 to c2, and, c · 1Ba(x) is replaced by

min(c, d(a, x))2 for each a, x 2 X , where d : X ⇥ X ! R+
0

is the Euclidean or other distance metric.

B. Bayes-optimal point estimation

Theorem III.3 (Bayes-optimal Bernoulli point estimation).
For a Bernoulli p.p. � with parameter p and spatial dis-

tribution s, a Bayes-optimal solution to the point estimation

problem under loss (7) is a pair (↵⇤, ⇢⇤), respectively, of the

optimal point estimate and associated expected loss given by

(↵⇤, ⇢⇤) =

(
({a⇤MMUC}, ⇢{a⇤

MMUC}), if p > �,

(;, ⇢;), if p < �.
, (10)

where � is the reporting threshold obtained as

� =
c00 � c10

c00� c01 � c10 + c11 + c
R
1Ba⇤

MMUC
(x)s(dx)

, (11)

and a⇤MMUC is the minimum mean uniform cost (MMUC)

estimate

a⇤MMUC = argmin
a2X

Z
1Ba(x)s(dx), (12)

with its corresponding expected loss

⇢{a⇤
MMUC}= (1� p)c10+ p


c11+ c

Z
1Ba⇤

MMUC
(x)s(dx)

�
. (13)

In (10), the expected loss of the empty set ; is given by

⇢; = (1� p)c00 + pc01. (14)

The proof is given in Appendix. This estimator is a test
over the Bernoulli parameter p in (1) against a threshold
�. There are sub-optimal procedures [10], [11], [12] with a
similar test structure. Our approach differs in that the threshold
� optimally adapts to the spatial distribution s and the loss
function (7) that models the application at hand (cf. the
estimator in [31, Ch. 14.7.5.2]).

The Bayes-optimal estimator in Theorem III.3 requires the
solution to (12) which can be computationally expensive.
Nevertheless, from Sherman’s theorem [32], if s is unimodal

and symmetric around its mean, the optimal estimate in (12)
is the mean of s, i.e.,

R
xs(dx), which is easier to compute.

When s is multimodal, using the SE loss and the corresponding
mean estimate is often discouraged in practice [33], [34], and
an estimator based on a bounded loss function, e.g., (8), is
preferable [29].

Finally, since s and p are the quantities that are common
both to Bernoulli filters and the integrated probabilistic data
association (IPDA) filter [35], [36], this estimator is compati-
ble with both algorithms.

IV. APPLICATION-SPECIFIC POINT ESTIMATES

This section develops two examples of application-specific
estimators that are based on the proposed loss function in (7)
and use the cost relations in Table I. We study the estimators
for Bernoulli-Gaussian processes, i.e., Bernoullis with s(·) =
N (·;µ,�2), where µ and � are, respectively, the mean and
standard deviation. The focus is primarily on the behaviour of
�, which tests p to determine whether the empty set ; or a
singleton {µ} should be reported.

A. Minimum probability of error estimate

Cost assignment in this estimator is inspired by the MPE
decision rule in detection theory [37, p. 8], which is sometimes
called the rule of ideal observer [15, p. 51] or the Siegert-

Kotelnikov rule [38, p. 65]. It assigns the cost values such that
correct decisions incur no penalties, and incorrect decisions
are penalised equally with the unit cost. Such cost assignment
appears to be compatible with the UC loss function within loss
(7) when costs from Table I are used, and provided that correct
detection can also be penalised if the true target kinematic state
falls inside the rejection region.

Corollary IV.1 (Minimum probability of error estimation).
Under the MPE cost assignment from Table I, the MPE esti-

mator is a pair (↵⇤
MPE, ⇢

⇤
MPE) that is obtained from (↵⇤

�, ⇢
⇤
�)

in Theorem III.3 with

� =


2�

Z
1Ba⇤

MMUC
(x)s(dx)

��1

, (15)

⇢{a⇤
MMUC} = G�

h
1Ba⇤

MMUC

i
, (16)

⇢; = p, (17)

where G�[·] is defined in (2).

Proof. The result is obtained by substituting the MPE costs
from Table I into Theorem III.3. For (13), this leads to

⇢{a⇤
MMUC} = 1� p+ p

Z
1Ba⇤

MMUC
(x)s(dx), (18)

which is equivalent to (16) when notations (2) are used.

The result in (16) highlights the utility of p.g.fl.s in practical
applications, in addition to filter derivations, see, e.g., [21].
Another relevant example is the statistics of the stochastic
adversarial risk in [39, Thm. IV.2].

Fig. 2a compares the quality of MPE and conventional
estimates that are produced, respectively, using �1 = 0.5943
and �2 = 0.5. The MPE threshold yields estimates with lower



probability of error for Bernoullis with p 2 [�2,�1]. The MPE
threshold is further studied on Fig. 3a: Bernoullis with higher
spatial uncertainty require higher thresholds for a target to be
declared. A Bernoulli with p < 0.5 is never declared as a target
(i.e., the threshold values are bounded from below), whereas
when p > 0.5 it may be estimated as no target in case the
uncertainty is high with respect to r0.

B. Minimum mean operational loss estimate

Cost assignment in the MMOL estimator is inspired by a
textbook example of decision making under uncertainty, which
is typically called the umbrella problem [40, p. 24] or cost-
loss model [41]. This model is used to determine how the
probability of adverse events affects the decision of whether
to take a costly precautionary measure for protection against
losses from that event. We consider an operational scenario
with one potential target aiming to destroy the asset of cost
cA (see, e.g., [39]), when we control a countermeasure of cost
cM . What distinguishes it from the rule of ideal observer is that
cardinality errors are penalised in different ways (see Table I):
c01 6= c10 (losing the asset is commonly more damaging than
wasting the countermeasure), and c11 > 0 (countermeasure
is committed to prevent losing the asset). We also extend
the cost-loss situation within loss (7) by considering that the
countermeasure has limited impact centred around the point
of its application with radius r0: failure to apply it sufficiently
close to the target is then modelled by the UC loss in (8), and,
naturally, is penalised by cA in addition to cM .

Although the original model is designed for studying deci-
sions about what course of action is to implement, it permits
dual interpretation, see e.g. [42], and thus communicates a
statement about the state of stochastic world. For example,
if the optimal action is to preserve the countermeasure, it is
equivalent to acting as if there were no target. And similarly,
applying the countermeasure in a certain location is equivalent
to acting as if there were a target in that point.

Corollary IV.2 (Minimum mean operational loss estimation).
Under the MMOL cost assignment from Table I, the MMOL

estimator is a pair (↵⇤
MMOL, ⇢

⇤
MMOL) that is obtained from

(↵⇤
�, ⇢

⇤
�) in Theorem III.3 with

� =
cM
cA


1�

Z
1Ba⇤

MMUC
(x)s(dx)

��1

(19)

⇢{a⇤
MMUC} = cM + p · cA ·

Z
1Ba⇤

MMUC
(x)s(dx), (20)

⇢; = p · cA. (21)

The result is obtained by substituting the MMOL costs from
Table I into Theorem III.3. Fig. 2b compares the quality of
the MMOL and conventional estimates, which are produced,
respectively, with �1 = 0.1628 and �2 = 0.5. The MMOL
threshold yields lower mean operational loss for Bernoullis
with p 2 [�1,�2]. The MMOL threshold is studied on Fig. 3b:
it is bounded from below by the value coinciding with cM/cA,
which can generally be smaller than 0.5. When the threshold is
studies for various cM/cA (dotted), it reveals its characteristic
behaviour: if cM = 0, the target is always declared as there
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(a) Expected loss as probability of error (r0=1).

� ��� ��� ��� ��� ��� ��� ��	 ��
 ��� �

���������� �� ���������� �

�

���

�

�
�
�
��
��
�
��
��
�
�

�� �  !"#

�� ����$��������#

(b) Expected loss as mean operational loss (r0=1, cA=0.9, cM =0.1).

Fig. 2. The quality of point estimates as perceived by the respective appli-
cation, which are produced with optimal (�1) and conventional (�2 = 0.5)
thresholds. The estimates are of Bernoulli-Gaussians with distinct p values,
0  p  1, and spatial distributions with the same µ = 0 and � = 1. The
quality is naturally quantified by the expected loss in the application.
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(a) Dependency on the tolerance r0 (r0 = 0.1, 1, 3, 5, and 10 shown).
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(b) Dependencies on r0 for cM/cA=0.25 (r0=0.1, 1, 3, 5, and 10 shown),
and on cM/cA for r0 = 10 (cM/cA = 0, 0.25, 0.5, 0.75, and 1 shown).

Fig. 3. Reporting threshold � as a function of spatial uncertainty, which is
characterized by the standard deviation � in the Bernoulli-Gaussian case.

is no cost of committing the countermeasure; if cM � cA, the
target is never declared since it is always better to preserve a
costly countermeasure.

V. CONCLUSION

In this paper we have proposed an application-oriented loss
function for Bernoulli filters, and developed two examples of
optimal application-specific point estimators. Similar to the
conventional estimators, they involve the step of thresholding
of the target’s probability of existence. However, this threshold
is not a constant, but a function of specific parameterization in



the loss function as well as certain features of the spatial prob-
ability density. A critical difference of the resulting estimators
is that a Bernoulli with high probability of existence may still
be declared as absent if the spatial uncertainty is high, or if
committing costly measures brings unjustified expected losses.

APPENDIX: PROOF OF THEOREM III.3
Proof. Let us first obtain expressions of the expected loss
⇢; for the empty set and ⇢{a} for a singleton containing an
arbitrary kinematic state a. For ↵ = ;, the expected loss
⇢; = E [L(;,�)] is given by

⇢; = (1� p) · L(;, ;) + p

Z
L(;, {x})s(dx), (22a)

and substituting from (7) in the above equation yields (14).
For ↵ = {a}, the expected loss is

⇢{a} = E [L({a},�)] (23a)

= (1� p) · L({a}, ;) + p

Z
L({a}, {x})s(dx) (23b)

= (1� p) · c01 + p ·

c11 + c

Z
1Ba(x)s(dx)

�
. (23c)

The minimum of (23c) is obtained for a = a⇤MMUC given by
(12). Substituting (12) into (23c) yields (13), i.e., the minimum
expected loss ⇢{a⇤

MMUC} for a singleton. The optimal estimate
(and associated minimum expected loss) is then obtained by
comparing the resulting values of expected loss as

↵⇤ = argmin
↵2{;,{a⇤

MMUC}}
⇢↵, (24)

which is written as a test for p in (10), where the threshold �
in (11) is obtained by solving ⇢; = ⇢{a⇤

MMUC} w.r.t. p.
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