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Abstract. The segmentation of corneal nerves in corneal confocal mi-
croscopy (CCM) is of great importance to the quantification of clinical
parameters in the diagnosis of eye-related diseases and systematic dis-
eases. Existing works mainly use convolutional neural networks to im-
prove the segmentation accuracy, while further improvement is needed
to mitigate the nerve discontinuity and noise interference. In this paper,
we propose a novel corneal nerve segmentation network, named Nerve-
Former, to resolve the above-mentioned limitations. The proposed Nerve-
Former includes a Deformable and External Attention Module (DEAM),
which exploits the Transformer-based Deformable Attention (TDA) and
External Attention (TEA) mechanisms. TDA is introduced to explore
the local internal nerve features in a single CCM, while TEA is proposed
to model global external nerve features across different CCM images.
Specifically, to efficiently fuse the internal and external nerve features,
TDA obtains the query set required by TEA, thereby strengthening the
characterization ability of TEA. Therefore, the proposed model aggre-
gates the learned features from both single-sample and cross-sample,
allowing for better extraction of corneal nerve features across the whole
dataset. Experimental results on two public CCM datasets show that
our proposed method achieves state-of-the-art performance, especially
in terms of segmentation continuity and noise discrimination.
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1 Introduction

The morphological characteristics of the corneal subbasal nerves, such as length,
density, tortuosity [20,13,17], are closely related to many ocular or systemic
diseases. In clinical practice, corneal nerve images acquired by corneal confo-
cal microscopy (CCM), are commonly used to assist ophthalmologists with rich
pathological information, for studying disease-related alternations. Manual an-
notation of nerve fiber is able to support the quantitative analysis, however, it
is time-consuming and subjective. Moreover, the inter- and intra-observer varia-
tions introduced by manual labeling greatly diminish the accuracy of quantita-
tive assessment of corneal nerves [21]. Therefore, a fully automated and accurate
corneal nerve segmentation method is essentially needed.
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Fig. 1. Typical corneal nerves segmentation issues in CCM images. Top row: interfer-
ence of Langerhans cells; Bottom row: nerve discontinuity. The automated results were
obtained by two recent methods (CS-Net [10] and TransUnet [2]).

Many studies [1, 3,4, 10, 16, 18, 19] have been conducted to automatically seg-
ment the corneal nerve fibers. Early works mainly focus on designing various
enhancement filters, such as Gabor filters [4] and Gaussian filters [1] to obtain
geometric features for better nerve fiber extraction. However, these methods rely
heavily on low-level features and require parameter tuning by hand, and thus
segmentation performance is limited. Deep learning-based models have recently
been established to improve segmentation accuracy, by exploring high-level fea-
tures rather than relying on low-level ones. For example, Colonna et al. [3] uti-
lized U-Net [12] for end-to-end corneal nerve fibres tracking. Mou et al. [11]
introduced a channel and spatial dual attention network (CS2-Net) to improve
the segmentation performance of nerve fibers.

Although the above-mentioned deep learning methods have achieved promis-
ing segmentation performances, they are still deficient in tackling the interference
of background artifacts, e.g., Langerhans cells (LC) [14, 18], as shown in the top
row of Fig. 1 - the LCs are often falsely identified as nerve fibers. In addition,
many methods [10, 2] failed to preserve continuities of the nerve fibers especially
in low-quality CCM images, as shown in the bottom row of Fig. 1. Recently,
Transformer [15] has been widely applied in medical image, with its powerful
global modeling capabilities. For example, the ability of the network to extract
local and global information can be enhanced by embedding the transformer
module in the CNN framework [2, 5]. MCTrans [9] proposed to use transformer-
self-attention and transformer-cross-attention to enhance feature representation
of the network.
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Inspired by the above approaches, we consider to establish a transformer-
based network by incorporating potentially valuable attention modules to learn
more informative corneal nerve features for better segmentation performance.
In this paper, a novel corneal nerve segmentation model named NerveFormer is
introduced. It specifically targets at reducing the interferences caused by back-
ground artifacts in CCM images, and enhancing the continuity of nerve fiber
segmentation. The main contributions are summarized as follows:

e A new corneal nerve segmentation method is proposed with a transformer-
based deformable and external attention module (DEAM), which not only learns
internal nerve features from single CCM image, but also learns shared nerve
properties across multi-CCM images.

e A transformer-based external attention (TEA) is introduced to further fuse the
internal features extracted by transformer-based deformable attention (TDA)
with the shared properties of the external CCM images, allowing our method to
obtain the most discriminative nerve features to alleviate the background arti-
facts interferences, and thus improves the ability to preserve the nerve continuity.

2 Proposed Method

The proposed method counsists of a pre-trained feature extractor (i.e. encoder),
a deformable and external attention module (DEAM), and a decoder. The ar-
chitecture is shown in Fig. 2. We employed a ResNet34 model pre-trained on
ImageNet as encoder. DEAM is a fusion of transformer-based deformable at-
tention (TDA) and external attention (TEA), Where N represents the number
of DEAM modules. The decoder is designed to recover the dimensions of the
feature map layer by layer.

2.1 CNN encoder

Given an input CCM image with height H and width W. We can obtain feature
maps F; € ROXSHT X547 of the [t layer by the encoder, where C represents
the number of channels and [ € {1,2,3,4}. To feed the extracted features into
DEAM, we first flatten the features in the last three layers of the encoder into
one-dimensional (1D) sequences and map them to the same channel dimension,
respectively. Later, all these three sequences were concatenated into one sequence
to extract the multi-scale information of the corneal nerves. To recover the lost
spatial information caused by the flattening operation, we compute the position
coordinates of each dimension using a sine and cosine functions of different fre-
quencies [15], which is subsequently summed pixel-by-pixel with the multi-scale
features to construct the input of the DEAM.

2.2 Deformable and external attention module (DEAM)

The proposed DEAM consists of two major components: TDA and TEA.
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Fig. 2. Diagram of the proposed NerveFormer.It contains three main components: a
pre-trained encoder, a deformable and external attention module (DEAM), and a CNN
decoder, where the fused attention of transformer-based deformable attention (TDA)
and external attention (TEA) constitute the key components of DEAM.

TDA: Inspired by deformable attention [22]|, we motivate our model to focus
only on a small fraction of key sampling points around the reference point,
without considering the spatial size of the feature map, thus alleviating the
challenge of large feature resolution.

The TDA can be formulated as:

H K
D (2q,pq,) = Z Wi, Z Apgr - Wi (pg + Apngr) | (1)
h=1 k=1
where z € REXHXW g the input feature map, zq and p, are the content feature

and reference point of the ¢ query element, respectively. W}, is the encoding of
the key element and Apgk is the weight of the kth key element. K is the number
of sampled key elements, and Apy,. is the sampling offset of the k" sampling
point in the A** head. The TDA enables the proposed DEAM to learn more
crucial information in a single CCM image.

TEA: Self-attention in a typical transformer is a linear combination of self-
values to refine the input features. However, self-attention in this style only
considers the relationship between elements (i.e., nerve fiber pixels) in a single
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CCM image, failing to explore the shared characteristics of the same elements
across different CCM images. For a small number of CCM images containing
Langerhans cells, we can further explore the shared characteristics of nerve fibers
in different CCM images to better discriminate corneal nerves from Langerhans
cells and background artifacts. Therefore, we introduce an external attention
(EA) mechanism [8] to address the limitation of self-attention. The EA is defined
by EA = (a),; ; = Norm(QUF))U,, where Uy, and U, are two learnable external

memory units. (a)L ;s the similarity between i*" pixel and j** row of Uy, U,.
Q € R%*% indicates the set of query, where S is the number of elements, d is the
number of feature dimensions. The EA is specifically designed to learn shared
characteristics across images, while in our case, we aim to establish a more
complete representation module by embedding both of the internal and external
feature information of corneal nerves. Thus, we propose a transformer-based
external attention (TEA) module by taking TDA as its query input. Comparing
with original external attention, our TEA can learn the fused features from a
single CCM image itself and external CCM images, which are beneficial to our
model for learning the shared characteristics of multiple corneal nerves and also
the discriminative features against background artifacts (e.g., Langerhans cells).
In addition, multi-head attention [15] is employed to improve the capacity of
single head attention by capturing different relations between tokens. Finally,
we build up a multi-head transformer-based external attention (TEA) in our

model, which can be written as:

H
TEAmulti_head = Z Norm (QZhKQE) U’Ua (2)
h

where H is the number of heads, ()2 and K5 are the output features of TDA
and output features of encoder, respectively.

2.3 CNN decoder

The 1D feature map output from DEAM is split and reshaped into three two-
dimensional (2D) feature maps, based on the dimensions of the I** (I = 2,3,4)
layer in the encoder. In the decoder, we gradually upsample the feature maps
to the input resolution using a five-layer CNN module, where each layer con-
sists of a deconvolutional layer and a 3 x 3 convolutional layer. In addition, a
skip connection is added to the corresponding layer between the encoder and
the decoder, to retain more low-level and spatial information. Finally, a 1 x 1
convolutional layer is applied to the features to generate the segmentation map.
Mean square error (MSE) loss and Dice coefficient (DC) loss are employed to
compute the error between segmentation map and ground truth in a 4:6 ratio.
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Table 1. Comparisons of results between different methods.

CCM-1 CCM-2

SEN FDR DICE AUC SEN FDR DICE AUC
U-Net [12] 0.8425 0.2444 0.7943 0.9165 | 0.8100 0.2071 0.7965 0.9012
CE-Net [6] 0.8584 0.2114 0.8174 0.9225 | 0.8390 0.1993 0.8171 0.9159
CS-Net [10] 0.8532 0.1869 0.8294 0.9210 | 0.8363 0.1940 0.8183 0.9147
MDACN [18] 0.8486 0.1847 0.8282 0.9188 | 0.8144 0.2061 0.7952 0.9033
TransUnet [2] 0.8578 0.1878 0.8317 0.9232 | 0.8278 0.1929 0.8148 0.9103
MCTrans [9] 0.8600 0.1860 0.8325 0.9242 | 0.8395 0.1891 0.8230 0.9164
UTNet [5] 0.8559 0.1827 0.8325 0.9224 | 0.8263 0.1889 0.8162 0.9098
NerveFormer 0.8738 0.1813 0.8432 0.9314|0.8541 0.1864 0.8317 0.9236

Methods

3 Experiments

3.1 Datasets and implementation details

CCM-1 and CCM-2 are two subsets of a public dataset CORN-1 [10]. CORN-1
includes a total of 1698 CCM images of the corneal basal nerves, of which 1578
are available for CCM-1 and 120 for CCM-2. These images were acquired by
using Heidelberg Retina Tomography equipment with a Rostock Cornea Module
(HRT-III) microscope. Each image has a resolution of 384 x 384 pixels, and
with 1x1 pixel centerline annotation, which was traced by an ophthalmologist
using the open source software ImageJ'. In the CCM-1 and CCM-2 datasets, the
ratio of training set, validation set, and test set is set as 3:1:1. Our method was
implemented in PyTorch framework and all the experiments are run with two
NVIDIA GPUs (Tesla V100). The adaptive moment estimation (Adam) with an
initial learning rate of 0.0003 served as the optimizer, and the cosine annealing
strategy is introduced to update the learning rate. The batch sizes were set as 32
and 8 for training models on CCM-1 and CCM-2, respectively. Random rotations
in the range of [-30°, 30°] and random horizontal and vertical flips were set with
a probability of 0.5 for data augmentation.

3.2 Comparison with the state-of-the-art methods

To demonstrate the superiority of the proposed NerveFormer, we employed
several state-of-the-art methods for the comparison. CNN-based methods: U-
Net [12], CE-Net [6], CS-Net [10], MDACN [18]; Transformer-based methods:
TransUnet [2], MCTrans [9] and UTNet [5]. For fair comparison, all these meth-
ods are trained and validated on CCM-1 and CCM-2 with the same data split as
ours. Fig. 3 qualitatively illustrates corneal nerve segmentation results from chal-
lenging cases. By observing the results in the first two rows, we can conclude
that the proposed method obtains more complete segmentations with better
nerve fiber continuity than CS-Net [10] and TransUnet [2], as indicated by the
red arrows. Moreover, we can see that our method presents better immunization

! https://imagej.nih.gov /ij/
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Fig. 3. Automated nerve segmentation results in CCM images with low-contrast, and
heavy background artifacts (e.g. Langerhans cells).

against background artifacts, as demonstrated in the last two rows in Fig. 3.
Specifically, as illustrated in the third row, we can observe that both CS-Net
and TransUNet incorrectly identify the curve-like Langerhans cells as corneal
nerves, while the proposed NerveFormer effectively distinguishes between them.
The proposed method also enables better extraction of corneal nerves in regions
covered by background noise, especially in the case of tiny corneal nerves. The
above analyses indicate that the proposed network effectively explores the in-
ternal and external features in different CCM images, and thus can improve the
performance of the corneal nerve segmentation in challenging CCM images.

To facilitate better objective performance evaluation of our NerveFormer,
we calculated the following metrics: sensitivity (SEN) = TP / (TP + FN),
false discovery rate (FDR) = FP / (FP + TP), dice coefficent (DICE) = 2 x
TP / (2 x TP + FP + FN), , where TP denotes true positive, FN denotes
false negative, and FP denotes false positive and area under the ROC curve
(AUC). We follow [7] to compute the evaluation metrics in terms of a three-
pixel tolerance region around the ground truth centerline. Based on quantitative
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Table 2. Ablation study results of the proposed model on the CCM-1 and CCM-2
datasets.

Mothods CCM-1 CCM-2
cethods SEN FDR DICE AUC | SEN FDR DICE AUC
Backbone 0.8446 0.2127 0.8128 0.9158 | 0.8359 0.2008 0.8151 0.9142

Backbone+TDA |0.8598 0.1895 0.8325 0.9243 | 0.8509 0.1960 0.8252 0.9219
Backbone+TEA |0.8534 0.1844 0.8315 0.9211 |0.8487 0.1928 0.8256 0.9209
Backbone+DEAM|0.8738 0.1813 0.8432 0.9314|0.8541 0.1864 0.8317 0.9236

segmentation comparisons in Table 1, we can clearly observe that the proposed
method outperforms the other state-of-the-art methods on both CCM-1 and
CCM-2 datasets. Specifically, the proposed NerveFormer achieves the highest
sensitivity and lowest FDR compared with the other methods. In detail, for
CCM-1, our method is 1.6% higher and 2.59% lower than MCTrans [9] in terms of
SEN and FDR, respectively, and 1.73% higher and 1.44% lower than MCTrans [9]
for CCM-2, respectively. These objective quantitative analyses suggest that the
proposed NerveFormer can effectively detect more corneal nerve pixels and at the
same time reducing the falsely detected background artifacts, which is consistent
with the observation in Fig. 3 that our method is more capable of discriminating
between corneal nerves and Langerhans cells.

3.3 Ablation Study

In order to investigate the contributions of TDA and TEA in the proposed Nerve-
Former, we conduct the following ablation studies. The encoder-decoder archi-
tecture with the pre-trained ResNet34 are taken as the Backbone. The TDA and
TEA modules are gradually added into the Backbone, namely Backbone+TDA,
Backbone+TEA and Backbone+DEAM, to assess their contributions to corneal
nerve segmentation. Table 2 illustrates the contributions of different modules to
the segmentation performance on CCM-1 and CCM-2. Compared to the Back-
bone, the network with only TDA achieves better performance, with an increase
of approximate 1.80%, 10.91%, 2.42% and 0.93% in SEN, FDR, DICE and AUC
on CCM-1, respectively, and an increase of approximate 2.40%, 2.4%, 1.24%,
0.84% on CCM-2, respectively. By integrating TEA into the Backbone, we can
observe an improvement of approximate 1.04%, 13.31%, 2.30% and 0.58% in
SEN, FDR, DICE and AUC on CCM-1, respectively, and an improvement of
approximate 1.53%, 4.00%, 1.29%, 0.73% on CCM-2, respectively. Furthermore,
we found that the Backbone+TEA obtains a lower FDR than Backbone+TDA,
indicating that TEA with constraints of external samples can be more robust
to the interference of background cells. Finally, the proposed NerveFormer that
incorporates both TDA and TEA (Backbone+DEAM) achieves the best perfor-
mance on all the metrics.
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3.4 Conclusion

In this paper, we have proposed a cross-sample aggregation network, i.e., Nerve-
Former, for corneal nerve segmentation. The proposed NerveFormer can effec-
tively learn the internal and external corneal nerve features by integrating a
proposed deformable and external attention module. Experimental results on
the two publicly available corneal nerve datasets demonstrate that our method
achieves state-of-the-art performance by enhancing segmentation continuity and
suppressing background artifacts interference.
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