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Abstract

A random Boolean network (RBN) is used to model a computer network. When thinking of a
RBN in this way; a node becomes a server, edges become network connections and state requests
become packets. The synchronous updating, found in classic RBNs, is compared to the fixed pe-
riodic refreshing used in, for example, the domain name system (DNS).

The proposed method for reducing traffic in the network is to give each node the power to regulate
the accuracy of the information it holds. That is, the nodes attempt to control the probability
that their information is up to date (correct). Each node is fitted with a learning algorithm that
requires only local information and determines how frequently the node should refresh in order to
achieve its desired accuracy. This approach permits substantial reductions in the volume of traffic
without altering network topology or consideration of particular routing/queueing protocols.

1 Background

The setting for the model is Boolean networks. Random Boolean networks have been chosen due
to the variety of dynamics they can produce. These dynamics will be used to represent a range of
traffic flows. The algorithm to be described uses local information and so does not depend on the
topology of the network provided any feedback effects are negligible.

The Random Boolean Network (RBN)
A random Boolean network is a random, directed graph. Each node has a state, xi ∈ {0, 1} = B,
and a Boolean function, fi : Bki → B, where ki is the number of predecessors of the ith node.
The states of the nodes in a classic RBN are updated synchronously, thus the dynamics are deter-
ministic. Such systems and their dynamics have been studied at length. They were introduced by
Kauffman to model random genetic nets with gene activity as a binary on-off switch [1]. Using the
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dynamics he predicted the number of cell types within an organism and cell reproduction times as
functions of the number of genes within the organism and cell respectively. Since then RBN’s have
been used to model a variety of systems from economics [2], to music [3], to brain activity [4].

RBN dynamics have also been studied in a more abstract setting by such authors as Derrida
and Pomeau [5]. They randomly assigned predecessors and Boolean functions to each node, at
every time step. This enabled them to make an annealed approximation confirming Kauffmans
observations [1]; that the complexity of the dynamics increases dramatically when the number of
predecessors per node is greater than two. Solé and Luque analyzed generalized RBNs and showed
that the same phenomenon exists when the mean number of predecessors per node is greater than
two [6]. Luque and Solé went on to define a discrete Lyapunov exponent using Boolean calculus [7].

There have been arguments against the assumption of synchronous updating within RBNs when
modelling gene interactions [8],[9]. As a result, a number of adjustments to the classical Kauffman
RBN have been developed and analyzed. Gershenson summarizes a few of these modifications and
classes them in terms of updating strategies [10]. This paper does not cover all RBN types; for
example, Shmulevich introduces RBNs that update synchronously, with Boolean function uncer-
tainty [9]. A comprehensive overview of the developments of RBNs within the genetic setting is
given by Shmulevich, Dougherty and Zhang [11].

The RBN studied here updates probabilistically. Each node has two update probabilities τi,0

and τi,1: τi,0 is used when xi = 0 and τi,1 is used when xi = 1, xi is the state of node i. The
motivation for this will be discussed in the next section.

A possible application of this work is as a model of the domain name system (DNS), particu-
larly DNS replication. The DNS is a distributed database of mappings used to map machine
names to IP addresses. The database has a tree structure, with thirteen root zones. In all there
are around 20 million zones (nodes) within the graph [12].

To prevent the loss of any data and to improve performance, each DNS server is replicated at
least twice [13]. The replicated servers contact each other periodically, once or twice a day, to
check their files are up to date [13]. There were estimated to be over 2 million DNS servers last
year [14]. The traffic generated by replication maintenance may seam insignificant when we con-
sider that some of the one hundred physical root servers have reported 100 million queries per day
[15]. This makes replication traffic less than 0.05% of DNS traffic. Wessels and Fomenkov observed
the query traffic of the four machines that make the F root server [12] . Only 2.15% of all traffic
was legitimate, the rest was attributed to misuse and neglect of DNS software. Extending this to
DNS traffic across all root servers, replication traffic is closer to 2% of legitimate traffic.

In the context of the model, the fixed periodic refreshing of DNS servers, to maintain replica-
tion, can be compared to the synchronous updating of the generalized RBN. When the state of a
node within the RBN changes, this would represent updated data within the DNS server.

2 Accuracy algorithm

The accuracy algorithm is a simple learning algorithm [16], enabling each node to determine its
own re-evaluation probabilities, τi = {τi,0, τi,1}, using only local information. A node estimates
the probability distribution of its state by observation, then uses prior knowledge, in the form of
equations, to make the adjustments to τi.

Here a comparison of two forms of the same algorithm will be made. In one case, the nodes
will estimate the distribution of their state using a vector memory and update τi periodically (pe-
riodic updating). In the other case, each node will have a scalar memory and update τi after each
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time step. Periodic updating may be preferred to reduce work done by a node, while continuous
updating may be preferred for more rapid response.

As nodes within the network are updating probabilistically there may be occasions where node i
does not update at time t but some of its predecessor nodes do. Thus, xi may become incorrect
with respect to its predecessor states.

Accuracy theory

Let εi be the probability of node i being incorrect. Then 1 − εi is the probability that node
i is correct. Assume node i updates continuously, (εi = 0), generating the bit string, Xi =
(xi,0, xi,1, . . . , xi,t, . . .). Throughout this paper it will be assumed that members of Xi are indepen-
dent and identically distributed with distribution Gi(0) = 1− pi, Gi(1) = pi. This is a reasonable
assumption even though RBNs may contain many feedback loops; as the number of nodes within
the random network increase the effects of feedback become negligible.

Consider a simple k + 1 node network where node 0 receives inputs from nodes 1 to k. Nodes
1 to k generate bit strings X1, . . . , Xk with distributions G1, . . . , Gk. Initially node 0 updates
continuously generating a bit string, X0, with distribution G0. If node 0 were to update proba-
bilistically, using τ0, the probability of its state being accurate would be:

[τ0,0 + (1− τ0,0)G0(0)]G0(0) + [τ0,1 + (1− τ0,1)G0(1)]G0(1) ≡ 1− ε0 (1)

Where, by definition, 1− ε0 is the probabilistic accuracy of node 0 given τ0. However, the aim of
the algorithm is to choose the τ0,b so as to achieve a prescribed ε0. During a simulation, if node 0
were in state 0 then, for design purposes, equation (1) could be reduced to:

1− ε0 = τ0,0 + (1− τ0,0)G0(0)

Thus determining τ0,0:

τ0,0 = 1 +
ε0

G0(0)− 1
(2)

A similar argument gives τ0,1 in terms of ε0 and G0(1).

Once node 0 begins to update probabilistically the distribution of its state alters. For clarity,
we shall call the bit string generated by node 0 when the node updates probabilistically Y0, write
H0 for the distribution of Y0. The relationship between G0 and H0 can be found using Markov
analysis as Y0 is a Markov chain. This generates the matrix equation, equation (3), which reduces
to the eigenvalue problem (4).

(

p(yt+1 is 0)
p(yt+1 is 1)

)

=

(

1− τ0,0G0(1) τ0,1G0(0)
τ0,0G0(1) 1− τ0,1G0(0)

)(

p(yt is 0)
p(yt is 1)

)

(3)

= λ

(

p(yt is 0)
p(yt is 1)

)

(4)

Solving equation (4) gives two eigenvalues, 1 and 2ε0. As ε0 < 0.5, (2ε0)
t → 0 with increasing t,

so we need only consider the eigenvector equation with eigenvalue 1, written below:
(

p(yt+1 is 0)
p(yt+1 is 1)

)

=
1

1− 2ε0

(

G0(0)− ε0
G0(1)− ε0

)

The above equation is the relationship between H0(b) and G0(b) because p(yt+1 is 0) = H0(0).

H0(b) =
G0(b)− ε0
1− 2ε0

or

G0(b) = ε0(1− 2H0(b)) +H0(b) (5)
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Algorithm

Accuracy estimation
The aim of the algorithm is to use equations (2) and (5) to equip each node with the knowledge to
adjust its update probabilities. We can apply these equations to a node regardless of the updat-
ing strategies of its predecessors, because the equations only depend on the behavior of the node
itself. The update probabilities will be adjusted such that xi is inaccurate with probability εi. It
is important here to distinguish between target inaccuracy of εi, and the actual inaccuracy of the
node. Let ψi denote the actual inaccuracy of node i.

Now consider general nodes within a RBN. Each node is aware of its state, xi, at all times.
Hence, nodes can estimate the distribution of the bit string they generate. Nodes will know if their
re-evaluation probabilities are less than one so will know if they are estimating Gi or Hi. Nodes
will be estimating Hi most of the time as the aim of the model is to reduce information traffic.
For simplicity of explanation we shall discuss Hi from now on.

Node i estimates Hi(b). In order to adjust τi, equation (5) must be used to find Gi(b). There is no
way for a node to know the current probability of its state being incorrect, ψi, without re-evaluating
on every time step. This means that the calculation of Gi(b) is subject to error. Let δi = ψi − εi
be the difference between the true accuracy ψi and the target εi, Equivalently, εi = ψi + δi and
equation (5) becomes:

Gi(b) = (ψi + δi)(1− 2Hi(b)) +Hi(b) (6)

Substituting into equation (2) gives:

τi,b = 1 +
εi

(ψi + δi)(1− 2Hi(b)) +Hi(b)− 1
(7)

Applying the Taylor series expansion to equation (7) around ψi leads to:

τi,b =

(

1 +
εi

ψi(1− 2Hi(b)) +Hi(b)− 1

)

+O(δi)

The term in brackets is the exact equation for τi,b. The error will be further discussed in section 3.

Distribution estimation
One of the key features of the algorithm is the probability distribution estimation of the bit strings
generated by each node. To make the estimate the node has to observe its state and store the
information. Two methods were compared, the vector and scalar memory.

In the vector memory method, a memory block, size T , is filled with the bit string. On every
time step the state of the node is put into the memory. Once the memory is full, the node counts
the number of ones within and uses this as its probability of being in state one. It then calculates
the probability of being in state zero, adjusts its update probabilities, empties its memory and
starts again.

The variance of the estimate of Hi(1) produced by the vector memory is σ2
i , where:

σ2
i =

Hi(1)Hi(0)

T
(8)

The scalar memory is the exponentially decaying average [16]

yi(t) =

∞
∑

l=0

wl+1bi,(t−l)
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where yi(t) is the value of the scalar memory at time t and w ∈ (0, 1) is the weight parameter. It
is straightforward to show that the distribution of Yi, the bit string output of node i, at time t, is,

Hi(1) =
1− w

w
yi(t)

Hi(0) = 1−Hi(1)

The variance of Hi(1) when estimated using the scalar memory is σ̄2
i , where:

σ̄2
i = Hi(1)Hi(0)

1− w

1 + w
(9)

We will compare accuracy convergence using the two methods for estimating Hi(b). Equating (8)
and (9) gives a relationship between the size of the vector memory, T , and the weight, w, that
yields a kind of “comparable” scalar memory.

T =
1 + w

1− w

w =
T − 1

T + 1

Using this relationship we can say that the effective scalar memory, defined by w, is comparable
to a vector memory of length T .

3 Simulation

In this section the results of a simulation of a generalized RBN with nodes that run the accuracy
algorithm. A generalized RBN has a variable number of predecessors per node, chosen uniformly
from {1, 2, . . . , kmax}. As the RBN will have probabilistic updating its dynamics should not exhibit
order [10],[17], but to ensure ‘interesting’ dynamics the mean number of inputs per node, < k >,
will be taken to be greater than two [6]. Initially the nodes will have re-evaluation probabilities
τi = {1, 1}. The results of this simulation are typical to every simulation run so far.

The network has 100 nodes, kmax = 7, < k >= 4, εi = 0.1 ∀i, T = 1000, w = 0.998. The
simulations were left to run for 20000 time steps.

Figure 1 shows the probabilistic accuracy of every node within the network, during both simu-
lations. The graph on the right records the scalar memory results while the other graph shows the
vector memory results. The accuracies reported in these figures are absolute in the sense that they
were monitored at every time step, independent of any probabilistic updating.

The graph on the left of figure 2 shows the probabilistic accuracy of node 63. We see, espe-
cially clearly with the scalar memory, that node 63 is performing very close to its target accuracy.
However, node 96, to the right of figure 2, has accuracy probability just over 0.92. In fact a large
number of nodes within the network achieve an accuracy higher than that required, figure 1. This
can be attributed to the error described in section 2.

The error within the algorithm depends on Hi(b), equation (6). The closer Hi(b) is to 0.5 the
smaller the error. The effect of this can be seen in figure 2, H63(1) ≈ 0.54, H96(1) ≈ 0.78. On
each node, Hi(b) > 0.5 has a more prominent effect on the accuracy of the node as the node will
mostly be in state b. For Hi(b) > 0.5, (1 − 2Hi(b)) < 0. As the initial re-evaluation probabilities
are 1, ψi < εi, thus δi > 0. Looking again at equation (6) we see that, under these conditions Gi(b)
is underestimated by the algorithm, hence τi,b is over estimated and the accuracy is greater than
required.
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Figure 1: The probability of node i being accurate
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Figure 2: The probability of nodes 63 and 96 being accurate

4 Traffic reduction

Single node
When thinking of the Boolean network as an information network, we can say, a node updating
generates traffic in the form of a request. An assumption of the model is that when a node requests
predecessor states, it then receives replies. Let a request and reply be a unit of traffic. Hence,
if node i were part of a continuously updating, generalized RBN it would generate Tki units of
traffic over the time period T .

Assume node i has been implementing the accuracy algorithm which has converged on some τi.
When the node is in state yi, it generates ki units of traffic with probability τi,yi

. This is equivalent
to the node sending kiτi,yi

units of traffic on every time step while it is in sate yi. Let the network
run for T time steps, the amount of time node i spends in state yi is THi(yi). Thus, node i, on
average, generates Tki (τi,0Hi(0) + τi,1Hi(1)) units of traffic within period T .
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Call (τi,0Hi(0) + τi,1Hi(1)) the traffic reduction factor, Ωi. Express Ωi in terms of Gi and εi,
(equations (2) and (5)):

Ωi = Hi(0)τi,0 +Hi(1)τi,1 =
Gi(b)(Gi(b)− 1)− εi(εi − 1)

(1− 2εi)Gi(b)(Gi(b)− 1)

In each simulation to date each node has converged to some Hi ⇒ Gi. For fixed Gi(b), Ωi can be
estimated by the linear function, Ω̂i(εi):

Ω̂i(εi) =
1

Gi(b)− 1
εi + 1

Thus, traffic reduction in roughly linear w.r.t. εi. Looking at the graph of Ωi for fixed εi, figure 3,
the curve Ωi(Gi(b)) shows the greater the distance between Gi(b) and 0.5, the greater the possible
reduction in traffic, as expected.

1 − 2ε
i
 

1 − ε
i
 ε

i 0.5 
G

i
(b) 

Ω
i
(G

i
(b))

Figure 3: Traffic generated by accuracy node for all Gi(xi)

Over the network
Analysis of traffic reduction over the whole network for εi = ε ∀i is currently in progress so there are
no general results to report as yet. To give an idea of what may be expected the traffic generated
by the simulated network in section 3 was recorded.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

time

tr
af

fi
c 

vo
lu

m
e

Normalized traffic, scalar memory

mean 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

time

tr
af

fi
c 

vo
lu

m
e

Normalized traffic, vector memory

Figure 4: Normalized traffic volume, ε = 0.1
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Figure 4 shows the normalized traffic volume across the whole network on every clock tick, ε = 0.1.
Normalized traffic is the fraction of traffic remaining once accuracy algorithm is in use. The
graph on the right shows the results for the vector memory simulation, the graph on the left for
the scalar memory. As one would expect there is little difference between the performance of the
two memory types. We see that for ε = 0.1 the network experiences approximately 35% less traffic.

Figure 5 shows simulated results of normalized traffic plus standard deviation on the same network
for varying ε.
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Figure 5: Mean normalized traffic with standard deviation

5 Conclusion

An algorithm has been proposed to reduce information traffic within a computer network. The
method by which the algorithm achieves a decline in traffic volume is a controlled reduction in the
accuracy of the information. The algorithm has been developed to fulfill its task using local infor-
mation only, moving closer to creating an algorithm that may be of use in real information networks.

Regarding the DNS application, DNS servers could replace periodic refreshing with an algorithm
similar to the accuracy algorithm. It is conceivable that zones are updated at different rates. Thus,
a refreshing algorithm taking this into account may reduce DNS replication traffic. However, there
is a slight chance that ’intelligent’ refreshing could increase DNS replication traffic as currently
DNS protocols do not consider staleness of address in any detail [13].

Work in progress; a general result on reduction in traffic over the whole network. Further work
on this model which is not discussed in this paper include; network dynamics, different network
topologies, cases where the independent and identically distributed assumption may not hold, for
example, small world networks and designated nodes feeding bit strings into the network that are
generated using an intermittency map [18] [19].
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