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Abstract: The low-frequency wide-bandgap characteristics of the seismic metamaterial 14 

can suppress the propagation of vibrations and reduce the risk of extreme loadings such 15 

as earthquakes. The stringent requirement of lattice size extensively increasing with the 16 

cost of forming seismic metamaterial using general engineering materials. We design 17 

soil-expanded seismic metamaterial to reduce the scale restriction on artificial materials. 18 

Two types of soil-expanded lattice are created, and the bandgap characteristics for the 19 

lattice are obtained through the transfer matrix method. The propagation process for 20 

finite periodic lattice is simulated by the finite difference method in the time domain. It 21 

is found that the acceleration amplitudes in the wave propagation region are suppressed 22 

by 90% for the seismic metamaterial with rubber components. The response spectra 23 
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further indicate that seismic metamaterials can reduce seismic risk in targeted areas.  24 

Keywords: Vibration attenuation, Seismic metamaterial, Bandgap, Periodic structures, 25 

Soil-structure interaction, Seismic prevention. 26 
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1. Introduction 28 

Earthquake, sudden and devastating natural disaster, has been well known for bringing 29 

huge casualties and economic losses and is still a huge challenge for all mankind [1-3]. 30 

Various theories and techniques have been developed to promote structural seismic 31 

resistance, but these measures can only protect the structure in which it is located, and 32 

earthquake-indenergy-absorbing elements can cause considerable damage under large 33 

earthquakes. These damages are often difficult to repair or even so difficult to replace 34 

that the structure can no longer be used [4,5]. The presence of these problems makes 35 

earthquakes still a huge threat to cities. Recently, the advent of phononic crystal 36 

acoustic metamaterials has allowed us to directly control the propagation of elastic 37 

waves. Seismic waves are elastic; they can also be controlled by phononic crystals, 38 

meaning that region-scale phononic crystals have the potential to enable earthquake 39 

protection for entire urban areas. Phononic crystal is an artificial acoustic metamaterial 40 

composed of periodically distributed media [6] when region-scale metamaterials are 41 

particularly designed for seismic this kind of metamaterial as seismic crystals [7] or 42 

seismic metamaterials(SMs) [8]. 43 

Seismic metamaterials consist of a series of identical lattices that prevent elastic 44 

waves in certain frequency ranges from propagating through the metamaterial. These 45 

frequency ranges are often referred to as bandgaps and are the essence of seismic 46 

metamaterials that can control the propagation of seismic waves. The realization of 47 

bandgaps is based on periodically repeating lattices. The geometry, density, and 48 



 

 

Young’s modulus of the lattice control the location and width of the band gaps. 49 

Specially designed low-frequency bandgap seismic metamaterials can prevent seismic 50 

waves from propagating into urban areas or critical structures such as power plants and 51 

hospitals. 52 

Over the last decade, considerable literature has grown up around the topic of surface 53 

wave attenuation by seismic metamaterials. A number of authors have considered the 54 

formation of bandgaps by periodically burying artificial structures below the ground to 55 

attenuate seismic surface waves. Pu [9, 10] analyzed surface wave attenuation by 56 

periodically cylindrical concrete piles, calculated the effect of soil stratification on 57 

bandgaps, and proposed a new method for identifying surface wave bandgaps. Zhang 58 

[11], Miniaci [12] and Amanat [13] presented seismic metamaterials with different 59 

cross-sections, they calculated the bandgaps and transmission properties of seismic 60 

metamaterials by commercial finite element software. Considering the anisotropy of 61 

the soil, Guo et al [14] combined theoretical derivation and numerical modelling to 62 

calculate the bandgaps and transmission curve of rubber-steel piles. The authors 63 

proposed a low-frequency bandgap seismic metamaterial in anisotropic soil. Using 64 

laboratory experiments, Zeng [15] and Chen [16] verified the bandgaps of two different 65 

seismic metamaterials through transmission curve. Different with mentioned above, 66 

Brûlé [17] and Kacin [18] constructed periodic holes with different distribution shapes 67 

in natural soil and verified the ability of seismic metamaterials to attenuate surface 68 

waves by amplitude distribution. In addition, some studies have shown that the periodic 69 

attachment of specially designed structures to the soil surface is also capable of forming 70 

bandgaps. By commercial finite element software, the bandgaps and transmission curve 71 

of built-up structural steel sections [19], H-fractal seismic metamaterial [20], 72 

Minkowski-like fractal seismic metamaterial [21], T-shaped seismic metamaterial [22] 73 



 

 

and Matryoshka-like seismic metamaterial [23] are well analyzed. Recently, Zeng [24] 74 

pointed out that negative Poisson's ratio materials are more conducive to the formation 75 

of low-frequency metamaterials. However, such studies remain narrow in focus dealing 76 

only with surface waves attention. 77 

Seismic waves are divided into surface waves and body waves. Surface waves 78 

propagate only in the horizontal direction, while body waves can propagate in both the 79 

horizontal and vertical directions. There is little published data on the attention of body 80 

waves through seismic metamaterials [7,25]. As noted by Geng, one-dimensional 81 

layered seismic metamaterials can effectively attenuate body waves propagating in any 82 

direction [25]. They calculated the bandgap of a two-component layered seismic 83 

metamaterial by a theoretical method and discussed the effect of material properties on 84 

the width and location of the first-order bandgap. Geng argues that it is hard for two-85 

component seismic metamaterials to form low-frequency bandgaps when the artificial 86 

material thickness is less than the seismic wavelength. However, they only calculated 87 

the bandgaps for shear waves. For longitudinal waves in soil, which have longer 88 

wavelengths, it is even more difficult to form bandgaps with the same lattice thickness. 89 

In addition, little is known about the transmission properties of seismic metamaterials 90 

with only finite dimensions in the aperiodic direction. 91 

This paper discusses the case of attention of body waves by one-dimensional seismic 92 

metamaterial. Two kind of one-dimensional seismic metamaterial to reduce the 93 

thickness of artificial material are presented, both of them expanded lattice by soil. 94 

There are two primary aims of this study: 1. To investigate the influence of soil 95 

thickness to bandgaps. 2. To ascertain transmission properties of this kind of seismic 96 

metamaterial. Firstly, the effect of soil thickness and artificial material thickness on the 97 

bandgap of both longitudinal wave and shear wave by transfer matrix method is 98 



 

 

analysed. Subsequently, the finite difference method in time domain (FDTD) is used to 99 

simulate the transmission properties of one-dimensional seismic metamaterials. Finally, 100 

the transmission properties of layered seismic metamaterials with finite size in 101 

aperiodic direction are simulated by 2D FDTD considering the practical situation. 102 

2. Model and Bandgaps of soil-expanded lattice 103 

2.1 The model of soil-expanded lattices 104 

Many researchers have utilized soil as a matrix to form two- or three-dimensional 105 

seismic metamaterials. However, one-dimensional layered seismic metamaterials have 106 

no difference between matrix and scatterer, and the lattice contains only artificial 107 

material. As a result, such a lattice cannot have dimensions comparable to seismic 108 

wavelengths. Although it can somewhat control transverse waves, it isn't easy to control 109 

longitudinal waves. To make the lattice size of the one-dimensional layered seismic 110 

metamaterial comparable to the seismic wavelength, we propose two soil-expanded 111 

lattices, as shown in Fig. 1.  112 

Fig. 1(a) shows a schematic diagram of the protection of a target building by one-113 

dimensional seismic metamaterial. As shown in Fig. 1(a), the seismic metamaterial is 114 

placed in front of the target building. As shown in Fig. 1(b) and Fig. 1(c), two types of 115 

soil-expanded lattices are illustrated. The red dashed box marked the lattice. The lattice 116 

shown in Fig. 1(b) consists of concrete and soil (CS lattice), while the lattice shown in 117 

Figure 1(c) consists of a concrete layer wrapped in rubber in front and behind and soil 118 

(CRS lattice). Compared to Fig. 1(b), the CRS lattice in Fig. 1(c) contains rubber, which 119 

is more conducive to forming band gaps through the local resonance mechanism. 120 



 

 

(a) Sketch of seismic metamaterial 

(b) Sketch of CS lattices 

(c) Sketch of CRS lattices 
Fig. 1 Soil-expanded lattices 121 

 122 

It is worth noting that both soil-expanded lattices make the soil an integral part of the 123 

lattice. So in both soil-expanded lattices, increasing the thickness of the soil increases 124 

the lattice size. As the seismic metamaterial is buried in the soil, controlling the soil 125 

thickness is easy to realize, that is, maintaining the burial distance between each 126 

concrete layer. 127 

2.2 bandgaps of soil-expanded lattice 128 

Eqn. 1 shows the equation for the propagation of an elastic wave in a one-129 

dimensional metamaterial. 130 

2 2

2 2

( , ) 1 ( , )U x t U x t
t C x

∂ ∂
= ⋅

∂ ∂
 (1) 

where ( ),U x t  is the displacement field in the computational domain, and C is the 131 

elastic wave velocity. In infinitely repeating one-dimensional layered metamaterials, 132 

the displacement fields at the ends of the lattice satisfy the Bloch period condition 133 

shown in Eqn. 2. 134 

( ) ( )ikaU x a e U x−+ = ⋅  (2) 

where U(x) is the displacement at the left end of the lattice, and ( )U x a+   is the 135 
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displacement at the right end of the lattice. i  is an imaginary number and k  is the 136 

wave number, a  is the length of lattice. The eigenfrequency analysis of each wave 137 

number k of the lattice shown in Fig. 1(b) and Fig. 1(c) using the transfer matrix method 138 

enables the dispersion equation for the field expansion lattice to be obtained, as shown 139 

in Eqn. 3. 140 
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(3-d) 

where 1a  is the thickness of the concrete layer of the CS lattice in Eqn.(3-a) and 141 

Eqn. (3-b). 1a is the thickness of the concrete layer of the CRS lattice including the 142 

outer rubber layer in Eqn. (3-c) and Eqn. (3-d). And 2a  is the thickness of the soil in 143 

Eqn. (3-a), Eqn. (3-b), Eqn. (3-c) and Eqn. (3-d). 1a , 2a  are geometrical parameters, 144 

and they are all illustrated in Fig. 1. In Eqn. 3, nµ  and nλ  are the Lame constants, 145 

and nC  is wave velocity of the Nth layer. k   is wave number and ω   is angular 146 

frequency. Eqn. (3-a) and Eqn. (3-b) describes the dispersion equation for the CS lattice, 147 



 

 

Eqn. (3-c) and Eqn. (3-d) describes the dispersion equation for the CRS lattice. The 148 

detailed analysis of Bloch's boundary conditions and the derivation of Eqn. 3 can be 149 

found in Supplementary Material S1 and literature [26-28]. 150 

When the wave number k  in Eqn. 3 is specified, a number of eigenfrequency f that 151 

satisfy the equation can be calculated. Since the lattice is periodically repeated, the 152 

dispersion curve is obtained by calculating only the wave number k within the first 153 

Brillouin zone( ,
2 2

k
a a
π π ∈ − 

 
), where a  is the length of the lattice. When there is 154 

no corresponding wave number k in a section of frequency, these frequency sections 155 

are called bandgaps. As we can see, there is more than one bandgap. The upper and 156 

lower boundaries of bandgaps determine the location and width of the bandgaps. If an 157 

elastic wave has only frequencies within the bandgaps, such an elastic wave cannot 158 

propagate through seismic metamaterials. Seismic waves are ultra-low frequency 159 

elastic waves, the main frequency component of which is 0-15 Hz. Therefore, seismic 160 

metamaterials should have a bandgap that is sufficiently low frequency and as wide as 161 

possible. The bandgap with the smallest lower bound mark is bandgap 1st, and as the 162 

frequency rises, the other bandgaps are 2nd, 3rd, and so on. By taking ( )2k aπ=  into 163 

Eqn. 3, we can obtain the upper and lower bound frequencies for the odd bandgaps. 164 

Bringing 0k =  into Eqn.3 gives the upper and lower bounds of the bandgap for order 165 

bandgaps. 166 

Since the lower bound of bandgap number one has the lowest frequency, we take 167 

2k aπ= ⋅ into account Eqn. 3 and calculate odd bandgaps. Note that the dispersion 168 

equations for the CS and CRS lattices have the artificial material layer thickness 169 

parameter and the soil thickness parameter, which can influence the upper and lower 170 

bound of the band gap. Therefore, the frequency f is calculated using the artificial 171 



 

 

material layer thickness parameter 1a   and the soil thickness parameter 2a   as 172 

variables, as shown in Fig. 2. Fig. 2(a) shows the distribution of the upper and lower 173 

boundaries of the odd-numbered bandgap for the CS lattice in both modes. The vertical 174 

coordinate is the frequency, the axis 1a  represents the concrete thickness, and the axis 175 

2a  represents the soil layer thickness. Fig. 2(b) shows the distribution of the upper and 176 

lower boundaries of the odd-numbered bandgap of the CRS lattice for both modes. The 177 

vertical coordinate is the frequency f, the axis 1a  represents the total thickness of the 178 

rubber and concrete layers, and the axis 2a  represents the soil thickness. The material 179 

data are shown in Tab. 1, where pV  and sV  is the wave velocity of the longitudinal 180 

wave and shear wave. ρ  is the density of the material, µ  and λ   are the Lame 181 

coefficient of the material. 182 

Table 1 Material property in CS and CRS lattice 183 

Material  
Vp  

(m/s) 

Vs  

(m/s) 

ρ 

(g/cm³) 
μ λ 

C30 Concrete 3800 2820 2.36 9.4×109 1.82×1010 

Soil 1500 210 1.93 8.49×107 2.12×109 

Rubber  571 45 1.3 2.67×106 4.18×108 

 184 

Fig. 2 shows that the upper and lower boundaries of the odd-numbered bandgaps 185 

corresponding to different layer thicknesses. Both lattices can reduce the lower 186 

boundary of the bandgap by adding concrete and soil thickness. This may be due to the 187 

fact that increasing the concrete layer thickness is equivalent to increasing the resonator 188 

mass of the local resonance mechanism and reducing the band gap position. The CRS 189 

lattice is covered with softer rubber than soil, and the same thickness of concrete makes 190 



 

 

it easier for the local resonance mechanism to form, requiring less concrete thickness. 191 

However, the increased thickness of the artificial material layer increases the cost of the 192 

seismic metamaterial. Fig. 2(b)(d) shows the results of the analysis of the longitudinal 193 

wave mode, where we consider the value of 30m for the CS lattice and 10m for the 194 

CRS lattice. 195 

Another trend in the bandgap in Fig. 2 is that the upper and lower boundary spacing 196 

of bandgap number one becomes smaller as the soil thickness increases, which means 197 

that the bandgap width decreases. There are two reasons for this phenomenon: on the 198 

one hand, increasing soil thickness allows for a significant increase in lattice size, which 199 

facilitates the acquisition of low-frequency band gaps. On the other hand, when the 200 

thickness of the soil increases infinitely, the seismic metamaterial will converge 201 

infinitely to the natural soil. However, natural soils do not have any bandgap, which 202 

makes the distance between the upper and lower boundaries of the bandgap decrease 203 

with increasing soil thickness. 204 



 

 

 
(a) CS lattice bandgaps in shear wave 

 
(b) CS lattice bandgaps in longitudinal wave 

 
(c) CRS lattice bandgaps in shear wave 

 
(d) CRS lattice bandgaps in longitudinal wave 

Fig. 2 3D view of the bandgaps 205 

 206 

To find a reasonable soil thickness, we take the given 1a  and 2k aπ= ⋅ into Eqn. 3, 207 

get the upper and lower bounds for the odd-numbered and even-numbered bandgaps, 208 

respectively, as shown in Fig. 3. 209 
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(a) CSs lattices in shear wave 

of odd bandgap 

(b) CS lattices in shear wave of 

even bandgap 

(c) CS lattices in longitudinal     
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wave of even bandgap 

Fig. 3 Variation of bandgap with the thickness of soil 210 

The upper and lower boundaries of the bandgap are circled with a red dash line in 211 

Fig. 3, while the grey rectangle represents the dominant frequency of the seismic wave 212 

between 0 and 15 Hz. When the red dashed box intersects the grey part of the diagram, 213 

the soil thickness is such that a valid bandgap can be formed. For example, Fig. 3(a)(b) 214 

the complete bandgap of CS lattice in shear wave model. The 1st bandgap are circled 215 

with red dash line, and has the intersect with grey part when 2a   is less than 1m. 216 

However, Fig. 3(c)(d) shows that the 1st bandgap intersect with grey part when 2a  217 

more than 10m. For more valid bandgaps in longitudinal wave, the value of 2a  could 218 

be 50m. As the value of 2a  is more than 50m, the intersection of red wireframe and 219 

gray part gets narrower. So the value of 2a  should be 50m. Likely, we can get the soil 220 

thickness of CRS lattice. Tab. 2 shows the size of two lattices. 221 

Table2 Size of two lattices 222 
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 223 

Taking the thickness shown in Tab. 2 to Eqn.3, the Fig. 4 shows the dispersion curves 224 

for the CS and CRS lattice. The grey part in Fig. 4 is the bandgap. The CS and CRS 225 

lattices can form bandgaps within 0-15Hz in both modes. 226 

 

(a) CS-shear-bandgap 

 

(b) CS-longitudinal-bandgap 

 

(c) CRS-shear-bandgap (d) CRS-longitudinal-bandgap 

Fig. 4 Bandgaps for various seismic metamaterial 227 

3. Numerical simulation of soil-expanded lattice 228 

The time-domain finite-difference method of acceleration loading is used to simulate 229 

the propagation of seismic waves through seismic metamaterials. This numerical 230 

method improves the standard time-domain finite-difference method and allows for 231 

convenient statistics on the computational domain's maximum acceleration and 232 

maximum displacement. The numerical calculation methods are described in 233 

Supplementary Material S2 and can also be found in the literature [29-31]. 234 

When the seismic metamaterial in Fig. 1(a) has infinite dimensions in the y-direction 235 

and seismic waves cannot pass the seismic metamaterial, the computational domain can 236 

be reduced to one dimension. Fig. 5 shows the one-dimensional computational domain. 237 

The PML absorption boundary is set at both ends of the computational domain, and the 238 
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source is 50 m from the left-end boundary. The time history of point S1 and point S2 239 

and the distribution of maximum acceleration and maximum displacement are recorded 240 

during the computation. 241 

 

(a) seismic metamaterial by CS lattice 

 
(b) seismic metamaterial by CRS lattice 

Fig. 5 Seismic metamaterial with infinite length in y direction 242 

 243 
Fig. 6 Seismic metamaterial with finite length in y direction 244 

When the seismic metamaterial in Fig. 1(a) has only a finite size in the y-direction, 245 

there is a possibility that the seismic wave will go around to the back of the seismic 246 

metamaterial during propagation, as shown in Fig. 6. The computational domain is a 247 

square area of 1.2km×2.0km. The four sides of the square are set with PML absorption 248 

boundaries. The length of seismic metamaterial in the y-direction is 600m. 249 
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3.1 1D numerical analysis 250 

We used seismic wave data from the PEER website, El-Centro Array #9, from the 251 

earthquake of Imperial Valley-05. this seismic wave has a rich low frequency 252 

component. Fig. 7 shows the time history and spectrum of the seismic wave. 253 

 254 

（a）Station recording time history 
（

b）Station recording spectrum 
Fig. 7 The source schedule of seismic wave 255 

Considering shear waves, the seismic waves were analyzed using the finite difference 256 

method in the time domain through the one-dimensional computational domain shown 257 

in Fig. 5, and the maximum displacement and acceleration distributions within all 258 

computational domains were counted, as shown in Fig. 8. 259 

Fig. 8 shows the distribution of the maximum acceleration and displacement of the 260 

seismic wave through the 1D computational domain. The "Uniform" and "SMs" labels 261 

mark the natural soil and the seismic metamaterial, respectively, as shown by the blue 262 

and red curves in Fig. 8. "F zone" and "P zone" mark the front and back of the seismic 263 

metamaterial. Fig. 8(a)(b) shows the CS seismic metamaterial compared to natural soil, 264 

and Fig. 8(c)(d) shows the CRS seismic metamaterial compared to natural soil. 265 

 

0 20 403010

0.0
0.5−
1.0−
1.5−

1.0
1.5

0.5

2.0
 

0 20 40 50

0.4

0.8

1.2

1.6
2.0

3010



 

 

 
(a) Peak Displacement of CS seismic 

metamaterial 

 
(b) Peak Acceleration of CRS seismic 

metamaterial 

 
(c) Peak Displacement of CRS 

seismic metamaterial 

 
(d) Peak Acceleration of CRS seismic 

metamaterial 
Fig. 8 Max displacement and acceleration 266 

Firstly, both lattices effectively attenuate seismic waves, as seen from the red curve 267 

in Fig. 8, which is lower in the 'P zone' than the blue curve. It can be seen that the red 268 

curve in Fig. 8(b)(d) is significantly lower than the blue curve. Both lattices are better 269 

at attenuating acceleration than displacement. As acceleration is an important indicator 270 

of earthquake engineering, it can directly respond to the magnitude of the seismic forces 271 

in a structure. Therefore, installing seismic metamaterials in front of the protected 272 

building can effectively reduce the seismic forces on the structure. 273 

Secondly, the attenuation process of seismic waves differs significantly between the 274 

two lattices. The maximum acceleration within the CS seismic metamaterial in Fig. 8(b) 275 

produces a peak at the concrete layer, and the peak decreases as the lattice increases. 276 

The peak is probably due to the high shear force where the concrete is located, and the 277 

acceleration required to balance the shear force increases accordingly, creating a peak. 278 
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In contrast, the maximum acceleration within the CRS seismic metamaterial decays 279 

directly to near zero in the first lattice, and there is no peak in the acceleration within 280 

the seismic metamaterial. The wave impedance of the concrete layer is much higher 281 

than that of the rubber layer, resulting in a direct reflection of the elastic wave so that 282 

the maximum acceleration in the CRS seismic metamaterial is more evenly distributed 283 

and very close to 0. The red curve in the "F zone" section of Fig. 8(d) is higher than the 284 

blue curve, illustrating the reflection phenomenon. 285 

 

(a) CR lattice acceleration response spectrum 
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(b) CRS lattice acceleration response spectrum 

Fig. 9 response spectrum of seismic metamaterial 286 

The dashed line in Fig. 9 is the response spectrum for the time course recorded at 287 

monitoring point S1, and the solid line is the response spectrum for the table time course 288 

recorded at monitoring point S2. The different colored curves represent the additional 289 

damping of the response spectra. It can be seen that the peak of the response spectrum 290 

at point S2 is significantly lower than the peak of the response spectrum at point S1, 291 

irrespective of the damping level. Buildings in the 'P zone' are at substantially lower 292 

seismic risk than those in the 'F zone.' Both seismic metamaterials significantly reduce 293 

the seismic hazard in the protected area. 294 

3.2 Lattice Equivalence Phenomenon 295 

In contrast to higher-dimensional seismic metamaterial, the scatterer and matrix 296 

within the lattice of a 1D seismic metamaterial do not strictly distinguish between each 297 

other, which are merely different layers. When we introduce such soil-expanded lattice, 298 
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the lattice just is a finite number of layers inserted periodically in the soil. The lattice 299 

positions indicated by the red boxes in Fig. 1 are only one case, and Fig. 10 shows a 300 

fully equivalent lattice schematic to the red boxes. 301 

 
 

(a) CS lattice equivalence 

 
 

(b) CRS lattice equivalence 
Fig. 10 Phenomenon of lattice equivalence 302 

In Fig. 10(a) and Fig. 10(b), the red wireframe and other frames are equivalent 303 

lattices, and the difference between them is mainly the difference in lattice form. In the 304 

figure's red wireframe and other color wireframes, any wireframes of equal length can 305 

be completely equivalent lattices. This lattice equivalence makes it impossible for 306 

elastic waves to identify a complete CS or CRS lattice. At both ends of the seismic 307 

metamaterial, the part that acts as a soil infill will still have significant fluctuations and 308 

will not get shock absorption because it is a soil infill. 309 

3.3 2D numerical analysis 310 

For the CRS lattice, when the seismic metamaterial has finite dimensions in the y-311 
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direction, we use a two-dimensional time domain finite difference method to simulate 312 

the propagation of elastic waves in the seismic metamaterial. We choose a harmonic 313 

wave located within the bandgaps as the seismic source, and Eqn. 5 shows the time 314 

expression. 315 

[ ]( ) 0.01 0.5 sin(2 8 ) 0.3 sin(2 18 ) 0.2 sin(2 23 )a t t t tπ π π= × ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅  （5） 

Fig. 11 gives the results of numerical calculations of seismic metamaterials with a 316 

finite length in the y-direction. On the left are the results for natural soil, labeled 317 

'uniform.' The seismic metamaterials simulation results are on the right, labeled "SMs." 318 

The red boxes mark the areas of enhanced vibration due to reflections, and the green 319 

boxes mark the areas of seismic protection provided by the seismic metamaterials. 320 

When the length of the seismic metamaterial is limited in the y-direction, the area of 321 

protection provided by the seismic metamaterial is a trapezoid. 322 

 323 

Fig. 11The attenuation and amplification zone of finite length without rotation 324 

4. Conclusion 325 

In this paper, two kinds of soil-expanded seismic metamaterial models were proposed. 326 

Then, the transfer matrix method investigated the effect of layer thickness on the 327 

bandgaps of the CS lattice and CRS lattice. Subsequently, the propagation of elastic 328 

waves through the seismic metamaterial is simulated using the time domain finite 329 
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difference method. The way in which the seismic metamaterials work is discussed by 330 

comparing the maximum acceleration and maximum displacement distributions of the 331 

seismic metamaterials and the natural soil in the one-dimensional computational 332 

domain. By analyzing the response spectrum in front of the seismic metamaterial and 333 

the response spectrum behind the seismic metamaterial, it is demonstrated that the two 334 

seismic metamaterials can enhance the seismic safety of the target building. The range 335 

of seismic safety zones formed by the seismic metamaterials is found by comparing the 336 

maximum acceleration and maximum displacement distributions of the seismic 337 

metamaterials with the natural soil in the two-dimensional calculation domain. 338 

(1) Both CRS lattice and CS lattice could form lower bandgaps by soil expanded 339 

mechanism. While the thickness of the soil layer can lower the position of the 340 

bandgap, it can also lead to a reduction in the width of the band gap. A reasonable 341 

soil layer thickness should take into account an appropriate reduction of the band 342 

gap position and not an excessive narrowing of the bandgap width. 343 

(2) The CS lattice attenuates seismic waves slowly and more strongly with a higher 344 

number of lattices, while the CRS lattice reflects them directly, independent of 345 

the number of lattices. 346 

(3) The distribution of the maximum displacement and the distribution of the 347 

maximum acceleration indicates that the wave cannot distinguish lattice position 348 

due to the lattice equivalence phenomenon. 349 

(4) Compared with natural soil, the peak value of the response spectrum in the 350 

protected area after the addition of lattice decreased, among which the peak value 351 

of the response spectrum in the s-wave mode decreased by 90 %.  352 

(5) Seismic metamaterials of finite length can form trapezoidal seismic safety zones. 353 

The vibration-strengthening zone due to reflections is also trapezoidal. 354 
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Supplement Material S1 363 

The one-dimensional fluctuation equation is as in Eqn. S1-1. 364 

2 2

2 2

1U U
t C x

∂ ∂
= ⋅

∂ ∂
 (S1-1) 

where C is the wave velocity, which can be determined as longitudinal wave velocity 365 

by ( )2pc µ λ ρ= +   or shear wave velocity sc µ ρ=  , corresponding to the shear 366 

wave propagation equation and the longitudinal wave propagation equation. Assuming 367 

that the model satisfies infinite repetition in the period domain, the computational 368 

model satisfies the Bonn-Kamen boundary condition, as shown in Fig. 1. 369 

 

 

 
Fig. S1 Bonn-Kamen Boundary 370 

 One-dimensional seismic metamaterials possess the Bonn-Kamen boundary 371 

condition shown in Fig. S1. It is assumed that the blue arrows represent the field 372 

functions ( )xΦ  at the coordinates x, and the white origin represents the position of the 373 

lattice. When the number of lattices is limited, the crystal is assumed to take the form 374 
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R
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of a ring of radius R. Assuming that there are 1n  lattices in the ring, the field function 375 

after one lattice satisfies equation S1-2.  376 

2 2( ) = ( + )x x aΦ Φ  （S1-2） 

where a  is the lattice length. Eqn. S1-2 is equivalent to Eqn. S1-3. 377 

1( )= ( + )x q x aΦ ⋅Φ  （S1-3） 

After 1n  lattice, the field function returns to the coordinate x and satisfies the Eqn. 378 

S1-4 379 

1( )= ( )nx q xΦ ⋅Φ  （S1-4） 

Obviously, 1 =1nq , and 1= 1nq , and 1q can be replaced by Eqn. S1-5. 380 

1
2

1=
ni
nq e

π⋅ ⋅

 
（S1-5） 

As the radius R of the ring crystal increases, the number of lattices 1n  increases 381 

accordingly, as shown in Figure S1-(b). As R increases to infinity, the crystal can be 382 

considered to be in the form of a straight chain, and for each lattice passed, the form of 383 

the field function will satisfy Eqn. S1-6.  384 

( )
( )

( ) ( )
+2

=
x ani i k aN ax e x a e x a

π
⋅ ⋅ ⋅ ⋅Φ Φ + = Φ +  （S1-6） 

where , 2 nk
N
π ⋅

= , N is the total number of lattices. Eqn. S1-6 is the Bonn-Kamen 385 

boundary condition. 386 
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 388 
Fig. S1 Transfer matrix calculation process 389 

Fig. S2 shows a one-dimensional lattice, with A, B, C...N being the different 390 

material layers. Two adjacent layers should satisfy displacement continuity and shear 391 

stress continuity. The nth layer displacement and shear stress are shown in Eqn. S2-1 392 

and Eqn. S2-2 respectively. 393 

( ) sin cosn n n n n n
sn sn

u x A x B x
C C
ω ω   

= +   
   

 (S2-1) 

( ) cos sinn
n n n n n n

sn sn sn

x A x B x
C C C
µ ω ω ωτ

    
= −    

    
 (S2-2) 

where nx  is the local coordinate of the nth level. nA  and nB  is the coefficient 394 

to be determined. snC  is the shear wave velocity. Let ( )n nZ x be the state function, as 395 

shown in Eqn. S2-3. 396 

( ) ( ) ( )n n n n nZ x H x x= ⋅Ψ  (S2-3) 

where ( )n nH x   is the state quantity, as shown in Eqn. S2-4. ( )nxΨ   is the 397 

coefficient like vector to be determined, as shown in Eqn. S2-5. 398 
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[ ]= T
n nA BΨ  (S2-5) 

The state function on the left side of the nth level is shown in Equation S2-6. The 399 

state function on the right-hand side of the nth level is shown in Eqn. S2-7. 400 

(0)L
n n nZ H= ⋅Ψ  (S2-6) 

( )R
n n n nZ H a= ⋅Ψ  (S2-7) 

The relationship between L
nZ  and R

nZ  is shown in Eqn. S2-8. 401 

[ ] 1( ) (0)R L
n n n n nZ H a H Z−= ⋅  (S2-8) 

Due to the continuous displacement between two adjacent layers, there is 402 

+1
L R
n nZ Z=  (S2-8) 

Thus, the state function from the leftmost to the rightmost part of the lattice satisfies 403 

Eqn. S2-9. 404 

( ) ( ) ( ) ( ) ( ) ( )( )1 1 1
n 1 1 1 1 1 1 10 0 ... 0R L

n n n n n nZ H a H H a H H a H Z
− − −

− − −= ⋅            (S2-9) 

And the state function is one that satisfies the Bonn-Kamen boundary condition, as 405 

shown in Eqn. S2-10. 406 

n 1
R ika LZ e Z= ⋅  (S2-10) 

The characteristic equation for lattice is shown in Eqn. S2-11. 407 

( ) ( ) ( ) ( )( )1 1
1 1 1 10 0 ... 0 ika L

n n na a e Z
− −

= ⋅ −      H H H H I  (S2-10) 

By solving this characteristic equation, the corresponding dispersion curve of the 408 

lattice can be obtained. 409 
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The one-dimensional fluctuation equation is shown in Eqn. S3-1. The two-411 

dimensional z-mode fluctuation equation is shown in Eqn. S3-2. 412 

( ) ( )2 2

2 2

, ,1U x t U x t
t C x

∂ ∂
= ⋅

∂ ∂
 (S3-1) 

( ) ( ) ( )2 2 2

2 2 2

, , , , , ,z z zU x y t U x y t U x y t
t x y

ρ µ µ
∂ ∂ ∂

= +
∂ ∂ ∂

 (S3-2) 

Where, sC   and pC  are the transverse and longitudinal wave velocities of the 413 

material, ρ  and µ   and λ   are the density and Lame coefficients of the material, 414 

respectively. ( ),U x t   and ( ), ,U x y t   are the displacement fields in the 1D elastic 415 

wave equation and the 2D elastic wave equation. 416 

Using the Taylor expansion to approximate the partial derivative term, the central 417 

difference form partial derivative term is shown in Eqn. S3-3 and Eqn. S3-4. 418 

( ) ( ) ( ) ( ) ( )2

2 2

, , , 2 ,
,xx

U x t U x x t U x x t U x t
D U x t

x x
∂ + ∆ + −∆ − ⋅

= =
∂ ∆

 （S3-3） 
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（S3-4） 

When a reasonable spatial step x∆  and time step t∆   are chosen, the entire 419 

computational domain is discretized into a spatial grid and a temporal grid. The spatial 420 

grid consists of two multidimensional arrays representing the displacements in the 421 

computational domain and the accelerations in the computational domain: the 422 

accelerations and displacements at positions i, j at the kth instant are denoted as ,
k
i jU  423 

and ,
k
i ja . 424 

In the numerical simulation of elastic waves in the computational domain, it is 425 

necessary to calculate from the moment 0 at the beginning of the time interval to the 426 



 

 

end of the time interval. The central difference format of the time-domain finite-427 

difference method is to extrapolate the displacement of the computational domain at 428 

the next moment from the displacement at the current moment and the historical 429 

displacement point by point. At the time 0t  , the acceleration at a point in the 430 

computational domain is ,
k
i ja . At the time 0 +t t∆ , the computational domain is excited 431 

by an external force and the acceleration of the entire computational domain is denoted 432 

as 1
,
k
i ja + . In the above equation, the acceleration layer ,

k
i ja  at the moment of 0t should 433 

be calculated from the displacement layer ,
k
i jU  as shown in Eqn. S3-5. 434 

1 1
2

2k k k
k i i i
i

U U Ua
t

+ −+ −
=

∆
 （S3-5） 

When the computational domain is affected by an external force at time 0t , the 435 

acceleration distribution 1k
ia +  of the whole computational domain , which consists of 436 

the acceleration of the whole domain at time 0t  and the acceleration of the affected 437 

domain after the external force, is shown in Eqn. S3-6. 438 

0
k k k
i i pia a a= +  （S3-6） 

Eqn. S3-6 is the value of the acceleration layer at the moment 0t   after the 439 

specified acceleration has been loaded. Based on the acceleration distribution in the 440 

calculation domain of Eqn. S3-6, the displacement 1
,
k
i jU +  at the next moment can be 441 

back-calculated , as shown in Eqn. S3-7. 442 

1 2 1
, , , ,2k k k k

i j i j i j i jU t a U U+ −= ∆ ⋅ + −  （S3-7） 

The acceleration and displacement layers are interconverted as shown in Fig. S3.  443 
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Fig. S3 Acceleration layer loading method 445 
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