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ABSTRACT

Dynamically substructured systems (DSS) are a typical technique to achieve real-time nu-

merical simulations combined with physically tested components. However, a rigorous feasibility

analysis before the implementation is missing. This paper is aimed to fill this gap by establishing

rigorous conditions for when DSS is suitable for dynamic testing. The proposed method is based

on novel symbolic recursive formulations for the transfer functions describing a generic lumped

parameter vibrating structure, enabling the analysis of structural and other properties without

requiring the computation of explicit symbolic expressions for the transfer functions involved,

representing a significant breakthrough as it allows to perform feasibility analysis in analytical

form, rather than solely relying on numerical approaches. The series of analytical conclusions

presented in this paper, and future ones unlocked by the proposed approach, will significantly

enrich the research in the community of DSS and structural vibrations. In particular, the pro-

posed approach allows performing analysis of causality, controllability and observability using

much reduced knowledge of the structure, thus significantly simplifying such analysis. Analyt-

ical conclusions on stability can also be made with the help of novel recursive form, removing

the need of repeatedly calculating the roots of characteristic equations, a task that can be per-

formed only via numerical approaches and for which analytical results are not available. The

∗Address all correspondence for other issues to this author.
1



Journal of Vibration and Acoustics

proposed methodology can be applied to a whole class of vibration problems and is not linked

to any specific structure, going beyond the specific examples available in the literature.

KKKeeeyyywwwooorrrdddsss ::: dynamically substructured systems, hybrid testing, structural vibrations causality,

controllability and observability.

1 Introduction

Experimental testing of large, nonlinear or complex structures can be very expensive and time

consuming. To alleviate these issues, several techniques have been proposed in the literature to replace

part of the structure by a numerical simulator and then design a control system so that the combination

of numerical and physical subsystems exhibits the same dynamical response of the original structure.

Dynamically Substructured Systems (DSS) are part of this family of techniques,alongside similar

approaches also known as hybrid testing, hybrid simulation or real time hybrid simulation (RTHS) [1–

3]. In this paper we focus on the DSS framework shown in Figure 1, where the original structure

is decomposed into two main parts, the physical part and the numerical part. The numerical part

simulates a subsystem of the original structure. On the other hand, the physical part is composed of

a physical structure and of an actuator which is used to simulate the presence of the subsystem that

has been replaced by the numerical part. The challenge is then to control the actuator at the interface

so that the closed loop behaviour of the DSS emulates the dynamic behaviour of the complete original

structure [4, 5].

original

structure

Numerical
part

Physical
part

Interface

Actuator

Numerical signal

Physical signal

Numerical
part

Physical
part

Synchronisation
error

+

-

Synchronised
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Fig. 1. DSS schematic: the original structure is split into a numerical part and a physical part. The synchronisation signal Ss(t) is measured

on the physical part and transmitted as input to the numerically simulated subsystem. The goal of a DSS controller to control the actuator

at the interface with the goal of minimising the error e(t) between the numerical response Sn and the physical signal Sp so that the overall

behaviour of the DSS is the same of the original structure.

Two main approaches have been proposed in the literature to tackle this challenge: force control

and position control. In the force control setting, the displacement of the physical part at the interface

(indicated by synchronised signal Ss in Figure 1) is measured and transmitted as an input to the numer-
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ical part. The simulator used in the numerical part then calculates the force at the interface (numerical

signal Sn) which is compared with the force generated by the actuator situated at the corresponding

interface in the physical part (physical signal Sp). A feedback controller is then designed to minimise

the synchronisation error e between the simulated force and the actuator force, so that the interface be-

comes transparent and the DSS behaves as the original structure. In the displacement control setting,

the role of force and displacement is swapped. The interested reader is referred to the review paper by

Klerk et al. [5] for an extensive review of DSS approaches.

The presence of delays, disturbances and model uncertainties prevents exact cancellation of the

error between numerical and physical signals, therefore a feedback controller is needed to control the

actuator in order to minimise the synchronisation error. Typical linear feedback controller design tech-

niques used for such purpose include linear substructing control (LSC) and minimal control with error

feedback (MCEF) [6]. Robustness of these techniques has been thoroughly studied, see for example

the results by Gawthrop [7] and Tu [8]. Traditional control strategies - such as H∞ [9], control sliding

mode [10] and real-time model updating [11] - have also been applied to nonlinear or uncertain DSS

problems. Similarly, delay compensation techniques have been proposed to minimise the detrimental

effects of delays introduced by the control logic [12–14], as well as the efforts trying to predict and com-

pensate delays with generalised methodologies[15, 16]. Nonlinear substructuring control (NLSC) was

also proposed as an extension to traditional LSC to deal with nonlinear dynamic problems [17]. Issues

related to application of hybrid testing to systems exhibiting chaotic behaviours, such as a nonlinear

pendulum model, have also been analysed in [18].

These control strategies have been successfully used to test dynamical systems across different

domains. For example, in the railway industry Stoten and colleagues tested a pantograph using a DSS

approach where only the pantograph was physical, whereas the electric line was simulated [19]. Simi-

larly, Facchinetti used DSS to study the pantograph-catenary interaction [20], whereas Hong used DSS

to analyse the characterisation of rail tracks [21]. Allen exploited DSS to aid the design of NASA rocket

launcher [22] and Mayes developed the applications of DSS to transmission structures, which is helpful

for experiments on rotational structures such as wind turbines [23]. In addition, the DSS approach can

be applied to vehicle development as well; for example van der Seijs and Rixen proposed proposed a

DSS framework for a variety of experiments on vehicle structures [24]. Similarly, models of motorcycles

have been tested using DSS techniques [4, 25]. Dynamic substructuring is also widely used in civil and

structural engineering to test, for example, nonlinear components [26–28], seismic responses [29–31],

piping systems [32] and soil-structure interaction [33]. A review of dynamic substructuring techniques
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can be found, for example, in the review paper by Klerk et al. [5].

Although DSS and the relative common techniques has been extensively studied for different appli-

cations, one of the common issues which should not be neglected and could seriously jeopardise future

studies is the excessive focus on specific models. Indeed, most of the available literature has been fo-

cused on specific benchmark systems or on specific examples. Systems with only two or three degrees

of freedom were typically selected for analyses, thus posing the fundamental questions of, for example,

whether the conclusions can be expanded to systems with different degrees of freedom and whether

and how the system parameters affect the conclusions. Without clearly addressing these issues, most

of the conclusions reported in the literature can only be regarded as the summaries for those specific

models. The path to generalisation to other models and application is therefore unclear, a factor that

can severely limit the applications and future studies of DSS. Another gap in the current literature is the

lack of a comprehensive feasibility analysis, with only limited exceptions such as the recent paper by

Terkovics et al. [34] where the effect of the interface location on DSS performance was studied, as well

as the paper by Gawthrop et al. [35] where the causality analysis for DSS was studied. However, both

studies still focused on specific models only, meaning a comprehensive analysis of generic structural

properties affecting feasibility of DSS design is lacking in the available literature. Even before starting

the control design process for a given DSS decomposition, one needs to know if a controller can be

designed in the first place, and this feasibility analysis is missing for generic structures in the literature.

In this paper an approach to fill this gap is proposed. Two main contributions are made in this paper.

The first one is the derivation of a novel recursive formulation to derive transfer functions for lumped

parameter systems composed of a chain of mass-spring-damper systems, which allows a greatly sim-

plified analysis of structural properties of lumped parameter DSS, irrespective of the number of degrees

of freedom and specific values of system parameters. The benefits of the proposed formulation include,

but are not limited to, analytical conclusions on stability analysis for similar structures with different de-

grees of freedom [36], which are impossible to be drawn by using numerical methodologies. This is a

significant advancement compared to the traditional approach solely relying on numerical analyses in

DSS and vibration communities, with more analytical conclusions being possible to be found in future to

further enrich the achievements. Although a mass-spring-damper chain is selected for demonstration

and the results presented might only be suitable for this class of systems, this class already describes

a wide range of vibration models [25, 34] considered by the vibration community. This is the first step

towards a more generalised analysis framework of DSS properties for generic vibrating structures.

Moreover, given the structural similarities of equations of motion for lumped parameter systems, the
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proposed formulation can be expanded to different types of structures, which can significantly broaden

the applications of DSS. The methodology proposed in this paper also enable several analytical results

on feasibility of DSS decomposition for generic vibrating structures, the second major contribution of

this paper. For example, it allows assessing whether a given DSS decomposition and control strategy

can be designed for a generic lumped parameter vibration system with n degrees of freedom. This,

in turns, allows the proposal of general guidelines regarding the type of DSS decomposition and ac-

tuator/sensor arrangements to be used in any particular real world application. The focus here is on

structural properties and the scope of this paper does not include implementation details - such as the

delays imposed by the electronics used to implement the controller and the potential effects of the actu-

ator dynamics - that may hinder the main message of this paper. Extensions to cover these aspects can

be easily obtained by, for example, including the terms related to delays and actuator transfer functions

in the proposed methodology, as briefly mentioned throughout the paper.

The problem analysed in this manuscript is formally stated in Section 2 for a widely used class of

benchmark systems, together with a brief review of the main concepts of structural stability, controllabil-

ity, causality and observability that will be used for the analysis presented in this paper. A causality study

to obtain feasible DSS configurations is reported in Section 4 and provides constraints on the choice of

using either directly measured or indirectly estimated synchronised signals for control purposes. The

identified causal configurations are then further analysed in Section 5 to assess their structural proper-

ties of observability and controllability, and hence assess if a synchronising controller can be designed.

The proposed methodology is applicable to any DSS design for vibrating structures, and hence is not

linked to any physical or experimental realisation of such class of structures. However, for the sake of

completeness, numerical examples are briefly discussed in Section 6 to show how the outcomes of the

analyses in Section 4 and Section 5 may inform control design for real applications. These include a

complex frame structure which does not fall within the class of benchmark systems used to motivate

most of the analysis, but for which strucutural analogies with the class of system used through the paper

can be used to successfully infer DSS feasibility. Finally, some concluding remarks and suggestions for

future research directions are reported in Section 7.

2 Problem statement and methodology

This paper initially focuses on a generic class of lumped parameter vibration models, which can

be schematically represented as chain of n spring-damper-mass systems, as shown in Figure 2. As

mentioned earlier, although the results presented in this paper strictly apply only to this class of systems,
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the final results may still be exploited by considering structural similarities with the equations of motions

of more generic vibratory systems. An example of such extension is presented in Section 6.2. In our

framework, a disturbance d(t) is applied as displacement of the support at one end of the structure,

whereas an external force F(t) may be applied to the other end (such force will represent, for example,

the action of the actuator used in DSS substructuring in the following sections of the paper).

m1
… …ml mn−1

yn−1

kn−1

cn−1

mn

kn

cn

ynyl

kl

cl

k1

c1

y1

F

F
F

d

Fig. 2. Schematic representation of the benchmark system considered initially in this paper.

2.1 Original dynamics

The equations of motion describing the behaviour of the structure in Figure 2 (sometime referred to

as emulated system in the DSS literature [4]) can be obtained by imposing force balance at each mass

and read



mnÿn =−kn(yn− yn−1)− cn(ẏn− ẏn−1)−F

...

miÿi =−ki(yi− yi−1)− ci(ẏi− ẏi−1)+ ki+1(yi+1− yi)+ ci+1(ẏi+1− ẏi)

...

m1ÿ1 =−k1(y1−d)− c1(ẏ1− ḋ)+ k2(y2− y1)+ c2(ẏ2− ẏ1)

(1)

where mi is the i-th mass, ci is the i-th damping coefficient, ki is the i-th spring stiffness, yi is the

displacement of the i-th mass and the dot indicates time derivative. The displacement of the support is

indicated as y0 = d and is considered unknown. An equivalent expression in the frequency domain can

then be written as

VIB-22-1319, Hu 6
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Yi(s) =
Numi(s)
Deni(s)

Yi−1(s)−
Num1i(s)
Den1i(s)

F(s) (2)

where Numi(s) and Deni(s) represent, respectively, the numerator and the denominator of the transfer

function between the position of the i-th and (i−1)-th masses. Similarly Num1i(s) and Den1i(s) refer to

the transfer function between the position of the i-th mass and the applied force F .

The linearity of the system dynamics (1)-(2) implies that the superposition principle holds, hence

the influence of the disturbance d and the force F can be assessed independently. For example, the

transfer function between i-th mass displacement yi and the disturbance d can be written as

Yi(s)
d(s)

=
Y1(s)
d(s)

Y2(s)
Y1(s)

. . .
Yi(s)

Yi−1(s)
=

Numd
i

Den1
=


Deni+1 ∏

i
1 (cis+ ki)

Den1
i≤ n−1

∏
i
1(cis+ ki)

Den1
i = n

(3)

where

Denn = mns2 + cns+ kn

Denn−1 = [mn−1s2 +(cn−1 + cn)s+ kn−1 + kn](mns2 + cns+ kn)− (cns+ kn)
2

Deni = [mis2 +(ci + ci+1)s+ ki + ki+1]Deni+1− (ci+1s+ ki+1)
2Deni+2 (4)

A similar procedure can also be applied to derive the transfer function between the i-th displace-

ments yi and the external force F , thus obtaining

Yi(s)
F(s)

=
Yn(s)
F(s)

Yn−1(s)
Yn(s)

. . .
Yi(s)

Yi+1(s)
=−NumF

i

Den1n
=



− ∏
n
i=2(cis+ ki)

Den1n
i = 1

−
Den1i−1 ∏

n
i+1 (ci+1s+ ki+1)

Den1n
1 < i≤ n−1

− Den1i−1

Den1n
i = n

(5)

where
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Den1i =



m1s2 +(c1 + c2)s+ k1 + k2 i = 1

[m1s2 +(c1 + c2)s+ k1 + k2][m2s2 +(c2 + c3)s+ k2 + k3]− (c2s+ k2)
2 i = 2

[mis2 +(ci + ci+1)s+ ki + ki+1]Den1i−1− (cis+ ki)
2Den1i−2 2 < i≤ n−1

(mns2 + cns+ kn)Den1n−1− (cns+ kn)
2Den1n−2 i = n

(6)

Note that Den1n is equal to Den1, as they both are the characteristic equations of the system. The

degrees of the numerators and the denominators are summarised in Table 1 for reference.

The recursive expressions derived in (3) and (5), and the associated Table 1, will play a key role

in the subsequent analysis, as they allow the assessment of causality and structural properties without

requiring detailed knowledge of the structure parameters. Here, a dynamical system is called causal

if its response depends only on past and current inputs [37]. This assessment, in turn, will allow the

derivation of general conditions for DSS feasibility for hybrid testing of generic vibrating structures, thus

simplifying the analysis and going well beyond the specific examples found in the current literature. It

is also worth noting that actuator dynamics can be easily included in the analysis by considering the

transfer function between the force F and the actuator input (e.g. voltage or current) and adding the

relative degrees of such transfer function in Table 1. Similar considerations apply to potential control-

structure interaction. However, such both actuator dynamics and control-structure interaction heavily

depend on details of specific hardware implementation, and therefore are beyond the scope of the

generic analysis presented in this paper.

Table 1. Degrees of numerators and denominators for the transfer functions described in (3) and (5).

Index i ∠Numi ∠Deni ∠Num1i ∠Den1i

n n 2 2n−2 2n

n−1 n+1 4 2n−3 2n−2

n−2 n+2 6 2n−4 2n−4
...

...
...

...
...

i 2n− i 2n−2i+2 n+ i−2 2i
...

...
...

...
...

1 2n−1 2n n−1 2
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2.2 Structural stability analysis

Structural stability plays an important role in assessing if a given system or DSS decomposition

strategy will exhibit a stable and bounded dynamic response for bounded inputs. As recently shown

by the authors in [36], if a polynomial with even maximum degree has only strictly positive coefficients,

then it can only admit roots with negative real parts and purely imaginary roots. In this case, equation

(4) can be rearranged as

Deni =
n

∏
q=i

(mqs2 + cqs+ kq)+bi(s) i≤ n−1 (7)

where the polynomial bi(s) includes the common factor s2 and all of its coefficients are strictly positive.

For example, given that all the parameters mi, ci and ki in (4) are strictly positive, the proof shown in [36]

implies that the original system only admit roots with negative real parts and hence is asymptotically

stable. Although this is expected given the non-zero energy dissipation via damping, equation (7) will

play a key role in assessing the structural stability of physical and numerical parts of a given DSS

decomposition, as shown in Section 4.

2.3 Summary of the proposed methodology for DSS feasibility analysis

The first property that needs to be checked before designing any controller is causality. As de-

fined in Section 2.1, this mathematically translates to imposing that the degree of the numerator of the

input-output transfer function is less or equal to the degree of the denominator and that the region of

convergence (ROC) of the Laplace transform of the impulse response is a right half plane. However, all

the physical structures considered in this paper are causal by definition, therefore the ROCs of original

system and of the decomposed structure always satisfy this constraint. Therefore, the causality anal-

ysis will only focus on the relative degrees of the numerators and denominators involved in the DSS

controller design.

If any of the signals used in a DSS decomposition is not causal with respect to some of the inputs,

then such decomposition can not be physically implemented and should be discarded. However, an

alternative decomposition of the same original structure may involve only causal signals. Therefore,

the first step of the methodology proposed in this paper is aimed at obtaining analytical conditions for

which a given DSS decomposition involves only causal signals and can be physically implemented. An

example of such analysis has been performed by Li for a specific dynamical system [38], but to the
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extent of our knowledge no general analysis for generic vibration problems with an arbitrary number of

degrees of freedom is present in the literature.

Once all the signals required for DSS decomposition have been proven to be causal, the next step

is to check if the dynamical system to be controlled has the structural properties of controllability and

observability. A system is called controllable if an external input can move the internal states of the

system from any initial state to any other final state in a finite time interval. Similarly, a system is

observable if its initial state can be determined based on the sequence of inputs and output signals

[39]. Such structural properties are sufficient conditions to ensure that a stabilising controller can be

designed1.

A traditional result of control theory states that a linear dynamical system is controllable and observ-

able if there are no pole-zero cancellations between the numerator and the denominator of the transfer

function describing the system behaviour [40]. This analytical test will then be applied in Section 5.2 to

obtain conditions under which there exists a stabilising controller capable of synchronising a given DSS

decomposition.

3 DSS decomposition: types and and structural stability

Within the DSS framework, the original system shown in Figure 2 is split into two parts, a physical

part implemented in hardware and a numerical part which is numerically simulated. However, different

choices can be made on what subsystem should be simulated, where the interface between the two

subsystems should be placed and whether force or position control should be used. Different choices

give raise to different feasibility conditions, which are discussed in the rest of the paper.

For the sake of reference, in this paper the decomposition shown in Figure 3a will be called Type 1

decomposition, whereas the scheme shown in Figure 3b will be referred to as Type 2 decomposition.

The difference between these two options lies in the location of the interface between numerical and

physical subsystems; in Type 1 decomposition the interface is placed right after the l-th mass, whereas

in Type 2 decomposition the interface is placed after the spring-damper connected to the l-th mass.

Once the location of the interface has been finalised, each part can be tested either numerically or

physically. However, in Type 1 decomposition causality implies that S1 can only be force and S2 can only

be displacement, whereas the opposite holds for Type 2 decomposition. Therefore, only four potential

1Note that observability and controllability are not necessary conditions. In fact, a stabilising controller can still be designed
in presence of unobservable/uncontrollable states as long as these latter are stable. However, such weaker conditions of
stabilizability and detectability can only be studied on a case by case basis, therefore they are not useful to develop the
generic framework considered in this paper.
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Fig. 3. Potential choices for the location of the substructuring interface: a) Type 1 decomposition where the interface is right after mass l
and b) Type 2 decomposition where the interface is located after the spring-mass damper system connected to mass l.

DSS decomposition approaches will be studied in this paper.

First of all, let us note that all the subsystems in Figure 3, with the only exception of subsystem B

in Type 2 decomposition, share the same structure of the original system. Therefore, their dynamics

can be described by the transfer functions similar to (2) and they are all structurally stable, as expected.

On the other hand, Subsystem B in Type 2 decomposition is lacking a fixed support and therefore is

not asymptotically stable. Indeed, its generalised equation of motion can be derived by imposing force

balance at each mass, thus obtaining

Yi(s)
F(s)

=
Yl2(s)
F(s)

Yl+1(s)
yl2(s)

. . .
Yi(s)

Yi−1(s)
=

NumF
i

Den′l+1
=



Den′i+1

Den′l+1
i = l +1

Den′i+1 ∏
i
l+2 (cis+ ki)

Den′l+1
l +2 < i≤ n−1

∏
i
l+2(cis+ ki)

Den′l+1
i = n

(8)
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where

Den′i =



mns2 + cns+ kn i = n

[mn−1s2 +(cn−1 + cn)s+ kn−1 + kn](mns2 + cns+ kn)− (cns+ kn)
2 i = n−1

...

[mis2 +(ci + ci+1)s+ ki + ki+1]Den′i+1− (ci+1s+ ki+1)
2Den′i+2 l +2≤ i≤ n−2

(ml+1s2 + cl+2s+ kl+2)Den′l+2− (cl+2s+ kl+2)
2Den′l+3 i = l +1

(9)

and F is the internal force applied at the interface (F = S2 due to input constraint). Similar to the original

system, Den′l+1 can be rearranged as

Den′l+1 = ml+1s2
n

∏
q=l+2

(mqs2 + cqs+ kq)+b′l+1 (10)

where b′l+1 has the common factor s2 and its coefficients are strictly positive. Therefore, according to

the approaches mentioned in Section 2.2, Den′l+1 can only have roots with positive real parts and two

repeated roots on the origin, confirming that Subsystem B in Type 2 decomposition is only marginally

stable. It is worth noting that in the scenario considered here, there is no fixed reference point in the

physical part which can prevent drifts when the force F is applied to the (l + 1)−th mass. Therefore,

simulations are prone to drifts if the initial conditions are not known and fully consistent with the external

forcing. Figure 4 shows an example of such issue, where a four-mass structure with parameters as in

Table 2 is tested with a sinusoidal external physical force Fp(t) = 3sin(6πt).

Table 2. Numerical values of parameters used for results of Figure 4

Index Mass mi Stiffness ki Damping ci

1 380kg N/A N/A

2 350kg 700N/m 250Ns/m

3 320kg 600N/m 240Ns/m

4 290kg 500N/m 230Ns/m
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Fig. 4. Displacement of fourth mass with Type 2 decomposition. The drift is due to its marginal stability.

4 DSS decomposition: causality analysis

In this section, a causality analysis for all combination of substructuring types and force/position

control is performed. Each feasible case is discussed in a separate subsection to improve clarity,

whereas the discussion of infeasible cases is summarised in the final subsection for simplicity.

4.1 Force control, physical subsystem A, Type 1 decomposition

The general scheme for Type 1 decomposition is shown in Figure 3a and the control diagram is the

same as in Figure 1. In this section we consider the case

S1 = Sp = Fp, S2 = Ss = yl, Sn = Fn (11)

i.e. the subsystem A is a physical subsystem and the physical displacement of the interface is passed

to the numerical subsystem as an input. The goal of the DSS control is therefore to minimise the error

between the numerical force Fn at the interface and the physical force Fp that the actuator exerts on the
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physical subsystem.

The equation of motion describing mass displacements in the physical part can be written as

yi =
Numd

i
Dend

d− NumFp
i

DenFp

Fp 1≤ i≤ l (12)

Note that equations (3)-(5) and Table 1 imply

⌊
Numd

i
Dend

⌋
=

2l− i
2l⌊

NumFp
i

DenFp

⌋
=

l + i−2
2l

(13)

and therefore all the transfer functions related to quantities to be measured at the interface are

causal2.

Similarly, the equations of motion for the numerical subsystem read

y j =
Numyl

j

Denyl

yl

=
Numyl

j

Denyl

(
Numd

l
Dend

d−
NumFp

l
DenFp

Fp

)
l +1≤ j ≤ n

(14)

Thanks to Table 1, the degree of numerators and denominators of these transfer functions can then be

written as

2Note that for simplicity, all the degrees considered in this analysis are the maximum degrees and no pole-zero cancel-
lations are taken into account. However, the same result holds even in presence of pole-zero cancellations, as the relative
degree of the transfer functions is preserved also in these cases.
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⌊
Numyl

j

Denyl

⌋
=

2n− j− l
2(n− l)⌊

Numyl
j

Denyl

Numd
i

Dend

⌋
=

2n− j
2n⌊

Numyl
j

Denyl

NumFp
i

DenFp

⌋
=

2n− j+ l−2
2n

(15)

and therefore all the transfer functions involved in calculating mass displacements in the numerical

subsystem are causal only if either the interface displacement yl is passed as an input (first substitution

in Equation (14)) or the combination of physical force Fp and disturbance d are passed as inputs (second

substitution in Equation (14)).

On the other hand, the numerical force Fn at the interface also needs to be simulated to compute

the synchronisation error fed to the DSS controller. Such numerical force can be calculated as

Fn = (cl+1s+ kl+1)(yl− yl+1)

= (cl+1s+ kl+1)

(
1−

Numyl
l+1

Denyl

)
yl

= (cl+1s+ kl+1)

(
1−

Numyl
l+1

Denyl

)(
Numd

l
Dend

d−
NumFp

l
DenFp

Fp

) (16)

Once again, Table 1 implies that the relative degrees of such transfer functions are

⌊
(cl+1s+ kl+1)

(
1−

Numyl
l+1

Denyl

)⌋
=

2n−2l +1
2(n− l)⌊

(cl+1s+ kl+1)

(
1−

Numyl
l+1

Denyl

)
Numd

l
Dend

⌋
=

2n− l +1
2n⌊

(cl+1s+ kl+1)

(
1−

Numyl
l+1

Denyl

)
NumFp

l
DenFp

⌋
=

2n−1
2n

(17)

Equation (17) implies that the numerical force Fn can not be estimated in a causal way if information

on yl only is passed to the numerical subsystem. On the other hand, Fn can be obtained in a causal
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way if information about Fp and d is provided, as indicated by the last substitution in Equation (16).

4.2 Position control, numerical subsystem A, Type 1 decomposition

The case analysed in this subsection refers to the same schematics shown in Section 4.1, but with

the role of the physical part and the numerical part swapped, i.e.

S1 = Ss = Fp, S2 = Sp = yp
l , Sn = yn

l (18)

The equations of motion for the physical subsystem can be written as

y j =
Numyl

j

Denyl

yp
l i+1≤ j ≤ n (19)

where yp
l is the physical displacement of the l-th mass, Numyl

j and Denyl represent the numerator and

the denominator of the transfer function relating input yp
l to output y j. According to Equation (15), all of

the transfer functions are causal.

On the other hand, the equation of motion for the numerical part reads

yn
i =

Numd
i

Dend
d− NumFp

i
DenFp

Fp 1≤ i≤ l (20)

where yn
i is the numerical displacement of i-th mass in subsystem A.

Due to Equation (15) all the transfer functions involved in the substructuring procedures are causal

in this scenario. It is worth noting that the decomposition described in this section is feasible only if

the physical force Fp is directly measured. In fact, if one tries to estimate it from measurements of

displacements at the interface, namely

Fp =(cl+1s+ kl+1)(y
p
l − yl+1)

=(cl+1s+ kl+1)

(
1−

Numyl
l

Denyl

)
yp

l

(21)

then such an estimation is not causal.
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4.3 Force control, numerical subsystem A, Type 2 decomposition

In this scenario, the original structure is decomposed as shown in Figure 3b with

S1 = Ss = yl+1, S2 = Sp = Fp, Sn = Fn (22)

The equation of motion for the physical part can then be written as

y j =
NumFp

j

Den2Fp

Fp l +1≤ j ≤ n (23)

and therefore, according to Table 1,

⌊
NumFp

j

Den2Fp

⌋
=

2n− j− l−1
2(n− l)

(24)

and the physical part is causal, as expected.

Similarly, the displacements of the masses in the numerical part can be described as

yi =
Numd

i
Dend

d− Numyl+1
i

Denyl+1

yl+1 1≤ i≤ l (25)

which implies

⌊
Numyl+1

i
Denyl+1

⌋
=

l + i−1
2l

(26)

and due to Equation (13) and (26) all the displacements in the numerical part can be simulated

using causal transfer functions.
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On the other hand, the numerical force Fn can be expressed as

Fn = (cl+1s+ kl+1)(yl− yl+1)

= (cl+1s+ kl+1)

[
Numd

l
Dend

d−
(

Numyl+1
l

Denyl+1

+1
)

yl+1

]
= (cl+1s+ kl+1)

[
Numd

l
Dend

d−
(

Numyl+1
l

Denyl+1

+1
)

NumFp
l+1

Den2Fp

Fp

] (27)

which implies

⌊
(cl+1s+ kl+1)

Numd
l

Dend

⌋
=

l +1
2l⌊

(cl+1s+ kl+1)

(
Numyl+1

l
Denyl+1

+1
)⌋

=
2l +1

2l⌊
(cl+1s+ kl+1)

(
Numyl+1

l
Denyl+1

+1
)

NumFp
l+1

Den2Fp

⌋
=

2n−1
2n

(28)

Therefore, the numerical force Fn can not be causally estimated based on the physical displacement

yl+1 (second line of Equation (27)). However, this causality issue can be avoided if direct measurements

of the physical force Fp are available, as suggested by Equation (28).

Given that Subsystem B is marginally stable and its displacements may drift as shown in Section

3, the DSS decomposition considered in this section is dangerous to be implemented and should be

avoided if possible.

4.4 Position control, physical subsystem A, Type 2 decomposition

The setup is similar to the one considered in Section 4.3, but with the role of the physical part and

the numerical part swapped, i.e.

S1 = Sp = yp
l+1, S2 = Ss = Fp, Sn = yn

l+1 (29)
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In this case, the equation of motion for the physical part A reads

yi =
Numd

i
Dend

d− Numyl+1
i

Denyl+1

yl+1 1≤ i≤ l (30)

and according to Equation (13) and (26), all the transfer function related to yi are causal.

On the other hand, the physical force can be expressed as

Fp = (cl+1s+ kl+1)(yl− yl+1)

= (cl+1s+ kl+1)

[
Numd

l
Dend

d−
(

Numyl+1
l

Denyl+1

+1
)

yl+1

] (31)

Therefore, the physical force can not be estimated in a causal way from d and yi+1 based on Equation

(28) and needs to be measured directly.

Similarly, the equations of motion describing the numerical part B read

y j =
NumFp

j

Den2Fp

Fp i+1≤ j ≤ n (32)

Therefore, no causality problems arise as expected according to Equations (24) and (28).

4.5 Infeasible Cases

It is worth noting that for each type of decomposition, there are four possible control strategies,

namely position or force control with subsystem A or subsystem B being physically tested. However,

out of the eight potential strategies, only the four discussed in Sections 4.1-4.4 give raise to feasible

realisations. Other cases are infeasible because, for example, the required signal can not be applied at

the interface. This is the case for force control in Type 1 decomposition with subsystem A numerically

simulated; the physical force Fp can not be measured or reconstructed in a causal way given that only

displacement related signals are available. Similar considerations apply for: i) position control in Type 1

decomposition with subsystem B being physically tested, ii) force control in Type 2 decomposition with

subsystem A being physically tested, and iii) position control in Type 2 decomposition with subsystem

A being implemented numerically. A summary of feasible and infeasible cases is presented in Table 3.
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4.6 Summary of Causality Analysis

The summary of the results obtained in this section is reported in Table 3, showing that only three

out of four feasible decomposition strategies admit a strictly causal implementation with no potential

or experimental drifts. In addition, in Type 1 decomposition, Fp can either be measured or estimated

for the force control while it can only be measured for the position control. In Type 2 decomposition,

Fn can only be estimated through Fp for the force control. Moreover, this strategy should be avoided if

possible, due the occurrence of potential drifts in the physical part posing experimental safety issues

unless when subsystem B only has single degree of freedom and a carefully tuned controller is used

[41–43]. Finally, Fp can only be measured for the position control in Type 2 decomposition. Note that

the analysis presented so far does not rely on detailed knowledge of the structure under test (e.g. no

numerical values for the parameters are required to be known), unlike other approaches described in the

literature for specific examples. This is one of the major advantages of using the recursive formulations

derived in Section 2 and it simplifies the whole analysis significantly.

Table 3. Summary of causality analysis

Control Type Type 1 Type 2

Force Control

(A physical) X ×

(A numerical) × X (Drift)

Position Control

(A physical) × X

(A numerical) X ×

5 DSS decomposition: structural properties

In this section the structural properties of controllability and observability of the various causal DSS

decomposition strategies is derived to assess what strategies are controllable and observable, and

hence admit the existence of a synchronising controller. As mentioned in Section 4, a frequency domain

approach will be taken. Therefore, the analysis of structural properties reduces to obtaining conditions

under which no pole-zero cancellations occur in the transfer functions used for control purposes.
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5.1 Original structure structural properties

The structural properties of the original structure (before decomposition) are discussed at first in this

subsection, as they form the basis for the analysis of the decomposed structure. As shown in Appendix,

if the following conditions hold



cns+ kn ⊥ mns2 + cns+ kn i = n

cis+ ki ⊥ mis2 +(ci + ci+1)s+(ki + ki+1) i≤ n−1

ci+1s+ ki+1 ⊥ mis2 +(ci + ci+1)s+(ki + ki+1) i≤ n−1

c js+ k j ⊥ Deni j = i . . .n; i≤ n

(33)

then the original system is fully controllable and observable. In (33), the notation A(s) ⊥ B(s) indicates

that the polynomials A(s) and B(s) do not share any common root.

From a physical point of view, most of the conditions listed in Equation (33) are satisfied if none of

the masses, spring or damping coefficients are zero in the original structure. Moreover, if the system

is underdamped then all conditions are automatically satisfied. It is worth noting that, in any case,

checking the hypotheses listed in (33) is simpler and computationally less onerous than the traditional

approaches based on controllability/observability Gramians or on rank conditions on controllability ma-

trices [39]. Indeed, testing (33) does not require neither computing all the terms in the transfer functions

associated with DSS design nor a state-space representation of DSS subsystems.

5.2 Structural properties of causal DSS decompositions

Results shown in Section 5.1 can be used to analyse the structural properties of the various DSS

decomposition strategies. Only strategies deemed feasible according to the analysis provided in Section

4.6 are considered here. The main focus in this section is ensuring that all the signals used by the DSS

controller, and in particular the synchronisation error e(t), are observable and controllable, so that the

controller can effectively synchronise the two subsystems.

Let us then start with the case of force control with physical subsystem A in Type 1 decomposition.
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In the numerical subsystem B, yl plays the role of the disturbance d in the original system, therefore

yl+1 =
Numyl

l+1

Denyl

yl

Fn = (cl+1s+ kl+1)(yl− yl+1)

= (cl+1s+ kl+1)

(
1−

Numyl
l+1

Denyl

)
yl

(34)

and the synchronisation error can be expressed as

e = Fp−Fn

= Gu(s)u− (cl+1s+ kl+1)

(
1−

Numyl
l+1

Denyl

)
yl

(35)

where Gu(s) is the transfer function of the actuator (usually assumed to be a first order system). Note

that all the transfer functions considered here are a subset of the transfer functions considered for the

original structure and in the Appendix , therefore no pole-zero cancellations occur and the system is

completely observable and controllable.

Similarly, for the case of position control with numerical subsystem A in Type 1 decomposition, the

equations relative to the controller signals can be written as

yn
l =

Numd
l

Dend
d−

NumFp
l

DenFp

Fp, (36)

e = yp
l − yn

l = Gu(s)u−
Numd

l
Dend

d +
NumFp

l
DenFp

Fp (37)

The same steps discussed in the Appendix can then be followed, yielding that the system is fully con-

trollable and observable if

 cls+ kl ⊥ mls2 + cls+ kl

c js+ k j ⊥ Dend j = 1, . . . , l;
(38)

are satisfied in addition to Equation (33). These additional constraints are introduced because the
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denominator Dend in (37) considers only the masses up to l, therefore conditions analogous to the first

and the last expressions in (33) are needed.

Finally, for the case of position control with physical subsystem A in Type 2 decomposition the

relevant equations read

yn
l+1 =

NumFp
l+1

Den2Fp

Fp

e = yp
l+1− yn

l+1 = Gu(s)u−
NumFp

l+1

Den2Fp

Fp

(39)

Once again, such equations are a subset of the ones considered in the Appendix , therefore also this

decomposition strategy is fully controllable and observable. In summary, all the causal DSS decom-

positions identified in Section 4 are fully controllable and observable, and therefore a synchronising

controller can be successfully designed for them.

6 Numerical examples

In this section, numerical examples are discussed to highlight how the analysis performed in this

paper can be used to guide the design of synchronising controllers in DSS problems. The analysis

presented in this paper allows some conclusions to be drawn even before the implementation of DSS,

to avoid infeasible cases as well as to predict potential difficulties during implementation. A benchmark

system, falling within the class represented in Figure 2, is considered at first in Section 6.1 to show

performance of the different control strategies deemed feasible via the proposed methodology. DSS

control of a more complex frame structure is then analysed to show that the conclusions drawn from the

analysis described in previous sections can still be used to inform feasibility by looking at, for example,

the physical constraints at the interface. For the sake of clarity, detailed expressions for the controllers

used in this section are reported in the Appendix.

6.1 Benchmark structure

In this section three different cases are simulated to show the control performance that can be

obtained when using the DSS decompositions deemed feasible according to the analysis of Section

4 and Section 5. Detailed tuning of the controller parameters and experimental validation are beyond

the scope of this paper. To perform such a numerical study, a system composed of n = 6 masses is
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considered and the corresponding DSS decomposition is obtained by assigning three masses to the

physical system and three masses to the numerical system. The numerical values of the parameters

used for simulation are reported in Table 4.

Table 4. Numerical values of parameters used for the simulation examples

Index Mass mi Stiffness ki Damping ci

1 500kg 1200N/m 300Ns/m

2 470kg 1100N/m 290Ns/m

3 440kg 1000N/m 280Ns/m

4 410kg 900N/m 270Ns/m

5 380kg 800N/m 260Ns/m

6 350kg 700N/m 250Ns/m

The disturbance d(t) is a chirp signal of amplitude 1mm, and having a frequency increasing from

0Hz to 0.5Hz over 45s and then maintained constant for further 15s. For each case, the synchroni-

sation controller is designed as an H2 controller having e(t) as input and using the energy of e(t) as

performance index to be minimised.

The results obtained for force control in Type 1 decomposition, where the physical part sits in sub-

system A, are reported in Figure 5, with the physical force Fp being measured. In this case, perfect

synchronisation is achieved between the numerical force Fn and the physical force Fp and the response

is also close to the one exhibited by the original system.

Similarly, the results for position control in Type 1 decomposition, where the physical part now sits

in subsystem B, are reported in Figure 6. Also in this case, almost perfect synchronisation is achieved,

with a negligible error between physical displacement yp and numerical displacement yn, as well as a

good match with the original response.

Finally, results for position control in Type 2 decomposition with numerical subsystem B are reported

in Figure 7. In this case, synchronisation is more challenging, with some noticeable discrepancies at

the local minima and maxima for the displacement. Potential reasons include a non optimal choice of

poles for the closed loop system and, most importantly, the marginal stability of subsystem B causing

drifts that are not compensated well by the controller. This is in accordance with the analysis in Section

4.4 where Type 2 decomposition was shown to be harder to control due to the potential drifts in the

numerical part. Exact tuning of the H2 controller to increase performance or design of more robust
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Fig. 5. Results obtained for DSS with force control in the Type 1 decomposition with physical subsystem A.
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Fig. 6. Results obtained for DSS with position control in the Type 1 decomposition with numerical subsystem A.

controllers is beyond the scope of this paper. Figure 7 highlights the poorer performance obtainable

with position control in Type 2 decomposition, in agreement with the advice made in the summary of

causality analysis to not use this DSS decomposition strategy for real applications.
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Fig. 7. Results obtained for DSS with position control in the Type 2 decomposition with physical subsystem A.

6.2 Complex frame structure

In order to demonstrate that the analysis presented in this paper applies to generic complex struc-

tures, beyond the benchmark system illustrated in Figure 3 used to motivate the analysis, a frame

structure with stronger coupling across different structural elements is considered in this section. The

structure, shown in Figure 8a, is composed of several masses connected by elastic elements and may

be used to model transverse oscillations in multi-storey buildings [44]. The equivalent mathematical

representation of such a structure is shown in Figure 8b and its equations of motion read

m4ÿ4 =−k34(y4− y3)− c34(ẏ4− ẏ3)− k24(y4− y2)− c24(ẏ4− ẏ2) (40)

m3ÿ3 = k34(y4− y3)+ c34(ẏ4− ẏ3)− k23(y3− y2)− k13(y3− y1)− c13(ẏ3− ẏ1) (41)

m2ÿ2 = k24(y4− y2)+ c24(ẏ4− ẏ2)+ k23(y3− y2)− k12(y2− y1)− c12(ẏ2− ẏ1) (42)

m1ÿ1 = k13(y3− y1)+ c13(ẏ3− ẏ1)+ k12(y2− y1)+ c12(ẏ2− ẏ1)− k11(y1−d)− c11(ẏ1− ḋ) (43)

Numerical values of the parameters are the same as in Table 4, with k34, k13, k12 and k11 being set equal

to k4, k3, k2 and k1, and similarly for the damping coefficients. In addition, k24 = 800N/m, k23 = 500N/m and

c24 = 260Ns/m. The disturbance d(t) is a 1mm chirp signal whose frequency increases from 0Hz to 0.7Hz

over 50s and then is maintained constant for further 30s. Type 1 decomposition can be implemented
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by placing the interface above m1 given the similarities of the conditions at the interface: the absence

of spring and damper at the interface implies that only the external force can be applied, therefore,

results from Sections 4 and 5 suggest that force and position control are feasible. Indeed, it was

possible to design H2 controllers to eliminate the error between forces or displacements at the interface,

in accordance with the causality and structural properties analysis. Results about force and position

control are shown, respectively, in Figure 9 and 10. As expected, signals at the interface are well

synchronised and the DSS responses are very close to those exhibited by the original structure. These

numerical results demonstrate that the analysis discussed in this paper is valid for generic vibrating

structures.

m1

k11

c11

F

d

k12

c12

k13

c13

m2

m3

k24

c24

c34

k34
m4

k23

m4

m2 m3

m1

d

a.

b.

Fig. 8. Complex frame structure: a) real structure, b) equivalent mathematical representation.

7 Conclusions

A comprehensive analysis of DSS decomposition strategies for vibration problems was presented

in this paper. A control-theoretic approach was explored to derive rigorous conditions for which a given
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Fig. 9. Results obtained for complex structure with force control in the Type 1 decomposition.
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Fig. 10. Results obtained for complex structure with position control in the Type 1 decomposition.
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vibration structure can be tested within the DSS framework. The proposed method is based on a novel

recursive formulation of the transfer functions involved in DSS design. The analysis presented in this

paper is independent from the number of degrees of freedom present in the original structure, so it goes

beyond all the specific cases described in the literature so far. Moreover, it allows feasibility analysis

of DSS control for whole classes of vibrating structures, without detailed knowledge of the numerical

values of their parameters. Indeed, structural stability for different sub-systems can be analysed without

calculating the roots of characteristic equations and causality can be studied without knowing any of

the system parameters. Moreover, the proposed methodology also provides guidelines for choosing

the best DSS decomposition strategy for any given structure. Simple conditions to ensure controllability

and observability of DSS design have been derived in (33) and (9). These conditions are automatically

satisfied if the vibrating structure is underdamped and, in any case, can be tested with less computa-

tional effort compared to standard controllability and observability tests. The potential applicability of the

results to more generic structures than the benchmark system used for the initial analysis is demon-

strated on a numerical example regarding DSS control of a complex frame structure. This suggests

that the proposed framework can potentially be extended to more complex structures, and investigating

this problem by combining modal analysis with our framework represents a promising avenue for future

work. Overall, the results presented in this paper provide rigorous guidelines for guiding the choice of

DSS decomposition strategies for hybrid testing of vibrating structures.
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Notation

Symbol Definition

n Number of masses

l Location of DSS interface

yi Displacement of i-th mass

F Force of DSS actuator

d Disturbance acting on the system

∠P(s) Degree of polynomial P(s)

bH(s)c Maximum degree of transfer function H(s)

Numddd
i Numerator of transfer function between ddd and yi

Numd
i i-th generic numerator in subsystem A with Fp as input (Type 2 decomposition)

Den2Fp Generic denominator in subsystem B with Fp as input (Type 2 decomposition)

Numyl
j j-th generic numerator in subsystem B with yl as input (Type 1 decomposition)

Denyl Generic denominator in subsystem B with yl as inpu (Type 1 decomposition)

Numyl+1
i i-th generic numerator in subsystem A with yl+1 as input (Type 2 decomposition)

Denyl+1 Generic denominator in subsystem A with yl+1 as input (Type 2 decomposition)

Appendix A: Controllability and observability of original dynamics

The complete proof of controllability and observability for the original vibrating structure discussed

in Section 5.1 is reported in this appendix.

In particular, an induction procedure is used to show that under the hypotheses listed in Equation

(33) there are no common roots between any denominator and numerator of the transfer functions

considered in DSS design. As first step, let us note that the constraints listed in Equation (33) imply that

the first two denominators Denn and Denn−1 in Equation (4) do not have any common root. Let us then

assume that two adjacent denominators Denn−i+1 and Denn−i do not share any common roots. Equation

(4) can be rewritten as

Denn−i−1 = K1(n−i−1)Denn−i−K2(n−i−1)Denn−i+1 (A.1)
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where

K1(n−i−1) = mn−i−1s2 +(cn−i + cn−i)s+ kn−i−1 + kn−i (A.2)

K2(n−i−1) = (cn−is+ kn−i)
2 (A.3)

Then Equation (A.1) can be plugged into the following denominators to obtain

Denn− j+1 = K1(n− j+1)Denn− j+2−K2(n− j+1)Denn− j+3

=

(
j

∏
q=i+2

K1(n−q+1)−b1( j)

)
Denn−i−

(
K2(n−i−1)

j

∏
q=i+3

K1(n−q+1)−b2( j)

)
Denn−i+1 i+3≤ j ≤ n

(A.4)

where

K1(n− j+1) = mn− j+1s2 +(cn− j+1 + cn− j+2)s+ kn− j+1 + kn− j+2 (A.5)

K2(n− j+1) = (cn− j+2s+ kn− j+2)
2 (A.6)

b1(i+2) = 0 (A.7)

b1(i+3) = K2(n−i−2) (A.8)

b1( j) = K1(n− j+1)b1( j−1)+K2(n− j+1)

j−2

∏
q=i+2

K1(n−q+1)−K2(n− j+1)b1( j−2) i+4≤ j ≤ n (A.9)

b2(i+2) = b2(i+3) = 0 (A.10)

b2(i+4) = K2(n−i−1)K2(n−i−3) (A.11)

b2( j) = K1(n− j+1)b2( j−1)+K2(n− j+1)K2(n−i−1)

j−2

∏
q=i+3

K1(n−q+1)−K2(n− j+1)b2( j−2) i+5≤ j ≤ n (A.12)

In the above equations, K1(n− j+1) and K2(n− j+1) are used to describe the explicit terms, while b1( j) and

b2( j) are used to implicitly describe the rest of the division of Denn− j+1 by, respectively K1(n− j+1) and

K2(n− j+1). The degrees of the polynomials b1( j) and b2( j) are reported in Table A.1 for reference.

Let us then proceed with a proof by contradiction. To this end, note that if Denn− j+1 and Denn−i−1
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Table A.1. Degrees of polynomials b1( j) and b2( j).

Index j ∠b1( j) ∠b2( j)

i+2 0 0

i+3 2 0

i+4 4 4

i+5 6 6
...

...
...

j 2 j-2i-4 ( j ≥ i+2) 2 j-2i-4 ( j ≥ i+4)
...

...
...

n 2n-2i-4 2n-2i-4

had common roots, then Equation (A.4) could be rearranged as

Denn− j+1 = A ·Denn−i−1 (A.13)

When A is a constant or a polynomial, all roots of Denn−i−1 are included in the roots of Denn− j+1. On

the other hand, if A is a ratio of polynomials and its denominator shares some roots with Denn−i−1,

then some roots of Denn−i−1 are not included in the roots of Denn− j+1. Note that Equation (A.4) can be

rewritten as

Denn− j+1 = K1(n−i−1)

(
j

∏
q=i+3

K1(n−q+1)−
b1( j)

K1(n−i−1)

)
Denn−i−K2(n−i−1)

(
j

∏
q=i+3

K1(n−q+1)−
b2( j)

K2(n−i−1)

)
Denn−i+1

(A.14)

which, once combined with Equation (A.1) and Equation (A.13), implies

A =
j

∏
q=i+3

K1(n−q+1)−
b1( j)

K1(n−i−1)
=

j

∏
q=i+3

K1(n−q+1)−
b2( j)

K2(n−i−1)
(A.15)
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and therefore the following condition holds

b1( j)

K1(n−i−1)
=

b2( j)

K2(n−i−1)
(A.16)

It is obvious that Equation (A.16) is trivially not satisfied for j = i+3 due to (A.9)-(A.12). Therefore the

following proof will focus on Equation (A.16) for j > i+ 3. To this end, note that given the non-zero

polynomials X ,Y,a1,a2,T , the relation

X
Y

=
T X +a1

TY +a2
(A.17)

holds if and only if

a1

a2
=

X
Y

(A.18)

Let us then rewrite Equation (A.16) as

b1( j)

b2( j)
=

K1(n−i−1)

K2(n−i−1)
(A.19)

and use Equations (A.9) and (A.12) to express b1( j) and b2( j) as

b1( j) = T X +a1, b2( j) = TY +a2 (A.20)
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where

T = K2(n− j+1)

j−2

∏
q=i+3

K1(n−q+1) (A.21)

X = K1(n−i−1) (A.22)

Y = K2(n−i−1) (A.23)

a1 = K1(n− j+1)b1( j−1)−K2(n− j+1)b1( j−2) (A.24)

a2 = K1(n− j+1)b2( j−1)−K2(n− j+1)b2( j−2) (A.25)

Then (A.19) holds if and only if

K1(n− j+1)b1( j−1)−K2(n− j+1)b1( j−2)

K1(n− j+1)b2( j−1)−K2(n− j+1)b2( j−2)
=

K1(n−i−1)

K2(n−i−1)
(A.26)

or, by rearranging the terms in a more convenient form,

K1(n− j+1)

K2(n− j+1)
=

K2(n−i−1)b1( j−1)−K1(n−i−1)b2( j−1)

K2(n−i−1)b1( j−2)−K1(n−i−1)b2( j−2)
(A.27)

However, according to (A.5)-(A.6) and Table A.1, the left hand side is a ratio of second order polyno-

mials, whereas the right hand side is a ratio of polynomials of different degrees. Therefore (A.27) can

not hold and the proof is concluded, indicating that in the original structure no common roots exist be-

tween Numi and Deni (1 ≤ i ≤ n) if the hypotheses listed in (33) hold. The original system is then fully

controllable and observable.

Appendix B: H2 controllers used for numerical results shown in the main paper

For the sake of completeness, explicit numerical expressions for the controllers designed in Section

6 are reported in this appendix. Controller for Type 1 decomposition with force control in the benchmark

system, used to obtain results shown in Figure 5:
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C(s) =
2.9306×106(s+10)(s+3.781)(s+3.589)(s+3.328)(s2 +0.002372s+2.681×10−6)

(s+1.003×105)(s2 +0.006758s+0.1492)(s2 +0.3164s+1.124)(s2 +0.8353s+2.843)
×

× (s2 +0.6761s+1.979)(s2 +2.014s+5.917)(s2 +132s+8950)
(s2 +1.399s+4.581)(s2 +2.037s+6.571)(s2 +2.339s+8.129)

(B.1)

Controller for Type 1 decomposition with position control in the benchmark system, used to obtain

results shown in Figure 6:

C(s) =
−2.6375×1010(s+65.33)(s+10)(s+3.793)(s+3.571)(s2 +0.1433s+0.4533)
(s+109)(s2 +0.4257s+0.4533)(s2 +0.3281s+1.093)(s2 +0.8342s+2.758)

×

× (s2 +1.048s+3.141)(s2 +2.158s+6.492)(s2 +62.11s+5636)
(s2 +1.446s+4.779)(s2 +2.029s+6.688)(s2 +2.312s+7.938)

(B.2)

Controller for Type 2 decomposition with position control in the benchmark system, used to obtain

results shown in Figure 7:

C(s) =
1.2628×1013(s+1.173)(s+10)(s2 +0.145s+0.4791)(s2 +1.038s+3.103)

(s+9.872×107)(s+1.279×106)(s+2.814)(s2 +0.4184s+0.6607)(s2 +0.02365s+0.908)
×

× (s2 +3.205s+5.738)(s2 +2.172s+6.498)(s2 +1.087s+12.08)
(s2 +1.119s+3.217)(s2 +2.196s+6.525)(s2 +1.621s+6.191)

(B.3)

Controller for Type 1 decomposition with force control in the complex frame system, used to obtain

results shown in Figure 9:

C(s) =
1.4101×106(s+3.684)(s2 +0.002657s+1.534×10−5)(s2 +1.856s+6.01)(s2 +1.231s+6.374)

(s2 +0.1155s+0.4773)(s2 +1.517s+5.154)(s2 +1.224s+6.405)(s2 +2.593s+9.28)

(B.4)

Controller for Type 1 decomposition with position control in the complex frame system, used to obtain
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results shown in Figure 10:

C(s) =
2.2243×1012(s+1.112×104)(s+20)(s2 +0.3835s+1.377)(s2 +2.112s+6.961)(s2 +1.218s+6.357)
(s+2×109)(s2 +0.1242s+0.4791)(s2 +1.516s+5.15)(s2 +1.224s+6.405)(s2 +2.589s+9.246)

(B.5)
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