


Overcapacity-driven regional waste incineration facility network planning with residential land value maximization involved: a case study of Shanghai, China
Abstract: The effective implementation of garbage classification policies in metropolises appears to bring the government into a new quandary about the overcapacity of regional waste incineration facilities (WIFs). This paper proposes a bi-objective robust optimization model to replan the WIFs’ location and their logistics network toward operational cost minimization and regional residential land value maximization. Shanghai is selected as a real-case, and the garbage classification rate and house price fluctuation coefficient are considered as uncertain parameters. All Pareto solutions depict that the regional residential land value released by WIF's closure and subsequent "Not in My Back Yard" effect mitigation is huge, ranging from 74 to 102 billion yuan. Furthermore, the trade-off's robust solutions show that keeping 3 WIFs in the suburbs essentially maximizes the land value, while keeping 6 WIFs evenly distributed throughout the city has the lowest operating cost. Notably, the robust model has good anti-disturbance and the ability to adapt to external changes. As the population migrates to five new cities from the central city and reaches its peak, similar Pareto solutions are observed as those in the baseline scenario without the influence of policies.
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1. Introduction 	
Over the past few decades, waste-to-energy (WTE) conversion strategies of municipal solid waste (MSW) have been proposed to solve the "garbage siege" dilemma instead of landfills, as a result, a large number of Waste Incineration facilities(WIFs) have been built worldwide (Kuang and Lin, 2021). Meanwhile, the waste source reduction and recycling policies have become an priority of circular economy development and sustainable solid waste management in developed countries (van Ewijk and Stegemann, 2020; van Ewijk et al., 2021), resulting in overcapacity of WIFs in Japan (Dou et al., 2018), German (Cimpan et al., 2015; Lu et al., 2017), Taipei (Tsai, 2014) and other regions. Developing countries appear to not be immune to WIFs surpluses. China has constructed 610 WIFs until the end of 2020, and metropolises such as Shanghai and Shenzhen have adequate WIFs available for all MSW incineration disposal. To promote effective garbage classification to satisfy sustainable MSW management, Shanghai issued China's first local urban regulation "Regulations of Shanghai Municipality on the Management of Domestic Waste" on July 1, 2019 (Shanghai Municipal People's Congress Standing Committee, 2019). The regulation in Shanghai classifies MSW into four different types: household food waste, residual waste, recyclable waste, and hazardous waste, which caused the amount of separated residual waste for incineration to decrease by 20.10% from before (Yao et al., 2021) and consequent capacity surpluses at some WIFs. Considering China's mandatory garbage classification and WIFs expansion action during the 14th Five-Year Plan, WIFs network replanning caused by incineration overcapacity is at hand.
[bookmark: _Hlk128135301][bookmark: _Hlk128130083][bookmark: _Hlk128169085][bookmark: _Hlk130848495]The replanning of the WIF network caused by incineration overcapacity is actually a readjustment and optimization of the layout location and disposal capacity of existing WIFs.  Optimization of waste treatment facility systems has been widely discussed and different optimization models have been explored. (Heidari et al., 2019). Methods that integrate multi-objection optimization models, multiple criteria decision analysis (MCDA) with geographic information systems (GIS) have been developed to determine optimized locations for garbage collection stations(Boyaci et al., 2021), garbage transfer stations (Pluskal et al., 2023), medical waste incinerators (Srisuwandee et al., 2023; Xu et al., 2022), power plants (González-Núñez et al., 2023) and so on. However, some research gaps still exist. Although existing planning optimization models and methods focused on economic aspects such as profit maximization, operating cost minimization, facility number minimization, time cost minimization and other factors, economic considerations alone cannot be completely satisfy to improve the sustainability of cities and societies (Mirdar Harijani and Mansour, 2022). As pioneers, some scholars determined the optimal location of urban infrastructure considering economic, social, and environmental performance with multi-objective optimization models (Coutinho-Rodrigues et al., 2012; Erkut et al., 2008; Muneeb et al., 2018). 
[bookmark: _Hlk128169255]WIFs are typical NIMBY facilities, with residents concerned that WIFs will have negative environmental and health effects (Johnson and Scicchitano, 2012; Kikuchi and Gerardo, 2009), as well as depreciate house prices in the vicinity (Woo et al., 2021; Zhang et al., 2017).  The negative impact of urban "gray" infrastructure will reduce the value of land or property around it has been confirmed (Brasington and Hite, 2003; Huh et al., 2020; Lee et al., 2021).  It is expected that the reduction replan of WIFs due to overcapacity will release and enhance the land space and land value in the original facility area, which meet the requirements of urban renewal and circular economy. Therefore, from the perspective of releasing and enhancing more land value, it is necessary to re-plan the best location for disposal facilities scientifically and reasonably. However, incorporating the impact of NIMBY facility demolition on housing prices in WIFs optimization remains a research gap. Furthermore, the existing studies tend to focus on the optimization of new infrastructure networks rather than a layout replan with some redundant facilities to be demolished.
[bookmark: _Hlk130847923]The fluctuation of waste generation is a key uncertainty in the WIFs location and network design (Heidari et al., 2019; Mamashli and Javadian, 2021; Shi et al., 2019). The implementation process of mandatory garbage sorting policy may exacerbate this uncertainty (Edalatpour et al., 2018). Pre-analysis methods (fuzzy programming (Chanas and Zieliński, 2000), stochastic programming (Aouni and Torre, 2009), robust programming (Yuan et al., 2016)) and post-analysis methods (sensitivity analysis methods (Li et al., 2016)) are available to deal with optimization problems under uncertainty. Robust optimization methods have received extensive attention since they have better perturbation resistance and its results are closer to the real world (Ghayoor, Fatemeh et al., 2021; Lin et al., 2020). Facing the uncertain waste disposal demand, multi-objective robust optimization models were proposed to optimize waste collection and disposal facility location while minimizing system costs in Iran (Jahangiri et al., 2022) Raeisi and Ghoushchi (2022), and Guangzhou (Li et al., 2022)  respectively.  Notably, the decision-making of WIFs layout replanning can be inspired by the existing practices with robust optimization.
[bookmark: _Hlk98612002]Incineration overcapacity caused by a mandatory waste sorting policy is a new challenge for the WIFs network replanning. To the best of our knowledge, there is no similar research involving the replan of WIFs network or a robust optimization model considering the appreciation of land value brought by the closure of NIMBY facilities. This study proposes a bi-objective robust optimization model for replanning the layout of WIFs and their logistics networks, with the perspective of minimizing operating costs and maximizing regional residential property values. The major contributions of this paper are as follows:
1. Different from traditional WIFs network optimization just focusing on its own performance, this study developed a bi-objective robust optimization model to redesign a WIFs network with the WIFs network and regional benefits.
2. The combination of epsilon-constraint method and the cost-effective method effectively reveals the tradeoff between the benefit maximization of the WIFs network investment operator and regional government and provides a series of alternatives.
3. The future impacts of changed garbage disposal demand distribution on WIFs network layout due to the adjustment of regional urban planning strategy is considered and analyzed.  How would this change influence the pareto solutions for WIFs network layout?  Is it feasible to design the WIFs network with strong anti-disturbance by using a robust model facing urban planning adjustment?

[bookmark: _Hlk127212739]2. Materials and methods
2.1 Model Assumption
The purpose of this study is to re-plan the layout of WIFs and its logistics networks, in response to the crisis of incineration overcapacity threats under compulsory waste sorting policy. Different from published papers just focused on site allocation and logistics in the perspective of minimizing overall operating cost and environmental effects, we believe that the regional land appreciation brought by NIMBY risk elimination with the closure of incineration facilities is another noteworthy feature. Therefore, from the perspective of the circular economy and sustainable development, a bi-objective optimization model is established to provide a package of solutions that take into account the minimization of government operating costs and the maximization of regional residential property value, including the WIF closure scheme and re-planning of logistics. Key assumptions of this bi-objective optimization model are made as follows：
· The per capita amount of municipal solid waste remains unchanged for a certain period.
· The location and capacity of WIFs in Shanghai are already known.
· The operation of all WIFs complies with local regulations and policies.
· The regional land plan around the waste incineration facility remains unchanged before and after WIF's layout optimization.
· The NIMBY effects brought by WIFs will influence regional housing prices. Within a certain radius, the housing price close to the WIFs is lower than that farther away.
· The operation costs of WIFs described in this paper just include logistics costs and pollution control costs, which are related to the geographic location. The cost will remain unchanged for a certain period of time.
· The removal of "NIMBY" risk will restore the surrounding housing prices to a certain level.
· The working conditions of WIFs and transport vehicles are stable, and accidents such as transport vehicle failures and road congestion are eliminated.
2.2 Deterministic mathematical model
[bookmark: _Hlk127212992]This bi-objective optimization model is an integer linear programming problem. The two objectives are the minimization of operating costs and the maximization of regional residential property values. The set, parameters, and variables involved in this deterministic model are shown in Table 1. 
[bookmark: _Ref90542875]Table 1. The bi-objective optimization model symbol
	Set

	
	Set of population center, .

	
	Set of location of waste incineration plant, .

	
	Set of residential area affected by the incineration plant, . 

	Parameter

	
	Unit transportation distance cost per unit of garbage 

	
	Wet garbage classification rate in population center c (%)

	
	Per capita garbage generation in population center  (kg/per capita)

	
	The resident populations in population center c

	
	Distance from population center  to incineration plant  (km)

	
	The environmental pollution-control cost generated by the waste incineration plant processing unit waste (RMB/ton)

	
	Total space of study area (m2)

	
	The resident populations in study area

	
	Population density in study area, and .

	
	The affected area of the incineration plant k (square meter)

	
	The number of resident populations affected by the incineration plant k.

	
	The population density of the area surrounding plant k, and .

	
	Unit conversion factor (365 days in a year)

	
	Floor area ratio (FAR) of typical residential land in the area surrounding plant k

	
	The floor space in the I residential area surrounding plant k (square meter)

	
	Coefficient of price fluctuation in the area affected by incineration plant k (%)

	
	The highest house price in the I residential area surrounding plant k（yuan/m2）

	
	Price in the I residential area surrounding plant k （yuan/m2）

	
	Difference in house price in the I residential area surrounding plant k,  and 
（yuan/m2）

	
	Processing capacity of incineration plant (ton/d)

	
	The maximum number of incineration plants retained in layout replanning

	Decision variables

	
	1, keep the incineration plant k; otherwise, it is 0.

	
	1, the garbage generated in the population center c is transported to the incineration plant k; otherwise, it is 0


According to the above problem description and assumptions, the bi-objective mathematical model can be expressed as shown below:


subject to:





 is to minimize the operating costs. Among them, transportation cost is related to logistics impact and distance, and environmental governance cost is related to population density and facility location. Since other operating costs of the incineration plant are not related to the selection of facilities, they are not considered.  refers to the maximization of regional residential property values. The increment of regional residential property values is mainly related to the floor area ratio of the affected area, the difference in housing prices and the plot area of communities.
As for the constraints, equation (3) means that the waste from each population center is transported to only one incineration facility. Equation (4) indicates only incineration facilities exist can the waste delivered from population centers be processed. Equation (5) is a quantitative constraint, which means that the number of WIFs retained shall not exceed the maximum number. Equation (6) is a capacity constraint, which means that each incineration plant retained can treat the waste sent from the population center. Finally, equation (7) is the decision variable constraint.
2.3 Robust model
[bookmark: _Hlk97745286]Given the uncertainties of garbage source classification performance and price fluctuation coefficient, this study employs a robust bi-objective optimization model to solve the WIFs re-planning problem. A robust problem can be formulated with three types of uncertainty sets, such as box uncertainty, ellipsoidal uncertainty, and cardinality-constrained uncertainty (Du and Zhou, 2018).  The parameter uncertainty in  robust bi-objective optimization model is constructed with the box uncertainty set proposed by Bertsimas and Sim (2003). Generally, garbage source classification performance can be assessed by wet garbage classification rate. Taking into account the trend of garbage classification and under box uncertainty, the wet garbage classification rate is chosen from a symmetric box:  with mean  ,  is the fluctuation amount of the wet garbage classification rate in this study. In addition, uncertainty of price fluctuation coefficient is also described by a box uncertainty set, and it is named .  is the standard value of the price fluctuation coefficient, and  is the amount of volatility in the price fluctuation coefficient in the area affected by incineration plant k. Therefore, the robust optimization structure is first described and proved for the first objective function and then developed for the second objective functions.
[bookmark: _Hlk97745632][bookmark: _Hlk97745655][bookmark: _Hlk97745674]Obviously,  presents the uncertainty for the first objective function Z1. Through the cardinality-constrained robust method (Du and Zhou, 2018), the conservatism level   is added to equation (1). The value of  is in the interval [0, c], where c is the number of demand points. The reason for adding  here is to adjust the robustness level. As  increases, the conservativeness of the model increases. When there are at most  demand points fluctuating, the demand disturbance at one point is , and the quantity at other points is the standard value of the classification rate, . At this time, the robust solution of the model is still feasible. Taking into account the uncertainty of the wet garbage classification rate, the equation (1) is transformed into the following:

[bookmark: _Hlk97745954]The protection function of equation (8) can be expressed as :

It has been confirmed that each inner integer linear programming model can be replaced by its linear programming relaxation with the introduction of an auxiliary variable (Askarifard et al., 2021; Cappanera et al., 2018; Ghayoor, F. et al., 2021). Therefore,  is transformed into a linear programming problem by introducing a new auxiliary variable .  can be expressed as follows:

subject to:


Then, the above model (10)-(12) can be transformed by the duality theorem. The dual problem of constraints (10)-(12) can be expressed as:

subject to:



Through the duality theorem, the equation (8) can be transformed:

Subject to:



Because of the parameter  is included in the second objective function Z2, robust optimization structures of Z2 can be demonstrated by the above approach. Therefore, the conservatism level  is introduced here to adjust the robustness level of the price fluctuation coefficient. Here,  is in the interval [0, k]. Similarly, through dual theory and referring to the above transformation process, equation (2) can be transformed into a minimization function and the robust model as follows:

Subject to:



Therefore, the final structure for robust programming of the proposed model is:


subject to:











It can be seen that the model has been transformed from a 0-1 programming problem to a linear programming problem, but it is still a bi-objective model. The bi-objective model will be solved by the method proposed in 2.4.
2.4 Solution Method
This work uses the epsilon-constraint method (Cooper et al., 2020; Hartillo-Hermoso et al., 2020) with the CPLEX solver in MATLAB software, to determine Pareto-efficient solutions of the proposed deterministic and robust bi-objective model. The epsilon-constraint method is widely used to solve the model by choosing the biased objective as the main function, other objectives are set with range constraints. The detailed algorithm is presented in Algorithm 1.
Algorithm 1. Solving the bi-objective robust optimization model with e-constraint method
	Set uncertainties  ;  
{ Solving the auxiliary function }

	
Subject to  equation (27)-(37）
LB = 
Subject to  equation (27)-(37）

	{ Solve master problem }
Set   Answer and n

	

	for 

	

	Subject to    

	equation (27)-(37）

	Answer = [ Answer  ;   ]

	End

	{ Plot the pareto image }

	 plot ( Answer(:,1) , Answer(:,2) )


[bookmark: _Ref90542724]In addition, to quantify the preference of the Pareto non-inferior solutions for decision makers, methods such as establishing an index evaluation system, dimensionless processing, expert experience, and target preference are widely used (Carreras et al., 2016; Sadeghi et al., 2015; Wu et al., 2015). Among them, the cost performance method to deal with non-inferior solutions also provides a good idea for decision makers (Besharati et al., 2016; Foroutannia and Merati, 2020; Ghasemi et al., 2016). All these steps are schematically depicted in the flowchart of Figure A.1. The specific steps of the cost performance method are illustrated in Appendix A.2. 
 
3. Case Study
3.1 Case Statement
Shanghai is the first metropolis in China to enforce the classification of household wastes, which already resulted in one-fifth reduction in residual waste generation for incineration disposal after one year implementation period. By the end of June 2020, Shanghai's average daily residual waste generation was around 15,500 tons, whereas the total capacity of incineration treatment reached 26,000 tons/day. It is expected that incineration overcapacity is close at hand.
Hence, Shanghai in China is selected as a real-world case study for WIF's layout replanning. Shanghai has 16 districts with a total area of 6340.5 km2 and a population of 24.3 million. To simplify the logistics route problem in this bi-objective optimization model, we abstract the waste generation sites of all 16 districts as population centers. Figure 1 depicts the locations of population centers and the 10 WIFs in Shanghai. Notably, Chongming District in Shanghai has been planning to build a "world-class ecological island," in which all the daily domestic wastes generated on this island are treated onsite. Therefore, the WIFs network mentioned in this paper does not consider the disposal of domestic waste in Chongming District.
[image: ]
Figure 1. The locations of population centers and WIFs in Shanghai
[bookmark: _Hlk98446545]As mentioned in section 2.3, robust optimization models (equation 25-37) have introduced two uncertain parameters , to obtain optimal solutions for the minimizing operation cost and maximizing regional residential property values under uncertainties. According to the investigation on household garbage classification performance in Shanghai (Yao et al., 2021), the classification rate of wet domestic waste in 2021 reached 38.3%. Taking 38.3% as the standard value, the fluctuation range is set to since wet waste sorting rate can reach 44.4% in the scenario of completely separated. Meanwhile, the full closure of NIMBY WIFs will drive up house prices for homes close to WIFs. But the growth rate possibly fluctuates with the overall market conditions, rather than rising as high as residential community far from the facilities. In this work, we set the price fluctuation ratefluctuates in according to our filed survey.
To analyses housing price variations of residential communities within three kilometers of WIFs, we obtained 69,577 items of housing price from Lianjia.com and 58.com second-hand housing websites based on the Python software, followed by removing abnormal prices that are too high or too low. Heatmap of housing prices in 10 residential communities near WIFs are depicted in Figure 4, and the blanks on the heat map represent non-residential land. What’s more, within a certain radius of 3 kilometers, the housing price close to the WIFs is lower than those farther away.  The other parameters in model are illustrated in Appendix B.
3.2 Optimal solutions of the robust model
[bookmark: _Hlk96612996]The Pareto-curve of the deterministic model and robust optimization model with the conservatism levels at  = 15,  = 10 are displayed in Figure 2. For the Pareto-curve of deterministic model, the operation cost solutions of objective 1 change in interval [14.70, 18.40] billion yuan and for objective 2, the range of residential property values increment. is [62.20, 91.70] billion yuan. Correspondingly, for robust model, the cost solutions of objective 1 change in interval [13.33, 17.33] billion yuan and for objective 2, the range is [74.25, 101.75] billion yuan. Although the Pareto curves in the deterministic model and the robust model are almost parallel, the solutions in the deterministic model showed higher operation costs and lower regional residential property values increment. Therefore, robust model under uncertainties leads to solutions with reduction in operating costs and significant growth in regional residential property values, no matter the decision-maker's preference on objective 1 or objective 2.
According to the cost-performance method, 3 representative solutions marked with red dots on each Pareto curve in Figure 2 were selected, and a re-planned WIFs network with their waste collection vehicle routing mode for selected points is pictured in Figure 3. Pareto points A and a represent the decision-maker's preference for objective 1, while Pareto points C and c represent the decision-maker's preference for objective 2. In the robust model, the decision-maker selecting point A instead of point C decrease the operating costs of WIFs network by 29.92% while increase regional residential property value by 37.05%. In addition, Pareto points B and b as a most satisfying solution (good choice point) can be argued by the fact that, from point A (or a) to point B (or b), the regional residential property value have been significantly improved by, while there is only small increase of the impacts on operation costs. For instance, from point A to point B, the increment of regional residential property value increases by 31.82% from 74.20 billion-yuan to 97.9 billion-yuan while corresponding operation cost only increase 4.68%. 
[image: ]
Figure 2 Pareto Front for Deterministic and Robust Models
All Pareto solutions tend to shut down the WIFs located in the city center or with smaller capacities, whether the solutions are in a robust or deterministic model (Figure 3). For robust model, the optimization system will keep more WIFs evenly distributed throughout the city, up to 5-7 WIFs, when decision makers prefer operating costs minimization (point A) or most satisfying solution (point B). Furthermore, regardless of preference to objective 1 or objective 2, solutions provided by robust model would retain 1-2 fewer WIFs than the deterministic model. It is indicated that the solutions obtained by robust model fully considers the trade-off between operating costs and land appreciation, could meet the needs of waste disposal with less WIFs, lower operation cost, and higher regional residential property value.
As mentioned in Section 2, the objective Z1 measuring total operation costs includes two components: transportation-related costs and environmental governance costs. The illustration in Figure 2 depicts that, the tradeoff between transportation cost and environmental pollution control cost exists in corresponding Pareto points provided by robust model. It can be found that, more WIFs retained in network indicate much shorter transportation distance, which will result in a lower transportation cost. The solution A retains 6 WIFs near the population center, and the corresponding transportation cost of WIF network drops to 5.9 billion-yuan, accounting for 44.26% of the total operating cost. Environmental pollution controlling cost accounts for 55.74%, due to more investment on environmental facilities are required to meet the more stringent environmental quality in WIFs located near population center with high population density. While, for solution point C with just 3 WIFs (No.1, No.7, and No.8) kept in the suburbs, all WIFs are closed in the central urban area or near population center in the suburbs. It is important to note that, the No. 8 Laogang Renewable Energy Center, which are located in the super-large Laogang landfill site in Pudong, Shanghai, has a waste treatment capacity of 9,000 tons per day. Since the retained WIFs are far away from population centers, which results in a 31% increase in the transportation cost up to 10.60 billion-yuan and 30.06% decrease in environmental control cost compared with point A.
In addition, our encouraging work indicates that it is valuable to choose the increment of land value as a tradeoff objective in WIFs layout replanning and that it could release amazing regional residential property value. From quantitative data analysis of house price changes, compared with the present value of the land house prices around the 10 WIFs currently in operation, the robust solution at point C plans to send the classified MSW into only reserved tree incineration plants in the suburbs NO. 1, 7, and 8 for disposal. At this time, expected increase in land property value will reach 100 billion-yuan, an increase of 45%. Moreover, distribution of housing price in the area surrounding waste incineration facilities after WIFs layout replanning are also pictured in Figure 4. In contrast with current status in Figure 4(left), housing prices of area close to seven WIFs (No. 2,3,4,5,6,9,10), on the heat map in Figure 4(right) are significantly changed from dark to bright. Especially, at No 3 4.5 points, the heat maps of house prices in these areas are all with dark red, approaching the house price of central cities in Shanghai. And the heat map colors surrounding the points No. 2, 6, and 9 changes to yellow-green, which is equivalent to the housing price in the sub-center of Shanghai. 
[image: ]
Figure 3. Selection and assignment of the 3 selected Pareto optimal solutions
（☆-15 population centers;●- the reserved points of WIFs）
[image: ]
Figure 4. Heat map of housing prices in the surrounding communities of 10 WIFs before and after replanning at Pareto solution point C
3.3 Sensitivity analysis
[bookmark: _Hlk98092928]3.3.1 Conservatism levels  and   
One important issue in robust optimization is the trade-off between protecting against worst-case situation and preventing very conservative solutions. Thus, we analyzed the conservatism levels  and  to see its impact (Hu, C. et al., 2017). To reveal the effects of range variations on the robust solutions, we set  and =0,5,10 in sensitivity analysis, while other parameters are the same as described in the case study. The Pareto curves with varied levels of conservatism are illustrated in Figure 5.
[image: ]
Figure 5. Obtained Pareto Set under different  and 
[bookmark: _Hlk98096311]For the good choice point B in Figure 5 (a), when ,  gradually increases from 0 to 10, the operation costs of the Pareto curve are basically flat, while the regional residential property value increment increases from 87.1 to 95.3 billion with a growth rate of 9.4%. Whereas, the illustration in Figure 5 (a) depicts that in the scenarios where  =0 and changs from 0 to 15, the good choice point B showed an opposite result. The regional residential property value increments for different  are similar, but operation costs change from 15.0 to 13.5 billion yuan, owing to the increased population centers with uncertain waste generation. Figure 5 (b) depicts Pareto curves of four scenarios with simultaneous changes in  and  on the two objectives respectively. We can find that all the values for four Pareto robust curves are very close in terms of operating costs and regional residential property value increments. The mean square errors with the robust solution (is ranged from 0.49 to1.79%. Simulation results show that the proposed model is robust due to its insensitivity to parameter changes (Loo et al., 2006).
3.3.2 Uncertain parameters 
[bookmark: _Hlk98105355]The forementioned wet garbage classification rate  and the housing price fluctuation coefficient  are the core parameters of the bi-objective robust optimization model established in this work. Considering the importance of the uncertainty range for robust optimization (Hu, C.L. et al., 2017), the scenarios with varied uncertainty range (Figure 6) are compare with the baseline scenario (Figure 2). As shown in Figure 6(a), when  remains 6.1%,  changes from 10% to 5%, the operation cost for the good choice point B remains unchanged, but the increment of regional residential property value decreases by 4.5%, but it still performs better than those of deterministic models. On the other hand, when changes from 6.1% to 3.1%, and  decreases from 10% to 5% synchronously, both the operation costs and regional residential property value increments for the good choice point B is worser than that of basic robust scenario (Figure 2) but still significantly better than those of the deterministic model. In conclusion, compared with deterministic bi-objective optimization model, the Pareto solutions obtained by the robust model can well satisfy the stability of results in the range of uncertainty fluctuations.
[image: ]
Figure 6. Pareto Set of bi-objective robust optimization model with (a) range of   and (b) population fluctuations
3.3.3 Policy impact
According to the city's 14th Five-Year Plan (2021-25) and Long-term Vision for 2035 (Shanghai Municipal People's Congress Standing Committee, 2021), the government will support the building of major industrial projects, high-quality public infrastructure and comprehensive transportation hubs in the five new cities in the suburbs, referring to Jiading, Qingpu, Songjiang, Fengxian and Nanhui new city. The expected scenario is that Songjiang incineration plant numbered No. 6 will have to be closed in the future since it is located at Songjiang new city. Considering the fact that changes in policy can have an impact on population and residential mobility inside the city (Yang et al., 2021), directional migration will occur from the overcrowding central city into the new cities in the future. According to the above consideration, we set 10 scenarios to analyze robust optimization solutions under uncertain policy impact. The first five scenarios are described in detail as follows, the total population unchanged while population in central urban shift to the five new cities, with migration rate at 0%, 5%, 10%, 15%, 20%, respectively. The last five scenarios are, the total population reach a peak of 25 million and population in central urban shift to the five new cities with migration rate at 0%, 5%, 10%, 15%, 20%, respectively.
[image: ]
Figure 7. The logistics network of Pareto points with preference to regional residential land value 
The Pareto curves of 10 scenarios and logistics network are shown in Figure 6(b) and Figure 7, and the corresponding results are listed in Table C.1. Notably, under the influence of five new cities policy and population migration, the solutions of the robust optimization model are more robust than the deterministic model. As shown in Figure 6(b), with same decision-makers' preference，robust solution points in total population unchanged scenarios will increase regional residential properties by 7.17% - 10% while reduce the operating cost by 8.46%  - 13.43%. When the population reach the peak, robust solution points will reduce the operating cost by 6.16% - 10.72%, while the regional residential properties is similar with population unchanged scenarios.
 Moreover, the stability of bi-objective robust optimization model is incarnated in lower variance of mean square errors of the Pareto solutions in different scenarios. For the first five scenarios with the total population unchanged, the mean square errors of Pareto solution points under different migration rates range from 0.10% to 0.52%, and retains the same WIFs (No. 1, 7, 8) when decision-maker prefer to maximum the regional residential land value. What’s more, similar optimization results can be found in the last five scenarios with the total population reach a peak of 25 million, but system tend to retain one more incinerator (No.9 or No. 10) to avoid long-distance transportation of garbage to No.8. In addition, compared with the total population unchanged scenarios, regional residential property values increment in the peak population scenarios are similar. However, due to the increase of garbage generation, transportation volume and environmental pollution costs, operating costs are slightly higher with growth rate of 1.09% - 4.13%. When total population reach a peak of 25 million and population in central urban shift to the five new cities with migration rate at 20%, this worst-case scenario generates about 14,000 ton/day of waste. Then the system tends to retain the No. 1, 7, 8, and 9 WIFs with total capacity of 17,000 ton/day, under the trade-off of residential property values increment and operation costs.

4. Managerial Insights
[bookmark: _Hlk128127885]The municipal solid garbage classification policy conforms to the principles of resource efficiency and circular economy, which have been practiced in developed countries. Instead of being mixed with residual waste for incineration, the separated wet waste is sent to be converted into biogas. As a result, the amount of waste to be incinerated decreased, causing an overcapacity in the incinerator's system. In previous WIFs system optimization studies, municipalities and MSW treatment companies responsible for urban waste collection were naturally pursuing profit maximization and environmental burden minimization. However, from the perspective of social governance to eliminate the NIMBY effect, the WIFs system replanning not only should be far away from downtown but also take the appreciation effect of land value into consideration. Therefore, the bi-objective optimization proposed in this study involves not only the operation costs of WIFs including environment management costs, but also introduces regional land value maximization as another objective to be optimized. All Pareto solutions depict that the regional residential land value released by WIF's closure and subsequent "Not in My Back Yard" effect mitigation is huge, ranging from 74 to 102 billion yuan.
This WIFs network replanning is not an isolated case, it has certain applicability and reference in some countries or regions where garbage classification is gradually been promoted.  For example, in Tokyo and Taipei, these populated metropolises had excess incineration capacity due to successful garbage classification and recycling. Land values that had been devalued due to the NIMBY effect have been significantly increased by closing excess incineration facilities and optimizing planning layouts (Sun et al., 2017). Therefore, bi-objective models considering factors including economic cost, environment costs and land value release are especially valuable for optimization of WIFs in metropolises with population agglomeration and high land costs. Of course, the depreciation of land value caused by WIFs network replanning in countries and regions that have a vast territory with a sparse population or where incineration facilities are built in non-urban centers, does not pose an urgent problem. However, it is a decision-making principle that the replan and layout of WIFs relocation due to overcapacity must take into account economic and environmental optimization comprehensively. Among the economic costs, the increase in land value or property value should have a weight that cannot be underestimated. 
Furthermore, this study proposed a bi-objective optimization model to provide optimal solutions for the location and logistics route of preserved facilities, considering the tradeoff between the WIFs system's economic performance and regional land value increment. Moreover, the epsilon-constraint method used in this bi-objective optimization model could provide a variety of Pareto solutions which has no priority to each other, comparing with the widely used minimax method (Zhang et al., 2023), situational method (Habibi et al., 2017; Pouriani et al., 2019), KKT (Saeidi-Mobarakeh et al., 2020; Tirkolaee et al., 2020) method. In fact, the optimization of WIF's system is a complex one that need to consider a variety of environmental factors, including odor control, hazardous dioxin emissions inhibition, or ecological efficiency improvement of waste long-transportation and so on. In future studies, it will be necessary to establish a comprehensive decision-making system for WIF's system planning that involves multiple factors and scenarios.

5. Conclusions
In this work, a bi-objective robust optimization model is developed to replan the layout of WIFs and their logistics networks, triggered by overcapacity due to mandatory garbage classification. New insights from this work include three aspects. Firstly, based on the slow increase in land value near solid waste disposal facilities caused by the NIMBY effect, this work for the first time incorporates regional land value maximization as one of the optimization objectives for WIF's network replan. A case study of Shanghai reveals that the value of regional residential land released by the WIF closure is huge, ranging from 74 billion yuan to 102 billion yuan. Secondly, the robust optimization method is used to solve the uncertainty of the garbage classification rate and house price fluctuation coefficient. Compared with the deterministic model, the proposed robust model not only copes with the variation in uncertain parameters but also maintains a leaner operation cost and higher regional residential property values while meeting incineration needs. Specifically, the result of the robust model will reduce the operating cost by 4.22% - 8.33% and increase the value of residential properties by 10.15% - 11.79%.   Finally, robust models have better anti-interference ability to external changes, and can better meet the needs of the real world. As the population migrates to five new cities from the central city and reaches its peak, similar Pareto solutions are observed as those in the baseline scenario without the influence of policies. 
The WIFs network replanning perspective incorporating land value maximization and robust optimization model have generalizability in megacities as Shanghai, which are actively promoting garbage classification with scarce land resources, such as Beijing(Yang et al., 2022), Hangzhou(Zhang and Li, 2020), and Shenzhen(Peng et al., 2021). But it still has limitations that require further investigation. Firstly, a vehicle route with more nodes can be determined in the model so that the route can be better optimized. Secondly, the uncertainties considered in this paper mainly focus on the wet garbage classification rate and the price fluctuation coefficient. More uncertainties, such as the disposal cost and waste type, can be taken into account in further study. Meanwhile, there are more cultural, social, environmental and economic factors that will affect the system and need to be further studied.
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