Advanced synaptic transistor device towards AI application in hardware perspective
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Abstract—For the past decades, the synaptic devices for the in-memory computing have been widely investigated due to the high-efficiency computing potential and the ability to mimic biological neurobehavior. However, the conventional two-terminal synaptic memristors show drawbacks of resistance reduction caused by large-scale paralleling and asynchronous storage-reading process, which limit its development. Recently, researchers have paid attention to the transistor-like artificial synapse. Due to the existence of insulator layer and the separation of input and read terminals, the three-terminal synaptic transistors are believed to have greater potential towards artificial intelligence (AI) application fields. In this work, a summary of recent progresses and the future challenges of synaptic transistors are discussed.
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I.  Introduction
For decades, the traditional data processing technology based on the von Neumann architecture has been considered limited due to the physically separate information storage and computing procedures when facing the sharply increased in requirement for big data mining and computing, 
 ADDIN EN.CITE 
[1-3]
. In order solve this problem, researchers have been dedicating to find the computing system with in-memory computing. One of the leading directions is utilizing the brain-inspired systems based on artificial synaptic devices 
 ADDIN EN.CITE 
[1, 4-6]
. Through converting the presynaptic input stimuli into postsynaptic responses, an artificial synaptic device could mimic the perception, learning, and memory functions of synapses in the human brain, as shown in Fig. 1 [7, 8]. 
Judging from the structure, the synaptic devices could be typically classified as two-terminal memristors and three-terminal transistors. Compared with the memristors, the synaptic transistors have been proved to be more suitable for AI neural networks due to the resistance reduction caused by large-scale paralleling and asynchronous storage-reading process 
 ADDIN EN.CITE 
[9-12]
. Therefore, it is worthwhile paying more attention to the synaptic transistors. For a typical synaptic transistor, the applied electrical input on the gate electrode (VGS) or the optical input on the channel is regarded as the presynaptic input signals, and the change of channel conductance (G) or drain current (IDS) refers to the postsynaptic response 
 ADDIN EN.CITE 
[9, 13]
. Generally, the IDS and G are used to represent the postsynaptic current (PSC) and the synaptic weight (SW). Therefore, this process could be combined with the neural network algorithm that the nodes in weight matrix could be expressed by the SW, which indicates a great potential in AI related applications.
Herein, we first introduce a typical route of applicating the long-term potentiation/depression (LTP/D) behavior of the synaptic transistor in to the artificial neural network (ANN) simulator. Next, utilizing this ANN application to mimic the multisensory of human would be introduced as one typical example the recent progress [14]. Finally, some perspective on the future challenges of synaptic transistors would be proposed.
II. Ann Simulation Related to Synaptic Transistors
Fig. 2(a) displays a typical LTP/D behavior of the synaptic transistors under the gate pulse of opposite polarity [15]. Fig. 2(b) shows the updating route of utilizing the SW to express the nodes in the weight matrix of ANN classifier. Since the channel conductivity must be positive, and the weight node can be negative, whe W value of each node was extracted from the difference between the G of two equivalent devices (W = G+ - G-). Based on this, an example of recognizing digital handwriting number images based on the Modified National Institute of Standards and Technology (MNIST) database is depicted in Fig. 3. To classify the input information, a weight (W) matrix contained 7840 (28 ⅹ 28 ⅹ 10) synapse nodes was utilized to operate the computing process. The simulation result had closed recognition accuracy after training compared with ideal weight updating condition (nonlinearity = 0).
In 2021, Tan and Dijken et al. reported a more complex application of link the synaptic transistors with the ANN classifier, as illustrated in Fig. 4 [14]. The devices were divided into 5 groups and each one processed one kind of human sensory systems (vision, touch, hearing, smell, taste). 
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Figure 1. Schematic illustration of the synaptic transmission under action potentials in the biological system, the structure diagram of the synaptictransistor, and the multi-storage model of human memory.
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Figure 2. (a) Potentiation and depression properties of the device [15]. (b) Schematics of the network input through two equivalent synaptic devices to update the synaptic weight [13]. 
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Figure 3. An example of utilizing the LTP/D behavior to realize the image reconition task of digital handwriting number images based on the Modified National Institute of Standards and Technology (MNIST) database through ANN simulator.
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Figure 4. (a) Inspired by the five primary sensory systems (vision, touch, hearing, smell, taste) in the human multisensory neural network (MSeNN) and their interaction via neural networks, the artificial MSeNN consists of five artificial sensory systems and their integration via ANNs. (b) Operational diagram of the artificial MSeNN. Sensors (photodetectors, pressure sensors, sound detectors, and simulated smell and taste receptors) convert external stimuli to potentials [14].
Through combining on sensory system with another, the human multisensory neural network (MSeNN) and their interaction via neural networks were realized. The ANN served as the core procedure for classifying the input information.
III. Conclusion and Perspective
As discussed above the synaptic transistors have been demonstrated to have a high degree of fit with the artificial neural network system. However, there is still many challenges need to be overcome in future. First, up till now, the research on the application of synaptic devices in complex neural network systems is still at the simulation level. To establish a hardware brain-like neuromorphic system, the reliable large-scale fabrication processes are needed. In addition, for a multi-layer computing network, the size of the node may reach the order of one million. Therefore, how to reduce the influence of parasitic effects and energy consumption are also important issues that needs to be considered. Finally, the 3rd generation of neural network, spiking neural network (SNN), has been proved to have more biological plausibility than the conventional ANN system. The spike-time-dependent-plasticity (STDP) learning property is regarded as the core property of linking the synaptic transistors with the units for SNN systems, which is still lack of research. Although, there are still many problems to be solved, the bright prospects of synaptic transistors in AI applications are still believed by researchers around the world.
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