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Abstract

In this work, we consider adversarial crash faults of nodes in the network constructors model [Michail and
Spirakis, 2016]. We first show that, without further assumptions, the class of graph languages that can
be (stably) constructed under crash faults is non-empty but small. In particular, if an unbounded number
of crash faults may occur, we prove that (i) the only constructible graph language is that of spanning
cliques and (ii) a strong impossibility result holds even if the size of the graphs that the protocol outputs
in populations of size n needs to grow with n (the remaining nodes being waste). When there is a finite
upper bound f on the number of faults, we show that it is impossible to construct any non-hereditary graph
language and leave as an interesting open problem the hereditary case. On the positive side, by relaxing our
requirements we prove that: (i) permitting linear waste enables to construct on n/(2f)−f nodes, any graph
language that is constructible in the fault-free case, (ii) partial constructibility (i.e., not having to generate
all graphs in the language) allows the construction of a large class of graph languages. We then extend the
original model with a minimal form of fault notifications. Our main result here is a fault-tolerant universal
constructor : We develop a fault-tolerant protocol for spanning line and use it to simulate a linear-space
Turing Machine M . This allows a fault-tolerant construction of any graph accepted by M in linear space,
with waste min{n/2 + f(n), n}, where f(n) is the number of faults in the execution. We then prove that
increasing the permissible waste to min{2n/3 + f(n), n} allows the construction of graphs accepted by an
O(n2)-space Turing Machine, which is asymptotically the maximum simulation space that we can hope for in
this model. Finally, we show that logarithmic local memories can be exploited for a no-waste fault-tolerant
simulation of any such protocol.
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1. Introduction and Related Work

In this work, we address the issue of the dynamic formation of graphs under faults. We do this in a minimal
setting, that is, a population of agents running Population Protocols that can additionally activate/deactivate
links when they meet. This model, called Network Constructors, was introduced in [23], and is based on
the Population Protocol (PP) model [1, 2] and the Mediated Population Protocol (MPP) model [21]. We are
interested in answering questions like the following: If one or more faults can affect the formation process,
can we always re-stabilize to a correct graph, and if not, what is the class of graph languages for which
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there exists a fault-tolerant protocol? What are the additional minimal assumptions that we need to make
in order to find fault-tolerant protocols for a bigger class of languages?

Population Protocols run on networks that consist of computational entities called agents (or nodes).
One of the challenging characteristics is that the agents have no control over the schedule of interactions
with each other. In a population of n agents, repeatedly a pair of agents is chosen to interact. During an
interaction their states are updated based on their previous states. In general, the interactions are scheduled
by a fair scheduler. When the execution time of a protocol needs to be examined, a typical fair scheduler is
the one that selects interactions uniformly at random.

Network Constructors (and its geometric variant [20]) is a theoretical model that may be viewed as a
minimal model for programmable matter operating in a dynamic environment [24]. Programmable matter
refers to any type of matter that can algorithmically transform its physical properties, for example shape
and connectivity. The transformation is the result of executing an underlying program, which can be either
a centralized algorithm or a distributed protocol stored in the material itself. There is a wide range of
applications, spanning from distributed robotic systems [17], to smart materials, and many theoretical models
(see, e.g., [10, 8, 22, 12] and references therein), try to capture some aspects of them.

The main difference between PPs and Network Constructors is that in the PP (and the MPP) models, the
focus is on computation of functions of some input values, while Network Constructors are mostly concerned
with the stable formation of graphs that belong to some graph language. Fault tolerance must deal with the
graph topology, thus, previous results on self-stabilizing PPs [3, 4, 7] and MPPs [26] do not apply here.

In [23], Michail and Spirakis gave protocols for several basic network construction problems, and they
proved several universality results by presenting generic protocols that are capable of simulating a Turing
Machine and exploiting it in order to stably construct a large class of networks, in the absence of crash
failures.

In this work, we examine the setting where adversarial crash faults may occur, and we address the
question of which families of graph languages can be stably formed. In particular, if Π is a protocol that
constructs a graph language L, then a crash fault may result to a configuration C such that no execution
of Π starting from C stabilizes to a graph in L. This means that when faults occur, the population must
perform some computations so as to reach a configuration where all executions of Π will again stabilize to
a graph in L. The problem is then to study self-stabilizing protocols under crash faults. Here, adversarial
crash faults mean that an adversary knows the rules of the protocol and can select some node to be removed
from the population at any time. For simplicity, we assume that the faults can only happen sequentially.
This means that in every step at most one fault may occur, as opposed to the case where many faults can
occur during each step. The cases of sequential and parallel occurrence of faults are equivalent to each other
in the Network Constructors model w.l.o.g., but not in the extended version of this model (which allows
fault notifications) that we consider later.

A main difference between our work and traditional self-stabilization approaches is that the nodes are
supplied with constant local memory, while in principle they can form linear (in the population size) number of
connections per node. Existing self-stabilization approaches that are based on restarting techniques cannot
be directly applied here [14, 13], as the nodes cannot distinguish whether they still have some activated
connections with the remaining nodes, after a fault has occurred. This difficulty is the reason why it is not
sufficient to just reset the state of a node in case of a fault. In addition, in contrast to previous self-stabilizing
approaches [18, 15] that are based on shared memory models, two adjacent nodes can only store 1 bit of
memory in the edge joining them, which denotes the existence or not of a connection between them.

Angluin et al. [3] incorporated the notion of self-stabilization into the population protocol model, giving
self-stabilizing protocols for some fundamental tasks such as token passing and leader election. They focused
on the goal of stably maintaining some property such as having a unique leader or a legal coloring of the
communication graph.

Delporte-Gallet et al. [9] studied the issue of correctly computing functions on the node inputs in the
Population Protocol model [1], in the presence of crash faults and transient faults that can corrupt the
states of the nodes. They construct a transformation which makes any protocol that works in the failure-free
setting, tolerant in the presence of such failures, as long as modifying a small number of inputs does not
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change the output. In the context of fault tolerance, [11] uses a leader to make any protocol tolerant to
omission failures (i.e., failure by an agent to read its partner’s state during an interaction). In [16], Fischer
and Jiang introduced the Ω? detectors in order to solve leader election under crash or transient faults. An
eventual leader detector Ω? is an oracle that eventually detects the presence or absence of a leader in the
population.

Guerraoui and Ruppert [19] introduced an interesting model, called Community Protocol, which extends
the Population Protocol model with unique identifiers and enough memory to store a constant number of
other agents’ identifiers. They show that this model can solve any decision problem in NSPACE(n log n)
while tolerating a constant number of Byzantine failures.

Peleg [27] studies logical structures, constructed over static graphs, that need to satisfy the same property
on the resulting structure after node or edge failures. He distinguishes between the stronger type of fault-
tolerance obtained for geometric graphs (termed rigid fault-tolerance) and the more flexible type required
for handling general graphs (termed competitive fault-tolerance). It differs from our work, as we address the
problem of constructing such structures over dynamic graphs.

1.1. Our Contribution

The goal of any Network Constructor (NET) protocol is to stabilize to a graph that belongs to (or
satisfies) some graph language L, starting from an initial configuration where all nodes are in the same state
and all connections are disabled. In [23], only the fault-free case was considered. In this work, we formally
define the model that extends NETs allowing crash failures, and we examine protocols in the presence of
such faults. Whenever a node crashes, it is removed from the population, along with all its activated edges.
This leaves the remaining population in a state where some actions may need to be taken by the protocol in
order to eventually stabilize to a correct network.

We first study the constructive power of the original NET model in the presence of crash faults. We
show that the class of graph languages that is in principle constructible is non-empty but very small: for a
potentially unbounded number of faults, we show that the only stably constructible language is the Spanning
Clique. We also prove a strong impossibility result, which holds even if the size of graphs that the protocol
outputs in populations of size n needs to grow with n (i.e., ω(1)), and the remaining nodes being waste.
For a bounded number of faults, we show that any non-hereditary graph language is impossible to be
constructed. However, we show that by relaxing our requirements we can extend the class of constructible
graph languages. In particular, permitting linear waste enables to construct on n/(2f) − f nodes where f
is a finite upper bound on the number of faults, any graph language that is constructible in a failure-free
setting. Alternatively, by allowing our protocols to generate only a subset of all graphs in the language
(called partial constructibility), a large class of graph languages becomes constructible (see Section 3).

In light of the impossibilities in the Network Constructors model, we introduce the minimal additional
assumption of fault notifications. This is essentially a failure detector ([6, 5]) that provides information about
crash fault events in some nodes of the network. In [6] the failure detector ♢S eventually outputs a set of
crashed process identities at each process of the network. In our work, after a fault on some node u occurs,
all nodes that maintain an active edge with u at that time (if any) are notified. If there are no such nodes,
an arbitrary node in the population is notified. In that way, we guarantee that at least one node in the
population will sense the removal of u. Nevertheless, some of our constructions work without notifications
in the case of a crash fault on an isolated node (Section 4).

We obtain two fault-tolerant universal constructors. One of the main technical tools that we use in them,
is a fault-tolerant construction of a stable path topology (i.e., a line). We show that this topology is capable
of simulating a Turing Machine (abbreviated “TM” throughout this paper), and, in the event of a fault, is
capable of always reinitializing its state correctly (Section 4.2). Our protocols use a subset of the population
(called waste) in order to construct there a TM, while the graph which belongs to the required language
L is constructed in the rest of the population (called useful space). Throughout this paper, we call waste
all nodes that do not belong to the constructed graph G ∈ L after stabilization, and remain either isolated
nodes or part of a component such as the TM. The idea is based on [23], where they show several universality
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Constructible languages
Without notifications With notifications

Unbounded faults (Section 3.1) Bounded faults (Section 3.2) Unbounded faults

Only Spanning Clique
Non-hereditary
impossibility

Fault-tolerant protocols:
Spanning Star, Cycle Cover,
Spanning Line (Section 4.1)

Strong impossibility
even with linear waste

A representation of
any finite graph
(partial
constructibility)

Universal Fault-tolerant
Constructors (with waste)
(Section 4.2)

Any constructible
graph language with
linear waste

Universal Fault-tolerant
Restart (without waste)
(Section 4.3)

Table 1: Summary of our results.

results by constructing on k nodes of the population a network G1 capable of simulating a TM, and then
repeatedly drawing a random network G2 on the remaining n − k nodes. The idea is to execute on G1 the
TM which decides the language L with the input network G2. If the TM accepts, it outputs G2, otherwise
the TM constructs a new random graph.

This allows a fault-tolerant construction of any graph accepted by a TM in linear space, with waste
min{n/2 + f(n), n}, where f(n) is the number of faults in the execution. We finally prove that increasing
the permissible waste to min{2n/3+f(n), n} allows the construction of graphs accepted by an O(n2)-space
Turing Machine, which is asymptotically the maximum simulation space that we can hope for in this model.

In order to give fault-tolerant protocols without waste, we design a protocol that can be composed in
parallel with any protocol in order to make it fault-tolerant. The idea is to restart the protocol whenever
a crash failure occurs. We show that restarting is impossible with constant local memory, if the nodes may
form a linear (in the population size) number of connections; hence, to overcome this we supply the agents
with logarithmic memory (Section 4.3).

We also provide a protocol Π′ based on restarts such that, given any network constructor Π with notifica-
tions, Π′ is a fault-tolerant version of Π without waste. We show that restarting is impossible with constant
local memory, if the nodes may form a linear (in the population size) number of connections; hence, the
required memory per node in this protocol is O(log n) bits.

Finally, in Section 5 we conclude and discuss further research directions opened by this work.

Table 1 summarizes all results proved in this paper.

2. Model and Definitions

A Network Constructor (NET) is a distributed protocol defined by a 4-tuple (Q, q0, Qout, δ), where Q is
a finite set of node-states, q0 ∈ Q is the initial node-state, Qout ⊆ Q is the set of output node-states, and
δ : Q×Q× {0, 1} → Q×Q× {0, 1} is the transition function, where {0, 1} is the set of edge states.

In the generic case, there is an underlying interaction graph GU = (VU , EU ) specifying the permissible
interactions between the nodes, and on top of GU , there is a dynamic overlay graph GO = (VO, EO). A
mapping function F maps every node in the overlay graph to a distinct underlay node. In this work, GU

is a complete undirected interaction graph, i.e., EU = {uv : u, v ∈ VU and u ̸= v}, while the overlay graph
consists of a population of n initially isolated nodes (also called agents).

The NET protocol is stored in each node of the overlay network, thus, each node u ∈ GO is defined
by a state q ∈ Q. Additionally, each edge e ∈ EO is defined by a binary state (active/connected or
inactive/disconnected). Initially, all nodes are in the same state q0 and all edges are inactive. The goal is for
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the nodes, after interacting and activating/deactivating edges for a while, to end up with a desired stable
overlay graph, which belongs to some graph language L.

During a (pairwise) interaction, the nodes are allowed to access the state of their joining edge and either
activate it (state = 1) or deactivate it (state = 0). When the edge state between two nodes u, v ∈ GO is
activated, we say that u and v are connected, or adjacent at that time t, and we write u ∼

t
v.

In this work, we present a version of this model that allows adversarial crash failures. A crash (or halting)
failure causes an agent to cease functioning and play no further role in the execution. This means that all
the adjacent edges of F (u) ∈ GU , where F (u) is the node of the underlying graph that u is mapped to, are
removed from EU , and, at the same time, all the adjacent edges of u ∈ GO become inactive.

The execution of a protocol proceeds in discrete steps. In every step, an edge e ∈ EU between two nodes
F (u) and F (v) is selected by an adversary scheduler, subject to some fairness guarantee. The corresponding
nodes u and v interact with each other and update their states and the state of the edge uv ∈ GO between
them, according to a joint transition function δ. If two nodes in states qu and qv with the edge joining them in
state quv encounter each other, they can change into states q′u, q

′
v and q′uv, where (q

′
u, q

′
v, q

′
uv) ∈ δ(qu, qv, quv).

In the original model, GU is the complete directed graph, which means that during an interaction, the
interacting nodes have distinct roles. In our protocols, we consider the following constraint that is imposed
by the fact that the edges of the interaction graph are undirected. In particular, δ(qu, qv, quv) = (a, b, c)
implies δ(qv, qu, qvu) = (b, a, c), for any qu, qv ∈ Q.

A configuration is a mapping C : VI ∪EI → Q∪{0, 1} specifying the state of each node and each edge of
the interaction graph. An execution of the protocol on input I is a finite or infinite sequence of configurations,
C0, C1, C2, . . . , each of which is a set of states drawn from Q ∪ {0, 1}. In the initial configuration C0, all
nodes are in state q0 and all edges are inactive. Let qu and qv be the states of the nodes u and v, and quv
denote the state of the edge joining them. A configuration Ck is obtained from Ck−1 by one of the following
types of transitions:

1. Ordinary transition: Ck = (Ck−1 − {qu, qv, quv}) ∪ {q′u, q′v, q′uv} where {qu, qv, quv} ⊆ Ck−1 and
(q′u, q

′
v, q

′
uv) ∈ δ(qu, qv, quv).

2. Crash failure: Ck = Ck−1 − {qu} − {quv : uv ∈ EI} where {qu, quv} ⊆ Ck−1.

We say that C ′ is reachable from C and write C ⇝ C ′, if there is a sequence of configurations C =
C0, C1, . . . , Ct = C ′, such that Ci → Ci+1 for all i, 0 ⩽ i < t. The fairness condition that we impose on the
scheduler is quite simple to state. Essentially, we do not allow the scheduler to avoid a possible step forever.
More formally, if C is a configuration that appears infinitely often in an execution, and C → C ′, then C ′

must also appear infinitely often in the execution. Equivalently, we require that any configuration that is
always reachable is eventually reached.

We define the output of a configuration C as the graph G(C) = (V,E) where V = {u ∈ VO : C(u) ∈ Qout}
and E = {uv : u, v ∈ V, u ̸= v, and C(uv) = 1}. If there exists some step t ≥ 0 such that GO(Ci) = G
for all i ≥ t, we say that the output of an execution C0, C1, . . . stabilizes (or converges) to graph G, every
configuration Ci, for i ≥ t, is called output-stable, and t is called the running time under our scheduler. We
say that a protocol Π stabilizes eventually to a graph G of type L if and only if after a finite number of
pairwise interactions, the graph defined by ‘on’ edges does not change and belongs to the graph language L.

In this work, unless otherwise stated, a graph language L is an infinite set of graphs satisfying the
following properties:

1. (No gaps): For all n ≥ c, where c ≥ 2 is a finite integer, ∃G ∈ L of order n.

2. (No Isolated Nodes): ∀G ∈ L and ∀u ∈ V (G), it holds that d(u) ≥ 1 (where d(u) is the degree of u).

Even though graph languages are not allowed to contain isolated nodes, there are cases in which a
protocol might be allowed to output one or more isolated nodes. In particular, if a protocol Π constructing
L is allowed a waste of at most w, then whenever Π is executed on n nodes, it must output a graph G ∈ L of
order |V (G)| ≥ n− w, leaving at most w nodes in one or more separate components (could be all isolated).

5



Definition 1. We say that a protocol Π constructs a graph language L if: (i) every execution of Π on n
nodes stabilizes to a graph G ∈ L s.t. |V (G)| = n and (ii) ∀G ∈ L there is an execution of Π on |V (G)|
nodes that stabilizes to G.

Definition 2. We say that a protocol Π partially constructs a graph language L, if: (i) requirement (i) from
Definition 1 holds, and (ii) ∃G ∈ L s.t. no execution of Π on |V (G)| nodes stabilizes to G.

Definition 3 (Fault-tolerant protocol). Let Π be a NET protocol that, in a failure-free setting, constructs
a graph G ∈ L. Π is called f -fault-tolerant if for any population size n any execution of Π constructs a
graph G ∈ L, where |V (G)| ≥ n− f , and f < n is an upper bound on the number of faults. We also call Π
fault-tolerant if the same holds for any number f ≤ n− 2 of faults.

Definition 4 (Waste and useful space). We say that a protocol Π constructs a graph language L with waste
w if: (i) every execution of Π on n nodes stabilizes to a graph G ∈ L s.t. n − w ≤ |V (G)| ≤ n and (ii)
∀G ∈ L there is an execution of Π on n nodes s.t. |V (G)| ≤ n ≤ |V (G)|+w that stabilizes to G. This implies
that the waste includes all crashed nodes and any auxiliary nodes required by Π to construct G. Finally, we
call |V (G)| the useful space.

Definition 5 (Constructible language). A graph language L is called constructible (partially constructible)
if there is a protocol that constructs (partially constructs) it. Similarly, we call L constructible under f
faults, if there is an f -fault-tolerant protocol that constructs L, where f is an upper bound on the maximum
number of faults during an execution.

Definition 6 (Critical node). Let G be a graph that belongs to a graph language L. Call u a critical node
of G if by removing u and all its edges, the resulting graph G′ = G − {u} − {uv : v ∼ u}, does not belong
to L. In other words, if there are no critical nodes in G, then any (induced) subgraph G′ of G that can be
obtained by removing nodes and all their edges, also belongs to L.

Definition 7 (Hereditary Language). A graph language L is called hereditary if for any graph G ∈ L, every
induced subgraph of G also belongs to L. In other words, there is no graph G ∈ L with critical nodes.

This notion is known in the literature as hereditary property of a graph w.r.t. (with respect to) some graph
language L. Observe that if there exists a graph G s.t. for any induced subgraph G′ of G, G′ ∈ L, does
not imply that the same holds for any graph in L. Some examples of hereditary languages are “Bipartite
graph”, “Planar graph”, “Forest of trees”, “Clique”, “Set of cliques”, and “Maximum node degree ≤ ∆”.

3. Network Constructors without Fault Notifications

In this section, we study the constructive power of the original NET model in the presence of bounded
and unbounded crash faults when no form of notification is available to the nodes. We start from the case
in which the number of nodes that crash during an execution can be anything from 0 up to n− 2 nodes. We
are interested in characterizing the class of constructible graph languages. Observe that we cannot trivially
conclude that the adversary can always leave us with just 2 nodes, only allowing our protocols to form a
line of length 1. This is because our definition of constructible languages under faults takes into account all
possible executions with f faults, for all values of f ∈ {0, 1, . . . , n− 2}. We show that in the case where the
number of faults cannot be bounded by a constant number, the only language that is constructible is the
Lc = {G : G is a spanning clique}.

We then consider the setting where only a constant number of faults are allowed, and we show that no
language L is constructible under a single fault, if L is not Hereditary. However, if we allow linear waste in
the population, any language that is constructible without faults, becomes constructible under a constant
number of faults.

Finally, we show a family of graph languages that is partially constructible (without waste in the pop-
ulation). The exact characterization of the class of partially constructible languages remains as an open
problem.
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3.1. Unbounded Number of Faults

We consider here the setting where the number of faults can be any number up to n− 2. We prove that
the only constructible graph language is Spanning Clique = {G : G is a spanning clique}.

We first present a very simple protocol which constructs the language Spanning Clique and we show that
it can tolerate any number of faults. Let Clique be the following protocol.

Protocol 1 Clique

Q = {b}
Initial state: b

δ :
(b, b, 0)→ (b, b, 1)

\\All transitions that do not appear have no effect.

Lemma 1. Clique (Protocol 1) is a fault-tolerant protocol for Spanning Clique.

Clearly, for any number f < n of faults, where n is the population size, Protocol 1 constructs the language
Spanning Clique.

By Lemma 1, we know that the language Spanning Clique is constructible under n− 2 faults. To clarify,
this means that for any execution of Protocol 1 on n nodes, f of which crash (f ∈ {0, 1, . . . , n−2}), Protocol
1 is guaranteed to stabilize to a clique of order n− f .

We will now prove that (due to the power of the adversary), no other graph language is constructible
under unbounded faults.

Lemma 2. Let Π be a protocol constructing a language L and G ∈ L be a graph that Π outputs on |V (G)|
nodes. If G has an independent set S ⊆ V , s.t. |S| ≥ 2, then there is an execution of Π on n nodes which
stabilizes on |S| isolated nodes (where |S| = n− f and f is the number of faults in that execution).

Proof. Consider an execution of Π that outputs G. By definition, there is a point in this execution after
which no further edge updates can occur (no matter what the infinite execution suffix will be). Take any
configuration Cstable after that point and consider its sub-configuration CS induced by the independent set
S. Observe that CS encodes the state of each node u ∈ S in that particular stable configuration Cstable.
Denote also by QS the multiset of all states assigned by CS to the nodes in S.

Every state in QS is reachable (in the sense that there exists an execution that produces it). For each
q ∈ QS consider the smallest population Vq in which there is some execution aq of protocol Π that produces
state q. Consider the population V =

⋃
q∈QS

Vq (or equivalently of size n =
∑

q∈QS
|Vq|).

For each Vq in population V we execute aq until q is produced on some node uq. After this, every q ∈ QS

is present in the population V . Then, the adversary crashes all nodes in Vq \{uq} (i.e., only uq remains alive
in each Vq). This leaves the execution with a set of alive nodes equivalent in cardinality and configurations
to the independent set S under CS .

The above construction is a finite prefix of fair executions. For the sake of contradiction, assume that
in any fair continuation of the above prefix, Π eventually stabilizes to a graph with no isolated nodes (as
required by the fact that Π constructs a graph language L). Take one such continuation γ. As γ starts from
a configuration in all respects equivalent to that of S under Cstable, it follows that γ can also be applied to
Cstable and in particular on the independent set S starting from CS . It follows that γ must have exactly the
same effect as before, that is, eventually it will cause the activation of at least one edge between the nodes
in S. But this violates the fact that Cstable is a stable configuration, therefore no edge could have been
activated by Π in the continuation, implying that the continuation must have been an execution stabilizing
on |S| isolated nodes.
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Theorem 1. Let L be any graph language such that L ̸= Spanning Clique. Then, there is no protocol that
constructs L if an unbounded number of crash failures may occur.

Proof. As L ̸= Spanning Clique, there exists G ∈ L such that G is not complete (and by definition no G′ ∈ L
has isolated nodes). Therefore G has an independent set S of size at least 2. If there exists a protocol Π
that constructs L, then by Lemma 2 there must be an execution of Π which stabilizes on at least 2 isolated
nodes. The latter is a stable output not in L, therefore a contradiction.

Theorem 2. If an unbounded number of faults may occur, the Spanning Clique is the only constructible
language.

Proof. Directly from Lemma 1 and Theorem 1.

Theorem 3. Let L be any graph language such that the graphs G ∈ L have maximum independent sets
whose size grows with |V (G)| (i.e., ω(1)). If the useful space of protocols is required to grow with n, then
there is no protocol that constructs L in the unbounded-faults case.

Proof. The proof is a direct application of Lemma 2. As the size of the maximum independent set of G
grows with |V (G)| in L, and the useful space is a non-constant function of n, it follows that, as n grows,
the stable output-graph (on the useful space) has an independent set of size that grows with n (consider,
for example, the leaves of binary trees of growing size as such a growing independent set). As any such
stable independent set of size g(n) implies that another execution has to stabilize to g(n) isolated nodes, it
follows that any protocol for L would produce infinitely many stable outputs of isolated nodes. The latter
is contradicting the fact that the protocol constructs L.

3.2. Bounded Number of Faults

The exact characterization established above, shows that under unbounded failures and without further
assumptions, we cannot hope for non-trivial constructions. We now relax the power of the faults adversary,
so that there is a finite upper bound f on the number of faults. In particular, for any n ≥ 1, and fixing any
such 0 ≤ f ≤ n in advance, it is guaranteed that for all executions of a protocol on n nodes, at most f nodes
may fail during the execution. Then the class of constructible graph languages is naturally parameterized in
f . We first show that non-hereditary languages are not constructible under a single fault.

Theorem 4. If there exists a critical node in G, there is no 1-fault-tolerant NET protocol that stabilizes to
it.

Proof. Let Π be a NET protocol that constructs a graph language L, tolerating one crash failure. Consider
an execution E and a sequence of configurations C0, C1, . . . of E . Assume a time t that the output of E
has stabilized to a graph G ∈ L (i.e., G(Ci) = G, ∀i ≥ t). Let u be a critical node in G. Assume that
the scheduler removes u and all its edges (crash failure) at time t′ > t, resulting to a graph G′ /∈ L. In
order to fix the graph (i.e., re-stabilize to a graph G′′ ∈ L), the protocol must change at some point t′′ the
configuration. This can only be the result of a state update on some node v. Now, call E ′ the execution
that node u does not crash and, besides that, is the same as E . Then, between t′ and t′′ the node v has the
same interactions as in the previous case where node u crashed. This results to the same state update in v,
since it cannot distinguish E from E ′. The fact that u either crashes or not, leads to the same result (i.e.,
v tries to fix the graph thinking that u has crashed). This means that if we are constantly trying to detect
faults in order to deal with them, this would happen indefinitely and the protocol would never be stabilizing.
Consider that the network has stabilized to G. At some point, because of the infinite execution, a node will
surely but wrongly detect a crash failure. Thus, G has not really stabilized.

By Definition 7 and Theorem 4 it follows that.

Corollary 1. If a graph language L is non-hereditary, it is impossible to be constructed under a single fault.

8



(a) D = ([k], H)
(b) Graph of supernodes

Figure 1: In 1a, D defines a ring of size k. In 1b, each node of D corresponds to a set of nodes (or supernode), while for each
edge of D between two nodes ui and uj , all nodes of Vi are connected to all nodes of Vj and vice versa.

Note that this does not imply that any hereditary language is constructible under a constant number of
faults. We leave this as an interesting open problem.

On the positive side we show that in the case of bounded number of faults, there is a non-trivial class of
languages that is partially constructible. Consider the class of graph languages defined as follows. Any such
language LD,f in the family is uniquely specified by a graph D = ([k], H) and the finite upper bound f < k
on the number of faults. A graph G = (V,E) belongs to LD,f iff there are k partitions V1, V2, . . . , Vk of V
s.t. for all 1 ≤ i, j ≤ k, ||Vi|−|Vj || ≤ f+1. In addition, E is constructed as follows. The graph D = ([k], H),
possibly containing self-loops, defines a neighboring relation between the k partitions. For every (i, j) ∈ H
(where possibly i = j), E contains all edges between partitions Vi and Vj , i.e., a complete bipartite graph
between them (or a clique in case i = j). As no isolated nodes are allowed, every Vi must be fully connected
to at least one Vj (possibly itself). In Figure 1, we present an example of a graph that belongs to LD,f ,
where D defines a ring graph.

We first consider the case where k = 2ϵ, for some constant ϵ ∈ N0, and we provide a protocol that divides
the population into k partitions. The protocol works as follows: initially, all nodes are in state c0 (we call
this the partition 0). When two nodes in states ci, where i ≥ 0 interact with each other, they update their
states to c2i+1 and c2i+2, moving to partitions 2i + 1 and 2i + 2 respectively. Interactions between nodes
in different c-states (ci, cj , where i ̸= j) do not affect the configuration. When j = 2i + 1 ≥ k − 1 (or
j = 2i + 2 ≥ k − 1) for the first time, it means that the node has reached its final partition. It updates its
state to Pm, where m = j − k + 1, thus, the final partitions are {P0, P1, . . . , Pk−1}.

This process divides each partition into two partitions of equal size. However, in the case where the
number of nodes is odd, a single node remains unmatched. For this reason, all nodes participate to the
final formation of H regardless of whether they have reached their final partitions or not. There is a
straightforward mapping of each internal partition to a distinct leaf of the binary tree, that is, each partition
ci behaves as if it were in partition Pi. In order to avoid false connections between the partitions, we also
allow the nodes to disconnect from each other if they move to a different partition. This process guarantees
that eventually all nodes end up in a single partition, and their connections are strictly described by H.

Lemma 3. In the absence of faults, Protocol 2, divides the population into k partitions of at least n/k − 1
nodes each.

Proof. Initially all nodes are in state c0. When two c0 nodes interact with each other, one of them becomes
c1 and the other one c2. This means that all n nodes split into two partitions of equal size. No node can

9



Protocol 2 Graph of Supernodes

Q = {ci, Pj} × {0, 1}, 0 ≤ i ≤ 2(k − 1), 0 ≤ j ≤ k − 1
Initial state: c0

δ :
\\Partitioning
1. (ci, ci, 0)→ (c2i+1, c2i+2, 0), if (i+ 1) < k
2. (ci, ·, ·)→ (Pj , ·, ·), if (i ≥ k − 1), j = i− k + 1

\\Formation of graph H
3. (Pi, Pj , 0)→ (Pi, Pj , 1), if (i, j) ∈ H
4. (Pi, Pj , 1)→ (Pi, Pj , 0), if (i, j) /∈ H
5. (ci, Pj , 0)→ (ci, Pj , 1), if (i, j) ∈ H
6. (ci, Pj , 1)→ (ci, Pj , 0), if (i, j) /∈ H
7. (ci, cj , 0)→ (ci, cj , 1), if (i, j) ∈ H
8. (ci, cj , 1)→ (ci, cj , 0), if (i, j) /∈ H

\\All transitions that do not appear have no effect.

become c0 again at any time during the execution. In addition, there is only one partition cj that produces
nodes of some other partition ci, where i is either 2j + 1 or 2j + 2, and the size of them are half the size
of cj . This process can be viewed as traversing a labelled binary tree, until all nodes reach to their final
partition. A node in state ci has reached its final partition when i ≥ k − 1. This process describes a
subdivision of the nodes, where each partition splits into two partitions of equal size. The final partitions
are {ck−1, ck, . . . , c2k−2}.

Assume now that the initial population size is n0 (level 0 of the binary tree). If n0 is even, the size of the
following two partitions c1 and c2 will be n0/2. If n0 is odd, one node remains unmatched, thus, the size of
c1 and c2 will be n1 = n0−1

2 . In the next level of the binary tree, at most one node will remain unmatched in

each partition, thus n2 = n1−1
2 . Consequently, the size of a partition in level p can be calculated recursively,

and (in the worst case) it is np =
np−1−1

2 .

np =
np−1 − 1

2
=

np−1

2
− 1

2
=

np−2

2 − 1
2

2
− 1

2

=
np−2

4
− 1

4
− 1

2
= · · · = n0

2p
−

p∑
i=1

1

2i

=
n0

2p
− (1− 2−p) >

n0

2p
− 1

(1)

For p = log k levels, each partition has either n0

k or n0

k − 1 nodes.

Lemma 4. Protocol 2, stabilizes after Θ(kn2) expected time.

Proof. Protocol 2 operates in phases, where each phase doubles the number of partitions. After log k phases,
there exist k groups in the population and the nodes terminate.

We now study the time that each group ci needs in order to split into two partitions. Here, for simplicity,
i indicates the level of a partition c in the binary tree and mi the number of nodes of partition ci.

Let X be a random variable (r.v.) defined to be the number of steps until all mi nodes move to their
next partitions. Call a step a success if two nodes in ci interact, thus, moving to their next partitions. We
divide the steps of the protocol into epochs, where epoch j begins with the step following the jth success and
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ends with the step at which the (j + 1)st success occurs. Let also the r.v. Xj , 1 ≤ j ≤ mi be the number of
steps in the jth epoch.

The probability of success during the jth epoch, for 0 ≤ j ≤ mi, is pj =
(mi−j)(mi−j−1)

n(n−1) and E[Xj ] = 1/pj .

By linearity of expectation we have

E[X] = E[

mi−2∑
j=0

Xj ] =

mi−2∑
j=0

E[Xj ] = n(n− 1)

mi−2∑
j=0

1

(mi − j)(mi − j − 1)

= n(n− 1)

mi∑
j=2

1

j(j − 1)
< n(n− 1)

mi∑
j=2

1

(j − 1)2

= n(n− 1)

mi−1∑
j=1

1

j2
< n(n− 1)

π2

6
= O(n2)

(2)

The above uses the fact that mi ≤ n for any i ≥ 0.
For the lower bound, observe that the last two remaining nodes in ci need on average n(n − 1)/2 steps

to meet each other. Thus, we conclude that E[X] = Θ(n2).

In total,
∑log (k)−1

0 2i = 2log k − 1 = k − 1 partitions split, thus, the total expected time to stabilization
is Θ(kn2) steps.

Lemma 5. In the case where up to f faults occur during the execution of Protocol 2, each final partition
has at least n/k − f − 1 nodes, where k is the number of partitions and f < k.

Proof. Call Pp
i the set of partitions that are in the binary tree starting from a partition ci in distance p

from ci. We now study the relation between the number of faults on some partition ci with the size of the
partitions in Pp

i .
Consider the case where f1 crash faults occur in some partition ci. The nodes of each partition ci operate

independently from the rest of the population, that is, they never update their states and/or connections
when they interact with nodes from a different partition. Thus, if no more faults occur, we can assume that
we have a failure-free execution on |ci| − f1 nodes. By Lemma 3, after p subdivisions, each partition in Pp

i

will have
⌊
|ci|−f1

2p

⌋
nodes. Consequently, any number of faults in a partition ci are equally split into the

partitions following ci.
Now, consider a partition cj ∈ Pp1

i , where f2 faults occur. The number of nodes of cj is then

|cj | − f2 =

⌊
|ci| − f1

2p1

⌋
− f2 (3)

Then, all the partitions in Pp2

j , by Lemma 3 will have at least

⌊
|cj | − f2

2p2

⌋
=


⌊
|ci|−f1
2p1

⌋
− f2

2p2

 ≥ |ci|−f1
2p1 − 1− f2

2p2
− 1 >

|ci|
2p1 − f1 − f2 − 1

2p2
− 1 (4)

nodes. This means that if f1 + f2 faults were occurred only in cj (and not f1 faults in ci), then the
subsequent partitions in Pp

j would have less nodes. This argument can be generalized for faults in any
partition.

It is then obvious that in the worst case, where up to f faults can occur, a final partition (leaf of the
binary tree) will have n

k − f − 1 nodes, and this is the result of f faults in that final partition.

By Lemma 5:

Corollary 2. ||Vi| − |Vj || ≤ f + 1, ∀1 ≤ i, j ≤ k.
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By Lemma 5 and the definition of partial constructibility (Definition 5):

Theorem 5. The language LD,f , where k is a constant number, is partially constructible under f faults.

We now show that if we permit a waste linear in n, any graph language that is constructible in the
fault-free NET model, becomes constructible under a bounded number of faults.

Theorem 6. Take any NET protocol Π of the original fault-free model. There is a NET Π′ such that when
at most f faults may occur on any population of size n, Π′ successfully simulates an execution of Π on at
least n

2f − 1 nodes.

Proof. Consider any constructible language L and a protocol Π that constructs it. For any bounded number
of faults f , set k = 2ϵ, where 2ϵ−1 < f < 2ϵ. Consider a protocol Π′, which consists of the rules 1 and 2
of Protocol 2. These rules partition the population into k groups, where k is an input parameter of Π′. By
Lemma 5, each group has at least n/k−f−1 nodes. For 2ϵ partitions, the number of nodes in each partition
is at least n

2ϵ − f − 1. However, as the number of partitions is strictly more than the upper bound on the
number of faults (2ϵ > f), there exists at least one partition that no fault has occurred. In the worst case
where f = 2δ for some δ ∈ N, there exists at least one partition with n

2f − 1 nodes.

4. Notified Network Constructors

In light of the impossibility results of Section 3, we allow fault notifications when nodes crash, aiming at
constructing a larger class of graph languages. In particular, we introduce a fault flag in each node, which is
initially zero. When a node u crashes at time t, every node v which was adjacent to u at time t is notified,
that is, the fault flag of all v becomes 1 (see Figures 2a and 2b). In the case where u is an isolated node
(i.e., it has no active edges), an arbitrary node w in the graph is notified, and its fault flag becomes 2 (see
Figures 2c and 2d). Then, the fault flag becomes immediately zero after applying a corresponding rule from
the transition function.

More formally, the set of node-states is Q×{0, 1, 2}, and for clarity in our descriptions and protocols, we
define two types of transition functions. The first one determines the node and connection state updates of
pairwise interactions (δ1 : Q×Q×{0, 1} → Q×Q×{0, 1}), while the second transition function determines
the node state updates due to fault notifications (δ2 : Q×{1, 2} → Q×{0}). This means that during a step
t that a node u crashes, all its adjacent nodes are allowed to update their states based on δ2 at that same
step. If there are no adjacent nodes to u, an arbitrary node is notified, thus, updating its state based on δ2
at step t.

We have assumed that the faults can only occur sequentially (at most one fault per step). This assumption
was equivalent to the case where many faults can occur in each step in the original NET model. However,
when fault notifications are allowed, this does not hold, unless the fault flag could be used as a counter of
faults in each step. We want to keep the model as minimal as possible, thus, we only allow the adversary to
choose one node at most in each step to crash.

In this section, we investigate whether the additional information in each agent (the fault flag) is sufficient
in order to design fault-tolerant or f−fault-tolerant protocols, overcoming the impossibility of certain graph
languages in the NET model. Such a minimal fault notification mechanism can be exploited to construct a
larger class of graph languages that in the original Network Constructors model where no form of notifications
was available.

4.1. Fault-Tolerant Protocols

In this section, we give protocols for some basic network construction problems, such as spanning star
(all u ∈ G form a single star), cycle cover (set of cycles which are subgraphs of G and contain all vertices of
G), and in Section 4.2 we give a fault-tolerant spanning line protocol which is part of our generic constructor
capable of constructing a large class of networks.

Protocol 3 constructs a spanning star. Initially all nodes are in the same state b (or black) and they
eliminate each other, becoming r (or red). Eventually, only one node will remain in state b which will be
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(a) Step i

q1
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(b) Step i + 1
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q′1

(c) Step j

q′1
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q′2

q1

(d) Step j + 1

Figure 2: An illustration of the fault notification mechanism. In the first example (Figures 2a and 2b), the gray node crashed,
and the nodes that were adjacent to it at step i were notified and updated their state. At step j > i+ 1, this node along with
its adjacent edges are not present. In the second example (Figures 2c and 2d), the crashed node was isolated, thus an arbitrary
node was notified and updated its state.

the center of the star. In order to handle crash faults, when a red node is notified about a fault, it becomes
black. In this way and because of the fact that a red node cannot be isolated, we guarantee that a black
node will always exist in the population.

Protocol 3 FT Spanning Star

Q = {b, r} × {0, 1}
Initial state: b

δ1 :
\\Formation of spanning star. Eventually, only one node in state b remains.
(b, b, 0)→ (b, r, 1)
(b, r, 0)→ (b, r, 1)
(r, r, 1)→ (b, b, 0)
(b, b, 1)→ (b, r, 1)

δ2 :
\\A leaf becomes the initial state b after a fault notification.
(r, 1)→ (b, 0)

Proposition 1. FT Spanning Star (Protocol 3) is a fault-tolerant protocol that constructs a spanning star.

Proof. Assume that any number of faults f < n occur during an execution. Initially, all nodes are in state
b (black). Two nodes connect with each other, if either one of them is black, or both of them are black, in
which case one of them becomes r (red). A black node can become red only by interaction with another
black node, in which case they also become connected. Thus, with no crash faults, a connected component
always includes at least one black node. In addition, all isolated nodes are always in state b. This is because,
if a red node removes an edge it becomes black.
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Then, if a (connected) node crashes, the adjacent nodes are notified and the red nodes become black,
thus, any connected component should again include at least one black node. Now, consider the case where
only one black node remains in the population. Then the rest of the population (in state r) should be in the
same connected component as the unique b node. Then, if b crashes, at least one black node will appear,
thus, this protocol maintains the invariant, as there is always at least one black node in the population. FT
Spanning Star then stabilizes to a star with a unique black node in the center.

Protocol 4 FT Cycle-Cover

Q = {q0, q1, q2} × {0, 1}
Initial state: q0

δ1 :
(q0, q0, 0)→ (q1, q1, 1)
(q1, q0, 0)→ (q2, q1, 1)
(q1, q1, 0)→ (q2, q2, 1)

δ2 :
\\The state of a node indicates its degree. A fault notification implies that the degree was decreased by
one.
(q1, 1)→ (q0, 0)
(q2, 1)→ (q1, 0)

Similarly, we can show the following.

Proposition 2. FT Cycle-Cover (Protocol 4) is a fault-tolerant protocol that forms a cycle cover.

In this protocol, the state of a node indicates its degree. In particular, all nodes are initially in state q0,
indicating that they are isolated. Whenever a node in state qi, forms a connection, it moves to state qi+1.
At the same time, whenever a node is notified about a fault in a neighboring node, it decreases i by one. In
this protocol 0 ≤ i ≤ 2, which guarantees that eventually all nodes will have degree 2, except maybe for a
single node or a pair of nodes which will form a line.

4.2. Universal Fault-Tolerant Constructors

In this section, we ask whether there is a generic fault-tolerant constructor capable of constructing a large
class of graphs. We first give a fault-tolerant protocol that constructs a spanning line (i.e., a graph of size n
that forms a line), and then we show that we can simulate a given TM on that line, tolerating any number
of crash faults. Finally, we exploit that in order to construct any graph language that can be decided by an
O(n2)−space TM, paying at most linear waste.

Lemma 6. FT Spanning Line (Protocol 5) is a fault-tolerant protocol that constructs a spanning line.

Proof. Initially, all nodes are in state q0 and they start connecting with each other in order to form lines
that eventually merge into one.

When two q0 nodes become connected, one of them becomes a leader (state l0) and starts connecting
with q0 nodes (expands). A leader state l0 is always an endpoint. The other endpoint is in state ei (initially
e1), while the inner nodes are in state q2. Our goal is to have only one leader l0 on one endpoint, because l0
are also used in order to merge lines. Otherwise, if there are two l0 endpoints, the line could form a cycle.
When two l0 leaders meet, they connect (line merge) and a w node appears. This process corresponds to
the rules 1, 2, and 3 of Protocol 5 (depicted also in Figure 3).

The w state performs a random walk on the line and its purpose is to meet both endpoints (at least
once) before becoming an l0 leader. After interacting with the first endpoint, it becomes w1 and changes
the endpoint to e1. Whenever it interacts with the same endpoint they just swap their states from e1, w1
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Protocol 5 FT Spanning Line

Q = {q0, q2, e1, e2, l0, l1, w, w1, w2} × {0, 1}
Initial state: q0

δ1 :
\\Formation of lines, and merging between them.
1. (q0, q0, 0)→ (e1, l0, 1)
2. (l0, q0, 0)→ (q2, l0, 1)
3. (l0, l0, 0)→ (q2, w, 1)

\\w nodes perform a random walk on their line.
4. (wi, q2, 1)→ (q2, wi, 1)
5. (w, q2, 1)→ (q2, w, 1)

\\Nodes in state w introduce a unique endpoint in state l0 on their line.
6. (w, ei, 1)→ (wi, ei, 1)
7. (wi, ei, 1)→ (wj , ej , 1), i ̸= j
8. (wi, ej , 1)→ (q2, l0, 1), i ̸= j
9. (w, li, 1)→ (w1, e1, 1)
10. (wi, li, 1)→ (q2, l0, 1)

\\w nodes eliminate each other, until only one survives.
11. (wi, wj , 1)→ (w, q2, 1)
12. (w, wj , 1)→ (w, q2, 1)

\\Fault notifications on internal nodes (states q2, w, and wi), become l1, which then introduce a new
walking state.
13. (l1, q2, 1)→ (e1, w1, 1)

δ2 :
(ei, 1)→ (q0, 0)
(li, 1)→ (q0, 0)
(q2, 1)→ (l1, 0)
(w, 1)→ (l1, 0)
(wi, 1)→ (l1, 0)

e1

q2

q0

l0

e1

q2

w

e1

q2

q2

Figure 3: The left line is the result of one connection between two isolated nodes, and one expansion (rules 1 and 2 of Protocol
5). The second line is the result of a line merging (rule 3 of Protocol 5).
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to e2, w2 and vice versa. In this way, we guarantee that wi will eventually meet the other endpoint in state
ej , j ̸= i, or l0. In the first case, the wi node becomes a leader (l0), after having walked the whole line at
least once. This process is described by rules 4− 10 of Protocol 5 (depicted also in Figure 4).

e2 w2 e1q2

(a)

e2 w2 e1q2

(b)

e2 l0q2 q2

(c)

Figure 4: In Figure 4a, the walking state and the left endpoints are in states w2 and e2. Then, the walking state eventually
reaches the second endpoint which is in state e1, resulting to state l0 (Figure 4c).

Now, consider the case where a fault may happen on some node on the line. If the fault flag of an
endpoint state becomes 1, it updates its state to q0. Otherwise, the line splits into two disjoint lines and the
new endpoints become l1. An l1 becomes a walking state w1, changes the endpoint into e1 and performs a
random walk (rule 13 of Protocol 5).

If there are more than one walking states on a line, then all of them are w, or wi and they perform a
random walk. None of them can ever satisfy the criterion to become l0 before first eliminating all the other
walking states and/or the unique leader l0 (when two walking states meet, only one survives and becomes
w), simply because they form natural obstacles between itself and the other endpoint (rules 11 and 12 of
Protocol 5). This process is depicted in Figure 5. If a new fault occurs, then this can only introduce another
wi state which cannot interfere with what existing wi’s are doing on the rest of the line (can meet them
eventually but cannot lead them into an incorrect decision).

e1 q2q2 w1 l1

(a)

e1 w1q2 w1 e1

(b)

e1 wq2 e1q2

(c)

Figure 5: In Figure 5a there is one walking state, and one endpoint in state l1. l1 state is the result of a fault on an adjacent
node of it. This state introduces an additional walking state, and in Figure 5c the two walking states interact and only one
survives. The unique walking state w is then guaranteed to first traverse the whole line at least once before an endpoint becomes
l0.

If an l0 leader is merging while there are wi’s and/or w’s on its line (without being aware of that), the
merging results in a new w state, which is safe because a w cannot make any further progress without first
succeeding to beat everybody on the line. A w can become l0 only after walking the whole line at least
once (i.e., interact with both endpoints) and to do that it must have managed to eliminate all other walking
states of the line on its way.

We have shown that despite the presence of faults, any expansion or merging eventually succeeds, meaning
that the population eventually forms a line with a single leader in one endpoint.
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Lemma 7. There is a NET Π (with notifications) such that when Π is executed on n nodes and at most
f faults can occur, where 0 ≤ f < n, Π will eventually simulate a given TM M of space O(n − f) in a
fault-tolerant way.

Proof. The state of Π has two components (P, S), where P is executing a spanning line formation procedure,
while S handles the simulation of the TM M . Our goal is to eventually construct a spanning line, where
initially the state of the second component of each node is in an initial state s0 except from one node which
is in state head and indicates the head of the TM.

In general, the states P and S are updated in parallel and independently from each other, apart from
some cases where we may need to reset either P , S or both.

In order to form a spanning line under crash failures, the P component will be executing our FT Spanning
Line protocol which is guaranteed to construct a line, spanning eventually the non-faulty nodes.

It is sufficient to show that the protocol can successfully reinitialize the state of all nodes on the line
after a final event has happened and the line is stable and spanning. Such an event can be a line merging, a
line expansion, a fault on an endpoint or an intermediate fault. The latter though can only be a final event
if one of the two resulting lines is completely eliminated due to faults before merging again. In order to
re-initialize the TM when the line expands to an isolated node q0, we alter a rule of the FT Spanning Line
protocol. Whenever, a leader l0 expands to an isolated node q0, the leader becomes q2 while the node in q0
becomes l1, thus introducing a new walking state.

We now exploit the fact that in all these cases, FT Spanning Line will generate a w or a wi state in each
affected component.

Whenever a w1 or w2 state has just appeared or interacted with an endpoint e1 or e2 respectively, it
starts resetting the simulation component S of every node that it encounters. If it ever manages to become
a leader l0, then it finally restarts the simulation on the S component by reintroducing to it the tape head.

When the last event occurs, the final spanning line has a w or wi leader in it, and we can guarantee a
successful restart due to the following invariant. Whenever a line has at least one w/wi state and no further
events can happen, FT Spanning Line guarantees that there is one w or wi that will dominate every other
w/wi state on the line and become an l0, while having traversed the line from endpoint to endpoint at least
once.

In its final departure from one endpoint to the other, it will dominate all w and wi states that it will
encounter (if any) and reach the other endpoint. Therefore, no other w/wi states can affect the simulation
components that it has reset on its way, and upon reaching the other endpoint it will successfully introduce
a new head of the TM while all simulation components are in an initial state s0.

Lemma 8. There is a fault-tolerant NET Π (with notifications) which partitions the nodes into two groups
U and D with waste at most 2f(n), where f(n) is an upper bound on the number of faults that can occur. U
is a spanning line with a unique leader in one endpoint and can eventually simulate a TM M . In addition,
there is a perfect matching between U and D.

Proof. Initially all nodes are in state q0. Protocol Π partitions the nodes into two equal sets U and D and
every node maintains its type forever. This is done by a perfect matching between q0’s where one becomes qu
and the other becomes qd. Then, the nodes of U execute the FT Spanning Line protocol, which guarantees
the construction of a spanning line, capable of simulating a TM (Lemma 7). The rest of the nodes (D),
which are connected to exactly one node of U each, are used to construct on them random graphs. Whenever
a line merges with another line or expands towards an isolated node, the simulation component S in the
states of the line nodes, as described in Lemma 7, is reinitialised sequentially.

Assume that a fault occurs on some node of the perfect matching before that pair has been attached to
a line. In this case, its pair will become isolated therefore it is sufficient to switch that back to q0.

If a fault occurs on a D node u after its pair z has been attached to a line, z goes into a detaching state
which disconnects it from its line neighbors, turning them into l1 and itself becoming a q0 upon release. An
l1 state on one endpoint is guaranteed to walk the whole line at least once (as wi) in order to ensure that
a unique leader l0 will be created. If u fails before completing this process, its neighbors on the line shall
be notified becoming again l1, and if one of its neighbors fails we shall treat this as part of the next type
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Figure 6: The population is partitioned into two groups U and D that form a perfect matching. The nodes of U eventually
form a spanning line, and simulate a TM of linear space. The TM repeatedly constructs random graphs in the nodes of D,
until the graph belongs to the given graph language.

of faults. This procedure shall disconnect the line but may leave the component connected through active
connections within D. But this is fine as long as the FT-Spanning Line guarantees a correct restart of the
simulation after any event on a line. This is because eventually the line in U will be spanning and the last
event will cause a final restart of the simulation on that line.

Assume that a fault occurs on a node u ∈ U that is part of the line. In this case the neighbors of
u on the line shall instantly become l1. Now, its D pair v, which may have an unbounded number of D
neighbors at that point, becomes a special deactivating state that eventually deactivates all connections and
never participates again in the protocol, thus, it stays forever as waste. This is because the fault partially
destroys the data of the simulation, thus, we cannot safely assume that we can retrieve the degree of v and
successfully deactivate all edges. As there can be at most f(n) such faults we have an additional waste of
f(n). Now, consider the case where u is one neighbor of a node z which is trying to release itself after its v
neighbor in D failed. Then, z implements a 2-counter in order to remember how many of its alive neighbours
have been deactivated by itself or due to faults in order to know when it should become q0.

Theorem 7. For any graph language L that can be decided by a linear space TM, there is a fault-tolerant
NET Π (with notifications) that constructs a graph in L with waste at most min{n/2+f(n), n}, where f(n)
is an upper bound on the number of faults that can occur. 1

Proof. By Lemma 8, there is a protocol that constructs two groups U and D of equal size, where each node
of U is matched with exactly one node of D, and vice versa. In addition, the nodes of U form a spanning
line, and by Lemma 7 it can simulate a TM M . After the last fault occurs, M is correctly initialized and
the head of the TM is on one of the endpoints of the line. The two endpoints are in different states, and
assume that the endpoint that the head ends up is in state ql (left endpoint), and the other is in state qr
(right endpoint). This construction is depicted in Figure 6.

We now provide the protocol that performs the simulation of the TM M , which we separate into several
subroutines. The first subroutine is responsible for simulating the direction on the tape and is executed once
the head reaches the endpoint ql. The simulation component S (as in Lemma 7) of each node has three
sub-components (h, c, d). h is used to store the head of the TM, i.e., the actual state of the control of the
TM, c is used to store the symbol written on each cell of the TM, and d is either l, r or ⊔, indicating whether
that node is on the left or on the right of the head (or unknown). Assume that after the initialization of the
TM, d = ⊔ for all nodes of the line. Finally, whenever the head of the TM needs to move from a node u to
a node z, hz ← hu, and hu ← ⊔.

Direction. Once the head of the TM is introduced in the endpoint ql by the lines’ leader, it moves on the
line, leaving l marks on the d component of each node. It moves on the nodes which are not marked, until it
eventually reaches the qr endpoint. At that point, it starts moving on the marked nodes, leaving r marks on
its way back. Eventually, it reaches again the ql endpoint. At that time, for each node on its right it holds

1Given a target graph of size |V (G)|, the size of the initial population required to construct G depends on the number of
faults that occur and on the state of the nodes during the crash failures. In particular, the minimum size required to construct
G is 2n (no faults occur), while the maximum number of nodes is 2(n+ f(n)).
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that d = r. Now, every time it wants to move to the right it moves onto the neighbor that is marked by r
while leaving an l mark on its previous position, and vice versa. Once the head completes this procedure, it
is ready to begin working as a TM.

Construction of random graphs in D. This subroutine of the protocol constructs a random graph in the
nodes of D. Here, the nodes are allowed to toss a fair coin during an interaction. This means that we allow
transitions that with probability 1/2 give one outcome and with 1/2 another. To achieve the construction
of a random graph, the TM implements a binary counter C (log n bits) in its memory and uses it in order to
uniquely identify the nodes of set D according to their distance from ql. Whenever it wants to modify the
state of edge (i, j) of the network in D, the head assigns special marks to the nodes in D at distances i and
j from the left of the endpoint ql. Note that the TM uses its (distributed) binary counter in order to count
these distances. If the TM wants to access the i−th node in D, it sets the counter C to i, places a mark
on the left endpoint ql and repeatedly moves the mark one position to the right, decreasing the counter by
one in each step, until C = 0. Then, the mark has been moved exactly i positions to the right. In order to
construct a random graph in D, it first assigns a mark r1 to the first node ql, which indicates that this node
should perform random coin tosses in its next interactions with the other marked nodes, in order to decide
whether to form connections with them, or not. Then, the leader moves to the next node on its line and
waits to interact with the connected node in D. It assigns a mark r2, and waits until this mark is deleted.
The two nodes that have been marked (r1 and r2), will eventually interact with each other, and they will
perform the (random) experiment. Finally the second node deletes its mark (r2). The head then, moves to
the next node and it performs the same procedure, until it reaches the other endpoint qr. Finally, it moves
back to the first node (marked as r1), deletes the mark and moves one step right. This procedure is repeated
until the node that should be marked as r1 is the right endpoint qr. It does not mark it and it moves back
to ql. The result is an equiprobable construction of a random graph. In particular, all possible graphs over
|D| nodes have the same probability to occur. Now, the input to the TM M is the random graph that has
been drawn on D, which provides an encoding equivalent to an adjacency matrix. Once this procedure is
completed, the protocol starts the simulation of the TM M . There are m = k(k− 1)/2 edges, where k = |D|
and M has available k

2 =
√
m space, which is sufficient for the simulation on a

√
m−space TM.

Read edges of D. We now present a mechanism, which can be used by the TM in order to read the state
of an edge joining two nodes in D. Note that a node in D can be uniquely identified by its distance from
the endpoint ql. Whenever the TM needs to read the edge joining the nodes i and j, it sets the counter
C to i. Assume w.l.o.g. that i < j. It performs the same procedure as described in the subroutine which
draws the random graph in D. It moves a special mark to the right, decreasing C by one in each step, until
it becomes zero. Then, it assigns a mark r3 on the i−th node of D, and then performs the same for C = j,
where it also assigns a mark r4 (to the j−th node). When the two marked nodes (r3 and r4) interact with
each other, the node which is marked as r4 copies the state of the edge joining them to a flag F (either 0 or
1), and they both delete their marks. The head waits until it interacts again with the second node, and if
the mark has been deleted, it reads the value of the flag F .

After a simulation, the TM either accepts or rejects. In the first case, the constructed graph belongs
to L and the Turing Machine halts. Otherwise, the random graph does not belong to L, thus the protocol
repeats the random experiment. It constructs again a random graph, and starts over the simulation on the
new input.

A final point that we should make clear is that if during the simulation of the TM an event occurs (crash
fault, line expansion, or line merging), by Lemma 7 and Lemma 8, the protocol reconstructs a valid partition
between U and D, the TM is re-initialized correctly, and a unique head is introduced in one endpoint. At
that time, edges in D may exist, but this fact does not interfere with the (new) simulation of the TM, as a
new random experiment takes place for each pair of nodes in D prior to each simulation.

We now show that if the constructed network is required to occupy 1/3 instead of half of the nodes, then
the available space of the TM-constructor dramatically increases from O(n) to O(n2). We provide a protocol
which partitions the population into three sets U , D and M of equal size k = n/3. The idea is to use the

19



· · ·

· · ·D

U ql qu qu qu qr
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Figure 7: The population is partitioned into three groups M , U , and D of equal size. The nodes of U form a perfect matching
with both U and M . The nodes of U eventually form a spanning line, and simulate a TM of linear space that uses the edges in
M as an O(n2) binary memory. The TM repeatedly constructs random graphs in the nodes of D, until the graph belongs to
the given graph language.

set M as a Θ(n2) binary memory for the TM, where the information is stored in the k(k− 1)/2 edges of M .

Lemma 9. Protocol 3-Partition partitions the nodes into three groups U , D and M , with waste 3f(n), where
f(n) is an upper bound on the number of faults that can occur. U is a spanning line with a unique leader in
one endpoint and can eventually simulate a TM, each node in D ∪M is connected with exactly one node of
U , and each node of U is connected to exactly one node in D and one node in M .

Proof. Protocol 3−Partition constructs lines of three nodes each, where one endpoint is in state qd, the other
endpoint in state qm, and the center is in state qu. The nodes of U operate as in Lemma 8 (i.e., they execute
the FT Spanning Line protocol). A (connected) pair of nodes waits until a third node is attached to it, and
then the center becomes qu and starts executing the FT Spanning Line protocol. Note that at some point,
it is possible that the population may only consist of pairs in states qd and q′u. For this reason, we allow q′u
nodes to connect with each other, forming lines of four nodes. One of the q′u nodes becomes qu and the other
becomes q′m. A node in q′m becomes qm only after deactivating its connection with a qd node (its previous
pair). This results in lines of three nodes each with nodes in states qd, qu and qm. Then, the qu nodes start
forming a line, spanning all nodes of U . In a failure-free setting, the correctness of this protocol follows from
Lemma 8. In addition, by Lemma 7, the TM of the line is initialized correctly after the last occurring event
(line expansion, line merging, or crash fault).

If we consider crash failures, it is sufficient to show that eventually U is a spanning line and M and D are
disjoint. If a node ever becomes qd or qm, it might form connections with other nodes in D or M respectively,
because of a TM simulation. A node in M never forms connections with nodes in D. After they receive a
fault notification, they become the deactivating state s. A node in state s is disconnected from any other
node, thus, it eventually becomes isolated and never participates in the execution again. We do this because
nodes in M and D can form unbounded number of connections. The data of the TM have been partially
destroyed (because of the crash failure), therefore it is not safe to assume that we can retrieve the degree of
them and successfully re-initialize them.

A node u in state q′m (inner node of a line of four nodes), after a fault notification it becomes qw. A node
in qw waits until its next interaction with a connected node v. If v is in state qu, this means that now a
triple has been formed, thus u becomes qm. If v is in state qd, they delete the edge joining them, u becomes
q0 and v becomes s (v might have formed connections with other nodes in D).

A node u in qu, after a fault notification it becomes q′w and waits until its next interaction with a
connected node v. At that point, v can be either qd, q

′
m, or qm. In all cases they disconnect from each other

and u becomes q′0. The state q′0 indicates that the node should release itself from the spanning line in U .
This procedure works as described in Lemma 8, thus, after releasing itself from the line, it becomes q0. If v
is in state qd or qm, it becomes s. If v is in state q′m, it becomes q′u, as its (unique) adjacent node can only
be in state qd.
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Protocol 6 3-Partition

Q = {q0, q′0, qd, qu, q′u, qm, q′m, qw, q
′
w, s} × {0, 1}

Initial state: q0

δ1 :
\\Formation of independent lines of three nodes.
(q0, q0, 0)→ (q′u, qd, 1)
(q′u, q0, 0)→ (qu, qm, 1)

\\Two connected pairs of nodes can form a line of four nodes. In this case, one of the endpoints is
disconnected from the line.
(q′u, q

′
u, 0)→ (qu, q

′
m, 1)

(q′m, qd, 1)→ (qm, q0, 0)

\\qw is the result of a fault on either a node in qd or qu state. The nodes in this state wait until they
interact with (the unique) adjacent node, and update their state accordingly.
(qw, qd, 1)→ (q0, s, 0)
(qw, qu, 1)→ (qm, qu, 1)

\\q′w is the result of a fault on a node in qd, qm, or q′m state. The nodes in this state wait until they
interact with (the unique) adjacent node, and update their state accordingly. q′0 eventually becomes q0
after releasing itself from the spanning line.
(q′w, qd, 1)→ (q′0, s, 0)
(q′w, qm, 1)→ (q′0, s, 0)
(q′w, q

′
m, 1)→ (q′0, q

′
u, 0)

\\Nodes in state s are disconnected from all nodes, and are left as waste.
(s, ·, 1)→ (s, ·, 0)

δ2 :
(q′u, 1)→ (q0, 0)

\\States q′m and qu indicate intermediate nodes of the line. After a fault notification, they enter to a
temporary state, and wait until their first interaction with the remaining (unique) adjacent node.
(q′m, 1)→ (qw, 0)
(qu, 1)→ (q′w, 0)

\\A node in state qw or q′w, is guaranteed to have exactly one neighbor in the (qm, qu, qd) line. Thus,
after a fault notification, it becomes q0 (or q′0 if it belongs to the set U)
(qw, 1)→ (q0, 0)
(q′w, 1)→ (q′0, 0)

\\qd and qm nodes remain as waste (in state s) after a fault notification.
(qd, 1)→ (s, 0)
(qm, 1)→ (s, 0)

\\All transitions that do not appear have no effect.
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A node in q′u or qw, after a fault notification it becomes q0 and continues participating in the execution
again. Finally, a node in state q′w, after receiving a fault notification, it becomes q′0 (a q′w is the result of a
fault notification in a U− node).

Note that a node in any state except from qd and qm can be re-initialized correctly, thus they may
participate in the execution again. It is apparent that no node that might have formed unbounded number
of connections can participate in the execution again after a crash fault. This guarantees that the connections
in D and M can be correctly initialized after the final event, and that no node in D ∪M can be connected
with more than one node in U . In addition, if a U−node receives a fault notification, it releases itself from
the line, thus introducing new walking states in the resulting line(s). By Lemma 7, this guarantees the
correct re-initialization of the TM. Finally, a crash failure can lead in deactivating two more nodes, in the
worst case. These nodes never participate in the execution again, thus they remain forever as waste. This
means that after f(n) crash failures, the partitioning will be constructed in n− 3f(n) nodes.

Theorem 8. For any graph language L that can be decided by an (n2/18 + O(n))−space TM, there is a
protocol that constructs L equiprobably with waste at most min{2n/3 + f(n), n}, where f(n) is an upper
bound on the number of faults.

Proof. Protocol 6 partitions the population in three groups U , D and M and by Lemma 9, it tolerates
any number of crash failures, while initializing correctly the TM after the final event (line expansion, line
merging, or crash fault). Reading and writing on the edges of M is performed in precisely the same way as
reading/writing the edges of D (described in Theorem 7). Thus, the Turing Machine has now a n2/18−space
binary memory (the edges of M) and O(n)−space on the nodes of the spanning line U . The random graph
is constructed on the k nodes of D (useful space), where by Lemma 9, k = (n − 3f(n))/3 = n/3 − f(n) in
the worst case.

4.3. Designing Fault-Tolerant Protocols without Waste

A very simple, (yet impractical) idea that could tolerate any number f < n of faults is to restart the
protocol each time a node crashes. The implementation of this idea requires the ability of some nodes to
detect the removal of a node.

Definition 8 (Global restart). Let Π be a protocol that constructs a graph language L and C be a set of
configurations that all executions of Π starting from any C ∈ C stabilize to a graph G ∈ L. We call global
restart the process which reaches Π to a configuration C ∈ C in finite time.

Our goal is to come up with a protocol A that can be composed with any NET protocol Π (with
notifications), so that their composition is a fault-tolerant version of Π. Essentially, whenever a fault occurs,
A will restart all nodes in a way equivalent to as if a new execution of Π had started on the whole remaining
population. Parallel execution of protocols is easily achieved in the Population Protocol model, by taking
the Cartesian product of their state sets and updating the states for each protocol independently when a
transition occurs ([3]). We denote the parallel composition of two protocols Π1 and Π2 as Π1 ◦Π2. However,
in the Network Constructors model, the connections between the nodes are binary and the Cartesian product
of their states would imply that each protocol Π1 and Π2 maintains its own connection state between each
pair of nodes. To overcome this problem, we only consider parallel composition between two protocols where
only one of them is allowed to activate/deactivate edges between the nodes. In particular, assume that Π1

is a protocol with transition function δ1 : Q1 ×Q1 → Q1 ×Q1 and Π2 is a protocol with transition function
δ2 : Q2 × Q2 × {0, 1} → Q2 × Q2 × {0, 1}. Then, the composition of these protocols Π1 ◦ Π2 is a Network
Constructor with transition function δ1,2 : (Q1×Q2)× (Q1×Q2)×{0, 1} → (Q1×Q2)× (Q1×Q2)×{0, 1}.

Definition 9. Consider any execution Ei of a protocol Π. There exists a finite number of different executions,
and for each execution a step ti that Π stabilizes. Call Ci,j the j−th configuration of execution Ei, where
j ≤ ti. Then, we call maximum reachable degree of Π the value d = max{Degree(G(Ci,j))}, ∀i, j.
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We first show that even in the case where the whole population is notified about a crash failure, global
restart is impossible for protocols with d = ω(1), if the nodes have constant memory. However, we provide
a protocol that restarts the population, but we supply the nodes with O(log n) bits of memory. In our
approach, we use fault notifications, and if a node z crashes, the set Nz of the nodes that are notified, has
the task to restart the protocol.

Theorem 9. Consider a protocol Π with unbounded maximum reachable degree. Then, global restart of Π
is impossible for nodes with constant memory, even if every node u in the population is notified about the
crash failure.

Proof. Consider a protocol Π with constant number of states k and unbounded maximum reachable degree,
which constructs a graph language L. Assume also that at time t a crash failure occurs and that there are
some edges in the graph (call them spurious edges). Protocol Π is allowed to have rules that are triggered
by the fault and try to erase those edges (erasing process). We assume that all nodes in the population are
notified about the crash failure.

Observe that any degree more than k cannot be remembered by a node, that is, a state q cannot indicate
its degree. This means that a node cannot detect the termination of the erasing process and eventually
reset its state to an initial one to allow the restart. To stop the erasing process is equivalent to counting
the remaining edges and wait until the degree reaches zero, but this would require logarithmic to maximum
reachable degree number of bits.

The above observation means that the agents must enter to a new initial state and start forming new
connections prior to the termination of the erasing process. But the only way to distinguish connections
made before and after a fault is to enter to a different set of states after every a fault occurs. Otherwise
the erasing process will fail. This can be achieved by having parallel executions of Π. In particular, given
Π, the agents execute Π′ = Π(1) ◦ Π(2) ◦ · · · ◦ Π(δ), where Π(i) is obtained from Π by adding a constant i to
it. Initially, the agents execute Π(i) for i = 1, and whenever a fault notification is received, the agents start
executing Π(i+1).

As an example, consider the following protocol Π with initial state s and a single rule (s, s) → (r, r).
Then Π′ = Π(1) ◦ Π(2) has the following rules: (s1, s1)→ (r1, r1) and (s2, s2)→ (r2, r2), and the agents are
initially in state s1.

Assume that there exists an erasing process that can distinguish between edges made by different Π(i).
Let Et

u,i be the set of activated edges of a node u at time t that were formed during the execution of Π(i).
As the memory of each node is constant, then δ is also a constant number. In addition, the number of faults
that can occur is unbounded, thus after δ faults at time t a node must execute a Π(i) that was executed in
a previous step. However, Et

u,i might not be empty and then the erasing process will fail.

In light of the impossibility result of Theorem 9, we allow the nodes to use non-constant local memory
in order to develop a fault tolerating procedure based on restart.

We give a protocol that restarts any protocol Π as follows. All nodes are initially leaders. Through
a standard pairwise leader elimination procedure, a unique leader would be guaranteed to remain in the
absence of failures. But because a fault can remove the last remaining leader, the protocol handles this
by generating a new leader upon getting a fault notification. This guarantees the existence of at least one
leader in the population and eventually (after the last fault) of a unique one. There are two main events
that trigger a new restarting phase: a fault and a leader elimination. As any new event must trigger a new
restarting phase that will not interfere with an outdated one, eventually overriding the latter and restarting
all nodes once more, we use phase counters to distinguish among phases. In the presence of a new event it
is always guaranteed that a leader at maximum phase will eventually increase its phase, therefore a restart
is guaranteed after any event. The restarts essentially cause gradual deactivation of edges (by having nodes
remember their degree throughout) and restoration of nodes’ states to q0, thus executing Π on a fresh initial
configuration. For the sake of clarity, we first present a simplified version of the restart protocol that guar-
antees resetting the state of every node to a uniform initial state q0. So, for the time being we may assume
that the protocol to be restarted through composition is any Population Protocol Π that always starts from
the uniform q0 initial configuration (all u ∈ V in q0 initially). Later on we shall extend this to handle with
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protocols that are Network Constructors instead.

Description of the PP Restarting Protocol . The state of every node consists of two components S1

and S2. S1 runs the restarting protocol A while S2 runs the given PP Π. In general, they run in parallel
with the only exception when A restarts Π. The S1 component of every node stores a leader variable, taking
values from {l, f}, and is initially l, a phase variable, taking values from N≥0, initially 0, and a fault binary
flag, initially 0.

The transition function is as follows. We denote by x(u) the value of variable x of node u and x′(u) the
value of it after the transition under consideration.

If a leaders’ fault flag becomes 1 or 2, it sets it to 0, increases its phase by one, and restarts Π. If a
followers’ flag becomes 1 or 2, it sets it to 0, increases its phase by one, becomes a leader, and restarts Π.
We now distinguish three types of interactions.

When a leader u interacts with a leader v, one of them remains leader (state l) and the other becomes
a follower (state f), both set their phase variable to max{phase(u),phase(v)} + 1 and both reset their S2

component (protocol Π) to q0 (i.e., restart Π).
When a leader u interacts with a follower v, if phase(u) = phase(v), do nothing in S1 but execute a

transition of Π (both u and v involved). If phase(u) < phase(v), then both set their phase variable to
max{phase(u),phase(v)} + 1 and both restart Π, and finally, if phase(u) > phase(v), then phase′(v) =
phase(u) and v restarts Π.

When a follower u interacts with a follower v, if phase(u) = phase(v) do nothing in S1 but execute
transition of Π. If phase(u) > phase(v), then v sets phase′(v) = phase(u) and v restarts Π, and finally, if
phase(u) < phase(v), then u sets phase′(u) = phase(v) and u restarts Π.

We now show that given any such PP Π, the above restart protocol A when composed as described with
Π, gives a fault-tolerant version of Π (tolerating any number of crash faults).

Lemma 10 (Leader Election). In every execution of A, a configuration C with a unique leader is reached,
such that no subsequent configuration violates this property.

Proof. If after the last fault there is still at least one leader, then from that point on at least one more
leader appears (due to the fault flags) and only pairwise eliminations can decrease the number of leaders.
But pairwise elimination guarantees eventual stabilization to a unique leader. It remains to show that there
must be at least one leader after the last fault. The leader state becomes absent from the population only
when a unique leader crashes. This generates a notification, raising at least one follower’s fault flag, thus
introducing at least one leader.

Call a leader-event any interaction that changes the number of leaders. Observe that after the last
leader-event in an execution there is a stable unique leader ul.

Lemma 11 (Final Restart). On or after the last leader-event, ul will go to a phase such that phase(ul) >
phase(u), ∀u ∈ V ′ \ {ul}, where V ′ denotes the remaining nodes after the crash faults. As soon as this
happens for the first time, let S denote the set of nodes that have restarted Π exactly once on or after that
event. Then ∀u ∈ V ′ \ S, v ∈ S, an interaction between u and v results in S ← S ∪ {u}. Thus, S will
eventually be S = V ′.

Proof. We first show that on or after the last leader-event there will be a configuration in which phase(ul) >
phase(u), ∀u ∈ V ′ \ {ul} and it is stable. As there is a unique leader ul and follower-to-follower interactions
do not increase the maximum phase within the followers population, ul will eventually interact with a node
that is in the maximum phase. At that point it will set its phase to that maximum plus one and we can
agree that before that follower also sets its own phase during that interaction to the new max, it has been
satisfied that phase(ul) > phase(u), ∀u ∈ V ′ \ {ul}.

When the above is first satisfied, S = {ul, u} and phase(ul) = phase(u) > phase(v), ∀v ∈ V ′ \ S.
Any interaction within S, only executes a normal transition of Π, as in S they are all in the same phase.
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Any interaction between a u ∈ V ′ \ S and a v ∈ S, results in S ← S ∪ {u}, because interactions between
followers in V ′ \ S cannot increase the maximum phase within V ′ \ S, thus phase(v) > phase(u) holds and
the transition is: phase′(u) = phase(v) and u restarts Π, thus enters S. It follows that S cannot decrease
and any interaction between the two sets increases S, thus S eventually becomes equal to V ′.

Putting Lemma 10 and Lemma 11 together gives the aforementioned result.

Theorem 10. For any such PP Π, it holds that A ◦Π is a fault-tolerant version of Π.

Lemma 12. The required memory in each agent for executing protocol A is O(log n) bits.

Proof. Initially all nodes are potential leaders, and they eliminate each other, moving to next phases at
the same time. In the worst case, a single leader u will eliminate every other leader, turning them into
followers, thus in a failure-free setting the phase of u becomes at most n− 1. If we consider the case where
crash faults may occur, each fault can result in notifying the whole population. This will happen if u was
adjacent to every other node by the time it crashed. Thus, all nodes increase their phase by one and become
leaders again. In the worst case, a single leader eliminates all the other leaders, thus, after the first fault, the
maximum phase will be increased by n−2. The maximum phase than can be reached is

∑k
i=0(n−i) = O(kn),

where k is the maximum number of faults that may occur (k < n). Thus, each node is required to have
O(log n) bits of memory.

NET Restarting Protocol (with Notifications). We are now extending the PP Restarting Protocol in
order to handle any NET protocol Π (with notifications). Call this new protocol B. We store in the S1

component of each node u ∈ V a degree variable, that is, whenever a connection is formed or deleted, u
increases or decreases the value of degree by one respectively. In addition, whenever the fault flag of a node
u becomes one, it means that an adjacent node of it has crashed, thus it decreases degree by one. In the
case of Network Constructors, the nodes cannot instantly restart the protocol Π by setting their state to
the initial one q0. By Theorem 9, it is evident that we first need to remove all the edges in order to have a
successful restart and eventually stabilize to a correct network.

We now define an intermediate phase, called Restarting Phase R, where the nodes that need to be
restarted enter by setting the value of a variable restart to 1 (stored in the S1 component). As long as
their degree is more than zero, they do not apply the rules of the protocol Π in their second component S2,
but instead they deactivate their edges one by one. Eventually their degree reaches zero, and then they set
restart to 0 and continue executing protocol Π. We can say that a node u, which is in phase i (phase(u) = i),
becomes available for interactions of Π (in S2) only after a successful restart. This guarantees that a node
u will not start executing the protocol Π again, unless its degree firstly reaches zero.

The additional Restarting Phase does not interfere with the execution of the PP Restarting Protocol, but
it only adds a delay on the stabilization time.

Lemma 13. The variable degree of a node u always stores its correct degree.

Proof. In a failure-free setting, whenever a node u forms a new connection, it increases its degree variable
by one, and whenever it deactivates a connection, it decreases it by one. In case of a fault, all the adjacent
nodes are notified, as their fault flag becomes one. Thus, they decrease their degree by one. In case of a fault
with no adjacent nodes, a random node is notified, and its fault flag becomes two. In that case, it leaves the
value of degree the same.

Theorem 11. For any NET protocol Π (with notifications), it holds that B ◦ Π is a fault-tolerant version
of Π.

Proof. Consider the case where a node u (either leader or follower) needs to be restarted. It enters to the
restarting phase in order to deactivate all of its enabled connections, and it will start executing Π only after
its degree becomes zero (by Lemma 13 this will happen correctly), thus, Π always runs in nodes with no
spurious edges (edges that are the result of previous executions). Whenever two connected nodes u ∈ R and
v /∈ R, where R is the Restarting Phase, interact with each other, they both decrease their degree variable by
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one, and they delete the edge joining them. Obviously, this fact interferes with the execution of Π in node
v (which is not in the restarting phase), but v is surely in a previous phase than u and will eventually also
enter in R. This follows from the fact that a node in some phase i can never start forming new edges before
it has successfully deleted all of its edges before. New edges are only formed with nodes in the same phase i.

The new Restarting Phase does not interfere with the states of the PP Restarting Protocol, thus the
correctness of B follows by Lemma 10 and Lemma 11.

Lemma 14. The required memory in each agent for executing protocol B is O(log n) bits.

Proof. The maximum value that the variable degree can reach is the maximum reachable degree (d) of
protocol Π. Thus, by Lemma 12, the states that each node is required to have is O(dkn). Both d and k are
less that n− 1, thus, O(n3) states = O(log n) bits.

5. Conclusions and Further Research

A number of interesting problems are left open for future work. Our only exact characterization was
achieved in the case of unbounded faults and no notifications. If faults are bounded, non-hereditary lan-
guages were proved impossible to construct without notifications but we do not know whether all hereditary
languages are constructible. Relaxations, such as permitting waste or partial constructibility were shown to
enable otherwise impossible transformations, but there is still work to be done to completely characterize
these cases. In case of notifications, we managed to obtain fault-tolerant universal constructors, but it is not
yet clear whether the assumptions of waste and local coin tossing that we employed are necessary and how
they could be dropped. Finally, in Section 4.3 we showed a protocol that restarts the population whenever a
fault occurs, and to achieve it we empowered the agents with O(log n) memory. An immediate question here
is whether we can achieve the same results by simulating the algorithm of [19] to handle crash failures. Apart
from these immediate technical open problems, some more general related directions are the examination of
different types of faults such as random, Byzantine, and communication/edge faults. Finally, a major open
front is the examination of fault-tolerant protocols for stable dynamic networks in models stronger than
NETs.
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