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The factors determining whether infection will occur following exposure to SARS-

CoV-2 remain elusive. Certain SARS-CoV-2-exposed individuals mount a specific

T-cell response but fail to seroconvert, representing a population that may provide

further clarity on the nature of infection susceptibility and correlates of protection

against SARS-CoV-2. Exposed seronegative individuals have been reported in

patients exposed to the blood-borne pathogens Human Immunodeficiency virus

and Hepatitis C virus and the sexually transmitted viruses Hepatitis B virus and

Herpes Simplex virus. By comparing the quality of seronegative T-cell responses to

SARS-CoV-2 with seronegative cellular immunity to these highly divergent viruses,

common patterns emerge that offer insights on the role of cellular immunity

against infection. For both SARS-CoV-2 and Hepatitis C, T-cell responses in

exposed seronegatives are consistently higher than in unexposed individuals, but

lower than in infected, seropositive patients. Durability of T-cell responses to

Hepatitis C is dependent upon repeated exposure to antigen – single exposures do

not generate long-lived memory T-cells. Finally, exposure to SARS-CoV-2 induces

varying degrees of immune activation, suggesting that exposed seronegative

individuals represent points on a spectrum rather than a discrete group.

Together, these findings paint a complex landscape of the nature of infection

but provide clues as to what may be protective early on in SARS-CoV-2 disease

course. Further research on this phenomenon, particularly through cohort studies,

is warranted.
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Introduction

Exposure to viral pathogens does not guarantee infection. The clearest examples of this

phenomenon are in the failure of test subjects in human challenge studies to consistently

become infected (1–3). Variation in host susceptibility has been linked to host genetics,

inoculum viral load, and prior exposure to related pathogens (2–6). Among those individuals
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who are exposed but fail to become infected, a small but well-

documented population generate pathogen-specific T-cell responses

in the absence of viraemia or antibodies (7–9). The earliest reports of

this phenomenon occurred in the late 1980s concerning apparent

Human Immunodeficiency virus (HIV) resistance in at-risk

individuals (10–14). These patients, despite exposure to HIV and

measurable cellular immunity, failed to develop an antibody response

and were therefore classified as “exposed seronegative” (ESN). In the

30 years since initial reports in HIV, the phenomenon has been

appreciated to occur following exposure to Hepatitis C virus (HCV),

Hepatitis B virus (HBV), and Herpes Simplex virus 2 (HSV-2) (8, 15–

18), and recently Severe Acute Respiratory Syndrome coronavirus 2

(SARS-CoV-2), a pathogen to which most of the global population

has been exposed (7, 19, 20). SARS-CoV-2, a member of the

Coronaviridae family, is the causative agent of coronavirus disease

2019 (COVID-19). Canonical immunity to SARS-CoV-2 is well

characterised despite its recent emergence: a delay in innate

immune activation resulting from viral evasion of interferon (IFN)

responses enables infection to occur (21). Both humoral and cellular

mechanisms are essential for viral control; weak or delayed

adaptive responses can lead to severe or fatal COVID-19, with

immunopathology and cytokine hyperactivation characteristic of

end-stage disease (21).

The causes and consequences of the ESN phenomenon following

exposure to SARS-CoV-2, as well as other viruses, are the focus of this

review. We outline the circumstances in which seronegative cellular

immunity occurs and examine the quality of the T-cell response. In

addition, we address the role of viral exposure on response durability,

and whether this offers protection against infection. Finally, potential

mechanisms are discussed, as well as gaps in current knowledge that

future research must fill.
Definitions and terminology

For this review, an ESN is defined as an individual who mounts a

cellular immune response following viral exposure without generating

detectable virus-specific antibody. Instances where infection has been

prevented by the innate immune system alone, as reported elsewhere

(22, 23), are out of scope for this review due to not inducing a T-cell

response. In the literature, the terminology for ESNs is largely

consistent within but not between viruses and include exposed

seronegative(s), exposed uninfected, infected seronegative, immune

seronegative, and highly exposed persistently seronegative. These

terms will be collectively referred to as ESN.
At-risk demographics

The dynamics of exposure, such as inoculum viral load, exposure

frequency, and exposure duration, may influence cellular responses in

ESNs. To make robust comparisons between SARS-CoV-2 and other

viruses, we examine cellular immunity in two demographics at high

risk of exposure – close contacts of seropositive individuals, and

healthcare workers (HCWs). This enables the analysis of common

and differing patterns of immunity to unrelated viruses through

similar modes of exposure.
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Close and household contacts

Close contacts of SARS-CoV-2-infected individuals represent a

population exposed to SARS-CoV-2 over short time periods. Wang

et al. (2021) assessed cellular immunity in 90 seropositive individuals and

69 seronegative contacts who had been within 1.5m of a patient for over

one hour or in the same household for over 24 hours (20). The authors

observed higher CD8+ and CD4+ T-cell activation in both cohorts

compared to unexposed controls, as measured by IFNg production

following stimulation with Spike (S), Membrane (M), Nucleocapsid

(NP), and Envelope peptides. Gallais et al. (2021) also identified T-cell

responses in close contacts of SARS-CoV-2-infected family

members (24).

Family members of HCV-infected individuals face viral exposure

through sexual and in-utero transmission. Kamal et al. (2004) identified

14 seronegative sexual partners of HCV-infected individuals who

generated IFNg responses to HCV, although at lower magnitudes than

seropositive resolvers (25). HCV is a positive-sense RNA virus in the

Flaviviridae family (26). Canonically, adaptive immune responses appear

one to two months after infection (27), and both CD4+ and CD8+ T-cells

are associated with control (26). In individuals exposed to HCV via a

family member, Scognamiglio et al. (1999) identified CD8+ T-cells

targeting both structural and non-structural proteins (NSPs) (16).

There was no correlation between magnitude of response and mode of

exposure, suggesting that similar cellular responses are generated

following HCV exposure through different routes.

HCWs represent a population where SARS-CoV-2 exposure in

clinical settings enables the study of ESNs. da Silva Antunes et al.

(2021) recruited 26 PCR+ HCWs, 32 seronegative HCWs at high risk

of exposure (treated as ESNs here), and 33 community controls (28).

ESNs demonstrated higher T-cell responses than unexposed individuals.

Notably, the T-cell activation markers HLA-DR and CD38 were

upregulated in PCR+ HCWs, but not in ESNs, leading authors to

conclude that cellular responses in ESNs were generated by exposure

rather than infection and waning of antibody. Considerable overlap in

levels of HLA-DR/CD38 expression was observed between seropositive

and ESN HCWs. A study of SARS-CoV-2 ESN HCWs in Swadling et al.

(2022) found a significant correlation between the magnitude of the T-

cell response and transcript levels of IFI17, an IFN-inducible marker of

early infection (7). Swadling et al. concluded that transient infection had

occurred, but was aborted by early T-cell responses (7). However, ESNs

with elevated IFI17 transcripts only represented 10% of ESNs, and mean

IFI17 expression was lower in ESNs than seropositive HCWs (7). ESNs

may therefore represent not one discrete group, but a spectrum of

immune engagement, from subclinical exposure to transient infection.

Ogbe et al. (2020) identified SARS-CoV-2-specific T-cell

responses in exposed HCWs: three of 10 generated IFNg to S, M

and NP, whilst all generated cellular responses to M and NP by

proliferation assay, indicating the potentially higher sensitivity of this

assay (19). T-cell responses in ESNs were of greater magnitude than

unexposed controls for CD4+ but not CD8+ cells, although both CD4+

and CD8+ cells targeted a greater number of antigens in ESNs

compared to controls. The presence of T-cells targeting multiple

antigens in ESNs is supported by da Silva Antunes et al. (2021), where

cellular immunity targeting S as well as the rest of the proteome was

higher in ESNs compared to controls (28).
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Kubitschke et al. (2007) identified T-cell immunity in

seronegative HCWs exposed to HCV-contaminated needles (29).

CD4+ responses occurred in four of 10 individuals within eight

weeks of injury but were absent after 2.5 years. Heller et al. (2013)

assayed cellular immunity in HCWs exposed to HCV via needlestick,

cut, or mucosal exposure, and identified HCV-specific proliferation

and IFNg production in 48% (n=30) and 42% (n=26) of individuals,

respectively (30). Three-quarters of responses were directed towards

NSPs. Responses peaked four to six weeks after exposure, unlike

canonical HCV infection where immunity generally peaks at seven to

14 weeks (31). The authors suggested this may reflect boosting of pre-

existing cellular memory. However, responses were transient and

returned to baseline within months, unlike canonical long-lived

memory responses (32). The dynamics of cellular immunity in

HCV ESNs appears distinct from seropositive infection in its more

rapid induction and reduced longevity.

Finally, Clerici et al. (1994) studied eight ESN HCWs following

HIV+ needlestick injury. Four to eight weeks after injury, production

of interleukin (IL)-2 by T-cells specific for the env glycoprotein was

observed in six of eight ESNs, compared to only one of nine

unexposed controls (33). However, two ESNs seroconverted at six

and 19 months after sampling, reflecting early-stage infection rather

than exposure.
Duration and dose

Viruses that have been well-studied for decades provide valuable

information on the roles of exposure frequency and response

durability in ESNs. Thurairajah et al. (2011) studied seronegative

injection drug users exposed to HCV with differing injection

behaviours (non-injectors in rehabilitation, infrequent injectors, and

continuing injectors) (34). Continuing injectors had stronger and

more numerous T-cell responses to HCV compared to non-injectors

and healthy controls. Furthermore, individuals who had last injected

over 12 months ago had a lower proportion of positive responses than

those who had injected in the last six months. These data indicate that

ongoing exposure to virus is one factor in the maintenance of T-cell

responses in HCV ESNs.

Animal studies also provide insight into the role of antigen

exposure for HCV. Shata et al. (2003) demonstrated that two

chimpanzees exposed at six month intervals to increasing doses of

HCV generated transient T-cell responses (35). 12 months later, both

chimpanzees were exposed to a tenfold greater dose of the virus and

became infected. The chimpanzee with consistently stronger T-cell

responses cleared infection whilst the other developed chronic

disease. Interpretation of this result is limited by the small cohort

size. Furthermore, macaques exposed to infectious doses of simian

immunodeficiency virus seroconverted but generated weak cellular

responses, whilst those exposed to sub-infectious doses generated

cellular responses only (36). These findings suggest that dose may

factor into which arm of adaptive immunity dominates upon viral

exposure. Similar challenge studies in primates or humans exposed to

differing doses of SARS-CoV-2 would be necessary to make

conclusions about the role of dose in SARS-CoV-2 ESNs.

T-cell responses in seronegative household contacts exposed to

SARS-CoV-2 suggest that prolonged exposure may not be essential for
Frontiers in Immunology 03
cellular immunity (7, 19, 28). The durability of these responses is

unknown due to the short timescale since virus emergence as well as

the confounding influence of vaccination against SARS-CoV-2. Future

studies on SARS-CoV-2 ESNs would benefit from sampling high-risk

seronegative individuals, but although NP-targeting immunoassays could

be used, these studies will be hamstrung by vaccination.
Target antigens

Determining which antigens are targeted in SARS-CoV-2 ESNs

provides insight into mechanisms of response. T-cells targeting the

replication-transcription complex (RTC) of SARS-CoV-2 were

described by Swadling et al. (2022) in ESNs (7). The RTC is comprised

of the RNA polymerase NSP12, a co-factor NSP7, and the helicase

NSP13 (37). Its expression early in the SARS-CoV-2 replication cycle

makes the RTC a target for rapidly-induced T-cell responses (7). The

authors identified fivefold-higher RTC-specific T-cell responses in ESNs

compared to unexposed controls. Furthermore, cellular immunity in

ESNs preferentially targeted the RTC over structural proteins compared

to seropositive individuals. However, the authors did not assay cellular

responses to other NSPs. In a study of six ESN sexual partners of HSV-2-

infected individuals by Posavad et al. (2010), T cell responses in ESNs

were skewed towards peptides expressed early in the virus replication

cycle, whereas HSV-2 seropositive individuals more frequently generated

responses to structural proteins present in virions (8). The authors

speculated that this skew in ESNs reflected early T-cell engagement

with infected cells before the production of infectious virions. Together,

these data support a model whereby rapid T-cell responses targeting early

translated NSPs may prevent infection from gaining a foothold.
Cytokine profile

In a cohort of 52 household contacts of SARS-CoV-2-infected

individuals, Kundu et al. (2022) identified higher frequencies of IL-2-,

but not IFNg-, secreting T-cells in ESNs compared to individuals that

later became infected (38). A similar study of household contacts from

Brand et al. (2021) reported no T-cell recognition of SARS-CoV-2

epitopes in seronegative individuals – this was measured by a novel

IFNg assay, which may lack sensitivity for low magnitude responses in

ESNs (39). Assays that measure IFNg production alone may

underestimate the prevalence of cellular immune responses in ESNs,

highlighting the need for multiple sensitive immunophenotyping

methods, such as flow cytometric or proliferation assays, to

accurately quantify responses.

TH1-focussed cytokine production has been described in HBV

ESNs (18). Sexual partners of infected individuals generated

proliferative T-cell and IFNg responses to HBV peptides. No ESNs

generated TNFa or IL-10 responses, unlike seropositive individuals

(40). Finally, IFNg secretion was described in seronegative individuals

exposed to Ebola virus (EBOV) (41). A study of EBOV close contacts

(n=42) from Thom et al. (2021) identified two ESNs. However,

responses in these ESNs were not present in further samples,

potentially reflecting experimental artefacts. This further highlights

the need for sensitive immunophenotyping assays to examine the

true prevalence of ESNs.
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Proposed mechanism

To prevent infection before seroconversion, a rapid cellular

response appears critical. Chandran et al. (2021) assayed weekly

nasopharyngeal swabs and blood samples from HCWs, and

demonstrated that SARS-CoV-2 specific T-cell proliferation can

occur before PCR positivity (42). These rapid responses may

originate from pre-existing, cross-reactive T-cells specific for

human coronaviruses (HCoVs). Cross-recognition of SARS-CoV-2

by HCoV-specific T-cells has been widely described (43–50), and T-

cells from COVID-19 convalescents preferentially target conserved

epitopes over SARS-CoV-2-specific epitopes (49). HCWs display

higher levels of HCoV-specific T-cells than community controls

(28), which may contribute to the abundance of ESNs amongst

HCWs. The activation of cross-reactive T-cells by related viruses

has been termed ‘heterologous immunity’ (51). This is distinct from

autologous viral infection in that neutralising antibody responses to

the heterologous virus may be suboptimal, allowing cellular memory

to dominate.

The RTC is highly conserved between SARS-CoV-2 and HCoVs

(7). Tetramer staining of T-cells with an HCoV-HKU1 homologue of

the RTC component NSP7 showed strong responses in SARS-CoV-2

ESNs. Swadling et al. (2022) suggested that prior exposure to HCoV-

HKU1 generates cross-reactive T-cells specific for NSP7, enabling

rapid abortion of SARS-CoV-2 infection (7). A study of camel

workers in Saudi Arabia identified both CD4+ and CD8+ responses

to Middle-East Respiratory Syndrome coronavirus in four highly-

exposed seronegative individuals, suggesting that the ESN

phenomenon may be common to other human-infective

coronaviruses (52).

It is unclear whether cross-reactive T-cells contribute to ESN

immunity in HCV, HIV, HBV or HSV. Cross-reactivity between

HCV and influenza A has been described, with HCV-seronegative

individuals generating T-cell responses to a cross-reactive HCV

epitope (53). However, human viruses with homology to HIV, HBV

or HSV have not been described and are thus unlikely to be the driver

of the ESN phenomenon for these viruses.
Correlates of protection from infection

Key to understanding correlates of protection against SARS-CoV-

2 infection is deciphering the role of cellular versus humoral

immunity. Seropositivity may not always be the most appropriate

marker if cellular immunity is protective. This is particularly relevant

for assessing vaccine-induced protection against disease where

neutralizing antibody titres are a common endpoint, and

particularly for SARS-CoV-2 where an arms race between booster

vaccination and waning antibody titres has begun.

In a model whereby cellular immunity in ESNs is protective, one

would reasonably expect that the magnitude of cellular response in

ESNs would be greater than in seropositive individuals, to

compensate for the lack of humoral immunity. Cellular immunity

is able to clear SARS-CoV-2 infection in isolation; patients with X-

linked agammaglobulinemia who cannot produce antibodies

eventually clear SARS-CoV-2 infection, and mount higher
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magnitude CD8+ T-cell responses to SARS-CoV-2 compared to

immunocompetent individuals (54). However, in Wang et al.

(2021) the magnitude of the SARS-CoV-2-specific CD4+ T-cell

response was twice as high in infected individuals compared to

ESNs. This casts doubt on their role in protection against infection.

In influenza virus infection, cytotoxic T-cells target conserved

non-structural proteins while antibodies target the divergent

neuraminidase and hemagglutinin proteins and are thus strain-

specific. In 1983, McMichael and colleagues demonstrated that

individuals with cross-reactive T-cells targeting influenza A were

able to clear infection in the absence of subtype-specific antibody

(55). Later studies showed cross-reactive CD4+ and CD8+ T-cells are

associated with milder disease in individuals lacking cross-reactive

antibody (56, 57). Animal challenge models have shed light on

whether cellular immunity following vaccination can confer

protection against influenza. Vaccination of mice with a virus-like

particle vaccine against influenza A virus promoted cross-reactive

CD8+ T-cell-mediated protection against later challenge with a

heterosubtypic strain, supporting the idea that cellular immunity in

the absence of subtype-specific antibody can confer protection against

infection (58). The applicability of cross-reactive T cell responses in

influenza virus models to other virus families is unclear. However, the

observations in these studies strongly support cellular immunity

being considered in estimates of correlates of protection for

viral infection.
Discussion

A model for the dynamics of adaptive immunity in infection

versus exposure is shown in Figure 1. In canonical infection

(Figure 1A), T-cells and antibodies reduce viral load and contribute

to disease resolution. In ESNs (Figure 1B), T-cells proliferate alone

and at lower levels than canonical infection. Viral load never reaches

detectable levels and clinical disease does not occur. This may result

from early proliferation of cross-reactive memory T-cells. Rather than

being a discrete group, ESNs likely represent points along a spectrum

of immune engagement, influenced by viral and host factors

(Figure 1C). Discrepancies across studies likely reflect individuals at

different points along this spectrum, dependent upon viral dose,

existing cross-reactive immunity, and frequency of exposure.

Table 1 displays a summary of findings for SARS-CoV-2 and

other viruses. However, significant gaps in our understanding of this

phenomenon remain. Specific areas that would provide further

clarification include:
1. Repeated exposure and response durability. Frequent

exposure appears critical in the durability of HCV-specific

cellular responses. SARS-CoV-2 challenge studies in primates

and humans would clarify the role of dose and exposure

frequency in ESNs, durability of responses, and the extent to

which cellular immune responses correlate with protection

against infection.

2. Interaction with innate components. Although not covered

here, cross-reactive T-cells likely act in coordination with

innate immunity to prevent infection. Natural killer cells have
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been demonstrated to mediate resistance to HCV infection (59–

61), and polymorphisms in immune mediator genes such as

IL28B likely contribute to disease susceptibility (62). Future

research into correlates of protection for SARS-CoV-2 should

examine both innate and cellular components in seronegative

infection, for example with the use of flow cytometric assays that

enable precise dissection of immune components.
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3. Other T-cell subsets. Many of the studies outlined in this

review use whole blood samples representing circulating

immunity. It is critical for future research to consider

mucosal and tissue-resident cells to generate a complete

picture wherever possible (63). This would require

additional sampling such as nasopharyngeal swabs or

respiratory samples.
TABLE 1 Summary of ESN findings for SARS-CoV-2 and other viruses.

SARS-CoV-2 Other

Canonical
immune
response

Both humoral and cellular immunity weeks after infection. Resolution
usually within weeks with a small percentage experiencing severe or fatal
outcomes.

HCV: Adaptive immunity months after infection. Cellular immunity with
some contribution from neutralising antibodies.

Exposure
duration and
dose

Prolonged exposure not essential. Duration of exposure required is unclear. HCV: Ongoing or recent exposure important for response maintenance.
Potential role for low doses of virus. Responses peak earlier than in
seropositive infection.

Durability Unknown HCV: Limited, with waning of responses observed within one year

Target
antigens

Early translated antigens
More non-structural targets than seropositive individuals

HCV: Early life cycle peptides

Cytokine
profile

IL-2, IFNg in some cases but not always HBV: IFNg production
EBOV: IFNg production

Potential
source of
response

Cross-reactivity with HCoVs MERS: Potential cross-reactivity with HCoVs
A B

C

FIGURE 1

A conceptual model for the dynamics of canonical acute infection (A) vs ESN infection (B). ESNs (orange) represent points along a spectrum of immune
engagement, influenced by viral dose, immune cross-reactivity, and frequency of exposure (C).
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Our understanding of the ESN phenomenon remains in its

infancy yet offers opportunities for development. The remarkable

heterogeneity in outcome following SARS-CoV-2 exposure makes

understanding infection susceptibility crucial for prevention and

treatment. Significant insight can be gained into correlates of

protection against SARS-CoV-2 by further investigating this

phenomenon and gaining a deeper understanding of the role of

cellular immunity in protection against infection.
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