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Abstract 

In the digital age, operations can be improved by a wise use of information and technological 

tools. During the COVID-19 pandemic, governments faced various vaccine choices having 

different efficacy and availability levels at different time points. In this paper, we consider a 

two-stage vaccine ordering problem of a government from a first and only supplier in the first 

stage, and either the same supplier or a new second supplier in the second stage. Between the 

two stages, potential demand information for the vaccine is collected to update the forecast. 

Using dynamic programming, we derive the government’s optimal vaccine ordering policy. 

We find that the government should select its vaccine supplier based on the disease’s 

infection rate in the society. When the infection rate is low, the government should order 

nothing at the first stage and order from the supplier with a higher efficacy level at the second 

stage. When the disease’s infection rate is high, the government should order vaccines at the 

first stage and switch to the other supplier with a lower efficacy level at the second stage. We 

extend our model to examine (i) the value of blockchain adoption and (ii) the impact of 

vaccines’ side effects. 

Keywords: Vaccine supply chain; two-stage ordering; information updating; social welfare; 

blockchain; COVID-19. 

1 Introduction  

1.1 Motivation and Background  
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Since December 2019, the COVID-19 pandemic has led to 5.96 million deaths worldwide. In 

controling the pandemic and restoring normal operations, vaccination is one of the most 

effective ways (Pauly, 2005; Arifoğlu and Tang, 2022; Duijzer et al., 2018). By June 2021, 

the World Health Organization (WHO) had cleared eight COVID-19 vaccines developed by 

Pfizer-BioNTech, AstraZeneca, Moderna, Sinovac, and others for emergency use (WHO 

Guidance Document, 2021). That means these vaccines can go into people’s arms and be sold 

to other countries. Meanwhile, another eleven vaccine manufacturers are still under 

processing and could be cleared for use in the future. Note that the efficacy of different 

vaccines varies. For example, Pfizer-BioNTech’s vaccine has a 95% efficacy to protect 

against confirmed COVID-19; Moderna’s vaccine achieves a 94.1% overall efficacy and the 

efficacy of Johnson & Johnson’s vaccine is 72% (Katella, 2021).  

Facing pandemics, social welfare should be given the priority when governments make 

decisions (Ivanov and Dolgui, 2020). Here, in such a humanitarian problem, social welfare 

refers to the total surplus of society focusing on people’s welfare rather than the enterprise’s 

profit (Deo and Corbett, 2009). A government that aims to improve social welfare should 

carefully decide on vaccine procurement based on factors such as the infection rate, 

vaccination demand, and transportation conditions. Moreover, the vaccine demand faces high 

uncertainty due to the prevalence and severity of unpredictable infectious disease activities 

(Cho and Tang, 2013; Song et al., 2018; Martin et al., 2020). It is a big challenge for the 

government when deciding to order vaccines. For instance, in the early stage of a pandemic, 

only a first vaccine is approved, not a second one. Then the government faces a two-stage 

ordering problem of deciding the order quantity of the first vaccine at stage one and the order 

quantities of both vaccines at stage two. It was the typical problem faced by various 

governments during the initial wave of the COVID-19 pandemic. The Japanese government 

first noticed the availability of AstraZeneca’s vaccine and preordered 120 million doses in 

August 2020 (first stage). Two months later, in October 2020, when the Moderna’s vaccine 

was rolled out to the market, the government decided to make a supplement order of 50 

million doses of the Moderna vaccine (second stage). The US Department of Health and 

Human Services and the Department of Defense also adopted this two-stage ordering mode. 

They first ordered 400 million doses of the COVID-19 vaccine from Pfizer in February 2021 

(first stage). They then placed an additional order of 100 million from Johnson & Johnson in 

March 2021 (second stage) (U.S. Department of Health & Human Services, 2021). The 

European Union (EU) and Taiwan also saw a similar two-stage ordering situation. We 

summarize the details of governments’ vaccine ordering policies in Table 1. As we can see, 

this kind of two-stage vaccine ordering problem is common, especially during the early stage 

of the pandemic. 

In addition to the early stage of the pandemic, a similar problem regarding vaccine ordering 

also appears in the other stages. For example, in February 2022, the Hong Kong government 

faced the vaccine shortage problem due to the unexpected fifth wave of COVID-19 in Hong 

Kong. In the early stage, the Hong Kong government had reached agreements with Sinovac 

and BioNTech to order a total of 7.5 million vaccine doses in December 2020. However, 

when recently facing a sudden surge in vaccine demand, the supply of vaccines fell well short 

of demand, causing challenges. 

To combat the challenges mentioned above, dynamic ordering policies with demand 

information updating and a proper use of digital technologies would be helpful (Huang et al., 

2005; Erhun et al., 2008). The dynamic ordering policy means that the decision-maker can 

first make an order by using historical data or expert advice (which usually lacks precision) 
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and then make an additional order decision with an improved vaccine demand forecast (e.g., 

reordering or changing the vaccine manufacturer). The advantages of this policy have been 

widely discussed in the prior literature, e.g., it can help better match supply and demand 

(Choi et al., 2003; Cachon and Swinney, 2011) and increase the government’s flexibility 

(Choi et al., 2018) to ensure that sufficient vaccines are available. Moreover, we notice that 

the pattern of vaccine selection varies from region to region. Some governments ordered 

vaccines of lower efficacy in the first stage and then changed to one of a higher efficacy in 

the second stage (e.g., EU, Japan, and Taiwan). Others followed an opposite pattern, i.e., 

ordering the higher efficacy vaccines first and then ordering the lower efficacy ones in the 

second stage (e.g., the U.S.). The reason why they adopted different patterns motivated us to 

explore the vaccine ordering problem theoretically. 

Besides the ordering policy with information updating, we also consider using blockchain 

technology for cold chain management in vaccine distribution. Indeed, the delivery of 

vaccines is another challenge faced by governments. Since the vaccines lose their efficacy 

rapidly at temperatures above 10°C, a tangled cold chain network of shipping, freezing, 

storage, and communication is required during the global delivery of vaccines. It is reported 

that up to 25% of vaccine doses are lost when supplying vaccines to rural healthcare centers 

and remote villages (Vesper, 2020). Thus, before ordering vaccines, governments must 

establish a reliable vaccine cold chain system with manufacturers and carefully measure their 

cold chain capacities. According to the WHO’s report, the cold chain can help ensure that 

vaccines are stored and transported within recommended temperature ranges to keep the 

product quality from production to the last point of distribution (WHO, 2015). Under this 

circumstance, blockchain technology, which can provide transparent and trackable data, is 

considered to help improve cold chain performance and maintain the vaccine’s efficacy by 

reducing temperature variation during shipment. For instance, IBM has adopted blockchain 

technology to support the vaccine distribution network to enhance the manufacturer’s 

regulatory ability (e.g., quickly identifying potential threats in the vaccine supply chain), the 

distributor’s real-time visibility (e.g., inventory visibility), and the public’s trust in the 

vaccine (IBM News, 2020). 

1.2 Research Questions and Major Findings  

Motivated by the above background and real-world challenges, we study a government’s 

optimal dynamic ordering policy of COVID-19 vaccines. Specifically, we want to answer the 

following research questions: 

(i) With information updating, what is the government’s optimal dynamic vaccine ordering 

policy that would maximize social welfare? What is the best course of action for the 

government to take when there exists an alternative vaccine manufacturer in the market? 

(ii) How do the critical factors (including the efficacy level of vaccines, disease’s infection 

rate, shipping time, etc.) influence the government’s optimal ordering decisions? 

(iii) With real-world scenarios in mind, the following questions arise: (a) Can the use of 

blockchain technology help enhance the vaccine cold chain performance? How does it affect 

the government’s decisions? (b) When considering the impacts of vaccine’s side effects, how 

should the government make its ordering decisions? 
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To answer these critical research questions, we establish a two-stage two-ordering 

newsvendor model in a supply chain with Bayesian information updating and derive the 

optimal policy by using dynamic programming. In the basic model, we examine two cases 

when two different vaccines from the respective suppliers (A and B) have different efficacy 

levels. The government may order at both stages may change its first-stage vaccine supplier 

upon demand information updating. Following observed industrial practices (especially 

during the early stage of the pandemic), two cases raise: (i) the government orders vaccines 

from the same supplier at both stages (Case AA), and (ii) the government changes its supplier 

in the second stage (Case AB). We then extend our analyses to consider: (a) The use of 

blockchain technology to eliminate the negative impact of the long shipping time and (b) the 

exploration of the impacts of the vaccine’s potential side effects.  

Our analysis yields some insights. First, the government need not order vaccines as early as 

possible. When the disease’s infection rate is low, the government should order nothing at the 

first stage and order only at the second stage with the updated demand information; and when 

it is high, the government should order at the first stage. More importantly, our results 

indicate that the government should select its vaccine supplier based on the disease’s 

infection rate in the country/region. Specifically, when the infection rate is low, the 

government should change the supplier with a higher efficacy level in the second stage 

(compared with the one in the first stage) after information updating. When the infection rate 

is high, changing to the supplier with a lower efficacy level in the second stage is more 

advisable. When the infection rate is moderate, the government should order vaccines from 

the same supplier in both stages. This finding is consistent with the observed real-world 

practices that, in most cases, the governments decided to order from alternative vaccine 

suppliers during the most severe period of the COVID-19 pandemic when the infection rate 

was high (see Table 1). 

In the extended models, our results uncover that the shipping time and the infection rate of 

COVID-19 will jointly affect the value of blockchain adoption in the vaccine cold chain. To 

be specific, the use of blockchain is recommended when (i) the shipping time is relatively 

long, or (ii) the government decides not to change its vaccine supplier after information 

updating (in a place with a high infection rate). Moreover, when considering the vaccine’s 

side effects, the value of information updating is reduced as the government becomes less 

likely to order at the second stage. Additionally, for places with many older adults, the 

government should not change its vaccine supplier after information updating, as the social 

performance will suffer due to the side effects. 

1.3 Contribution Statements and Paper’s Organization  

To our best knowledge, this is the first analytical study examining the government’s dynamic 

vaccine ordering policy with demand information updating to maximize social welfare. We 

combine our findings with real-world practices to provide implications and suggestions to the 

government about selecting its vaccine supplier and the optimal ordering policy. The 

theoretical contribution of this study is integrating the critical features of vaccines (e.g., 

efficacy levels) into the two-stage ordering policy and evaluating the governing factors (e.g., 

the disease’s infection rate, shipping time) that affect the government’s optimal ordering 

decisions. Besides, we highlight the value of blockchain adoption in the vaccine cold chain 

and figure out the corresponding conditions that benefit the society regarding vaccine 

ordering. 
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The remainder of this paper is organized as follows. We conduct the literature review for 

prior related literature in Section 2. Section 3 establishes the basic model and derives the 

corresponding optimal solutions. We analyze the impacts of critical factors and find the 

optimal ordering policy in Section 4. Next, Section 5 extends the analyses to check the (i) 

ordering policy with blockchain adoption for cold chain distribution and (ii) ordering policy 

considering the vaccine’s side effects. Finally, we conclude our study in Section 6. All 

supplementary figures for numerical analyses and technical proofs are in Online Appendix. 

2 Literature Review  

Our research is related to three streams in industrial engineering and operations management, 

namely, (i) vaccine supply chain management, (ii) two-stage ordering with information 

updating, and (iii) blockchain adoption in supply chain management. We concisely review 

them as follows. 

First, the vaccine supply chain has been getting increased attention in the past years. It 

consists of four aspects: ”product, production, allocation, and distribution” (Duijzer et al., 

2018). Some prior studies focus on the optimal vaccine selection problem. For example, Wu 

et al. (2005) build an analytically tractable model to investigate the annual vaccine-strains 

selection process under the “follow policy” proposed by WHO. Then, Robbins and Jacobson 

(2011) examine the government’s optimal vaccine selection decisions in the pediatric vaccine 

market. The government can negotiate prices and quantities with vaccine producers in their 

model. Robbins and Lunday (2016) pay attention to the consumer choice problem in a 

vaccine supply chain comprising an upper-level manufacturer and lower-level customers. In 

their model, consumers are asked to choose the vaccines that can minimize cost while 

immunizing against one or more diseases. 

Regarding vaccine production issues, uncertainty in design, delivery, and demand is the most 

crucial factor that prior studies focus on (Dai, 2015). To be specific, Chick et al. (2008) 

highlight the vaccine’s insufficient supply problem due to the manufacturer’s production 

risk/uncertainty. Arifoğlu et al. (2012) explore how to improve the influenza vaccine supply 

chain operations considering the yield uncertainty issue and self-interested consumers. 

Arifoğlu and Tang (2021) analytically investigate a two-side incentive program implemented 

to support the flu vaccine supply chain with an uncertain production yield under an ex-ante 

balanced budget. Lin et al. (2022) consider the uncertainty risks from both supply and 

demand sides in the vaccine supply chain, where a social planner exists to coordinate the 

supply chain. The scarcity of vaccines under unexpected outbreaks makes the optimal 

allocation problem in the vaccine supply chain relatively complex. Sun et al. (2009) and 

Mamani et al. (2013) examine the value of coordination among different countries in the 

vaccine allocation process. Their results show that a lack of coordination may lead to vaccine 

disruption in some regions. Inventory control is a critical issue in both the allocation and 

distribution process. Salmerón and Apte (2010) propose a two-stage stochastic programming 

formulation to minimize expected casualties. Yarmand et al. (2014) study the optimal 

”vaccine allocation problem” by constructing a stochastic optimization decision framework 

over multiple locations. The authors examine how the development of an epidemic influences 

quantity decisions in different stages. Similar to Salmerón and Apte (2010) and Yarmand et 

al. (2014), we construct a two-stage two-ordering inventory model and derive the 

government’s optimal ordering decisions for vaccines under an uncertain demand during the 

pandemic. Unlike the prior literature, we base our work on the practices observed during the 

COVID-19 pandemic and integrate crucial characteristics of the vaccine supply chain, such 
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as vaccines’ efficacy, the disease’s infection rate, shipping time, cold chain requirement, etc. 

into the models. 

In the inventory/ordering problems, demand information updating has been studied for many 

decades (e.g., Dvoretzky et al. 1952, Scarf 1959). Much literature has accumulated since, as 

surveyed by Perera and Sethi (2023a, b). Moreover, motivated by the quick response policy 

and many related topics, many important studies have appeared since the mid-1990s (e.g., 

Fisher et al. 1994). Since the information observed in the first stage can help update the 

demand distribution, researchers have realized the superiority of multi-stage ordering 

strategies (Sethi et al. 2001, 2003, 2005). Huang et al. (2005) evaluate a two-stage purchase 

contract by which the buyer can adjust its purchasing decision upon updating the demand 

forecast and provide suggestions on improving the forecast quality and contract design. Chen 

et al. (2010) work on a coordination contract, focusing mainly on fashionable products with a 

short selling season and huge demand uncertainty. To coordinate the supply chain, the 

authors propose a three-parameter contract to share risk and profit in a two-stage setting. 

Chan et al. (2018) and Zhang et al. (2020) focus on investigating the values of quick response 

(QR) in the supply chain’s inventory problem. Chan et al. (2018) establish a two-echelon 

channel using green technology. The authors use Bayesian theory to capture the information 

updating of cleaner technology. Similarly, Zhang et al. (2020) build a two-stage supply chain 

with Bayesian demand information updating. The authors uncover how flexibility can affect 

QR by comparing the single-ordering and two-ordering cases. Chao et al. (2021) work on 

food supply chains and propose a two-stage location–routing–inventory model with time 

windows and vehicle capacity constraints. Their finding implies that customer sequence will 

significantly impact the results due to the associated energy cost. Similar to the prior 

literature, we adopt Bayesian theory to depict the demand updating. At the same time, we 

focus on the vaccine supply chain and aim to maximize social welfare in our study. However, 

different from them, we explore the vaccine supply chains under COVID-19 and explore 

specific factors such as the disease’s infection rate , vaccine’s efficacy level, cold chain 

requirement, etc. 

Blockchain is commonly regarded as an efficient technological tool to achieve supply chain 

traceability and transparency (Ivanov et al. 2019, Hastig and Sodhi 2020, Chod et al. 2020, 

Babich and Hilary 2020, Choi et al. 2022). Blockchain adoption in supply chain management 

has got increasingly popular and critical in recent years. In prior literature, blockchain 

adoption has been examined in various industries, including healthcare (Agbo et al. 2019, Niu 

et al. 2021), agriculture (Kamble et al., 2020), and fashion (Pun et al., 2021). Remarkably, 

considering the importance of vaccine quality and safety in preventing infectious diseases, 

e.g., COVID-19, the value of blockchain adoption in vaccine supply chain management has 

been noticed and examined (Dutta et al. 2020, Pournader et al. 2020). Yong et al. (2020) 

design an intelligent blockchain-based system that helps resolve the problems of vaccine 

expiration and record fraud. The authors highlight the critical role of blockchain adoption in 

supporting vaccine traceability and smart contract functions. Similarly, Antal et al. (2021) 

present a blockchain-based vaccine system in which smart contracts are deployed to monitor 

and track the vaccines. Their results prove the efficiency of blockchain adoption in the 

vaccine system while indicating the potential risk brought by the estimated cost. The smart 

contract function of blockchain in the vaccine supply chain is also evaluated by Omar et al. 

(2021), in which the authors propose a generic framework and use blockchain technology to 

automate the contract process for the stakeholders. Unlike Antal et al. (2021), Omar et al. 

(2021) demonstrate that their proposed blockchain-based solution is economically feasible for 

the vaccine supply chain. Verma et al. (2021) interestingly combine blockchain technology 
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with unmanned aerial vehicles (UAVs) and fifth-generation (5G) communication services in 

a vaccine supply chain. They find that their proposed system can provide a timely distribution 

process during the pandemic. Liu et al. (2021) establish a game-theoretical model to explore 

the pricing and coordination challenges in a vaccine supply chain comprising a vaccine 

manufacturer and a blockchain-based vaccine service platform. Their findings imply that 

blockchain implementation can enhance both the welfare and profit of the vaccine supply 

chain. Despite several papers examining blockchain adoption in the vaccine supply chain, 

none of them works on the value of blockchain adoption for vaccine ordering policy and its 

impact on social performance. This paper fills the respective gap. 

3 Basic Model  

We consider a two-stage two-ordering problem in a supply chain with Bayesian information 

updating. The supply chain consists of one government and two suppliers. The suppliers offer 

the vaccines at different time points, resembling the case when the COVID-19 pandemic just 

started. The efficacy levels of the vaccines provided by the two suppliers, A and B, are 

heterogeneous and denoted as 
A

e  and 
B

e , respectively. 
A

e  can be either larger or smaller than 

B
e . The parameter t refers to the shipping time of vaccine delivery, which only occurs when 

receiving the vaccines at the end of the planning horizon and is considered to capture the 

perishability of vaccines. Specifically, we consider the case that the vaccine will lose its 

efficacy (i.e., 0
n

e  , where n A  or B) at probability ( ) [ 0 ,1]G t  , which is a convex 

increasing function of t. That is, the vaccine’s efficacy level is either 
n

e  with probability 

1 ( )G t  or zero with probability ( )G t . Moreover, the longer the shipping time is, the more 

likely the vaccine loses all of its efficacy. This setting is based on real-world practices. For 

instance, according to the official guidance provided by Ontario government in Canada, the 

vaccines exposed to unacceptable conditions will rapidly lose their efficacy (i.e., 0
n

e  ) and 

should be discarded 
1
 . In Bangladesh, it is reported that up to 25% of COVID-19 vaccine has 

lost its efficacy after being distributed to rural healthcare centers and remote villages with 

long shipping times (Vesper, 2020). The two suppliers sell their vaccines to the government 

at wholesale prices 
A

w  and 
B

w . Usually, a higher efficacy level will lead to a higher 

wholesale price; that is, when 
A B

e e , then 
A B

w w , and vice versa. 

In our model, the number of people potentially interested in getting vaccinated (i.e., the 

potential ”market size”) is denoted by m , which is a random variable following the normal 

distribution with a mean m and a variance 
2

 . Here, the mean m is also unknown and follows 

a normal distribution: 
1 1

~ ( , )m N o rm a l d . The logic behind the assumption is that, the 

potential market size is a random variable in which the mean varies (which is also the most 

interesting thing to forecast). Still, there is a particular inherent uncertainty that cannot be 

reduced by whatever observations, i.e., the known variance. This modeling approach tells us 

that the expected value cannot truly represent the actual value, but the level of uncertainty can 

somehow be estimated. From statistics, we can treat the known variance as the variation of 

“demand” even at the start of the vaccine period, i.e., the number of people interested is still 

not precisely known and involves some variation. In this paper, people’s (called 

“consumers”) utility consists of three parts: (i) The value of vaccination denoted by v. 

Following the mainstream literature (Feng et al., 2017; Yi et al., 2022), we model v to follow 

a uniform distribution with the support of [0,1]. An unvaccinated person always receives zero 

valuation. (ii) The hassle cost of vaccination (e.g., making an appointment), denoted by  (
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0 ), is incurred only when the person decides to go and get vaccinated. (iii) The disutility 

caused by the probability of infection. 

We use r to represent the disease’s infection rate. Then, the infection probability for 

individuals who do not get vaccinated is r, and it will be reduced to (1 (1 ( )) )
n

r G t e   when 

the individual is vaccinated. This setting is consistent with the prior healthcare literature (Xu 

et al., 2022), and its rationale is: (i) Vaccinating with a higher efficacy level vaccine can lead 

to a lower infection probability for the individual; that is, the infection probability is 

decreasing in the vaccine efficacy. (ii) When there is no outbreak (i.e., 0r  ), the infection 

probability always equals zero. (iii) When the vaccine’s efficacy level is extremely low (i.e., 

0
n

e  ), the infection probabilities for vaccinated and unvaccinated individuals are the same. 

Here, note that consumers can realize the vaccine distribution ( )G t  through the information 

released by related authorities. For example, this kind of information is publicly available 

through the National Deployment and Vaccination Plan (NDVP), which is an operational 

plan for COVID-19 vaccines developed by countries to show the key information such as 

regulatory preparedness, supply chain, and health care waste management, vaccine safety, 

etc. (WHO, 2021). Based on the above considerations, we have the consumer utility for the 

one who does not go vaccinated as r , and the consumer utility for the one who is 

vaccinated as (1 (1 ( )) )
n

v r G t e    , where n A  or B. Consumers are self-interested, 

meaning that they will get vaccinated only when they can derive a higher utility from 

vaccination, i.e., (1 (1 ( )) )
n

v r G t e r      . By rearranging terms, we have 

(1 ( ))
n

v r G t e   . Recall that v is uniformly distributed between [0,1]. Hence the fraction 

of consumers who want to vaccinate is realized as 1 (1 ( ))
n

r G t e    (P.S.: Please see 

Figure 1 for consumer partitions). Then, scaled by the potential market size m , we derive the 

(random) demand for vaccines in the market as (1 (1 ( )) )
n

m r G t e   . 

In our two-stage problem, Suppliers A and B’s efficacy levels are publicly available from 

WHO’s website even before the vaccines are approved. 
2
 Thus, the government at Stage 1 

will know the efficacy levels of vaccines of both Suppliers A and B. At Stage 1 (i.e., the time 

when the government needs to order 
1

q  from vaccine Supplier A to satisfy its lead time 

requirement), the government’s forecast for the demand for the vaccine is 

1
| ~ ( (1 (1 ( )) ), )

A
D m N orm al m r G t e    . Since in our model, 

1 1
~ ( , )m N o rm a l d , the 

unconditional distribution of 
1

D  is given by 
2

1 1 1
~ ( (1 (1 ( )) ) ,

A
D N o rm a l r G t e     ), where 

2 2 2 2

1 1
(1 (1 ( )) )

A
r G t e d       . From Stage 1 to Stage 2, i.e., between the ordering time 

points from Supplier A and the next order (who can be Supplier B or Supplier A again), with 

digital technologies, the government can observe the number of people who are interested in 

taking the vaccine and update the forecast. We call this observation  . In the context of 

COVID-19 pandemic, the observation can be obtained via online questionnaires conducted 

by the government, which would help understand the people’s potential interests in 

vaccination for the next stage. For instance, in the United States, the office of the Assistant 

Secretary for Planning and Evaluation (ASPE) conducted a Household Pulse Survey to 

investigate the people’s COVID-19 vaccination intentions from April 2021 to January 2022 

(Holtkamp et al., 2022). By using Bayesian conjugate pair theory (Choi et al., 2003), the 

distribution of m becomes 
2 2

| ~ ( , )m N o rm a l d   with 1 1

2

1 1

d

d d

 


 
 

 
 and 1

2

1

d
d

d







, 

and the updated demand forecast for the vaccine in Stage 2 can be realized as 
2

D : 
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2

2 2 2 2 2
| ~ ( (1 (1 ( )) ) , )

n
x D N o rm a l r G t e       , where 

2 2 2 2

2 2
(1 (1 ( )) )

n
r G t e d       , and n A  or B. The marginal distribution of 

2
  is 

2

1

2 1

1

~ ( , )
d

N o r m a l
d

 


. Then, in Stage 2, the government has an opportunity to add order 

and/or change the vaccine supplier with updated information, while having to bear an 

additional cost c for having a shorter lead time. Consequently, the government can have three 

choices for Stage 2 based on the updated demand information: (i) doing nothing, (ii) ordering 

2
q  units of vaccine from Supplier A (Case AA) with a price 

A
w c , and (iii) ordering 

2
q  

units of vaccine from Supplier B (Case AB) with a price 
B

w c . The government’s 

objectives in the two stages are the same, i.e., to maximize the social welfare, which will be 

discussed in detail later in subsection 3.1. We do not consider the case when the government 

orders from Suppliers A and B simultaneously in this stage. The reasons are: (i) For 

tractability purposes, and (ii) this setting is in line with the real-world practices of the 

government’s vaccine ordering policy (P.S.: See Table 1). After that, the orders arrive, and 

the vaccination period starts. The vaccine leftover at the end of the vaccination period incurs 

the unit holding cost 0h   and the salvage value is zero. We consider that the holding cost is 

non-trivial in our study due to the strict storage conditions of vaccines, e.g., within specific 

temperature ranges. We show the sequence of the government’s decisions in Figure A1 in 

Online Appendix B. 

In the basic model, we assume that the disease has the same infection rate (r) in two stages. 

This setting represents the case where there is no variant of the COVID-19 virus, which 

usually happens at the early pandemic stage, e.g., before September 2020 (WHO, 2022). 

Considering the real-world observation that the COVID-19 pandemic has started to mutate 

and generate a new variant of the virus after September 2020, we further consider the case 

where the disease’s infection rate is different in two stages, i.e., 
1

r  in Stage 1 and 
2

r  in Stage 

2. To save space, the corresponding contents can be formed in Online Appendix C, which 

provides similar findings to the ones in the basic model, and shows the robustness of our 

study. Moreover, we do not consider the loss of vaccine efficacy caused by the holding time. 

Hence Supplier A’s vaccines have the same efficacy level in the two periods. We explain the 

rationality of this setting as follows: (i) In practice, the transportation of vaccines includes 

more uncontrollable situations (e.g., temperature, leakproofness) compared with the daily 

storage (i.e., holding time), which means that the efficacy of a vaccine is influenced more by 

the shipping time. (ii) We consider a significantly high holding cost (P.S.: higher than the 

shipping cost normalized to zero). This setting ensures the efficacy of the vaccine during the 

holding time. (iii) We want to reduce the ”moving parts” and focus on the core. If we 

consider the situation in which the efficacy of vaccines depends on holding time, the mutual 

influences between the vaccine efficacy level and demand will exist. 

To improve presentation, we let ( )   and ( )   be the ”standard normal density function” and 

”standard normal cumulative distribution function,” respectively. We also present the inverse 

function of ( )   by 1
( )


  , and the ”right linear loss function of the standard normal 

distribution” is denoted by ( ) ( )d ( )
a

a x a x


    . We define ( )f   as the probability density 

function of its argument. 

3.1 Case AA: Ordering from Supplier A in Stage 2  

Acc
ep

te
d 

M
an

us
cr

ipt



In Case AA, we examine the government’s vaccine ordering policy when it decides to order 

from the same supplier （(i.e., Supplier A) after updating the demand information. Using 

backward induction, we first present the government’s vaccine procurement cost and 

consumer surplus in Stage 2 in (1) and (2). Here, we follow Adida et al. (2013) to evaluate 

the consumer surplus, which refers to the total benefits received by all the vaccinated and 

unvaccinated people. 

2 2 1 2 2
[( ) ( ) ] ,

A A

A
C E w c q h q q D


      (1) 

2 2 1 2 1 2 2
[( (1 (1 ( )) )) ?( , ) ( )( ) ] .

A A

A
C S E v r G t e m in D q q r q q D


           (2) 

Since under the pandemic, social welfare should be prioritized when the government makes 

decisions (Ivanov and Dolgui, 2020), we set social welfare in (3) as the objective function of 

the government; it equals the consumer surplus minus the total cost. Note that the social 

welfare function used in our paper is not the same as the one in the traditional economic 

setup, which pays great attention to price and profit. In this study, we follow the mainstream 

operations management (OM) literature related to vaccine supply chains (e.g., Deo and 

Corbett 2009, Cho 2010) to evaluate the social welfare from people and cost perspectives, 

ignoring the performance of a firm’s profit. Particularly, the consumer surplus evaluated in 

our study can reflect the influence of infection transmission, which is one of the factors that 

the government most concerns about during the pandemic. Following Kaplan (2020) and Xu 

et al. (2022), we define {The chance of infection transmission}={infection probability}

{number of people}. Then, as we can observe from the consumer surplus functions (e.g., 

2 2 1 2 1 2 2
[( (1 (1 ( )) )) ( , ) ( )( ) ]

A A

A
C S E v r G t e m in D q q r q q D


          ), if more people 

are vaccinated (i.e., 
2 1 2

( ,m in D q q ) is larger and (
1 2 2

)q q D


   is smaller), the consumers 

are more benefited as the infection transmission is lower (i.e., 

2 1 2 1 2 2
(1 (1 ( )) ) ( , ) ( )

A
r G t e m in D q q r q q D


       is smaller). Therefore, we believe that the 

objective functions set in our model are reasonable. 

2 2 2 1 2 2
( | , ) .

A A A A A A
S W q q C S C    (3) 

We derive the optimal order quantity at Stage 2 under Case AA: 
* 1

2 2 2 1
{0 , [1 (1 ( )) ] ( ) }

A A

A
q m a x r G t e s q


         , where 

1 2 ( (1 ( )) )

1 2 ( (1 ( )) )

A A

A

w c r G t e
s

h r G t e





    


   
 and s represents the inventory service level of the vaccine 

in Stage 2, which reflects the probability of not having a stock-out. Generally, a higher 

service level leads to a higher order quantity while may also result in a higher holding cost. 

The derivations of optimal decisions are available in Online Appendix A. 

Proposition 1  

(i) When 
2

A A
  ,we have 

*

2
0

A A
q  ; when 

2

A A
  , we have 

*

2
0

A A
q  , where 

1

1 2
( )

1 (1 ( ))

A A

A

q s

r G t e







 


  

. (ii) A A
  is decreasing in 

A
e  and r.  
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Proposition 1 shows that the optimal order quantity in Stage 2 depends on 
2

  (random 

variable in Stage 1). Only when 
2

  is larger than a threshold, will the government make an 

order from Supplier A in Stage 2; otherwise, the government will order nothing. This finding 

is in line with the prior two-stage ordering studies (e.g., Choi et al., 2003; Zhang et al., 2020). 

Besides, we notice that the threshold can be influenced by the vaccine’s efficacy level 
A

e  and 

the infection rate r. To be specific, the government is more likely to make an order in Stage 2 

either when the vaccine’s efficacy level is higher, or the infection rate is larger. This finding 

is understandable as both the higher efficacy level and infection rate significantly increase the 

vaccine demand, which encourages the government to prepare more vaccines in Stage 2 to 

fulfill the demand. 

We then bring the dynamic program back to Stage 1 and derive the benefit-to-go in Stage 1 

as: 

1

1 2

1

1 2

( )

*1 (1 ( ))

1 1 1 2 2 2 1 2 2

*

( ) 2 2 2 1 2 2 1

1 (1 ( ))

( | ) [ ( 0 | , ) ] ( )d

[ ( 0 | , ) ] ( )d .

A

A

q s

A A A A A Ar G t e

A A A A

q s A

r G t e

S W q E S W q q f

E S W q q f w q









   

  





 

  





 

  

 

  





 (4) 

To enhance presentation, we let 
1

[1 (1 ( )) ]
2

A A
K r G t e h r        and 

2
(1 (1 ( )) )

A A
m r G t e     . The closed-form expressions for 

*

2 2 2 1
[ ( 0 | , ) ]

A A A A
E S W q q  

and 
*

2 2 2 1
[ ( 0 | , ) ]

A A A A
E S W q q  are: 

1

1 1

1

*

2 2 2 1

2 2 2

1 2 2 2 1 2 2

1 2 2 2

1

2 1

2

[ ( 0 | , ) ]

( (1 (1 ( )) ) ) ( )d

( (1 (1 ( )) ) ) ( )d ( ) ( )d

( ) ( ) ( )d

[ ( ) ] , a n d

A A A A

q

A

A
q q

q

A

A A A

E S W q q

v r G t e x f x x

v r G t e q f x x r x q f x x

h q x f x x

q m
K m r m h q












 





    

      

  


    



 



 (5) 

1

2

1

2

1

2

1

2

*

2 2 2 1

( )

2 2 2

1

2 2 2
( )

1

2 2 2 2
( )

( )
1

2 2

[ ( 0 | , ) ]

( (1 (1 ( )) ) ) ( )d

( (1 (1 ( )) ) ) ( ( ) ) ( )d

[ ( )] ( )d

( ) ( ( )

A

A

A

A

A A A A

m s

A

A A
m s

A
m s

m s

A

E S W q q

v r G t e x f x x

v r G t e m s f x x

r x m s f x x

h m s x









  






  




  

  




 

     

        

    

     








1

2 2 2 1

1 1

2 2 1

) ( )d ( )[ ( ) ]

( ) ( ) [ ( ) ] ( ( ) ) ( ) .

A A

A A A A A A

f x x w c m s q

K r m h w c m s K s w c q
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Based on the above expected benefit-to-go functions in Stage 1, we derive the optimal order 

quantity in Stage 1 (
1

q ) for the government by maximizing 
1 1 1

( | )
A A

S W q  . We define: 

1

1 2

2 1

2

1 1

( )
,

1 (1 ( ) )

,

/ ( )

A

A

q s
z

r G t e

a n d

d d


 


  










 




  

1

2

1 1

2

1 1 1 1
/ ( )

1

2

1

2

1 1

(1 (1 ( )) )( ( / ( ) ) )
( ) { [ ]} ( )d

( ) [ ] .

/ ( )

A
z

A A A
d d

A

A

A A

q r G t e d d
X q K

z
h K w c c

d d







     
  


      









   
  







  

Lemma 1  

(i) The expected benefit-to-go in Stage 1, 
1 1 1

( | )
A A

S W q   is a strictly concave function of 
1

q . 

(ii) The optimal order quantity in Stage 1, *

1

A A
q , can be uniquely determined as follows: if 

1

2

1 1

1 / 2 / [ ]

/ ( )

(1 ( ))

A

A

A

z
w c c

d d
r

G t e







    





, then 

1

*

1 1
{0 , a rg { ( ) 0} }

A A A A

q
q m a x X q  ; while if 

1

2

1 1

1 / 2 / [ ]

/ ( )

(1 ( ) )

A

A

A

z
w c c

d d
r

G t e







    





, then *

1
0

A A
q  .  

Lemma 1 proves the existence of the optimal order quantity in Stage 1. The result shows that 

when the disease’s infection rate is higher than a threshold, the government will order the 

vaccine in Stage 1; otherwise, the government will postpone all the orders until Stage 2 after 

demand information updating. Conventional wisdom suggests that the government should 

order vaccines as early as possible. However, in fact, a low disease’s infection rate will cause 

a demand reduction which deters the government from early purchasing of vaccines. Under 

this circumstance, we suggest the government fully use the information updating and only 

order vaccines in Stage 2. 

3.2 Case AB: Ordering from Supplier B in Stage 2  

In Case AB, the government will change its vaccine supplier from Supplier A to Supplier B 

after demand information updating. Both the scenarios when 
A B

e e  and 
A B

e e  are 

examined. Similar to Case AA, the government makes its optimal ordering decisions to 

maximize social welfare, as shown in (9). 

2 2 1 2 2
[( ) ( ) ] ,

A B

B
C E w c q h q q D


      (7) 
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2 1

2 1 2 1 2 2

2

2 2 1

2 2 1 2 2

[ ( (1 (1 ( ) ) ) ) ( , )

( (1 (1 ( ) ) ) ) ( ( ) , ) ( ) ] , i f

[ ( (1 (1 ( ) ) ) ) ( ( ) , )

( (1 (1 ( ) ) ) ) ( , ) ( ) ] , i f ,

A

B A BA B

A

B A B

E v r G t e m in D q

v r G t e m in D q q r q q D e e
C S

E v r G t e m in D q q

v r G t e m in D q r q q D e e









 





    


        

 
     



        

 (8) 

2 2 2 1 2 2
( | , ) .

A B A B A B
S W q q C S C    (9) 

We derive the optimal ordering quantity in Stage 2 under Case AB: 

* 1

2 2 2 1
{0 , [1 (1 ( )) ] ( ) }

A B

n
q m a x r G t e s q


         , where 

, if

, if

A B

A B

A e e
n

B e e


 



, 

1 2 ( (1 ( ) ) )
, i f

1 2 ( (1 ( ) ) )

1 2 ( (1 ( ) ) )
, i f

1 2 ( (1 ( ) ) )

B B

A B

B

B B

A B

A

w c r G t e
e e

h r G t e
s

w c r G t e
e e

h r G t e

    



   

 
    

 
    









, and s represents the inventory service 

level of the vaccine in Stage 2. The derivations of optimal decisions are available in Online 

Appendix A. 

Proposition 2  

(i) When 
2

A B
  ,we have *

2
0

A B
q  ; when 

2

A B
  , we have *

2
0

A B
q  , where 

1

1 2
( )

1 (1 ( ))

A B

n

q s

r G t e







 


  

. (ii) If 
A B

e e , A B
  is decreasing in 

A
e  and 

B
e ; while if 

A B
e e , 

A B
  is increasing in 

A
e  and decreasing in 

B
e   

Proposition 2(i) shows similar results as the ones under Case AA: The government will place 

an order from Supplier B in Stage 2 only when 
2

  is larger than a threshold; otherwise, the 

government will order nothing. From Proposition 2(ii), we find that a higher efficacy level 

does not necessarily result in a higher order quantity in Stage 2. Specifically, with an increase 

of Supplier A’s vaccine efficacy level, the government is less likely to place an order from 

Supplier B in Stage 2 if Supplier B’s vaccine efficacy level is higher than Supplier A’s. In 

other words, it is unwise for Supplier B to blindly increase its vaccine’s efficacy level 

because the government is less willing to purchase from Supplier B when the vaccine’s 

efficacy levels of both Suppliers A and B are sufficiently high. This finding is different from 

the result in Case AA. We hence suggest the government and suppliers make decisions 

carefully when facing competing vaccines in the market. 

Next, similar to Case AA, we carry out the dynamic program back to Stage 1 and derive the 

benefit-to-go in Stage 1 for Case AB as follows: 

1

1 2

1

1 2

( )

*1 (1 ( )) ]

1 1 1 2 2 2 1 2 2

*

( ) 2 2 2 1 2 2 1

1 (1 ( )) ]

( | ) [ ( 0 | , ) ] ( )d

[ ( 0 | , ) ] ( )d ,

n

n

q s

A B A B A Br G t e

A B A B

q s A

r G t e

S W q E S W q q f

E S W q q f w q
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where 
, if

, if

A B

A B

A e e
n

B e e


 



, 

1 2 ( (1 ( ) ) )
, i f

1 2 ( (1 ( ) )

1 2 ( (1 ( ) ) )
, i f

1 2 ( (1 ( ) )

B B

A B

B

B B

A B

A

w r G t e
e e

h r G t e
s

w r G t e
e e

h r G t e

   



   

 
   

 
    









. 

Recall that 
1

[1 (1 ( )) ]
2

A A
K r G t e h r        and 

2
(1 (1 ( )) )

A A
m r G t e     . We then 

let 
1

[1 (1 ( )) ]
2

B B
K r G t e h r        and 

2
(1 (1 ( )) )

B B
m r G t e     . The respective 

closed-form expressions for *

2 2 2 1
[ ( 0 | , ) ]

A B A B
E S W q q  and *

2 2 2 1
[ ( 0 | , ) ]

A B A B
E S W q q  are: 

* *

2 2 2 1 2 2 2 1

1

2 1

2

[ ( 0 | , ) ] [ ( 0 | , ) ]

[ ( )] , a n d

A B A B A A A A

A

A A A

E S W q q E S W q q

q m
K m rm h q

 




  


    

 (11) 

if 
A B

e e , 

1

1

1

2

1

2

*

2 2 2 1

2 2 2 1 2 2

( )

2 1 2 2

2 2 2
( )

[ ( 0 | , ) ]

( (1 (1 ( )) ) ) ( )d ( (1 (1 ( )) ) ) ( )d
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A B A B
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v r G t e x q f x x

v r G t e q f x x r









  





    

 

           

      

      

 



 1

2

1

2

1

2 2 2 2
( )

( )
1 1

2 2 2 2 2 1

1

2 1

2

1 1

2 2

[ ( ) ] ( ) d

( ( ) ) ( )d ( )[ ( ) ]

( ) [ ( ) ] ( ) ( )

( ) ( ) ( ( ) ) ;

A

A
s

m s

A B A

A

A A B B A

B B

x m s f x x

h m s x f x x w c m s q

q m
K h r m K h r w c m q

h w c s K s










  
 



 

   

          


           



        





(12) 

while if 
A B

e e , 

Acc
ep

te
d 

M
an

us
cr

ipt



 

1

2

1

2

1

2 1

*

2 2 2 1

( )

2 2 2 2

1 2 2
( )

( )

2 2 2

2 2

[ ( 0 | , ) ]

( (1 (1 ( ) ) ) ) ( ) ( )d

( (1 (1 ( ) ) ) ) ( )d

( (1 (1 ( ) ) ) ) ( )d

( (1 (1 ( ) ) ) ) ( )

B

B

B

B

A B A B

m s

A

A
m s

m s q

B

B
m

E S W q q

v r G t e x q f x x

v r G t e q f x x

v r G t e x f x x

v r G t e q f x







  





  

   



 

      

     

     

     







1 1

2 1 2

1

2

1

2 2 2 2 2
( ) ( )

( )
1 1

2 2 2 2 2 1

1

1 1 2 1

1 2 2

2

1

2

d [ ( ) ] ( )d

( ( ) ) ( )d ( ) [ ( ) ]

( )
( ) [ ( ( ) ( ( ) ) ) ] ( ) ( ( ) )

( ) (

B

B

B
s q m s

m s

B B B

A B B

x r x m s f x x

h m s x f x x w c m s q

s q
K h r q s s K h r m

h r

 



 


      

  
 





 



    

          

  
              



    

 



1

2 1
( ) ) ( ) ( ) ( ) ( ) .

B B B
s h w c s m q w c


       

(13) 

We let 
(1 ( ))( )

A B

A B

w w
r

G t e e




 
. The expressions of h  and 

1
( )

A B
X q  can be found in Online 

Appendix A. 

Lemma 2  

(i) The expected benefit-to-go in Stage 1, 
1 1 1

( | )
A B

S W q   is a concave function of 
1

q  if and 

only if h h . (ii) The optimal order quantity in Stage 1, *

1

A B
q , can be uniquely determined as 

follows: if r r , then 
1

*

1 1
{0 , a rg { ( ) 0} }

A B A B

q
q m a x X q  ; while if r r , then *

1
0

A B
q  .  

We argue that the holding cost condition in Lemma 2(i) is naturally satisfied in the real 

world. As introduced above, the cold chain requirement for vaccine storage is extremely strict 

(especially on temperature control), which results in a high holding cost in practice. 

Additionally, Lemma 2(ii) uncovers that when the disease’s infection rate is relatively low, 

there’s no need for the government to order vaccines in Stage 1 with high market uncertainty. 

This finding is the same as the one obtained in Case AA. 

We summarize the optimal ordering policy for the government in Theorem 1. 

Theorem 1  

In Stage 1, determine 
*

1

A A
q  (or 

*

1

A B
q ) by checking the decision rule proposed in Lemma 1 (or 

Lemma 2). In Stage 2, after observation and information updating, 
2

  can be realized; then, 
*

2

A A
q  (or 

*

2

A B
q ) can be decided as 

* 1 *

2 2 2 1
{0 , [1 (1 ( )) ] ( ) }

A A A A

A
q m a x r G t e s q  


        (or 

* 1

2 2 2 1
{0 , [1 (1 ( )) ] ( ) }

A B

n
q m a x r G t e s q


         , where 

, if

, if

A B

A B

A e e
n

B e e
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4 Decision Analysis  

In Section 3, we have analytically derived the government’s optimal two-stage vaccine 

ordering decisions with information updating. In this section, we further analyze and 

demonstrate how the government’s ordering decisions and social performance will be 

affected by different factors. Particularly, we will provide guidance on optimal ordering 

policy and vaccine supplier selection to the government. 

4.1 Sensitivity analysis on ordering decisions  

First, we discuss the impacts of crucial factors (e.g., disease’s infection rate, vaccines’ 

efficacy levels, shipping time, etc.) on the government’s ordering decisions. Due to the 

difficulty in closed-form analysis, we conduct numerical studies and derive findings as 

follows. All the data we set follow the model assumptions (e.g., ( ) [ 0 ,1]G t  , when 
A B

e e , 

then 
A B

w w , and vice versa.) and can help show the effects clearly. The detailed numerical 

settings and the corresponding Figures A2 to A8 are in Online Appendix B. 

Observation 1  

(i) In Case AA, the government’s optimal order quantity in Stage 1 *

1

A A
q  is increasing in 

A
e  

and r, and decreasing in t. (ii) In Case AB, the government’s optimal order quantity in Stage 

1 *

1

A B
q  is increasing in 

A
e  and r and decreasing in 

B
e  and t.  

Observation 1 gives a clear picture of the government’s optimal ordering policy concerning 

the infection rate (r), the vaccines’ efficacy levels (
A

e , 
B

e ), and the shipping time of the 

vaccine (t) in different cases. The results indicate that the government will always order more 

vaccines from Supplier A in Stage 1 to match the high potential demand if Supplier A’s 

(Supplier B’s) vaccine efficacy level is higher (lower) or the infection rate is higher. This 

result is understandable, as individuals tend to vaccinate if the infection rate is high, or the 

vaccine with a higher efficacy level should be more popular. Besides, the longer shipping 

time will reduce the government’s ordering willingness because the vaccine’s efficacy level 

will be decreased. Thus, it is critically important for the government to take measures (e.g., 

adopting blockchain technology) to eliminate such negative impact brought by the shipping 

time. The value of blockchain adoption in vaccine ordering will be further examined in the 

extended model in Section 5.1. 

4.2 Sensitivity analysis on social performance  

Next, to guide the government’s optimal supplier selection decision, we conduct a sensitivity 

analysis for social welfare under Cases AA and AB. The numerical settings and 

corresponding figures can be checked in Figures A9 to A15 in Online Appendix B. 

Observation 2  

(i) In Case AA, the optimal expected social welfare 
*

1

A A
S W  is concave in r, increasing in 

A
e  

and decreasing in t. (ii) In Case AB, the optimal expected social welfare 
*

1

A B
S W  is increasing 
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in r and 
A

e  and decreasing in 
B

e , if 
A B

e e , and decreasing in r and 
B

e  and increasing in 
A

e

, if 
A B

e e .  

Observation 2 presents how the infection rate (r), the vaccines’ efficacy levels (
A

e , 
B

e ), and 

the shipping time (t) can impact social welfare. First, notice that no matter in Case AA or AB, 

social welfare is increasing in Supplier A’s vaccine efficacy level, and decreasing in both 

Supplier B’s vaccine efficacy level and the shipping time. The main reason is on the ordering 

quantity. The government will reduce its order quantity when Supplier A’s (Supplier B’s) 

vaccine efficacy level is lower (higher) and the shipping time is longer (see Observation 1). 

These all harm the consumers and social welfare. 

Then, regarding the influence of infection rate, we interestingly find that even though a 

higher infection rate (r) can induce a higher potential demand and a larger order quantity, it 

does not necessarily benefit social welfare in both Cases AA and AB. Specifically, if the 

government does not change its supplier in Stage 2 (i.e., Case AA), the maximum social 

welfare can be achieved only when the infection rate is moderate. The reasons are: (i) When 

the infection rate is sufficiently low, fewer consumers are willing to vaccinate, which 

increases the infection probability and eventually harms the consumer surplus and social 

welfare; and (ii) when the infection rate is sufficiently large, vaccination is less efficient to 

reduce the potential harm brought by the virus to consumers, which results in a smaller social 

welfare. This finding implies that the optimal social welfare is concave in the infection rate. 

Hence, there exists a unique infection rate that maximizes the social welfare under a given 

vaccine efficacy level. In other words, the value of vaccine can be maximized by a ”critical 

infection rate”, rather than a higher one. According to Abedi et al. (2021), the infection rate 

per one million of COVID-19 ranges from 15.36 to 5093.99 in different counties. To guide 

the government on how to select a proper vaccine supplier based on its country’s infection 

rate, we conduct numerical studies and summarize the results in Table A1 in Online 

Appendix B. It shows how vaccines with different efficacy levels can maximize social 

welfare under different infection rate ranges. Specifically, a high efficacy level is optimal for 

the place with a high infection rate and a low efficacy level is suitable to the place with a low 

infection rate. If the government decides to change its supplier in Stage 2 (i.e., Case AB), the 

government should (i) choose the vaccine Supplier B with a lower efficacy level (compared 

with Supplier A) when the infection rate is relatively high, and (ii) select the vaccine Supplier 

B with a higher efficacy level (compared with Supplier A) when the infection rate is 

relatively low. This finding is interesting as it means that after information updating, the high 

efficacy level of Supplier B is not always efficient to combat the high infection rate 

challenge. The sensitivity analysis results are summarized in Table 2 . 

4.3 Comparison results between Case AA and Case AB  

To figure out the government’s optimal vaccine selection decision in Stage 2, we compare the 

results derived in Cases AA and AB. We let 
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Proposition 3  

For given 
1

q , if 
A B

e e , then * *

2 2

A A A B
q q  if and only if 

A A
w w ; while if 

A B
e e , then 

* *

2 2

A A A B
q q  if and only if 

2 2
  .  

Proposition 3 shows the comparison results for the ordering policies in Stage 2 between 

Cases AA and AB. The results imply that no matter whether Supplier B’s vaccine efficacy 

level is high or low, if the government would order from Supplier B at Stage 2, she would 

order more vaccines than under Case AA in Stage 2. Specifically, if Supplier B’s vaccine 

efficacy level is lower than Supplier A’s, the government will order more from Supplier B 

when the wholesale price of Supplier A’s vaccine is relatively large. This finding is logical as 

the high wholesale price will reduce the government’s willingness to order. However, if 

Supplier B’s vaccine efficacy level is higher than Supplier A’s, the government should order 

more vaccines from Supplier B than Supplier A in Stage 2 when the market size is relatively 

large. The reason is that a higher efficacy level encourages more consumers to vaccinate, 

especially when the market size is huge, which prompts the government to order more 

vaccines to meet the demand. To summarize, the government’s dynamic ordering decision is 

subtle. It depends on many crucial factors, including the vaccines’ efficacy levels, the 

wholesale price, and the potential market size. The government should carefully make 

decisions based on our proposed findings. 

Observation 3  

(i) When 
A B

e e , social welfare is higher in Case AA if r is relatively small; otherwise, social 

welfare is higher in Case AB. (ii) When 
A B

e e , social welfare is higher in Case AA if r is 

relatively large; otherwise, social welfare is higher in Case AB.  

Observation 3 guides the government’s vaccine selection decision under the pandemic. 

Details of the numerical settings can be found in Figure A16 in Online Appendix B. The 

results show that it can be wise for the government to change its supplier (from Supplier A to 

Supplier B) after information updating, no matter the disease’s infection rate is sufficiently 

low or high. However, the government should carefully investigate Supplier B’s vaccine 

efficacy level before making decisions. When the infection rate is sufficiently low, only 

Supplier B with higher efficacy level (compared with Supplier A) is prefered in Stage 2; 

while when the infection rate is relatively large, Supplier B with a lower efficacy level 

(compared with Supplier A) is recommended. This finding is consistent with the real-world 

practices that many governments choose to order from different vaccine suppliers during the 

COVID-19 pandemic. Significantly, under the most challenging situation of COVID-19 with 

a high infection rate, places like the U.S., Europe, Hong Kong, and Japan decided to 

supplement their initial vaccine ordering from an alternative supplier with a relatively low 

efficacy level (See Table 1 ). However, when the disease’s infection rate is moderate, our 

results suggest the government make an order from the same vaccine supplier with a 

moderate efficacy level at both stages. This finding is essential. It means that for those places 

with a moderate infection rate, it is unnecessary for the government to order vaccines from 

different suppliers; otherwise, social welfare will be harmed. 

To provide helpful guidance for the government regarding its vaccine ordering policy, we 

depict Figure 2 to summarize all the essential findings including both the numerical and 

analytical ones) in the basic model. As shown in the figure, both the government’s vaccine 
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supplier selection and vaccine ordering decisions rely on the disease’s infection rate. For 

example, when the infection rate is extremely high, the government should order vaccines 

from Supplier A at Stage 1 (P.S.: refer to Lemmas 1 and 2), and then change to Supplier B at 

Stage 2 if Supplier B’s vaccine efficacy level is lower than Supplier A’s; otherwise, the 

government should continue to order from Supplier A at Stage 2 (P.S.: refer to Observation 

3). Similarly, when the infection rate is extremely low, the government should order nothing 

from Supplier A at Stage 1 and order from Supplier B at Stage 2 if Supplier B’s vaccine 

efficacy level is higher than Supplier A’s; otherwise, the government should choose Supplier 

A at Stage 2. Besides, we conduct a sensitivity analysis for these thresholds (i.e., r , r , and r ) 

with respect to the shipping time t (P.S.: Proofs are in Online Appendix A). When the 

shipping time is longer, the government is more recommended to (i) postpone its ordering to 

the second stage (i.e., r  is increasing in t), and (ii) choose the alternative vaccine supplier 

(Supplier B) (i.e., r  is increasing in t and r  is decreasing in t). This is because a longer 

shipping time leads to a lower vaccine demand (due to the loss of vaccine efficacy), which 

encourages the government to order less in the first stage and may choose an alternative 

supplier in the second stage to benefit consumers. 

5 Extensions  

5.1 Ordering policy with blockchain adoption  

As we have found in the basic model, a longer shipping time t increases the probability of 

losing vaccine efficacy ( )G t  which decreases social welfare (P.S.: See Table 2 ). To address 

this challenge in cold chain management, blockchain technology is considered, as it can 

facilitate monitoring by enhancing data visibility and traceability (Yang et al., 2019; Hastig 

and Sodhi, 2020). IBM, one of the world’s largest technology corporations, has established a 

blockchain system to support vaccine delivery during the pandemic. It claims that the 

blockchain component can help monitor and get the refrigerated containers’ temperature data 

every 5 minutes, which ensures that the vaccines are all in good conditions without losing 

efficacy in the delivery process (IBM Garage, 2021). Hence, the role of blockchain adoption 

is to maintain cold-chain requirements and keep vaccine efficacy in vaccine ordering, which 

can help foster consumer confidence in vaccination. 

In this subsection, we consider the case where the government adopts blockchain technology 

to monitor the vaccine’s shipping process. In our model settings, the value of blockchain 

adoption is shown by having ( ) 0G t  . In other words, with the use of blockchain, on matter 

the shipping time is long or short, the probability of losing vaccine’s efficacy equals zero. 

Therefore, the value of blockchain is to eliminate the negative impacts brought by t instead of 

working on t directly. Then, the vaccinated consumer utility is given by (1 )
n

v r e   , 

which is larger than the ”without blockchain” case. However, the government should bear the 

nontrivial costs of blockchain implementation. It usually incurs two types of costs: a unit 

operations cost b and a fixed implementation cost F (Xu et al., 2022). The government should 

pay the unit operations cost for each quantity at two stages, and the fixed implementation cost 

is a lump sum paid in Stage 1. We use the superscript ”BT” to denote the case with 

blockchain adoption. By using the same approach as the one in the basic model, we yield the 

optimal order quantities in two stages in the two cases. To save space in the mainbody, the 

optimal solutions and corresponding proofs for Cases AA and AB under blockchain adoption 

can be found in Online Appendix A. Here, we mainly present the analyses including 

comparisons between the blockchain adoption case and basic model as well as the value of 
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blockchain adoption. We first compare the optimal order quantities between the blockchain 

adoption case (i.e., , *B T A A

k
q  in Case AA for (1, 2 )k  ) and basic model in Proposition 4. All 

the results and proofs can be found in Online Appendix A.  

Proposition 4  

(i) We have , * *

1 1

B T A A A A
q q . (ii)For given 

1
q , we have , * *

2 2

B T A A A A
q q  if and only if 

1 1

2

2

[ ( ) ( ) ]
( )

B T

A

s s
G t

r e





 
  

 , otherwise, , * *

2 2

B T A A A A
q q .  

Proposition 4 shows the impact of blockchain adoption on the government’s optimal ordering 

quantities. We find that the use of blockchain technology will always induce an increased 

vaccine ordering quantity in Stage 1, regardless of the shipping time. This finding verifies the 

significant contribution of blockchain adoption on eliminating the negative impact brought by 

the long shipping time. However, when it comes to Stage 2, we surprisingly notice that the 

use of blockchain technology does not necessarily lead to a higher order quantity, especially 

when the shipping time is relatively short. It means that when the market demand is updated, 

blockchain adoption becomes less useful. 

We define 
,

1 1 1 1 1 1 1
( | ) ( | )

i B T i i
S W S W q S W q     as the value of blockchain adoption in terms 

of social welfare, where i A A  or AB. We then conduct numerical analysis and yield 

Observation 4. Two different cases regarding the shipping time are examined, i.e., the case 

when t is small ( 0 .5t  ) and the case when t is large ( 1t  ). More detailed numerical settings 

and the corresponding figure (i.e., Figure A17) are shown in Online Appendix B. 

Observation 4  

(i) When the shipping time t is relatively small, blockchain adoption can only benefit social 

welfare in Case AA (i.e., 
1

0
A A

S W  ) if the disease’s infection rate (i.e., r) is relatively 

large; in Case AB, it always harms social welfare (i.e., 
1

0
A B

S W  ) regardless of the 

infection rate.  

(ii) When the shipping time t is relatively large, blockchain adoption can always benefit 

social welfare in both Cases AA and AB.  

(iii) The value of blockchain adoption increases in the infection rate r in Case AA while it 

decreases in the infection rate in Case AB.  

Observation 4 presents the value of blockchain adoption in different cases. The results in 

Observations 4(i) and (ii) show whether the use of blockchain technology benefits social 

welfare depends on both the shipping time and the disease’s infection rate. Specifically, 

blockchain adoption can always improve social welfare when the shipping time is relatively 

long. However, if the shipping time is relatively short, it never enhances social welfare in 

Case AB but could be effective in Case AA as long as the disease’s infection rate is relatively 

high. This finding gives two implications: (i) The value of blockchain adoption is increasing 

with the shipping time, which is logical as it can eliminate the negative impact of shipping 

time on the vaccine efficacy; (ii) blockchain adoption is valuable for the highly infectious 

disease if the government does not change its vaccine supplier in Stage 2 (i.e., Case AA). 
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Moreover, we interestingly notice that if the government decides to change the supplier in 

Stage 2 (i.e., Case AB), blockchain adoption is harmful to social welfare under the high 

infectious disease scenario. The potential reason can be twofold: First, as we have found in 

Proposition 4, the blockchain adoption is less efficient after information updating, which 

results in a lower order quantity in Stage 2 that harms social welfare. Second, a higher 

infection rate will lead to a higher ordering cost for the government, which also harms social 

welfare. To summarize, blockchain adoption is more recommended to the place with high 

(low) infection rate if the government decides not to change (decides to change) its vaccine 

supplier in Stage 2. 

5.2 Ordering policy considering the side effects  

In this subsection, we check the robustness of our study by considering the vaccine’s side 

effects. We use the superscript ”SE” to denote this case. This consideration is based on real-

world observations that the COVID-19 vaccine’s side effects will significantly influence the 

government’s vaccine-ordering decisions as it affects the individuals’ willingness to be 

vaccinated. As reported by Nguyen et al. (2021), concerns about side effects are the major 

reason why individuals do not intend to get vaccinated for COVID-19. For instance, the U.S. 

Centers for Disease Control and Prevention has suspended the injection of Johnson & 

Johnson’s COVID-19 vaccine, as a severe side effect (e.g., a blood-clotting disorder) is 

reported. Similarly, a significant number of European countries (including Italy, Germany, 

France, Denmark, Spain, etc.) have called for a pause in the use of AstraZeneca’s COVID-19 

vaccine because of the potential side effects of blood clots (McCarthy, 2021).  

Based on the above consideration, we follow real-word cases and consider that the vaccine’s 

side effects 
,n j

  will negatively impact consumer utility. The side effect varies in different 

age groups, where n A  or B denotes the vaccine from different suppliers, and j represents 

different age groups. We follow Riad et al. (2021) and identify two age groups, i.e., 4 5  

years old (youth, j y ) and 4 5  years old (elder, j e ). As revealed by Riad et al. (2021), 

the vaccine’s side effect is more prevalent among the youth group than the elder group, i.e., 

, ,n y n e
  . The population proportion of each group is denoted by 

j
 , where 1

y e
   . 

Hence, in this case, we let 
, ,n y n y e n e

L       and have the utility for vaccinated consumers 

given by (1 (1 ( )) ) ]
n n

v r G t e L     . Therefore, the vaccine demand is realized as 

[1 (1 ( )) ]
n n

m r G t e L    . 

For Case AA, we find the optimal ordering quantity 
, * 1

2 2 2 1
{0 , [1 (1 ( )) ] ( ) }

S E A A S E

A A
q m a x r G t e L s q


          , where 

1 2 ( (1 ( )) )

1 2 ( (1 ( )) )

S E A A A

A A

w c r G t e L
s

h r G t e L





     


    
 represents the inventory service level of the 

vaccine in Stage 2. 
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For Case AB, we find the optimal ordering quantity 
, * 1

2 2 2 1
{0 , [1 (1 ( )) ] ( ) }

S E A B S E

n n
q m a x r G t e L s q


          , where 

, if

, if

A B

A B

A e e
n

B e e
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Proposition 5  

(i) No matter in Case AA or AB, we have S E
s s . (ii) For i A A  or AB, when ,

2

S E i
  , we 

have , *

2
0

S E i
q  ; when ,

2

S E i
  , we have , *

2
0

S E i
q  , where 

1

, 1 2
( )

1 (1 ( ))

S E

S E i i

n n

q s

r G t e L


 




 

 
   

, and 
, if o r ( a n d )

, if a n d

A B

A B

A i A A i A B e e
n

B i A B e e

  
 

 

.  

Proposition 5 reveals the impacts of side effects on the government’s optimal ordering policy 

in Stage 2. First, it is understandable that the side effect will reduce the individual’s 

willingness to vaccinate, which decreases the government’s ordering quantity in Stage 2. 

Moreover, we find that the government is less likely to place an order in Stage 2 if the 

vaccines’ side effect is taken into consideration. This finding indicates that the vaccines’ side 

effect will reduce the efficiency of information updating. 

Then, using the same approach used in the basic model, we can derive the expected benefit-

to-go and the corresponding optimal order quantity for the government in Stage 1 in the two 

cases (P.S.: The detailed expressions can be found in Online Appendix A). To figure out 

whether it is appropriate for the government to change its vaccine supplier after information 

updating when considering the side effects, we conduct numerical analysis (see Figure A18 in 

Online Appendix B) and obtain Observation 5. Note that, we set 
,

0 .4
A y

  , 
,

0 .3
A e

  , 

,
0 .5

B y
  , and 

,
0 .4

B e
  , which follows the assumption that the vaccine’s side effect is more 

prevalent among the youth group than the elder group (Riad et al., 2021). Meanwhile, two 

different cases regarding the infection rate are examined, i.e., the case when r is small (

0 .4r  ) and the case when r is large ( 0 .9r  ). 

Observation 5  

(i) When r is relatively small, social welfare is higher in Case AA if 
A B

e e  or 
y

  is 

relatively small; otherwise, social welfare is higher in Case AB. (ii) When r is relatively 

large, social welfare is higher in Case AA if 
A B

e e  or 
y

  is relatively small; otherwise, 

social welfare is higher in Case AB.  

Observation 5 implies that in Stage 2, changing vaccine supplier is not always beneficial to 

social welfare when considering the side effects. The government should carefully make 

decisions based on the infection rate, the vaccines’ efficacy levels, and the age group 

distribution in the society. Specifically, when the disease’s infection rate is relatively low 

(resp. high), only when the youth group’s proportion is large (i.e., fewer elderly people), the 

government is recommended to choose an alternative vaccine supplier (i.e., Case AB) with a 

lower (resp. higher) efficacy level after information updating. This result indicates that (i) no 
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matter whether the infection rate is low or high, the government may still change its vaccine 

supplier after information updating. To be specific, Supplier B with a higher efficacy level 

(compared with Supplier A) is preferred when the infection rate is low. Otherwise, Supplier B 

with a lower efficacy level is preferred when the infection rate is high. This finding is 

consistent with the one derived in the basic model (i.e., Observation 3), which shows the 

robustness of our study. (ii) In places with a severe age problem, i.e., a large proportion of 

elders, the government is advised not to change its vaccine supplier since social welfare will 

suffer due to the impact of side effects. 

6 Conclusion  

Motivated by real-world cases of governments’ vaccine procurement policies under the 

COVID-19 pandemic (especially during the early stage of the pandemic) as well as the 

emergence of digital technologies, we build a two-stage two-ordering inventory model with 

Bayesian information updating. We investigate and derive the government’s optimal dynamic 

vaccine ordering policy that optimizes social welfare. We consider the scenario that the 

government can make its initial vaccine ordering decision from one supplier at the first stage 

and then is allowed to adjust its ordering decision at the second stage (i.e., whether to make 

an order, whether to change the supplier, and corresponding order quantity at the second 

stage) based on the updated demand information. Our analyses yield some implications and 

suggestions for the government regarding its optimal order time point, order quantities, and 

supplier selection decisions. We further consider the use of blockchain technology for cold 

chain management and also explore the impacts of vaccine’s side effects. The significant 

implications derived from our study are summarized as follows. 

Optimal order policy: First, the government need not order the vaccine as early as possible. 

When the infection rate is relatively low, the government should order nothing at the first 

stage and place all the orders at the second stage with the updated demand information. Since 

a low infection rate leads to weak demand, the government does not need to over-order 

vaccines at the very beginning. Whereas when the infection rate is high, the government 

should order vaccines in the first stage. Then, in the second stage, both the higher vaccine 

efficacy level and the larger infection rate will increase the government’s willingness to 

order, as the vaccine demand will be remarkably increased under these circumstances. These 

findings indicate the necessity for information updating that allows the government to 

supplement its order in the second stage, under certain conditions dynamically. Note that, 

when variants of the virus (such as the notorious Omicron) are expected, the government is 

more likely to order vaccines in both stages. Besides, when considering the vaccine’s side 

effects, we find that the government’s order quantity in the second stage would be reduced. 

Supplier selection: In the second stage, when the government faces two alternative vaccine 

suppliers, it should carefully select the best one based on the disease’s infection rate, which 

varies from place to place (Abedi et al., 2021). Specifically, when the infection rate is low, 

the government should choose the supplier with a higher efficacy level (compared with the 

one in the first stage) upon information updating. When the infection rate is high, choosing 

the supplier with a lower efficacy level is more beneficial. The rationale behind is that the 

high (low) infection rate has already induced the government to order vaccines from the 

supplier with a high (low) efficacy level in the first stage. Hence providing a choice (i.e., a 

supplier with an opposite efficacy level) for the consumers in the second stage can help 

increase social welfare. Finally, when the infection rate is moderate, the government should 

continue to order vaccines from the same supplier as in the first stage. In order words, the 

Acc
ep

te
d 

M
an

us
cr

ipt



government does not have to choose an alternative vaccine supplier after information 

updating, especially in places with a moderate infection rate. These implications remain valid 

if the government considers the vaccine’s side effects when making decisions. 

Blockchain adoption: In the basic model, we notice that an increase in shipping time 

inevitably reduces the vaccine order quantity and harms social welfare. We hence propose the 

measure of blockchain adoption to eliminate such negative impacts on the vaccine cold chain. 

Our findings reveal that with blockchain adoption, the government is willing to order more 

vaccines at the first stage, regardless of the shipping time, while may reduce its order quantity 

after demand information updating in the second stage when the shipping time is relatively 

short. This finding implies that the blockchain adoption reduces the significance of 

information updating. Then, regarding social welfare improvement, blockchain adoption is 

recommended only when the shipping time is relatively long or when the government decides 

not to change its vaccine supplier (in a place with a high infection rate). 

Although our study has provided managerial insights which help the government to set its 

optimal vaccine ordering policy under COVID-19, we admit some limitations. First, the M-

stage/M-supplier (M¿2) problem is practical while it is difficult to derive the analytically 

tractable closed-form solutions, which is critically important for an analytical modeling 

paper. Hence, for future research, other optimization methods like stochastic programming 

can be adopted to extend our findings under a multi-stage/multi-supplier ordering framework 

(Kaminsky and Wang, 2019). Second, the loss of vaccine efficacy caused by the holding time 

is ignored in this study, and we assume that the use of blockchain can perfectly eliminate the 

loss of efficacy during transportation, irrespective of shipping time. For future studies, it will 

be meaningful to explore the case when time plays a role, even though a totally different 

model should be established (e.g., a continuous time model in which the efficiency of 

blockchain depends on time). Third, we may consider an alternative Bayesian model where 

both the mean and variance of the customer population are unknown and can be updated in 

the second stage (Choi et al., 2006). Finally, it will be interesting to explore further the 

impacts of supply disruption on the government’s decisions, as it is a critical issue faced by 

most manufacturers during the pandemic (Ivanov, 2020; Xu et al., 2023). 
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Figure 1: Consumer partitions of vaccination behavior. 

 

Figure 2: The government’s optimal vaccine ordering policy under the pandemic (Remarks: 

r  and r  are increasing in the shipping time t; r  is decreasing in t). 

  

Acc
ep

te
d 

M
an

us
cr

ipt



Table 1: Real-world governments’ vaccine ordering practices 

Regions  Vaccine manufacturers  Efficacy  Ordered doses  Order time  Stage  

European Union  
Johnson & Johnson  72%  200 million  October 2020  First  

Pfizer-BioNTech  95%  200 million  January 2021  Second  

Japan  
AstraZeneca  76%  120 million  August 2020  First  

Moderna  94%  50 million  October 2020  Second  

Taiwan  
AstraZeneca  76%  10 million  November 2020  First  

Moderna  94%  5 million  February 2021  Second  

U.S.  
Pfizer-BioNTech  95%  200 million  February 2021  First  

Johnson & Johnson  72%  100 million  March 2021  Second  

 

Table 2: Summary of Sensitivity Analyses 

Sensitivity Analyses for *

1
q   

 
r  e A  e B  t  

Case AA  

      

N/A  

   
 Case AB  ↓  

Sensitivity Analyses for *

1
S W   

 
r  e A  e B  t  

Case AA  ↑ ↓  

   

N/A  

    Case AB (if e A > e B )  ↑  

   
 Case AB (if e A ≤ e B )  ↓  

Remarks: ”   ” means that an increase in the parameter leads to a larger *

1
q  or *

1
S W  ; ”   ” means 

that an increase  

in the parameter leads to a smaller *

1
q  or *

1
S W  ; ”N/A” means that *

1
q  or *

1
S W  is independent of 

the parameter. . 
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