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Abstract 15 

Evaluating the system reliability of layered soil slopes is a challenging issue because multiple failure 16 

modes may be included along the slip surfaces, which makes the overall failure probability greater 17 

than any individual slip surface. In this paper, an efficient system reliability analysis concerning the 18 

layered soil slopes is conducted based on the sequential compounding method (SCM) that has the 19 

ability to compound multiple failure events into an equivalent event sequentially. First, the first 20 

order reliability method (FORM) is employed to quantify initial reliability indices and correlation 21 

coefficients among these failure modes. Subsequently, the SCM is used to calculate the equivalent 22 

reliability indices and correlation coefficients until the multiple failure events are reduced to a 23 

compound event, and then the system reliability of the slope is obtained accordingly. The application 24 

of the approach to probabilistic evaluation of layered slopes is illustrated by two typical examples, 25 

and the correctness is verified by the Monte Carlo simulation (MCS). The results show that the SCM 26 

can deliver accurate system failure probability and greatly improve the computational efficiency 27 

compared with the MCS, which is an advantageous and promising strategy in evaluating the system 28 

reliability of layered soil slopes. 29 

Keywords: System reliability; Layered soil slopes; Multiple failure modes; First order reliability 30 

method; Sequential compounding method; Monte Carlo simulation 31 

 32 

Introduction 33 

There is an ever-increasing interest in evaluating the performance of the layered soil slopes 34 

from the perspective of reliability analysis, because it can take into account the uncertainties that 35 

exist in engineering geology widely (Cho 2009; Phoon and Ching 2015; Li and Wang 2021; Zai et 36 
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al. 2021; Liao et al. 2021a). Compared with conventional stability analyses assuming that the 37 

geotechnical properties are constant and result in a single factor of safety, reliability analysis 38 

considers the random variation of geotechnical properties and quantifies the probability of failure 39 

to reflect the hazard level of slopes, which can be further applied in risk management and decision-40 

making (Zhang et al. 2013b; Hicks et al. 2014; Vardanega and Bolton 2016; Liao et al. 2021b; Jiang 41 

et al. 2022). However, calculating the failure probability of individual slip surface mechanically, 42 

even the most critical one, may underestimate the failure probability when the slope involves 43 

multiple slip surfaces (Zhang et al. 2013a; Kang et al. 2015; Zeng et al. 2018). In this case, the 44 

instability of the slope could be triggered by any mobilization of the potential slip surfaces. The 45 

slope can be therefore considered as a series system. 46 

In recent decades, several methods have been introduced to calculate the system reliability of 47 

slopes with the rapid advance of fundamental theory and computer science. Initially, Cornell’s 48 

bounds method, which considers the sign of the correlation coefficient among multiple failure 49 

surfaces, provides a rough range of the system failure probability (Cornell 1967). However, limited 50 

by ignoring the value of the correlation coefficient, the results obtained are usually overestimated. 51 

Further, Ditlevsen's bounds method solves this issue by using approximation algorithm, such as first 52 

order reliability method (FORM), giving a relatively narrow probability range (Ditlevsen 1979; 53 

Chowdhury and Xu 1995; Low et al. 2011; Liao et al. 2022; Low and Bathurst 2022). Although this 54 

technique yields seemingly good results and is widely applied in the practical analysis, the bounds 55 

can be broad when the single-mode failure probabilities are all high and the modes of failure are 56 

numerous (Ang and Tang 1984). Hence, some other methods have emerged in search of more precise 57 

solutions. The most representative one is the Monte Carlo simulation (MCS), which is a 58 
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straightforward tool to calculate system reliability and serves as an unbiased way for verifying the 59 

accuracy of other methods as well (Ji and Low 2012; Jiang et al. 2015). But due to its disadvantages 60 

of computational effort and time consumption, more efficient simulation methods represented by 61 

importance sampling (IS), subset simulation (SS), and Latin hypercube sampling (LHS), have also 62 

been implemented in this framework (Ching et al. 2009; Li et al. 2017; Guardiani et al. 2021). To 63 

date, although a series of efforts have been made to calculate system reliability, it is still perplexing 64 

to balance the efficiency and accuracy, especially when the system is complex. 65 

Sequential compounding method (SCM) proposed by Kang and Song (2010) is developed to 66 

answer the system reliability of general events through solving multivariate normal integrals, which 67 

has the ability to cover the system with a variety of correlation properties even for those with 68 

numerous components (Chun et al. 2015). The principle of SCM is to sequentially compound two 69 

components that are coupled by a logical operation, such as union or intersection, until the 70 

components of the system are reduced to a single compound event. In this way, the seemingly 71 

difficulty of evaluating the comprehensive performance of a complicated event is simplified into 72 

solutions of calculating equivalent reliability indices and correlation coefficients, in which the initial 73 

failure probabilities of the individual events and the corresponding correlation coefficients can be 74 

calculated by the FORM (Haldar and Mahadevan 2000; Cho 2013). The proposed method has 75 

shown that it has major advantages in terms of computational accuracy and efficiency (Chun 2021). 76 

Despite the superior properties of this method, its application in the field of geotechnical engineering, 77 

including slopes, is still rarely reported except for a few studies (Johari et al. 2020; Johari and 78 

Kalantari 2021). 79 

The present paper intends to estimate the system reliability of layered soil slopes with multiple 80 
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failure modes using the SCM. The FORM is first employed to calculate the initial probability 81 

information of the slope, including the failure probabilities and correlation coefficients among these 82 

failure modes. Then the system reliability is evaluated by the SCM. Further, the application of the 83 

approach is illustrated with two typical layered soil slopes, and the accuracy of the system failure 84 

probability is verified by the MCS. It is anticipated that this study can provide a feasible strategy to 85 

evaluate the comprehensive performance of the slopes even for those with a large number of slip 86 

surfaces from a probabilistic point of view. 87 

Methodology 88 

Sequential compounding method 89 

It is unpractical to determine the reliability of a complex engineering system containing 90 

multiple components by direct numerical integration because of absence of closed-form solution for 91 

its multi-fold integration. The SCM proposed by Kang and Song (2010) has advantages in dealing 92 

with multivariate normal integrals, which is capable of yielding a satisfactory result. 93 

In general, the failure of any one component will cause the system to fail as a whole for the 94 

linear structure, which can therefore be regarded as a series system. Supposing a series system 95 

contains n components, the two components E1 and E2 coupled by union can be compounded into a 96 

single equivalent event 1or2E  as: 97 

( ) ( )1 2 3 1or2 3n nP E E E E P E E E∪ ∪ ∪ = ∪ ∪ ∪   (1) 98 

where iE  , 1,2,3, ,i = n  , denotes the event of the ith component failure, and ( )iP E  99 

denotes the probability of the ith component failure. 100 

Considering De Morgan’s rule and the symmetry of the standard normal distribution, the 101 

reliability index 1or2β  of the compound event 1or2E  can be calculated as: 102 

( ) ( ) ( )1 1 1
1or2 1 2 1 2 1 21− − −   = −  ∪  = − − ∩ = ∩     β Φ P E E Φ P E E Φ P E E  (2) 103 

where Φ  denotes the standard normal cumulative distribution function (CDF). 104 

Let the correlation coefficient between E1 and E2 be 1,2ρ  , which can be quantified by 105 
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employing the results of FORM. The FORM can not only enable the evaluation of structural 106 

performance from a probabilistic perspective, but also provide additional valuable information that 107 

can be used as the medium for further analysis, such as the design point in the standard normal space 108 

(Low et al. 2011). Hence, the 1,2ρ  can be acquired as: 109 

* 1 *
1 2

1,2
1 2

n R n−T

ρ =
β β

 (3) 110 

where *
1n  and *

2n  denote the design points corresponding to components 1 and 2, R denotes the 111 

correlation matrix of the random variables, 1β   and 2β   denotes the reliability indexes 112 

corresponding to components 1 and 2, respectively. 113 

All of the terms in Eq. (3) can be given by FORM. Then Eq. (2) can be expressed as: 114 

( ) ( )1 2 2 1 2 1,2, ;∩ =P E E Φ β β ρ  (4) 115 

where 2Φ  denotes the joint CDF of the bivariate standard normal distribution and can be computed 116 

by a single-fold numerical integral as: 117 

( ) ( ) ( ) ( )1,2

2 1 2 1,2 1 2 2 1 20
, ; , ;= + ∫

ρ
Φ β β ρ Φ β Φ β φ β β ρ dρ  (5) 118 

where 2φ   denotes the bi-variate joint probability density function (PDF) of standard normal 119 

distribution, which can be evaluated by means of improved algorithm introduced by Genz (2004). 120 

By this way, 1or2β  can be simplified to solve: 121 

( ) ( ) ( )1,21
1or2 1 2 2 1 20

, ;−  = +  ∫
ρ

β Φ Φ β Φ β φ β β ρ dρ  (6) 122 

Once 1or2β   is successfully calculated by the above steps, the goal turns to calculate the 123 

correlation coefficients between the equivalent event 1or2E   and each of the other remaining 124 

components in the system. 125 

Taking the three components, E1, E2, and Ei into account, the equivalent correlation coefficient 126 

can be defined as ( )1or2 ,iρ  , which provides the same result on the probability of the event, 127 

( ) ( ) ( )1 1 2 2Ω =  ≤ − ∪ ≤ −  ∩ ≤ − s i iE β E β E β , after compounding E1 and E2. 128 

( ) ( )( )3 1 2 1,2 1, 2 2 1or2 1or2; , , , ;
Ω

= − −∫
s

i i i i ,iφ E ,E ,E ρ ρ ρ dE Φ β β ρ  (7) 129 
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Except for ( )1or2 ,iρ , all the terms in Eq. (7) are already addressed after the foregoing steps. 130 

Next, decomposing the CDFs via the conditional probabilities and dividing both terms by 131 

( )− iΦ β , the Eq. (7) is approximated as: 132 

( ) ( )( )2 1| 2| 1,2 1or2 |1 , ;− = −i i |i iΦ β β ρ Φ β  (8) 133 

The conditional reliability indices and correlation coefficients shown in Eq. (8) can be figured 134 

out by the following formulas: 135 

( )
( )
( ) ( )

( ) ( )( ) ( )

2
1| 1 1, 1,

2
2| 2 2, 2,

2 2
1,2| 1,2 1, 2, 1, 2,

2
1or21or2 | 1or2 1or2

1
1

1 1

1

 = − −


= − −
 = − − −
 = − −

i i i

i i i

i i i i i

i ,i ,i

β β ρ A ρ B
β β ρ A ρ B
ρ ρ ρ ρ B ρ B ρ B

β β ρ A ρ B

 (9) 136 

where A and B are defined as: 137 

( ) ( )

( )   

 = − −


= − +

i i

i

A φ β Φ β

B A β A
 (10) 138 

By this way, the unknown ( )1or2 ,iρ   in Eq. (7) is determined avoiding possible multi-fold 139 

numerical integration in conventional methods. Consequently, 1or2β  and ( )1or2 ,iρ  are evaluated 140 

seriatim. Even if a given system has complex logical description among the components, each 141 

calculation of SCM involves only two components, so the compounding process can be 142 

implemented sequentially without being affected by other logical operation. 143 

System reliability analysis for layered soil slopes 144 

Usually, a layered slope contains more than one potential slip surface. When there are several 145 

potential failure modes inside the slope, the mechanical evaluation of the failure probability for each 146 

mode cannot meet the actual demand, even the most dangerous one, so the goal turns to system 147 

reliability analysis. 148 

The factor of safety refers to the ratio of sliding resistance R to sliding force T along a given 149 
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slip surface for the problems of slope stability, which can be denote as sF . The limit state function 150 

Z can be therefore outlined as follows: 151 

( ) ( ) ( ) ( )1 1X X X X= = − = −sZ g R T F  (11) 152 

Considering the uncertainty of the material properties, such as strength parameters (cohesion c 153 

and internal friction angle φ), the system reliability analysis which can be also described by system 154 

failure probability fsP  is required for evaluating the comprehensive performance of the slope. The 155 

SCM is adopted here to achieve this goal. The implementation process of SCM with regards to a 156 

layered soil slope is shown in Fig. 1. 157 

 158 

 159 

Fig. 1. Illustration of SCM to compute a layered soil slope. 160 

 161 

The specific steps for implementing this approach are summarized as below, and the 162 

corresponding flowchart is shown in Fig. 2. 163 

Step 1: Set parameters. Define the geotechnical and geometrical input parameters, including 164 

but not limited to strength parameters, unit weights, and model configuration of slope. Identify the 165 

random variables and determine its statistical characteristics, such as distribution types, means, 166 

coefficients of variation, and correlation coefficients. 167 

Step 2: Search for representative slip surfaces. Establish the deterministic stability analysis 168 

model using the means of random variables. An in-house software and existing procedures are 169 
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implemented for generating the potential slip surfaces and further locating the representative slip 170 

surfaces with small indices (Krahn 2004; Zhang et al. 2011). 171 

Step 3: Calculate reliability indices and correlation coefficients. Introduce the statistical 172 

characteristics of random variables for probability analysis of the representative slip surfaces. The 173 

FORM is adopted in this procedure to determine the reliability indices and correlation coefficients 174 

along different representative slip surfaces, which serves as basis for subsequent analysis. 175 

Step 4: Obtain equivalent reliability indices and correlation coefficients. Compound adjacent 176 

reliability indices resulted in step 3 to obtain the reliability of a single equivalent failure event and 177 

the correlation coefficients between this new compound event and each of the other remaining 178 

failure models in the slope by using SCM. 179 

Step 5: Evaluate the system failure probability. Repeat step 4 until multiple failure events are 180 

simplified into an equivalent event. The system failure probability of the slope can therefore be 181 

evaluated. 182 

Step 6: Check accuracy. Verify the correctness of the system failure probability produced by 183 

the above steps. The MCS which serves as an unbiased calculation method is conducted to achieve 184 

this goal. 185 

 186 
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Start

Define the deterministic and stochastic 
input parameters

Establish the deterministic stability 
analysis model and search for 

representative slip surfaces 

Calculate the reliability indices and 
correlation coefficients of representative 

slip surfaces by using FORM

 Obtain equivalent reliability indices and 
correlation coefficients by sequentially 

compounding two slip surfaces via SCM 

Evaluate system failure probability until 
multiple failure events are simplified into 

an equivalent compound event

Verify the correctness of the system 
failure probability produced by the above 

steps by means of MCS

End
 187 

Fig. 2. Flowchart for evaluating the system reliability of the slope. 188 

 189 

Illustrative examples 190 

Example 1: a two-layered slope 191 

The first example, a fill embankment resting on a clay layer, is adopted from Chowdhury and 192 

Xu (1995). The geometry of the slope is illustrated in Fig. 3 and the material properties, including 193 
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deterministic and stochastic soil parameters, are given in Table 1. Among these parameters, the shear 194 

strength of the embankment and the undrained shear strength of the foundation are recognized as 195 

random variables, normally distributed and statistically independent. The unit weights of the 196 

embankment and foundation are constant. 197 

 198 

 199 

Fig. 3. Geometry of a two-layered slope considered in example 1. 200 

 201 

Table 1. Statistical properties of soil parameters in example 1 202 

Layers Unit weight 

(kN/m3) 

Cohesion (kPa) Internal friction angle (°) 

Mean COV Distribution Mean COV Distribution 

Embankment 20 10 0.2 Normal 12 0.25 Normal 

Foundation 18 40 0.2 Normal 0 - - 

 203 

At first, the deterministic stability analysis is conducted to determine the number of potential 204 

slip surfaces using Morgenstern-Price method. The slip surfaces which are set to be circular but with 205 

different radii or centers of rotation are produced through the option of “Entry and Exit” method in 206 

Slope/W (Krahn 2004). According to Zhang et al. (2011), it is anticipated that two modes of failure 207 
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with the smallest β   values can occur either in the embankment only or traversing both the 208 

embankment and foundation. Figure 4 shows that the two reliability-based representative slip 209 

surfaces are tangent to the bottoms of the upper and lower clay layers, respectively. 210 

 211 

 212 

Fig. 4. Representative slip surfaces of example 1. 213 

 214 

Once representative slip surfaces have been identified successfully, FORM can be used to 215 

estimate the failure probability of a single failure mode. Table 2 presents the FORM results, 216 

including reliability index, failure probability, design point, and correlation coefficient. 217 

 218 

Table 2. FORM results of identified representative slip surfaces in example 1 219 

Failure 

mode 

Reliability 

index 

Failure 

probability 

Design point Correlation 

coefficient *'x  *x  

1 0.844 19.93% -0.42 9.16 1,2 0.0582ρ =  

-0.732 9.803 

0 40 

2 0.819 20.65% -0.0227 9.955 

-0.0419 11.874 
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-0.817 33.462 

 220 

The failure probabilities of the two circles at each design point are 19.93% and 20.65%, and 221 

the correlation coefficient between the two slip surfaces is 0.0582. Further, the SCM is introduced 222 

to perform system reliability analysis. Since there are only two representative slip surfaces in this 223 

example, the outcome can be obtained in one step without calculating an equivalent correlation 224 

coefficient. Besides, the Ditlevsen's bounds which gives the probability range of failure is calculated 225 

as well, and the correctness of the system failure probability is verified by MCS with 100,000 226 

samplings. Table 3 lists the results of system reliability calculation. 227 

 228 

Table 3. Results of system reliability analysis for example 1. 229 

Method System failure probability fsp  

SCM 35.78% 

MCS 35.92% 

Ditlevsen's bounds 31.8%-36.19% 

 230 

As shown in Table 3, the system failure probabilities obtained by the SCM, MCS and 231 

Ditlevsen's bounds are 35.78%, 35.92%, and 31.8%-36.19%, respectively. The probability estimated 232 

by the SCM is almost the same compared with MCS. On the other hand, Ditlevsen's bounds method 233 

gets the system failure probability as well, but the probability range it gives is relatively extensive, 234 

which cannot meet the demands of engineering practice, especially when risk control requirements 235 

are stringent. 236 
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In addition, this typical example was also analyzed by Ji and Low (2012), Zhang et al. (2013a), 237 

and Cho (2013), and the results are listed in Table 4. Table 4 shows that the system failure probability 238 

obtained by the proposed method is close to the value that was calculated by the previous studies. 239 

 240 

Table 4. Results of system reliability by different methods for example 1 241 

Method iβ  ijρ  fsp  References 

Ditlevsen's bounds 0.8471, 0.8067 0.0854 31.7-36.6% Ji and Low (2012) 

MCS with 50,000 samplings - - 35.75% Ji and Low (2012) 

Slide V6.0 with 2000 samplings - - 36.1% Ji and Low (2012) 

Ditlevsen's bounds 0.843, 0.821 0.063 31.74-36.15% Cho (2013) 

Multi-point FORM 35.94% Cho (2013) 

MCS with 20,000 samplings - - 36.56% Cho (2013) 

MCS with 10,000 samplings - - 35.6% Zhang et al. (2013a) 

SCM 0.844, 0.819 0.0582 35.78% This study 

 242 

Example 2: a multiple-layered slope 243 

The second example is a well-known real case slope with a sand fill layer overlaying three clay 244 

layers, named Congress Street Cut, and has been well documented in several publications 245 

(Chowdhury and Xu 1995; Ching et al. 2009; Ji and Low 2012; Zhang et al. 2013b; Reale et al. 246 

2016). The geometry of the slope is presented in Fig. 5. The material properties and associated 247 

uncertainties are listed in Table 5, in which the strength of the sand fill layer is defined as 248 

deterministic value while the undrained shear strengths of the three clay layers are modeled as 249 
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uncertain variables, normally distributed and statistically independent. 250 

 251 

 252 

Fig. 5. Geometry of Congress Street Cut in example 2. 253 

 254 

Table 5. Statistical properties of strength parameters of layers in example 2 255 

Layers Cohesion (kPa) Internal friction angle (°) 

Mean COV Distribution Mean COV Distribution 

Sand - - - 30 - - 

Clay 1 55 0.37 Normal 0 - - 

Clay 2 43 0.19 Normal 0 - - 

Clay 3 56 0.24 Normal 0 - - 

 256 

Likewise, three representative slip surfaces shown in Fig. 6 are located in different clay layers 257 

since the circular failure can occur in any of them (Ji and Low 2012). The details of a reliability 258 

assessment based on preliminary FORM are listed in Table 6. 259 

 260 
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 261 

 262 

Fig. 6. Representative slip surfaces of example 2. 263 

 264 

Table 6. FORM results of identified representative slip surfaces in example 2 265 

Failure 

mode 

Reliability 

index 

Failure 

probability 

Design point Correlation 

coefficient *'x  *x  

1 1.636 5.09% -1.636 21.709 1,2

1,3

2,3

0.398
0.141
0.211

ρ
ρ
ρ

=
=
=

 

0 43 

0 56 

2 0.669 25.17% -0.266 49.587 

-0.614 37.984 

0 56 

3 0.712 23.83% -0.100 52.963 

-0.121 42.015 

-0.694 46.670 

 266 

The failure probabilities of the three slip surfaces are 5.09%, 25.17%, and 23.83%, and the 267 

correlation coefficients among the failure modes are 0.398, 0.141, and 0.211, respectively. Then the 268 
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SCM is employed to calculate the system failure probability, and the Ditlevsen's bounds and MCS 269 

with 100,000 samplings are adopted here as well for comparative analysis and verification. 270 

Particularly, when the Ditlevsen's bounds method is implemented, sorting the slip surfaces in 271 

descending order of probability can often produce closer bounds (Haldar and Mahadevan 2000). 272 

The results are presented in Table 7. 273 

 274 

Table 7. Results of system reliability analysis for example 2 275 

Method System failure probability fsp  

SCM 42.42% 

MCS 42.18% 

Ditlevsen's bounds 34.86%-44.49% 

 276 

As shown in Table 7, the system failure probabilities obtained by the SCM, MCS and 277 

Ditlevsen's bounds are 42.42%, 42.18%, and 34.86%-44.49%, respectively. These indicators once 278 

again prove that the proposed method can provide a satisfactory result. Furthermore, comparing the 279 

results with previous studies, Table 8 is drawn below. 280 

 281 

Table 8. Results of system reliability by different methods for example 2 282 

Method fsp  References 

Ditlevsen's bounds 27.39%-44.73% Chowdhury and Xu (1995) 

MCS with 50,000 samplings 39.11% Ji and Low (2012) 

Ditlevsen's bounds 32.84%-47.57% Reale et al. (2016) 
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SCM 42.42% This study 

 283 

The system failure probability obtained in this study seems slightly higher, partly because all 284 

three surfaces are considered here, while some studies consider only two of them (Chowdhury and 285 

Xu 1995; Reale et al. 2016). Another reason behind this result is that this study specifies a denser 286 

increment when defining the slip surface in Slope/W, so more failure modes are generated and the 287 

representative circles with a higher probability of failure than before are located. For example, Ji 288 

and Low (2012) reported that the failure probabilities of the three critical slip surfaces were 4.79%, 289 

24.27% and 23.18%, but 5.09%, 25.17%, and 23.83% in this study. 290 

Discussion 291 

In the analysis of the above examples, the strength parameters of the soil layers are related to 292 

c and φ, which are artificially assumed to be independent. In fact, the laboratory experiments have 293 

suggested that the c and φ are often correlated, and the correlation coefficient falls between -0.72 294 

and 0.35 in most tests (Lumb 1970). The method can deal not only with variables that are 295 

independent but also with variables that are related. Taking the example 1 as the case study, the 296 

effect of the correlation coefficient of the c and φ on the system reliability is illustrated supposing 297 

that the correlation coefficient of embankment ranges from -0.8 and 0.8, and the results are shown 298 

in Fig. 7. 299 

 300 
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 301 

Fig. 7. Results of system reliability with different correlation coefficients for example 1. 302 

 303 

It can be seen from Fig. 7 that the probability of the mode 1 and the slope system rises as the 304 

negative correlation weakens and the positive correlation increases except for mode 2 which is 305 

basically unchanged during the whole range. When the correlation coefficient is -0.8, the failure 306 

probabilities of mode1, mode 2, and slope system are 6.4%, 20.62%, and 25.58%; on the other hand, 307 

when the correlation coefficient is 0.8, the probabilities are 25.81%, 20.68%, and 40.44%. The 308 

reason behind this phenomenon is that the slip surface of mode 1 is fully located in the correlated 309 

soil layer, but only a small portion of mode 2 passes through the embankment. As a result, the change 310 

of correlation coefficient has a great influence on mode 1, thus improving the failure probability of 311 

the system. 312 

In this study, two layered soil slopes that include two and three representative slip surfaces are 313 

analyzed respectively. In fact, even if the slope contains more representative slip surfaces, the SCM 314 

also works (Song et al. 2021). But as the number of failure modes increases, the computation time 315 

increases accordingly. In fact, in addition to the series system mentioned above, the SCM can be 316 

applied to parallel, cut-set and link-set systems as well by compounding two components in 317 
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intersection and union flexibly (Kang and Song, 2010). 318 

Conclusions 319 

In this paper, the system reliability of layered soil slopes with multiple failure modes is 320 

evaluated in the framework of SCM. In which, the FORM is employed to obtain the initial reliability 321 

indices and correlation coefficients among these slip surfaces. Then the SCM is adopted to quantify 322 

the system failure probability by calculating the equivalent reliability indices and correlation 323 

coefficients until the slope system is simplified into a single compound event. Taking two typical 324 

layered soil slopes as the case study, the SCM is implemented for the analysis of the comprehensive 325 

performance of slopes, as well as the Ditlevsen's bounds method and MCS. Different from the 326 

Ditlevsen's bounds method resulting in a conservative probability range, the SCM can provide an 327 

exact value of the failure probability. The results from the SCM and MCS are very close, which 328 

verifies the accuracy of the SCM. But compared with MCS, the SCM greatly improves the 329 

calculation efficiency because it makes full use of the information resulted in FORM rather than a 330 

large number of mechanical samplings as MCS, which can be a promising tool for evaluating the 331 

system reliability of layered soil slopes with multiple failure modes. 332 
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