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Abstract

A Bayesian framework to stochastically characterize ground motions even in the presence of missing data is devel-
oped. This approach features the combination of seismological knowledge (a priori knowledge) with empirical obser-
vations (even incomplete) via Bayesian inference. At its core is a Bayesian neural network model that probabilistically
learns temporal patterns from ground motion data. Uncertainties are accounted for throughout the framework. Per-
formance of the approach has been quantitatively demonstrated via various missing data scenarios. This framework
provides a general solution to dealing with missing data in ground motion records by providing various forms of
representation of ground motions in a probabilistic manner, allowing it to be adopted for numerous engineering and
seismological applications. Notably, it is compatible with the versatile Monte Carlo simulation scheme, such that
stochastic dynamic analyses are still achievable even with missing data. Furthermore, it serves as a complementary
approach to current stochastic ground-motion models in data-scarce regions under the growing interests of PBEE
(performance-based earthquake engineering), mitigating the data-model dependence dilemma due to the paucity of
data, and ultimately, as a fundamental solution to the limited data problem in data scarce regions.

Keywords: Missing data, Stochastic variational inference, Bayesian model updating, Evolutionary power spectra,
Uncertainty quantification, Earthquake ground motion

1. Introduction1

The random nature of earthquake ground motions is well appreciated. Various research efforts and progress,2

based on stochastic process formulation, have been made towards the problem of characterization, simulation and3

response evaluation (Narayana Iyengar and Sundara Raja Iyengar, 1969; Shinozuka and Deodatis, 1988; Kiureghian4

and Fujimura, 2009). In recent years, the growing interest in performance-based earthquake engineering (PBEE),5

which requires ground motions of various hazard levels to consider the entire range of structural response, including6

nonlinear behaviour and even collapse (Kiureghian and Fujimura, 2009), has driven the need for simulating ground7

motions of various earthquake scenarios. Stochastic simulations are further utilised for evaluation of future seismic8

demand and seismic reliability assessment (Comerford et al., 2017), nonlinear stochastic dynamic analyses (Vlachos9

et al., 2018b), developing ground motion prediction equations (GMPEs) (Atkinson and Boore, 2006), or seismic10

hazard characterization and simulation-based seismic risk assessment (Vetter and Taflanidis, 2014; Tsioulou et al.,11

2018).12

However, their applicability is not without questioning. Empirical ground motions are responsible for developing13

and calibrating stochastic ground motion models. However, the paucity of recordings (especially strong motions) in14

data scarce regions leads to a bottleneck that observational data are lacking in the first place to justify modelling and15

calibration. For instance, in characterizing seismic hazard, a category of predictive-relation based stochastic ground-16

motion models (see e.g. Rezaeian and Der Kiureghian (2010); Laurendeau et al. (2012); Vlachos et al. (2018a)) is17

gaining increasing attention for its ability to generate a suite of nonstationary time-histories, given specific earthquake18

scenarios. The core component of these models is an underlying empirical regression between model parameters and19
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earthquake characteristics over a selected (sometimes limited) subset of records. However these empirical relations are20

largely bounded by the scope of data being regressed. Significant epistemic uncertainties are expected on further uses21

of these underlying empirical regressions as extrapolation than interpolation. Similarly, such uncertainty also applies22

to those empirical GMPEs developed using stochastic simulations calibrated from small to moderate earthquakes23

often due to a lack of strong motions (Atkinson and Boore, 2006; Edwards and Fäh, 2013). Concerns have been raised24

over the subsequent stochastic simulations from these biased models, as the underlying regression are typically not25

well-constrained by empirical data and their extrapolation may therefore not even be physically realistic (Baker et al.,26

2021).27

Therefore, for data-scarce regions, where there are stronger needs of synthetic ground motions for abundant earth-28

quake scenarios, however, the paucity of data poses a causality dilemma concerning the dependence between observa-29

tions and the extracted knowledge/information for the development of models. This raises difficulties, in data scarce30

regions, in the characterization of ground motions for the seismic risk assessment as well as researches of regional31

seismicity and Earth regional structures.32

As such, a method to make the most of existing data (even where incomplete), robustly characterizing the under-33

lying physical processes from bad measurements (e.g. incomplete), could enrich the observational database, whereby34

one is able to progressively update the development and calibration of ground motion models, producing more re-35

alistic stochastic simulations in the otherwise data scarce regions, for hazard characterization and risk assessment.36

It serves as a complementary approach to stochastic ground-motion models under the growing interests of PBEE,37

and ultimately a fundamental solution to the limited data problem. This may be of particular interest to studies of38

historical earthquakes which may potentially provide strong-motion records but many of them are discarded due to39

the presence of data gaps (Maranò et al., 2017). Furthermore, missing data exist in both historical and modern earth-40

quake time histories due to intermittent instrumentation or data-transmission failure. For instance, old mechanical,41

short-period high-sensitivity or broadband seismometers are vulnerable to clipping during local strong motions. In42

addition, sensor malfunctions, instrument tilt, or data contamination, may lead to missing or incorrect values, or43

waveform clipping around the peak motion (Smith-Boughner and Constable, 2012; Maranò et al., 2017; Zhang et al.,44

2016). With the recent use of low-cost temporary instruments, deployed at scale, sometimes in harsh conditions, the45

fidelity and continuity of recording is also not as reliable as traditional permanent seismological stations, which itself46

can be understood as a bad- or missing-data problem.47

The characterization of ground motions and accounting for their random nature is challenging when only limited48

and partial recordings are available (Zhang et al., 2016; Comerford et al., 2016; Zhang et al., 2017). Pioneering49

works for analysis in the presence of missing data, such as the Lomb-Scargle periodogram (Scargle, 1982), iterative50

deconvolution CLEAN (Roberts et al., 1987), are acknowledgedly to have deficiencies such as bias issue and periodic51

content limitation (Bos et al., 2002; Wang et al., 2005; Babu and Stoica, 2010; Smith-Boughner and Constable, 2012).52

With different assumptions (hence limitations), many other methods have been proposed in recent years. Notably,53

a compressive sensing approach is exploited with the sparsity assumption of the underlying spectral representation54

(Comerford et al., 2016). By assuming the same frequency contents between the missing portion and the observations,55

a projection onto convex sets (POCS) method can be used to reconstruct clipped waveforms (Zhang et al., 2016).56

Parametric models are also developed based on various formulations, such as autoregressive modeling methods (Bos57

et al., 2002; Broersen et al., 2004; Hung, 2008), with parameterized assumptions on the structure of the underlying58

stochastic processes. Similarly, Maranò et al. (2017) proposed a method to fit a parametric seismological model to59

earthquake recordings with missing gaps.60

Alternatively, a variety of methods are available that explicitly or implicitly transform spectral analysis with miss-61

ing data into the imputation of missing values, followed by standard full-data spectral analysis (Stoica et al., 2000;62

Kondrashov and Ghil, 2006; Kondrashov et al., 2014; Comerford et al., 2015a; Musial et al., 2011). This strain63

of methods provides reconstructed waveforms in a straightforward manner, whereby extensive established spectral64

analyses, developed on equidistant data, whether stationary or nonstationary, can still be universally harnessed.65

Two main challenges are identified in dealing with missing data. First, most current approaches fail to address the66

uncertainties related to the missing data properly (Comerford et al., 2015b; Zhang et al., 2017). For reconstruction67

based methods, inaccuracies of the imperfect reconstruction will be propagated to spectral estimates owing to the68

convolutional nature of Fourier transform. Similarly, for parametric modelling methods that results in a parametric69

form of spectrum, parameter uncertainties due to the incomplete data are not well captured. More importantly, despite70

existing approaches that handle uncertainties (notably Bayesian spectral analyses (Tobar, 2018; Christmas, 2013)),71
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they are still constrained by the significantly limited information from the very incomplete signal.72

Therefore, to exploit additional information besides the incomplete recording and to appropriately quantify the un-73

certainties brought by the missing data, we propose a novel Bayesian framework that aims to robustly combine prior74

seismological knowledge with empirical observations (even incomplete). A Bayesian neural network (BNN) model75

that probabilistically learns the temporal dynamics from earthquake time histories forms the key component of the76

framework. In particular, it is initially trained from physics-informed simulated ground motions given the event meta-77

data (e.g. magnitude, epicentral distance, Vs30, etc.), as geological a-priori, and subsequently updated via Bayesian78

inference utilising the partial empirical observations. Importantly, uncertainty has been accounted for throughout the79

framework. Variability of the physics-informed simulations are considered. Epistemic uncertainties on model pa-80

rameters of the BNN are learnt through stochastic variational inference, whereby an ensemble of reconstructed time81

histories are obtained by marginalizing over the posterior distribution of model parameters. Furthermore, uncertain-82

ties of the spectral representations (e.g. evolutionary power spectral density) of the underlying stochastic process are83

quantified, with the spectral density values represented by probability distributions. As a result, sample realizations84

associated with the stochastic process can be further simulated for stochastic dynamic analysis through the spectral85

representation method, even with incomplete recordings.86

Details of the framework are discussed first, then the performance of the proposed method is demonstrated with87

various missing data scenarios based on an earthquake strong motion recording.88
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Figure 1: A stochastic framework characterizing ground motion process in the presence of missing data. Three components are presented: a. a
seismological model generating physics-informed stochastic simulations with a-priori seismological knowledge; b. a Bayesian neural network
model initially trained from physics-informed stochastic simulations and later updated by empirical partial observations; c. a host of model-based
probabilistic representations of ground motions (e.g. evolutionary power spectral density EPSD, elastic response spectra, ensemble reconstructed
time histories etc.)

2. A Bayesian framework for characterization of ground motion with missing data89

We build on the premise that a priori seismological knowledge can provide a general, yet insightful, prior expecta-90

tion of the ground motions of the certain earthquake scenario, which can be combined with the information extracted91

from empirical observations (even when incomplete).92
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2.1. Physics-informed stochastic simulations as a geological prior93

A stochastic representation that encapsulates the physics of the earthquake process and wave propagation plays94

the central role, from the seismological perspective, in characterizing the ground motions (see e.g. Zeng et al. (1994);95

Boore (2003)). One of the most desired advantage is that such representations, is to explicitly distill the knowledge96

of various factors affecting ground motions (e.g. source, path, and site effects) into a parametric formulation. In this97

study, we have adopted a well-validated stochastic seismological model (Boore, 2003), as given below, whereby source98

process, attenuation, and site effects are encapsulated in a parameterized form of the Fourier amplitude spectrum.99

A finite fault strategy is particularly employed to represent the geometry of larger ruptures for large earthquakes100

(Atkinson and Boore, 2006; Edwards et al., 2019).101

A( f ;Θ) =
CM0

1 + ( f / f0)2 Z(R) exp[−π f R/Q( f )β]G( f ) (1)

where Θ = (Θe,Θg) represents the event parameters (Θe) that are still accessible from the metadata of an incom-102

plete recording, such as seismic moment M0 and hypocentral distance R, and region-specific seismological parameters103

(Θg) that embody the source, path and site effects. Specifically, f0 is the earthquake’s source corner frequency given104

by f0 = 0.4906β(∆σ/M0)1/3 (in SI units); R =
√

r2 + d2 where r and and d are the epicentral distance and depth to105

a given sub-fault; ∆σ is referred to as the stress drop, and β represents the shear wave velocity in the vicinity of the106

source. The constant C is given by: C = RθΦVF/(4πρsβ
3R0), where RθΦ is the radiation pattern; V represents the107

partition of total shear-wave energy into horizontal components; F accounts for the free-surface effect; R0 is the a108

reference distance and ρ is the density in the vicinity of the source. Z(R) is the geometrical spreading function defined109

by a piece-wise series of segments in the form of Rbn , where bn defines the geometrical-spreading coefficient in the nth110

segment. The quality factor Q( f ) is an inverse measure of anelastic attenuation. The site effect G( f ) = exp(−π f κ0)10υ111

is given by the counteraction of a high-cut filter, exp(−π f κ0), accounting for the diminution of the high-frequency mo-112

tions and an amplification factor υ in log units. The specific values for each of the model terms used in this model can113

be taken from the existing literature, or directly through spectral modelling of waveform data (e.g. Edwards and Fäh114

(2013)).115

In particular, the variability of model parameters in the spectral formulation, and hence the uncertainty in stochastic116

simulations, are represented by probability distribution over the input parameters Θg as proposed by Atkinson and117

Boore (2006); Vetter and Taflanidis (2012). Note that the above stochastic simulation procedures are distinct from118

those comprehensive deterministic numerical models that solve the complex 3D equations governing seismic wave119

propagation. Those models are typically referred to as physics-based numerical models in the literature, see e.g.120

McCallen et al. (2021a,b); Paolucci et al. (2021) among others.121

2.2. Sequential modeling122

In recent years, neural network models have become established in learning complex and nonlinear relations. Most123

recently, successes have been seen for neural networks to learn the temporal dynamics in sequential data (e.g. time124

series) under an autoregressive setting (Salinas et al., 2020; Beer and Spanos, 2009; Comerford et al., 2015a; Gatti125

and Clouteau, 2020). They model the data generating process by formulating the conditional distribution, p(yt |xt,w),126

of the value yt based on a window of past lagged values ([yt−1, . . . , yt−p]), as given by:127

yt = f (xt; w) + ϵ,with xt = [yt−1, . . . , yt−p] (2)

where ϵ denotes the noise term; f (·) represents the neural network model, parameterized by w, which learns128

complex nonlinear temporal dependence in the time series, as opposed to a linear combination of fixed coefficients129

in a classic autoregressive AR(p) model. yt and xt represent the prediction and the lagged window pair. In practice,130

training with maximum likelihood estimation (MLE) gives rise to a probabilistic interpretation of the data generating131

process. The likelihood function, assuming Gaussian noise with variance σ2, is given by (Williams and Rasmussen,132

2006):133

p(yt |xt,w) = N(yt | f (xt,w), σ2) (3)

Model parameters w, collectively the weights and biases of the neural network model (referred as weights here-134

after), are estimated during training by optimizing with the likelihood as the objective as follows:135
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w∗ = arg max
w

∑
t

log p(yt |xt,w) (4)

Once trained, its generative power could be employed to generate sequences (Graves, 2013), forecast time series136

future values (Salinas et al., 2020), and impute missing values (Comerford et al., 2015a). However, despite accounting137

for the aleatoric uncertainty using Gaussian noise, the above MLE strategy ignores the uncertainties of the model138

parameters (i.e. epistemic uncertainties) that can explain the observed data (especially in the context of limited data139

and missing data) as well as the resulting predictive uncertainties regarding the imputation. Significant uncertainties140

exist on the model configurations that may have explained the limited data. Consequently, such uncertainties further141

compromise the generalization power of learned models in that predictions from uncertain/unrepresentative models142

can still be unreliable and over confident (Blundell et al., 2015; Gal and Ghahramani, 2016).143

2.3. Bayesian updating on partial observations144

In order to capture the model uncertainty, probability distributions are applied to the neural net model parame-145

ters (see Fig. 1). Bayesian inference hence formulates the update of the neural network modelling the underlying146

generating process, when new observations (even incomplete) become available, as given below:147

p(w|D) = p(D|w)p(w)/p(D) (5)

where p(w) represents the prior probability distribution of weights learnt from the physics-informed simulations;148

p(D|w) stands for the likelihood and D specifically refers to the partial and incomplete observations. p(w|D) is the149

posterior distribution, in which both the prior seismological knowledge and the real-world empirical observations150

are collectively considered. The posterior predictive distribution for the prediction of the missing value y∗t , based on151

the lagged window, can be made for each possible configuration of the weights, by marginalizing over the posterior152

distribution, as shown below:153

p(y∗t |xt,D) =
∫

p(w|D)p(y∗t |xt,w)dw

= Ep(w|D)

[
p(y∗t |xt,w)

]
(6)

As a result of considering uncertainties within the neural network, an ensemble of reconstructed time-histories,154

based on Monte Carlo sampling of the posterior distributions of weights, can be obtained. Subsequently, an ensemble155

of spectral estimates (e.g. evolutionary power spectral density EPSD, response spectra, etc.) can be computed from the156

ensemble reconstructions using established spectral analysis methods. Performing such analyses for many incomplete157

recordings in the otherwise data scarce region produces an enriched database, which could be further adopted to158

update the development or calibration of ground motion models (including both stochastic ground-motion models and159

empirical GMPEs). This scheme is interpreted as an escape from the model-data dependence dilemma, as highlighted160

earlier, by making the most of the observed data (even when incomplete).161

2.4. Stochastic variational inference162

A key challenge in Eq. (5) is the approximation of the posterior distribution. Analytic Bayesian inference to the163

true posterior p(w|D) is intractable and Markov Chain Monte Carlo (MCMC) based sampling approaches generally164

have difficulties in scaling to the huge dimensions of neural networks (Hernández-Lobato and Adams, 2015; Gal165

and Ghahramani, 2016). Alternatively, stochastic variational inference (see e.g. Graves (2011); Kingma and Welling166

(2013); Blei et al. (2017)) approximates the posterior distribution p(w|D) efficiently, by turning such inference prob-167

lem into an optimization problem. It optimizes the parameters of a proposed variational distribution, such that the168

Kullback-Leibler (KL) divergence between the approximate distribution and the true posterior distribution is min-169

imised: θ∗ = arg minθ KL[q(w|θ) ∥ p(w|D)]. This minimization objective is indeed equivalent to the following cost170

function (Graves, 2011):171

J(D, θ) = KL[q(w|θ) ∥ p(w)] − Eq(w|θ) log p(D|w) (7)
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Eq. (7) hence represents the new cost function to which optimization on θ is taken. Directly taking derivatives172

is computationally prohibitive. However it could be further re-arranged into the form of an expectation, lending173

itself to known approximate solutions such as Monte Carlo estimator of expectation on samples (see Appendix B).174

Specifically, prior to rearranging into an expectation, if assuming the variational posteriors have diagonal Gaussian175

distributions, the KL divergence term of Eq. (7) can be further analytically integrated (Kingma and Welling, 2013), as176

given below, leaving only the likelihood-dependent part to be computed by a Monte Carlo estimator:177

KL[q(w|θ) ∥ p(w)] =
1
2

∑
j

(σ2
j + µ

2
j − logσ2

j − 1) (8)

where µ j, σ j denote the j-th element of the vectors that represent the variational distribution of weights, θ = (µ,σ).178

Subsequently, a reparameterization operation (see e.g. Kingma and Welling (2013)) is used to remove the dependence179

on the distribution to which the expectation is taken (i.e. q(w|θ)) in the likelihood-dependent part, whereby unbiased180

Monte Carlo gradients can be obtained, as given below:181

Eq(w|θ) log p(D|w) = Eϵ∼r(ϵ)

[
f (g(ϵ, θ))

]
≃

1
L

L∑
l=1

f (g(ϵ(l), θ)) (9)

where f (w, θ) = log p(D|w) ; L is the number of samples drawn for the Monte Carlo estimator; g(·) is a differen-182

tiable function that transforms a parameter free noise sample, ϵ(l) ∼ r(ϵ), into a sample of the variational posterior:183

w(l) = g(ϵ(l), θ) = µ+σ⊙ ϵ(l), where r(ϵ) is often modelled as standard Gaussian distribution. Otherwise, when the KL184

divergence term in Eq. (8) is not analytically solvable, the reparameterization operation will then instead be applied to185

the full expectation from the cost function Eq. (7), given as: J(D, θ) = Ew∼q(w|θ)[log q(w|θ)− log p(w)− log p(D|w)].186

In practice, when training in mini-batches (i.e. mini-batch optimization), the above implementation should be187

re-scaled before derivation is taken:188

JM(DM , θ) =
1
N

KL[q(w|θ) ∥ p(w)] −
1
M
Er(ϵ) log p(DM |g(ϵ, θ)) (10)

where M and N are the size of the mini batch and whole training data, respectively. Reparameterization enables189

the cost function to be differentiated with respect to θ, whereby the resulting gradients can still be employed using190

standard stochastic optimization pipelines (e.g. stochastic gradient descent (Bottou, 2012)) :191

θτ+1 = θτ − η∇θJ
M(DM , θ) (11)

where the variational parameters are sequentially updated by mini-batches during training; η represents the learn-192

ing rate.193

2.5. Stochastic process representation194

For stochastic dynamic response analyses and reliability assessment, in which ground motions are represented as195

stochastic excitation inputs to engineering structural systems, a Monte Carlo simulation scheme plays a central part196

(see e.g. Shinozuka and Deodatis (1991, 1988); Spanos and Kougioumtzoglou (2012); Jalayer and Beck (2008); Ki-197

ureghian and Fujimura (2009); Rezaeian and Luco (2012); Vlachos et al. (2018b)). Sample realizations are generated,198

provided by the evolutionary power spectral density (EPSD) of the underlying stochastic process, whose estimation199

is challenging in the presence of missing data (Comerford et al., 2017; Zhang et al., 2017). Our framework is ded-200

icated to solving this problem. Particularly, the EPSD of the process is estimated from the ensemble average over201

reconstructions imputed by Eq. (6) and the uncertainty on the spectral density estimates is represented by probability202

distributions.203

Established spectral density estimation approaches, either for stationary cases or non-stationary cases, can be204

employed in this regard (see e.g. Spanos and Failla (2004); Liang et al. (2007); Spanos and Kougioumtzoglou (2012)205

for a review). Given the EPSD, sample realizations can hence be generated via a spectral representation method SRM206

(Liang et al., 2007):207
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m(t) =
√

2
N−1∑
n=0

√
2S Y (t, ωn)∆ω cos(ωnt + Φn) (12)

where S Y (t, ω) is the two-sided EPSD of the underlying stochastic process {Y(t)}; m(t) is the simulation, ϕn is the208

independent random phase angle distributed uniformly over the interval [0, 2π]; N and ∆ω relate to the discretization209

of the frequency domain. This enables the proposed approach to be able to characterise the stochastic excitations210

for engineering simulation analyses, capturing the non-stationary characteristics of earthquake ground motions, even211

when the source load data are incomplete. This is of great engineering importance when the associated earthquake212

scenarios are of interest to the seismic assessment of engineering structures, under the PBEE practice.213

3. Application examples214

In this section we demonstrate the performance of the proposed framework using an accelerogram from the ESM215

(Engineering Strong Motion) database (Lanzano et al., 2021). Note that when working with recorded time-histories,216

one can generally have a single observed seismic recording as a realization of a stochastic process, where the true217

power spectrum of the underlying process is typically unknown (Narayana Iyengar and Sundara Raja Iyengar, 1969).218

Therefore, the spectral estimates from the otherwise complete recording could then serve as the reference for compar-219

ison. Given a ground motion time-history record, power spectral density (PSD) estimates are derived using the Welch220

method (Welch, 1967) (stationary case), and the evolutionary power spectra (EPSD) are estimated from short time221

Fourier transform (Liang et al., 2007) (nonstationary case).222

Region specific parameters to the seismological model (see Eq. (1)) are inferred from seismographic studies of223

the region (Bindi and Kotha, 2020; Razafindrakoto et al., 2021), coupled with the event information associated with224

the target recording (i.e. Mw = 6.5, normal faulting, R = 18.6km, recorded at a class A site in Italy). To consider the225

variability of ground motions, some key input parameters of significance are modelled as probability distributions,226

as shown in Table 1, while other deterministic ones are listed in the Appendix in Table C.5. In generating ground227

motions, the slip distribution and hypocenter location are modelled as random. Specifically, 100 physics-informed228

simulations with parameter variability are obtained, from which we have trained a Bayesian neural network model229

with 2 hidden layers. Under the autoregressive modelling scheme, as suggested by Eq. (2), the input layer is specified230

by the lagged width p while the output layer has 1 output node. Each hidden layer is composed of 16 hidden units,231

activated by the rectified linear function. This architecture is the result of comprehensive hyperparameter tuning232

(including the learning rate η) based on a 20% hold-out validation set from these simulations.233

Table 1: Statistical parameters of the stochastic finite fault model

Parameter Distribution mean s.t.d min max

log∆σ Gaussian 1.96 0.31
κ0 Uniform 0.002 0.008
d Gaussian 9.2 10 2 30
b1 (0 − 70km) Gaussian -1.35 0.1
b2 (70 − 140km) Gaussian -0.57 0.5
υ Uniform -0.15 0.15

3.1. Missing gaps at random locations234

In this study we focus on the effect of missing gaps, which suggest a variable length of unknown samples con-235

secutively grouped together from an otherwise continuous set of measurements, significantly decreasing the number236

of usable empirical records. This situation is of particular interest to studies of historical earthquakes which may po-237

tentially provide strong-motion records but many of them are discarded due to the presence of missing gaps (Church238

et al., 2013; Palombo and Pino, 2013). For example, in a study of an Italian earthquake in 1930 (Vannoli et al., 2015),239

only 11 out of the 113 seismograms recovered from seismological observatories across Europe were employed mostly240
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due to the inability to analyze incomplete seismograms (Maranò et al., 2017). Moreover, the presence of gaps is241

also common in modern seismograms subject to serious clipping in which consecutive points are clipped during peak242

motions (Yang and Ben-Zion, 2010; Zhang et al., 2016). Instrumentation malfunction or incompetence, or loss of243

communications may also lead to missing data. Other examples include instrument bandwidth limitations, low-cost244

temporary instruments in harsh conditions, or data contamination etc. (Smith-Boughner and Constable, 2012; Comer-245

ford et al., 2015a, 2016; Zhang et al., 2017). To comprehensively investigate the effects of data gaps, various scenarios246

where different combinations of gap sizes (i.e. the number of missing samples) and gap number (i.e. the number of247

gaps) are randomly removed in the strong motion phase, are conducted in this analysis, as listed in Table A.4.248

3.2. Quantitative metrics to compare the performance249

To evaluate uncertainties and accuracy under different configurations of missing data, three quantitative metrics are250

designed. These metrics are reported on the power spectral densities for characterizing the input stochastic process and251

on pseudo spectral accelerations (5% damped) for characterizing responses of engineering systems. P95 corresponds252

to an interval coverage probability measure that reflects the percentage of target PSD values being captured by the253

estimated credible intervals (Pearce et al., 2018), given as:254

P95 =
c f

n f
(13)

where c f represents the number of frequencies in which the target spectral density is captured within the 95%255

credible interval. Upon denoting the predicted lower and upper bound as yL and yU , c f is defined by a variable ki of256

length n f (total number of frequency bins) that indexes a frequency value captured by the estimated credible interval:257

c f =

n∑
i=1

ki (14)

ki =

1 yLi ≤ yi ≤ yUi

0 else
(15)

In addition, ALU represents the area between the lower yU and upper bounds yL across the frequency range, which258

illustrates the magnitude of uncertainty levels. e denotes the mean absolute error of the PSD estimates, which evaluates259

the accuracy of the mean estimation:260

e =
1
n

n∑
i=1

yi − ŷi (16)

3.3. A detailed scenario case261

Of all the scenarios considered (see Table A.4), one serious scenario case corresponding to 10 gaps of size 32, in262

total equivalent to 44% missing data within the strong motion phase, is specifically demonstrated herein in details for263

conciseness (see Fig. 2 - Fig. 7). Fig. 2a shows such incomplete recording with gaps indicated by the blue bar at the264

bottom. Fig. 2b then shows one reconstructed time-history from the ensemble collection of 500 reconstructions by265

the updated BNN model, which largely resemble the waveform of the original recording. Past studies have suggested266

the difficulty in restoring the waveform in the time domain with missing values consecutively grouped (as in gaps),267

compared to missing values scattered across the signal (Maranò et al., 2017; Comerford et al., 2017; Christmas, 2013).268

In fact, this difficulty further justifies the importance of uncertainty quantification due to the propagation of imperfect269

reconstruction error.270

Based on the ensemble reconstructions, the uncertainties over the power spectrum can further be seen in Fig. 3a.271

Despite a significant portion of data missing (44%), the ensemble-averaged PSD agrees well with the target PSD272

from the otherwise complete recording, whose target spectral values across the whole frequency range are generally273

captured in the 95% credible interval bounds. The heteroscedasticity of variances with respect to frequencies is274

observed. As a comparison, significant power loss is seen from the result by a simple zero-padded approach. In more275

details, Fig. 3b illustratively displays the probability distribution shape of spectral density estimates with respect to276
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Figure 2: Gapped type of missing data and one reconstruction from the ensemble. Missing percentage 44%

frequency. In addition, descriptive statistics regarding the ensemble-averaged PSD estimates are also depicted. The277

box within represents the regular box plot showing the statistics corresponding to quantiles such as 25%, median and278

75%. The blue circle represents the median value while the red cross represents the target i.e., the PSD value from the279

full recording.280

In addition, results from another baseline method, in which missing values are filled with samples from standard281

Gaussian distribution (Comerford et al., 2015b), are shown in Fig. 4. By contrast, our ensemble-average estimate282

has better approximated the target result and our interval bounds have better covered the target, as clearly seen in283

Fig. 3b and Fig. 4b. This superior performance could be attributed to our updated BNN’s ability to learn the temporal284

dependence of the underlying process. While the ”white noise” imputation approach respects the basic property of a285

stochastic process, it can hardly know the variance with respect to the random variable at each time stamp and also286

the covariance structure.287
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(a) Global power spectral density estimates of the ensemble reconstructions.
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target and a time history with zero-filled gaps
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Figure 3: Uncertainties in the power spectral density estimates. Missing percentage 44%

It should be noted that the stationary (global) PSD estimates provide the spectral distribution in an average sense,288

without time information. But engineering interests, driven by PBEE, are increasingly focused on the time-varying289
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Figure 4: An baseline approach for comparison with the proposed approach

spectral representation due to the ”moving resonance” effect of nonlinear structural analysis. As such, an ensemble of290

estimates of the evolutionary power spectrum are computed, with the averaged EPSD shown in Fig. 5a; more impor-291

tantly, the distribution of spectral density values, S ( f , t), at selected time instants and frequency bins are displayed in292

Fig. 5b for illustration. Several representative combinations of time instants and frequency bins are selected to show293

the variance of spectral estimates. The corresponding target values are shown by the vertical lines, which are well294

captured by the estimated probability distributions.295
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Figure 5: Evolutionary power spectral density estimate and its uncertainty

Fig. 6 further displays the distribution of spectral moments (see definition in Appendix D), the key parameters of296

spectral representation of stochastic seismic inputs (Lai, 1982; Zhang et al., 2017). Uncertainties due to the incom-297

plete data are shown, indicating that the target values from the full recording are well captured even with a missing298

percentage of 44%. Spectral moments can be used to calibrate parameterized stochastic process models, e.g. the299

established Kanai Tajimi model via a spectral moment method (see e.g. Lai (1982) for details). Indeed more complex300

models (e.g. Conte and Peng (1997); Vlachos et al. (2018a)) that reflect the nonstationary characteristics of ground301

motions could also similarly be calibrated with the ensemble reconstructions through, for example, spectral fitting.302
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Importantly, it suggests that parameter uncertainties could thus be accounted for when characterising ground motions303

using parameterized models.304
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Figure 6: The distribution of spectral moments due to incomplete data

Relying on the Monte Carlo simulation approach (Shinozuka and Deodatis, 1988), powered by the spectral repre-305

sentation method SRM (Eq. (12)), sample realizations compatible with the given stochastic process can be simulated306

for stochastic nonlinear dynamic analyses, (see e.g. Jalayer and Beck (2008); Kiureghian and Fujimura (2009); Reza-307

eian and Luco (2012); Vlachos et al. (2018b)). As a result, Fig. 7 illustrates, side by side, the sample generation based308

on the ensemble averaged EPSD estimates, along with the reconstruction directly from our updated BNN model. It309

suggests that, even in the presence of a significant number of data gaps, both the reconstruction and the generation310

resemble the target recording very well.311
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Figure 7: Target recording (top) compared with a direct reconstruction from the updated Bayesian neural network model (middle) and a sample
generation of the underlying stochastic process by the stochastic representation method (SRM) from the ensemble-averaged EPSD (bottom)
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3.4. Performance comparison of many scenarios312

In earthquake engineering, accelerograms are also frequently characterized by the pseudo-acceleration (5% damped)313

elastic response spectra. Fig. 8 illustratively shows the variability of spectral amplitudes of the reconstructions asso-314

ciated with three representative levels of missing gaps. The target response spectrum is shown in thick line, together315

with response spectra of 500 reconstructions from the ensemble. While larger uncertainty is found with increasing316

levels of missing data, the extreme case with roughly 70% of missing gaps still captures the target spectra to a large317

extent. For less extreme cases, the target response spectra is well contained within the suite of reconstructed response318

spectra across the full range of spectral periods. This reflects the ability of the proposed approach to quantify uncer-319

tainty in our reconstructions in response to the missing data and suggests the validity for the reconstructions to be320

used for seismic structural analyses.321
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Figure 8: Response spectrum of reconstructions from BNN: three representative missing gap scenarios with increasing missing percentages. The
target response spectrum is shown by the thick line, together with response spectra of 500 reconstructions from the ensemble

On the other hand, the response spectra of our sample generations from the EPSD, along with the target response322

spectra, are displayed in Fig. 9. All the sample realizations have captured the target spectra quite well. Little differ-323

ences can be seen between the three data-loss scenarios, suggesting the robustness of the ensemble-averaged EPSD324

even under serious missing data (of up to 70%). This, therefore, validates the representation of the ground motion325

using estimated evolutionary power spectra by the presented approach and demonstrates its ability to make stochas-326

tic dynamic analyses still achievable in the presence of serious missing data. This result furthermore highlights the327

usefulness of the proposed method within a Monte Carlo simulation scheme.328
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Figure 9: Response spectrum of sample generations from EPSD: three representative missing gap scenarios with increasing missing ratio

For completeness, quantitative performance evaluation of the reconstructions in respect to various missing gap329

scenarios are tabulated in Table 2 (reported in terms of the power spectrum) and Table 3 (reported in terms of the330

response spectrum), in which all the metrics are computed and averaged over 10 runs to obtain representative results331

against randomness. The total missing percentage (MP) of various combinations of gap numbers and sizes are listed332
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Table 2: Performance comparison on power spectral density of reconstructions under
various configurations of missing gaps (averaged over 10 runs)

PSD gap size number of gaps

2 4 6 8 10

e (e-3) 16 0.958 1.181 1.935 2.282 2.879
32 1.703 2.389 3.202 3.846 4.336
64 2.806 4.232 5.343 7.986 -

ALU 16 0.524 0.630 0.848 1.006 1.205
32 0.830 1.274 1.618 2.262 2.418
64 1.707 2.920 3.528 5.301 -

P95 (%) 16 86.095 86.243 79.734 74.556 73.077
32 83.876 83.432 76.479 78.107 80.030
64 83.136 86.686 81.065 81.361 -

e denotes the mean absolute error; ALU the area metric; P95 prediction inter-
val coverage probability

Table 3: Performance comparison on response spectrum of reconstructions under var-
ious configurations of missing gaps (averaged over 10 runs)

PSA gap size number of gaps

2 4 6 8 10

e (e-2) 16 0.538 0.667 1.134 1.313 1.600
32 0.925 1.328 1.785 2.039 2.229
64 1.621 2.029 2.658 3.157 -

ALU 16 0.013 0.015 0.020 0.023 0.026
32 0.020 0.029 0.035 0.043 0.045
64 0.037 0.049 0.060 0.070 -

P95 (%) 16 81.615 89.769 89.231 88.308 83.462
32 80.385 84.000 86.077 82.923 88.077
64 85.154 87.615 82.385 85.308 -

e denotes the mean absolute error; ALU the area metric; P95 prediction inter-
val coverage probability

as a reference in a color coded way in Table A.4. For both spectra, larger deviations and higher uncertainties are found333

as with the increase of missing percentage, which is intuitively understandable as a result of the iterative nature of the334

approach. Particularly, the error of PSD roughly increases by 60% when doubling the gap length (under the same gap335

numbers), which suggests the accumulation of errors propagated from the reconstructions. Generally, the estimated336

credible intervals covered both target spectrum quite well, with P95 higher than 80% for most scenarios. However,337

it should be noted that the high coverage probability of scenarios with missing percentage are at the cost of wider338

interval bounds, as suggested by ALU . The detailed scenario case in Section 3.3, along with three more scenarios339

shown in Fig. 8 and Fig. 9, exemplify the scale of results and demonstrates the performance.340

Note that, while included for completeness, the scenario with 10 gaps of size 64 is not compatible with our341

Bayesian updating setting, since too much of the empirical observations are missing (i.e. 87%), indicating that only342

very sparse samples of data are left. It is suggested by Eq. (2) that the partial chunks adopted for updating should be343

at least the size of p.344
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3.5. Impact of different data-loss scenarios345

In addition to exploring the impacts of missing levels, this analysis further investigates more complicated patterns,346

since a certain missing data percentage could be associated with different scenarios, for example a 17.41% data loss347

in the strong motion phase may be attributed to three combinations: 8 gaps of size 16, 4 gaps of size 32, or 2 gaps348

of size 64. As a result, Fig. 10 shows the comparison of errors on both power spectral density and response spectral349

acceleration amplitudes, over 10 runs, in box plots. For power spectral estimates, under the same missing level, the350

first two scenarios (namely, 8 gaps of size 16 and 4 gaps of size 32) achieve comparable accuracy on average, though351

the second has slight higher error and slightly larger variability. But more significantly, the third scenario with the352

longest gap and least number of gaps (i.e. 2 gaps of size 64) has much higher error and much higher variability. For353

response spectral acceleration amplitudes, differences manifest a similar trend as the results in terms of power spectra.354

As with longer gaps, in spite of fewer gaps, the average error increases. Still, the third scenario (2 gaps of size 64)355

results in the worst performance, with largest error and variability. This may suggest that the performance is more356

sensitive to the gap length (especially quite long gaps) than the quantity of gaps.357
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Figure 10: Comparison of mean absolute error for investigating the effects of 3 different missing gap scenarios with same missing level

4. Conclusion358

In this paper, a Bayesian framework to stochastically characterize ground motions in the presence of missing359

data is presented. This framework features the use of Bayesian neural networks that allow for epistemic uncertainty360

quantification, and a Bayesian model updating component that allows for the combination of seismological knowledge361

(a priori knowledge) with empirical observations (even incomplete) via Bayesian inference. The effect of missing gaps362

has been comprehensively studied via various missing scenarios, based on which the performance of the proposed363

method has been quantitatively demonstrated. Results show that the proposed method is highly effective even in364

serious cases of data-loss with about half of data missing in the strong motion phase, being capable of providing365

imputed waveforms, spectral estimates and stochastic synthetic generations that agree well with the target recording.366

A host of representations of ground motion, consistent with an underlying stochastic process, are provided in367

a probabilistic manner, suggesting the versatility of the proposed approach as a general solution to dealing with368

missing data for various engineering and seismological applications, whether waveform-based or spectrum-based. The369

proposed approach helps in recovering the information conveyed from faulty or incomplete observations, for example,370

from low-cost temporary instruments deployed at scale. The Bayesian framework provides a building block on which371

it could be developed to enrich the database of ground motions in data scare areas (eg. near-field strong motions),372

facilitating stochastic dynamic analyses of engineering structures and boosting the understanding of earth structures.373

Of particular note is its mechanism that combines a priori information with empirical observations, remedying the374

causality dilemma concerning the dependence of observations and the extracted knowledge/information. Finally,375
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we consider that, such Bayesian framework could serve as a complementary approach to current stochastic ground-376

motion models under the growing interests of PBEE (performance-based earthquake engineering), and ultimately a377

fundamental solution to the limited data problem in data scarce regions.378
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Appendix A. Missing percentages for various scenarios381

Table A.4: The total missing percentage (MP) for various missing scenarios

gap size number of gaps

2 4 6 8 10

16 4.35 8.71 13.06 17.41 21.77
32 8.71 17.41 26.12 34.83 43.54
64 17.41 34.83 52.24 69.66 87.07

Appendix B. Monte Carlo estimator382

Consider a general probabilistic objective function of the form:383

F (θ) =
∫

p(x; θ) f (x;ϕ)dx = Ep(x;θ)[ f (x;ϕ)] (B.1)

where f (x;ϕ) denotes a general function of an input variable x with structural parameters ϕ; p(x; θ) represents a384

probability distribution parameterized by θ.385

The usual Monte Carlo estimator for expectation is given by:386

Ep(x;θ)[ f (x;ϕ)] ⋍
1
N

N∑
1

f (x̂(n)),where x̂(n) ∼ p(x; θ) (B.2)

It suggests that a complex integral in B.1 can be numerically evaluated by drawing samples from the probability387

distribution p(x; θ) and then computing the average of the function evaluated at these samples. Furthermore, as many388

problems in Machine Learning generally focused on the computation of gradients, such as ∇θEp(x;θ)[ f (x;ϕ)]. Several389

techniques exist to do further approximation, see additional details in (Mohamed et al., 2020). As an example, a390

Monte Carlo gradient estimator by the score function is given as:391

∇θEp(x;θ)[ f (x;ϕ)] = Ep(x;θ)[ f (x;ϕ)∇θ log p(x; θ)]

=
1
N

N∑
1

f (x̂(n))∇θ log p(x̂(n); θ)]

where x̂(n) ∼ p(x; θ)392
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Table C.5: Source and path parameters of the stochastic finite fault model (sourced from (Bindi and Kotha, 2020; Razafindrakoto et al., 2021))

Parameter Description Value

ρs density of the medium 2.7
β shear wave velocity 3.2
V horizontal partition 1/

√
2

RθΦ radiation pattern 0.55
F free-surface factor 2
R0 reference distance 10
Q quality factor Q = 250.4 f 0.29

Appendix C. Seismological parameters of the finite-fault model393

Appendix D. Spectral moments394

The spectral moments are key statistical parameters in frequency domain analyses, which are of particular impor-395

tance in evaluating survival probability or reliability assessment for structural systems. Consider stationary random396

processes, the jth spectral moment λ j are given as (Lai, 1982; Zhang et al., 2017):397

λ j =

∫ +∞
−∞

ω jS (ω)dω (D.1)

where S (ω) denotes the two-sided power spectral density. Specifically, the zero spectral moment λ0, which is also398

the variance of the excitation, is given as:399

λ0 =

∫ +∞
−∞

S (ω)dω (D.2)

then the central frequency ωc, and the shape factor δ (also known as bandwidth measure) of the stochastic process400

can be computed from the first few spectra moments:401

ωc = [λ1/λ2]1/2

δ = [1 − (λ2
1/λ0λ0)]1/2

Appendix E. List of symbols402
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