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Abstract

Cyber-physical power systems (DCPPS) utilize wide-area measurement system, where communication networks employed in the
control loop introduce time delays inevitably. The existing studies focus on either computation accuracy or efficiency for investi-
gating the delay-dependent stability of large-scale DCPPS. Whereas, the requirements for calculation accuracy and efficiency vary
from the demand for online stability analysis and offline controller design. This paper investigates the demand-oriented stability of
the DCPPS and takes load frequency control (LFC) systems as typical examples. Novel regulation schemes have been proposed
with adjustable conservatism and computation complexity. Different from existing studies, this paper establishes regulated stability
criteria by constructing variable Lyapunov-Krasovskii functionals and using compatible integral inequalities for estimations. Then,
an algorithm is designed by introducing a threshold parameter to calculate accurate delay margins or to realize high computa-
tion efficiency flexibly. Case studies are complemented on the two-area LFC scheme and IEEE 39-bus system. It is illustrated
that the proposed method can realize on-demand adjustments for real power systems, i.e., setting the threshold parameter to zero
achieves almost accurate delay margins like the frequency-domain method, which guides the offline controller design with desired
performance; less computation complexity is achieved with a relatively large threshold parameter, and thus, the proposed method
is applicable for online stability analysis.

Keywords: Load frequency control, delay-dependent stability, adjustable accuracy and complexity.

1. Introduction

Most power system control applications utilize local signal-
s, where time delays in the control loops are always neglected
and approximated by simple lag blocks. Recently, a growing
research interest has been paid on modeling, analysis and con-
trol of delayed cyber-physical power systems (DCPPS) due to
the advent of phasor measurement unit (PMU)-based wide-area
measurement system (WAMS) [1]. By globally observing re-
mote signals, load frequency control (LFC) aims to maintain
the frequency and power interchanges with neighborhood areas
at scheduled values [2]-[4]. The traditional LFC employs ded-
icated communication channels to transmit information, where
small delays are induced and ignored normally [5, 6]. When a
communication fault happens, a fault counter will be triggered
to record the fault period. The LFC scheme will be suspended
or stopped when the counted steps reach the predefined upper
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bound [7]. The data drop caused by the communication fault
can be converted to an equivalent time-varying delay [8]. Time
delays degrade the dynamic performance of the LFC systems
and even cause instability with the area control error (ACE) be-
ing far away from zero [9]-[11]. That is, the control areas can-
not follow the control performance standards of CPS1 and CP-
S2 adopted by the North American Electric Reliability Council
(NERC) [12, 13]. Thus, it is essential to find the maximal ad-
missible upper bounds called delay margins, within which the
system remains stable [14].

Frequency-domain methods realize the exact delay upper
bounds for the power system with constant delays, but they are
limited to the analysis with constant delays [15]. In a mod-
ern power system, open communication networks are preferred
to support the increasing decentralized property of control ser-
vices, where constant and time-varying delays are introduced
[16, 17]. Time-domain methods based on the Lyapunov sta-
bility theory together with linear matrix inequality techniques
(LMIs) are alternative approaches [18, 19]. Although time-
domain methods have inherited conservatism characteristics,
they can be conveniently applied to systems with single or mul-
tiple, constant or time-varying delays [20].

To lessen the conservatism, more efforts have been paid
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to constructing appropriate Lyapunov-Krasovskii functionals
(LKFs) and/or estimating their derivatives with conservatism-
reduced inequalities. For instance, a standard LKF and the free-
weighting matrices technique [21] are investigated to establish
the LMIs-based stability criterion [7]. During the construc-
tion of the LKFs, relationships among different delays are con-
sidered while estimating integral terms with Jensen inequality
[8, 22]. In [23], less conservative results are obtained by apply-
ing the Wirtinger-based integral inequality combined with the
reciprocally convex approach [24]. The infinite-series-based in-
equality and the truncated second-order Bessel-Legendre (BL)
inequality, which encompasses the Jensen inequality and the
Wirtinger-based integral inequality, are used for estimating the
derivatives tightly [25, 26]. Furthermore, in [27], less conser-
vative stability criteria are derived based on the BL inequality
together with the model reconstruction techniques, and compar-
ative results are presented by using the linear operator inequal-
ity [28].

Currently, power grid online analysis has been widely used in
dispatching control centers [29]. Otherwise, supervisory con-
trol and data acquisition (SCADA), state estimation, and con-
tingency analysis are normally updated in an interval of min-
utes, which is not fast enough to recognize and anticipate sys-
tem status if there is an emergency [30]. The above research
methods pay many efforts into improving the calculation accu-
racy while ignoring the heavy computation burden in the stabil-
ity analysis of complex power systems. This deficiency limits
the applications to online analysis and real-time data process-
ing and computation. Therefore, the methods in [31, 32] en-
hance the solvability of large-scale LMI-based conditions for
analyzing the delayed LFC scheme by reducing the maximum
order of LMI conditions [33] or cutting the decision variables
based on the reconstructed LFC model [34]. The calculated
upper bounds of time delays are decreased because more con-
straints are placed on the system model/stability criteria to re-
duce the computation burden. That is, the calculation efficiency
is improved to meet the time demand of online stability analy-
sis within the range of allowable accuracy reduction. However,
these conservative conditions or results are unable to guide of-
fline controller design with desired control performance, and
the reliability of controller tuning is decreased. Overall, the ex-
isting studies put forward fixed stability conditions that cannot
flexibly meet the demand of online stability analysis or offline
controller design.

This paper investigates the delay-dependent stability analy-
sis of the delayed LFC system by proposing novel demand-
oriented methods. The accuracy and computation efficiency can
be flexibly regulated for achieving both online stability analy-
sis and offline controller design as demanded. Based on the
time-domain method, variable LKFs are constructed by intro-
ducing multiple integral terms whose order is compatible with
the tightly integral inequality used to bound the derivatives of
the LKFs. Then, a new algorithm is designed. A threshold pa-
rameter is introduced to calculate the desired upper bounds of
time delays and to meet the demand of computation efficiency
for stability analysis. Case studies are carried out on the two-
area LFC scheme and the IEEE 39-bus system to validate the

effectiveness of the presented methods. The main contributions
are summarized below.

• The proposed methods can realize the on-demand regula-
tions of accuracy and computational efficiency, i.e., a s-
mall threshold parameter matches less conservative results
but with more decision variables required in the LMIs to
be resolved, and vice versa.

• The proposed methods combine well with the reconstruct-
ed model. Within the allowable range of accuracy reduc-
tion, this paper obviously improves the computation effi-
ciency and prompts its application to online stability anal-
ysis. Whereas, the frequency-domain method has to cal-
culate the large-scale characteristic equation with heavy
computation burden.

• Presetting the zero threshold parameter leads to almost ac-
curate results. In contrast, the previous time-domain meth-
ods inevitably introduce conservatism. Thus, when delay
margins are adopted as an additional performance index
for designing controllers offline, this paper achieves better
robust performance than existing studies do.

The remaining parts of this paper are organized as follows.
Section 2 presents the system model and the transformed one.
Section 3 shows the proposed methods for stability analysis of
the LFC system, including the novel asymptotical stability cri-
teria and an algorithm. In Section 4, case studies are carried out
to verify the effectiveness of the established stability criteria. In
Section 5, conclusions are summarized.

2. Dynamic model of the multi-area LFC scheme

The dynamic model of the multi-area LFC schemes is given.
Then, based on the model reconstruction technique [34], the
original model is transformed into a coupled system consisting
of a delay-related subsystem and a delay-free subsystem.

Figure 1: Structure of control area i (Traditional LFC: without dotted line con-
nection; Deregulated LFC: with dotted line connection)

Figure 1 demonstrates the structure of area i in the multi-
area LFC schemes, where ng generators are assumed to be e-
quipped and installed with non-reheat turbines. Exponential
block e−sτi shows delays arising in communication channels of
area i. More notations employed in the ith area of the LFC sys-
tem are explained in Table 1.
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The ACE of area i is defined as
ACEi = βi∆ fi + ∆Ptie−i,e (1)

and a PID-type LFC controller is employed

ui(t) = −KPiACEi − KIi

∫
ACEidt − KDi

dACEi

dt
(2)

where KPi, KIi and KDi are the proportional, integral and differ-
ential gains, respectively. Note that the following system model
is established for the multi-area LFC scheme with N control ar-
eas. Therefore, there are N different time delays (τ1, τ2, . . . τN)
included. Here, the closed-loop model of the traditional LFC
scheme is recalled from [8].

ẋ(t) = Ax(t) +
N∑

i=1

Ãdix(t − τi) + Bwω (3)

where
x=[x̄T

1 , x̄
T
2 , . . . , x̄

T
N]T , x̄i = [x̂T

i ,

∫
yT

i ]T , yi = ACEi

x̂i=
[
∆ fi,∆Ptie−i,e,∆Pm1i, . . . ,∆Pmngi,∆Pv1i, . . . ,∆Pvngi

]T

A =


Ā11 · · · Ā1N
...

. . .
...

ĀN1 · · · ĀNN

 , Ãdi =

 0(i−1)(2ng+2)×N(2ng+2)
Ādi1 Ādi2 · · · ĀdiN

0(N−i)(2ng+2)×N(2ng+2)


Bw = diag{B̄w1, · · · , B̄wN}, ω = diag{ω1, · · · , ωN}
Ādii = −B̄iKiC̄i, Ādi j = −B̄iKiC̄i j, B̄wi = F̄i − B̄iKiD̄i

Āii =

[
Ai 0
Ci 0

]
, Āi j =

[
Ai j 0
0 0

]
, B̄i =

[
Bi

0

]
, F̄i =

[
Fi

Di

]

C̄i =

 Ci 0
0 1

CiAi 0

 , C̄i j =

 0 0
0 0

CiAi j 0

 , D̄i =

 Di

0
CiFi


Ai =

 A11i A12i 02×ng

0ng×2 A22i A23i

A31i 0ng×ng A33i

 , Ai j =

 0 0 01×2ng

−2πTi j 0 01×2ng

02ng×1 02ng×1 02ng×2ng


A11i =

[
− Di

Mi
− 1

Mi

2π
∑N

j=1, j,i Ti j 0

]
, A12i =

[ 1
Mi
· · · 1

Mi

0 · · · 0

]
A22i = −A23i = −diag

{
1

Tt1i
, · · ·, 1

Ttngi

}

A31i = −
 1

R1iTt1i
· · · 1

RngiTtngi

0 · · · 0

T

A33i = −diag
{

1
Tg1i
, · · ·, 1

Tgngi

}
, Ki = [KPi,KIi,KDi]

Bi =

 02×1
0ng×1
B3i

 , B3i=

[
α1i

Tg1i
, · · ·,

αngi

Tgngi

]T

, Fi =

[−1
Mi

0 0
0 −2π 0

]

Di = [0, 0], Ci =
[
βi, 1, 01×2ng

]
, βi =

ng∑
j=1

1
R ji
+ Di.

The model of the deregulated multi-area LFC scheme is es-
tablished while considering the dotted line in Figure 1. More-
over, notations Fi and Di need to be redefined as Fi =

−1
Mi

0 01×ng

0(1+ng)×1 0(1+ng)×1 0(1+ng)×ng

0ng×1 0ng×1 −A33i

 and Di = [0,−1, 01×ng ], re-

spectively.

Table 1: Notations Illustrations

∆ fi Deviation of frequency
∆Ptie−i,e Deviation of tie-line power exchange
∆Pmng i Deviation of generator mechanical output
∆Pvng i Deviation of valve position
∆Pdi Traditional: load; Deregulated: un-contracted demand
∆PLi Contracted demand
∆Ptie−i,sch Scheduled tie-line power exchange
Mi Moment of inertia of generator unit
Di Generator unit damping coefficient
Tgng i Time constant of non-reheat turbine speed governor
Ttng i Time constant of non-reheat turbine
Rng i Speed drop
Ti j Tie-line synchronizing coefficient between area i and j
βi Frequency bias factor
αng i Ramp rate factor

For analyzing the asymptotical stability of (3), we consider
the following disturbance-free model

ẋ(t) =
N∑

i=0

Aix(t − τi) (4)

where A0 = A and Ai ∈ {Ãd1, Ãd2, . . . , ÃdN} are obtained by
reordering the time delays with 0 = τ0 ≤ τ1 ≤ . . . ≤ τN .

The closed-loop LFC scheme has a few delay-related states
and coefficient matrices Ai, i ∈ N are sparse. Inspired by [31],
the state variables selected for area i have the following rela-
tionships:

∆ ḟi(t)=λ(∆Pmκi(t),∆Pdi(t),∆Ptie−i,e(t)) (5)
∆Ṗtie−i,e(t)=h(∆ fi(t),∆ f j(t))
∆Ṗmκi(t)=g(∆Pmκi(t),∆Pvκi(t))
∆Ṗvκi(t)= f (∆fi(t),∆Pvκi(t))+χ(∆ fi(t−τi),∆Ptie−i,e(t−τi))

where κ = 1, 2, . . . , ng, and λ(·), h(·), g(·), f (·) and χ(·) are ap-
propriate functions developed based on the transfer functions in
Figure 1. In area i, only state variables ∆Ṗvκi(t) are influenced
by the delayed states directly, which is also the case for other
control areas. Therefore, variables ∆Ṗvκi(t), κ = 1, 2, . . . , n, i =
1, 2, . . . ,N are separated from state vector x and placed in
x2 ∈ Rn2 . Meanwhile, x1 ∈ Rn1 consists of the other state vari-
ables included in x. By completing elementary row operation
on system (4), it is derived that[

ẋ1(t)
ẋ2(t)

]
=

[
A11 A12
A21 A22

] [
x1(t)
x2(t)

]
+

N∑
j=1

[
0 0

Adj 0

] [
x1(t−τ j)
x2(t−τ j)

]
(6)

where x1 ∈ Rn1 includes delayed states, x2 ∈ Rn2 donates other
states.

When the nominal power system is considered with time-
varying delays, to calculate the delay margins conveniently, all
regions are assumed to have same time-varying delays [25, 26],
satisfying following conditions

0 ≤ d(t) ≤ h, ḋ(t) ≤ µ (7)

where h and µ are the upper bound and delay variation bound
of the time-varying delay, respectively.

Therefore, model (6) turns into the following equation[
ẋ1(t)
ẋ2(t)

]
=

[
A11 A12
A21 A22

] [
x1(t)
x2(t)

]
+

[
0 0∑N

j=1Adj 0

] [
x1(t−d(t))
x2(t−d(t))

]
(8)
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3. Delay-dependent Stability Analysis with Adjustable Ac-
curacy and Computation efficiency

This section presents novel methods for investigating the sta-
bility analysis of the delayed LFC system (6), whose accuracy
and computation efficiency can be regulated as required.

3.1. New stability condition

For developing the stability criteria, an integral inequality is
recalled in Lemma 1.

Lemma 1. [36] For a matrix R > 0 and a differentiable func-
tion {x(u), u∈ [a, b]}, the following inequality holds∫ b

a
ẋT (α)Rẋ(α)dα ≥

n∑
l=0

γl

b − a
ΩT

l (a, b)RΩl(a, b) (9)

where

Ωl(a, b)=


x(b) − x(a), l = 0

l∑
k=0

ck,lx(b)−c0,lx(a)−
l∑

k=1

ck,lk!
(b−a)kI

k
(a,b)x(t), l∈N+

γl=

 l∑
k=0

ck,l

l + k + 1


−1

ck,l=


1, k = l, l ≥ 0

−
l−1∑
v=k

v∑
j=0

c j,v
l+ j+1

v∑
j=0

c j,v
v+ j+1

ck,v , k = 0, 1, . . . , l − 1, l ≥ 1

I σ
(a,b)x(t)=


∫ b

a x(s)ds, σ = 1∫ b
a

∫ b
s1
. . .

∫ b
sσ−1

x (sσ) dsσ . . . ds2ds1,σ≥2, σ∈N+

The following criteria are developed by constructing variable
LKFs and using Lemma 1 to bound their derivative. Its accura-
cy and calculation burden can be adjusted via an integer.

Theorem 1. For given scalars n ∈ N and τi, i ∈ N satisfying
(4), system (6) is globally asymptotically stable, if there exist
matrices P,Q j > 0,R j > 0, j ∈ N+ such that the following LMI
holds

Ξ = ΨaPΨT
b + ΨbPΨT

a +

N∑
j=1

Υ j < 0 (10)

where

Ψa =


[
eT

1 , e
T
m

]
, n = 0[

eT
1 , e

T
m, E

T
1 , . . . , E

T
N

]
, n ∈ N+

Ψb =


[
eT

d1, e
T
dm

]
, n = 0[

eT
d1, e

T
dm, E

T
d1, . . . , E

T
dN

]
, n ∈ N+

ed1 = A11e1 + A12em

edm = A21e1 + A22em +

N∑
j=1

Adje j+1

E j =

[
(b j − a j)eT

ℓ̃ j
, . . . , (b j − a j)neT

ℓ j

]
Ed j =

[
(e j − e j+1)T , (b j − a j)(e j − eℓ̃ j

)T ,

. . . , (b j − a j)n−1
(

1
(n − 1)!

e j − eℓ j−1

)T 

Υ j = eT
j Q je j − eT

j+1Q je j+1 + (τ j − τ j−1)2eT
d1R jed1

−
n∑

l=0

γlΩ
T
l, jR jΩl, j

Ωl, j =


e j − e j+1, l = 0
l∑

k=0
ck,le j−c0,le j+1−

l∑
k=1

ck,lk!el j+k, l=1, 2, . . . ,n

eq=
[
0n1×(q−1)n1,In1×n1,0n1×(ℓN−q)n1,0n1×n2

]
, q = 1,2,. . . ,ℓN

em =
[
0n2×ℓN n1 , In2×n2

]
ℓ j = ℓ̃ j + n − 1, ℓ̃ j = N + 2 + ( j − 1)n,
a j = t − τ j, b j = t − τ j−1.

and ck,l is defined in (9).

Proof. The following variable LKF is constructed

V(t) = ζT
n (t)Pζn(t) +

N∑
j=1

∫ b j

a j

xT
1 (s)Q jx1(s)ds (11)

+

N∑
j=1

(
b j − a j

) ∫ b j

a j

∫ t

θ

ẋT
1 (s)R j ẋ1(s)dsdθ

where

ζn(t)=


[
xT

1 (t), xT
2 (t)

]T
, n = 0[

xT
1 (t), xT

2 (t),I 1
(a1,b1)x

T
1 (t), . . . ,I n

(a1,b1)x
T
1 (t),

. . . ,I 1
(aN ,bN )x

T
1 (t) . . . ,I n

(aN ,bN )x
T
1 (t)

]T
, n ∈ N+

and P,Q j > 0,R j > 0, j ∈ N+ remain to be determined.
Calculate the derivative of LKF (11) along (6). Then, bound-

ing integral term −
∫ b j

a j
ẋT

1 (s)R j ẋ1(s)ds with Lemma 1 yields

V̇(t) ≤ ξTn (t) Ξ ξn(t) (12)

with

ξn(t) =



[
xT

1 (t), xT
1 (a1), . . . , xT

1 (aN), xT
2 (t)

]T
, n = 0[

xT
1 (t), xT

1 (a1), . . . , xT
1 (aN), 1

b1−a1
I 1

(a1,b1)x
T
1 (t),

. . . , 1
(b1−a1)n I n

(a1,b1)x
T
1 (t), . . . , 1

bN−aN
I 1

(aN ,bN)x
T
1 (t),

. . . , 1
(bN−aN )n I n

(aN ,bN )x
T
1 (t), xT

2 (t)
]T
, n ∈ N+

.

It can be found that the holding of LMI-based condition in
Theorem 1 leads to V̇(t)≤−ε ∥x(t)∥2 for a sufficient small scalar
ε > 0, which ensures the asymptotical stability of (6).

Remark 1. Augmenting (11) introduces multiple integral terms
that fully benefit from inequality (9), e.g., the extension consists
of incorporating I n

(aN ,bN )x
T
1 (t), which appears spontaneously in

(9). Then, the obtained stability criterion, Theorem 1, forms a
set of LMI conditions with n adjusting its conservatism and cal-
culation burden. By increasing n, it is expected to achieve many
numerical improvements in calculating delay margins. Hence,
Theorem 1 contains the existing results [27, 34]. Moreover, set-
ting a relatively large n potentially obtains results that approx-
imate the accurate value calculated by the frequency-domain
method [15]. In Section III.B, an algorithm will be proposed
to meet special requirements on computational accuracy for of-
fline controller design or calculation speed for online stability
analysis.
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For investigating the delay-dependent stability analysis of the
LFC scheme with time-varying delays, Theorem 2 is presented.

Theorem 2. For given scalars n ∈ N+, h and µ, system (8) is
globally asymptotically stable, if there exist matrices P̃, Q̃1 >
0, Q̃2>0, R̃1>0, and any matrix V such that the following LMI
holds

Ξ̃ = ϕaP̃ϕT
b + ϕbP̃ϕT

a + Υ̃ < 0, S > 0 (13)
where
Υ̃ = ẽT

1 (Q̃1+Q̃2)ẽ1−(1−µ)ẽT
2 Q̃2ẽ2−ẽT

3 Q̃2ẽ3+h2ẽT
d1R̃1ẽd1−EnS ET

n

ϕa =
[
ẽT

1 , ẽ
T
m, d(t)ẽT

4 ,(h−d(t)ẽT
5 , . . . , d(t)ẽT

2n+2,(h−d(t)ẽT
2n+3

]
Ψb =

[
ẽT

d1, ẽ
T
dm, ẽ

T
1 − (1 − µ)ẽT

2 , (1 − µ)ẽT
2 − ẽT

3 ,

. . . ,
ẽT

1

(n − 1)!
− (1 − µ)ẽT

2n − (n − 1)µẽT
2n+2,

(1 − µ)ẽT
2

(n − 1)!
− ẽT

2n+1 + (n − 1)µẽT
2n+3


ẽd1 = A11ẽ1 + A12ẽm

ẽdm = A21ẽ1 + A22ẽm +

N∑
j=1

Adjẽ2

En =
[
ET

q0, E
T
q1, . . . ,E

T
qn, E

T
r0, E

T
r1, . . . ,E

T
rn

]
S =

{
diag{ρ0R̃1, ρ1R̃1, . . . , ρnR̃1} V;

VT diag{ρ0R̃1, ρ1R̃1, . . . , ρnR̃1}
}

Eql =


ẽ1− ẽ2, l=0

ẽ1− c0,lγl

ρl
ẽ2 − γl

ρl

l∑
k=1

ck,lk!ẽ2k+2, l=1,. . . , n

Erl =


ẽ2− ẽ3, l=0

ẽ2− c0,lγl

ρl
ẽ3 − γl

ρl

l∑
k=1

ck,lk!ẽ2k+3, l=1,. . . , n

ρl =


1, l=0

γl

(
l∑

k=0
ck,l

)2

, l=1,. . . , n

ẽr =
[
0n1×(r−1)n1 , In1×n1 , 0n1×(2n+3−r)n1 , 0n1×n2

]
ẽm =

[
0n2×(2n+3)n1 , In2×n2

]
, r = 1, 2, . . . , 2n + 3.

Proof. Construct the following variable LKF

Ṽ(t) = ηT
n (t)P̃ηn(t) +

∫ t

t−d(t)
xT

1(s)Q̃1x1(s)ds (14)

+

∫ t

t−h
xT

1(s)Q̃2x1(s)ds+h
∫ 0

−h

∫ t

t+θ
ẋT

1 (s)R̃1 ẋ1(s)dsdθ

where
ηn(t) =

[
xT

1 (t), xT
2 (t),I 1

(t−d(t),t)x
T
1 (t),I 1

(t−h,t−d(t))x
T
1 (t), . . . ,

1
dn−1(t)

I n
(t−d(t),t)x

T
1(t),

1
(h−d(t))n−1I

n
(t−h,t−d(t))x

T
1(t)

]T

and P̃, Q̃1 > 0, Q̃2 > 0 and R̃1 > 0 remain to be determined.
Calculating the derivative of LKF (14) and estimating its in-

tegral term with Lemma 1 together with the reciprocally convex
approach yield

˙̃V(t) ≤ ςT
n (t) Ξ̃ ςn(t) (15)

with

ςn(t) =
[
xT

1 (t), xT
1 (t − d(t)), xT

1 (t − h),
1

d(t)
I 1

(t−d(t),t)x
T
1 (t),

1
h−d(t)

I 1
(t−h,t−d(t))x

T
1 (t), . . . ,

1
dn(t)

I n
(t−d(t),t)x

T
1 (t),

1
(h−d(t))n I n

(t−h,t−d(t))x
T
1 (t), xT

2 (t)
]T

and Ξ̃ defined in (13).

Remark 2. In the proof of Theorems 1 and 2, there exist sim-
ilarities between LKFs (11) and (14). To achieve the adjusta-
bility of derived criterion, both augmented terms ζn(t) in (11)
and ηn(t) in (14) introduce multiple integral terms, coordinat-
ing with n-order bounded integral inequality (9). Theorem 1
is used to investigate the delayed LFC scheme, and control ar-
eas have different constant delays satisfying (4). Therefore, for
constructing LKF (11), the relationships between different de-
lays are considered, leading to the less conservative stability
criterion. Theorem 2 is established for the delayed power sys-
tem with same time-varying delays d(t) assumed in all control
areas. Hence, we take full advantage of the time delay informa-
tion during the construction of (14), and thus, delay variation
bound µ is introduced into the derived condition.

Remark 3. Since our method can combine the reconstruct-
ed models (6) and (8) to construct LKFs (11) and (14), re-
spectively, the computation complexity is decreased for delay-
dependent stability analysis of large-scale power systems. By
contrast, when the case of constant delays is discussed, the
frequency-domain method [15] has to calculate the high-order
characteristic equation based on the original large-scale pow-
er system. When the LFC system with time-varying delays is
studied, Theorem 2 releases the computation burden of the cri-
teria in [25, 26] by introducing a variable integer to change the
constructed LKFs and estimation method flexibly.

3.2. New algorithm

The following algorithm is designed to realize the demand-
oriented regulation scheme, where τv

n shows the delay margin
by solving the presented criteria with n. Define increment index
(δv(%)) for delay margins calculated by the presented criteria
where degree n increases to n + 1. Additionally, a threshold
parameter ρ is introduced.

δv(%) =
τv

n+1 − τv
n

τv
n+1

. (16)

For investigating online stability analysis of system operation
status, Algorithm 1 runs online. The computation speed and
time consumption need to be considered preferentially within
the range of accuracy reduction. Thus, if the results with some
conservatism are acceptable for online stability analysis, we can
set a relatively large ρ in Algorithm 1. A smaller n is required
in Theorems 1 and 2 while guaranteeing their computation ef-
ficiency and ensuring the applications to online evaluation of
system operation status.

On the other hand, setting relatively small ρ helps compute
upper bounds with less conservatism, and a large integer n to-
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gether with more decision variables is often demanded in The-
orems 1 and 2. Especially, we can obtain the almost accurate
delay margins by setting threshold parameter ρ = 0. This case is
valuable for designing controllers with desired control perfor-
mance because the almost accurate delay margin is employed
as an additional performance index to guide the controller de-
sign. For controller design, Algorithm 1 runs offline regardless
of the increased computation burden. Therefore, Algorithm 1
combined with Theorems 1 and 2 realizes the demand-oriented
regulation scheme.

Algorithm 1: Demand-oriented regulation scheme

Step 1: Preset a search interval [τs, τe], an accuracy requirement τac,

a threshold parameter ρ, and n = 0;

Step 2: Check the feasibility of LMI (10) (or LMI (13))

for given τset = (τs + τe)/2.

If (10) (or (13)) is feasible, set τs = τset; else, set τe = τset .

Step 3: If τe − τs ≤ τac, obtain delay margin τvn = τs ;

else, repeat Step 2.

Step 4: Increase n = n + 1 for LMI (10) (or LMI (13)) .

Repeat Step 2 and Step 3 to obtain delay margin τvn.

Step 5: If (τvn − τvn−1)/τvn ≥ ρ, repeat Step 4;

else, output τvn and n.

3.3. Summary of analysis steps

The steps of implementing the proposed approach can be
briefly summarized as follows.

Step1. A reconstructed model is presented based on the orig-
inal dynamic model of the closed-loop LFC schemes,
as shown in Section II.

Step2. An algorithm is proposed to flexibly regulate the com-
putation accuracy and efficiency of determining the
delay margins by presetting a threshold parameter ρ
and adjusting degree n.

Step3. The delay margins are calculated with respect to vari-
ous PID gains, polar coordinate point θ, and degree n.
The SDPT3 solver in MATLAB is used to check the
feasibility of the derived criterion.

Step4. By making comparisons with the existing frequency-
domain method, the calculation efficiency of the pro-
posed time-domain method is verified.

Step5. Simulations are carried out to show the effectiveness
of obtained theoretical results in stability analysis and
controller design.

4. Case studies

Case studies are carried out on the traditional two-area
LFC scheme with constant delays, deregulated two-area LFC
scheme with time-varying delays, and IEEE 39-bus system with
10 generator units. The parameters used in case studies are giv-
en in Appendix I where Tables 10, 11 and 12 [8, 35]. Same

computational environments are utilized, e.g., a Win 10 PC e-
quipped with an Intel i5 CPU, an 8GB RAM, and a 64-bit oper-
ation system, and the same presets of the calculation procedure.
The approaches are implemented on the MATLAB 2018b, and
the SDPT3 solver in the YALMIP toolbox is to check the feasi-
bility of the LMI-based consdition.

4.1. Calculation accuracy verifications

This section verifies that we can regulate n in Theorem 1 and
2 to change its conservatism flexibly. Setting Theorems 1 and
2 with a large n realizes the less conservative results, even the
exact ones. Based on the two-area LFC model with differen-
t PID gains, how to determine the value of n for Theorem 1
is explained through the proposed algorithm. Moreover, based
on the IEEE 39-bus system, it is shown that the results obtained
with the proposed approach, are consistent with the actual pow-
er systems with model complexities and nonlinearities.

4.1.1. Two-area LFC schemes with constant delays
For integer n ∈ [0, 3], Theorem 1 includes four stability cri-

teria. The controller gain is assumed to be K = [0.4 0.2 0]. The
calculated delay margins based on each criterion are tabulated

in Table 2, where τv
n =

√
τ2

1 + τ
2
2 represents the magnitude of

τ1 and τ2 and θ = tan−1(τ1/τ2), θ ∈ [0◦, 90◦]. Figure 2 is given
to show these results clearly. Meanwhile, the accurate results
obtained by the frequency-domain method [15] are introduced
as the benchmark.

Table 2: Delay Margins of Two-Area LFC Scheme with respect to n

θ
τvn(s) 0◦ 10◦ 20◦ 30◦ 40◦ 45◦ 50◦ 60◦ 70◦ 80◦ 90◦

n = 0 4.58 4.22 4.35 4.68 5.01 4.86 4.42 3.99 3.80 3.87 4.52
n = 1 7.13 7.58 8.15 9.29 11.10 8.63 10.96 9.00 7.86 7.40 6.98
n = 2 8.51 8.66 9.08 9.86 11.15 11.03 11.01 9.74 8.97 8.56 8.41
n = 3 8.54 8.67 9.09 9.86 11.15 11.93 11.01 9.74 8.97 8.56 8.43

Exact [15] 8.55 8.67 9.11 9.86 11.15 11.95 11.01 9.74 8.97 8.56 8.43
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Figure 2: The estimated delay margins with respect to θ and n.

From Table 2 and Figure 2, the increased order of n lets
the estimated delay margins approach the exact ones gradual-
ly, e.g., if n = 3, the purple line will coincide with the dotted
line. For given n = 3, Theorem 1 can realize the almost same
computational accuracy as the frequency-domain method. Note
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that for given n = 2, Theorem 1 still computes the accurate de-
lay upper bounds except for θ = 45◦.

Comparing with the result of the frequency-domain method
(τe), the conservatism introduced by the proposed time-domain
method is represented with relative error δ(%). To clearly
demonstrate the relationships among δ(%), n, and θ, four typi-
cal cases are depicted in Figure 3.

0 1 2 3 4
n
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40%

50%

60%

= 0 °
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= 45 °

θ 
θ 
θ 
θ 

δ
 (

%
)

Figure 3: The introduced conservatism with respect to θ and n.

The purple line representing θ = 45◦ is always above the oth-
er three lines with θ ∈ [0◦, 20◦, 30◦]. When n is increased to 2,
the following three lines decline to zero, and non-conservative
results are obtained. Whereas, setting θ = 45◦ requires n = 3
to almost eliminate the conservatism introduced. It can be con-
cluded that θ = 45◦ (τ1 = τ2) has the worst effect on deter-
mining the accurate delay margins, and therefore, the following
parts start from θ = 45◦.

Here, we demonstrates how to determine the value of n for
Theorem 1. Figure 4 displays the estimated upper bounds with
respect to KP and n with fixed KI = 0.15. We can find that
the lines for n = 4 and n = 5 coincide with each other (The
increment index approximates zero) for all concerned values of
KP. Thus, for given n = 4, Theorem 1 enables the computation
of non-conservative results. Actually, when KP ∈ [0, 0.1], five
lines for n ∈ [1, 2, 3, 4, 5] overlap each other, i.e., n = 1 is e-
nough for obtaining the accurate delay upper bounds. When
KP ∈ [0.1, 0.2], the line of n = 2 approaches the lines of
n ∈ [3, 4, 5] and obtains the stability criterion without conser-
vatism. In addition, when KP ∈ [0.2, 0.4] and KP ∈ [0.4, 0.6],
setting n = 3 and n = 4 for Theorem 1 can almost vanish its
conservatism, respectively. It is obvious that the conservatism
of delay margins varies with the different PID gains. Howev-
er, the proposed method eliminates this bad effect, obtaining
the delay upper bounds with almost consistent accuracy for any
given PID gains.

After defining increment index δv(%) and threshold parame-
ter ρ for delay margins as shown in Algorithm 1, we realizes the
special requirements on accuracy or calculation efficiency. Ta-
ble 3 shows increment indices for delay margins with increased
n under different PID controllers.

If ρ = 2% is desired, then, n = 2 is required for KP ∈ [0, 0.1];
n = 3 is enough for KP = 0.2; n = 4 is needed for KP ∈
[0.3, 0.4], and n = 5 is required for KP ∈ [0.5, 0.6]. Presetting
ρ = 0% leads to almost accurate results while demanding a
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Figure 4: The estimated delay margins with respect to KP and n (KI = 0.15).

Table 3: Increment Indices of Delay Margins with Increased n under Different
KP Gains

n 0→ 1 1→ 2 2→ 3 3→ 4 4→ 5
KP= 0 21.06% 0.17% 0.00% 0.00% 0.00%

KP= 0.1 30.19% 0.22% 0.00% 0.00% 0.00%
KP= 0.2 32.74% 9.90% 0.76% 0.00% 0.00%
KP= 0.3 35.23% 16.59% 5.82% 0.00% 0.00%
KP= 0.4 39.24% 21.21% 12.65% 0.00% 0.00%
KP= 0.5 45.52% 24.61% 19.16% 2.76% 0.00%
KP= 0.6 53.70% 29.15% 25.28% 8.78% 0.00%

relatively large n and resulting in the increased scale of LMIs.
Additionally, Figure 5 shows the estimated delay margins

with respect to KI ∈ [0.05, 0.6] and n with fixed KP = 0.4.
It can be seen that the lines for n = 4 and n = 5 coincide with
each other for all concerned values of KI . Thus, we can con-
clude that for given n = 4 in Theorem 1, the almost accurate
delay margins can be computed. In detail, for KI ∈ [0.05, 0.1],
n = 4 is required for approaching n = 5; for KI ∈ [0.1, 0.25],
n = 3 is enough; for KI ∈ [0.25, 0.45], n = 2 derives the al-
most accurate upper bounds; for KI ∈ [0.45, 0.6], n = 1 leads to
non-conservative criterion. Table 4 lists these results.

0 0.1 0.2 0.3 0.4 0.5 0.6
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Figure 5: The estimated delay margins with respect to KI and n (KP = 0.4).

In this case, if we preset threshold parameter ρ = 5%, n = 2 is
required for KI ∈ [0.5, 0.6]; n = 3 is enough for KI ∈ [0.3, 0.4],
and n = 4 is needed for KI ∈ [0.1, 0.2]. If ρ = 2%, n = 3 is for
KI ∈ [0.3, 0.6]; n = 4 is for KI = 0.2, and n = 5 is for KI =

0.1. Moreover, setting δvr = 0% will output the almost accurate
results with a relatively big n, implying increased calculation
burden. Here clarifies the flexible regulations on computational
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accuracy or efficiency.

Table 4: Increment of Delay Margins with Increased n under Different KI Gains

n 0→ 1 1→ 2 2→ 3 3→ 4 4→ 5
KI= 0.1 33.48% 19.30% 17.49% 2.37% 0.00%
KI= 0.2 43.73% 21.76% 7.48% 0.00% 0.00%
KI= 0.3 50.39% 19.30% 0.27% 0.00% 0.00%
KI= 0.4 55.00% 10.32% 0.18% 0.00% 0.00%
KI= 0.5 56.09% 4.20% 0.17% 0.00% 0.00%
KI= 0.6 53.11% 2.74% 0.15% 0.00% 0.00%

4.1.2. IEEE 39-bus system
This case study has two objectives. First, when the increment

index is zero as n is added by one in LMI (10), n is enough for
(10) to obtain the almost accurate results. Then, the theoreti-
cal results investigated based on the time-domain method are
consistent with the practical solutions of the real-world power
system. Typical parameters for turbine-governor systems are
Tg = 0.08 s, Tt = 0.40 s, and droop characteristic R = 5%
p.u./rated power. For numerical tests, the actual values of Tg,Tt

and R are randomly generated in the range of 1 ± 10% of the
typical values.

Figure 7 shows the single-line diagram for the IEEE 39-
bus system, including 10 synchronous generators, 19 loads, 34
transmission lines, and 12 transformers. Each generator is e-
quipped with the excitation unit and power system stabilizer
(PSS). System data and parameters of generators, transformers,
and transmission lines are given in [35]. As shown in Figure 7,
the three-area test case is obtained by dividing 10 generators
into three control areas, i.e., machines G1 to G3, G4 to G7, and
G8 to G10 are organized into areas 1, 2, and 3, respectively. It
is assumed that in all control areas, all generators are equipped
with the conventional PID-based secondary frequency control
loops. In the performed application, the important inherent re-
quirements and basic constrains, such as governor dead band
(GDB) and generation rate constraint (GRC) imposed by phys-
ical system dynamics, are considered. Figure 6 describes dia-
grams of the GDB and GRC, in which the GRC is assumed to
be ±0.1 pu/min, and the range of GDB is 0.036 HZ [5].

Figure 6: Structures of GDB and GRC in the LFC scheme.

This figure also describes the tie-lines between area 1 and
area 3 (connecting buses 1-39 and 3-4), the tie-line between
area 1 and area 2 (connecting bus 14-15), and the tie-line be-
tween area 2 and area 3 (connecting bus 16-17). Based on
the parameters given in [35], the tie-line synchronizing torque
coefficients of this three-area system can be calculated with
T12=0.4166,T13=1.3272, and T23=0.2959.

Figure 7: Structure of 10 units IEEE 39-bus system.

Delay margin τ =
√
τ2

1 + τ
2
2 + τ

2
3 is calculated with respect

to various PID controller gains and n. The results are listed
in Table 5, where the increment indices for upper bounds are
reflected with the increased n. As mentioned before, when the
time delays in each area are equal, i.e., τ1 = τ2 = τ3, it is
hard to decrease the conservatism introduced by using the time-
domain method. Therefore, the three-area test case is studied
with identical delays.

Table 5: Delay Margins and Increment Indices with Increased n under Different
PID Controllers

n
K 0 1 2 3 0→ 1 1→ 2 2→ 3

[0.1 0.15 0] 10.68 15.01 15.01 15.01 28.85% 0.00% 0.00%
[0.2 0.2 0] 6.61 11.78 11.81 11.81 43.89% 0.23% 0.00%
[0.3 0.2 0] 5.31 11.51 12.18 12.18 53.87% 5.54% 0.00%
[0.3 0.3 0] 3.18 7.51 7.84 7.84 57.72% 4.20% 0.00%

[0.4 0.15 0] 5.56 13.41 15.82 15.82 58.56% 15.21% 0.00%
[0.4 0.3 0] 2.18 6.55 7.98 7.98 66.76% 17.94% 0.00%

[0.2 0.2 0.05] 7.13 12.05 12.08 12.08 40.81% 0.21% 0.00%
[0.3 0.2 0.05] 5.80 11.98 12.54 12.54 51.55% 4.50% 0.00%
[0.3 0.2 0.1] 6.37 12.41 12.93 12.93 48.72% 4.03% 0.00%

[0.4 0.15 0.1] 7.15 14.96 15.82 15.82 52.20% 5.44% 0.00%

Based on this practical test system, it is clear that the compu-
tation accuracy of the derived criterion is highly related to PID
gains. For instance, setting n = 1 in Theorem 1 derives the fixed
criterion in [34]. In this case, when K = [0.1 0.15 0], the delay
margin is obtained as 15.01s with little conservatism. In con-
trast, for K = [0.3 0.2 0], the calculated delay margin is 11.51s
by the existing fixed criterion, and it is far less than the real val-
ue (12.18s), i.e., some conservative results are realized in [34].
The practical delayed LFC system aims to obtain the accurate
delay margins for any system parameters. Thus, these result-
s are employed to guide such effective controller design that
eliminates the adverse influence of time delay on system fre-
quency stability. Motivated by this, the adjustable Theorem 1
is proposed. When n increases from 2 to 3, increment index
δv(%) approximates zero, implying n = 2 is enough for obtain-
ing the almost accurate delay margins. Based on Algorithm 1,
we can conclude that the conservatism of obtained delay mar-
gins is minimized by choosing n = 2 in Theorem 1. Especially,
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when K = [0.1 0.15 0], setting n = 1 leads to the desired result.
The computation complexity is reduced timely with this flexi-
ble method. Hence, considering the IEEE 39-bus system, we
show that the proposed method can achieve the delay margins
with almost consistent accuracy for any considered controller
gains.

For simulation verification, the case of K = [0.4 0.15 0.1] is
selected, for which n = 2 (δv(%) = 0) remains to be verified
with non-conservative result for the practical IEEE 39-bus sys-
tem. The base value for power is 100 MVA and for frequency it
is 60 Hz. Assume that three step load disturbances are simulta-
neously applied to the three areas at start: 10% of total area load
in area 1, 8% of total area load in area 2, and 5% of total area
load in area 3 (∆Pd1 = 0.1 pu, ∆Pd2 = 0.08 pu, and ∆Pd3 = 0.05
pu). Following the step disturbances, the responses of area 2 are
depicted in Figure 8.
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Figure 8: Responses of area 2 for the IEEE 39-bus system.

In Figure 8, when the delay margins obtained through The-
orem 1 with n = 0 and n = 1 are introduced in the IEEE 39-
bus system, the system responses are asymptotically stable. In
contrast, setting n=2 in Theorem 1 obtains τ = 15.82, which
drives the critical stability of the IEEE 39-bus system. Thus,
τ = 15.82 is the real upper bound for the IEEE 39-bus system
equipped with K = [0.4 0.15 0.1], and n = 2 is enough for The-
orem 1 to obtain the non-conservative result. This validates the
effectiveness of the proposed method with a real-world power
system.

4.1.3. Two-area LFC schemes with time-varying delays
By comparing with the existing results [25, 26], this case s-

tudy aims to show the numerical improvements of Theorem 2.
Results about the delay margins of the deregulated two-area
LFC scheme equipped with different PID controllers are tab-
ulated in Table 6 (µ = 0) and Table 7 (µ = 0.5), respectively.
Due to the adjustability of Theorem 2, it calculates larger max-
imum allowable delay margins than the methods of [25] and
[26] by regulating variable n. The effectiveness of the proposed
criterion is validated in computation accuracy.

Table 6: Delay Margins of Deregulated LFC Scheme with Constant Delays
(µ = 0)

[26] [25] Theorem 2
K n = 1 n = 2 n = 3 n = 4

[0.00 0.10 0.00] 14.95 15.22 15.22 15.22 15.22 15.22
[0.00 0.20 0.00] 7.33 7.39 7.39 7.39 7.39 7.39
[0.00 0.40 0.00] 3.34 3.50 3.50 3.50 3.50 3.50
[0.05 0.20 0.00] 7.47 7.63 7.63 7.63 7.63 7.63
[0.20 0.20 0.00] 6.60 6.86 6.89 7.66 8.07 8.20
[0.05 0.20 0.02] 7.54 7.66 7.66 7.66 7.66 7.66
[0.05 0.20 0.05] 5.27 5.82 5.86 6.80 7.35 7.68

Table 7: Delay Margins of Deregulated LFC Scheme with Time-Varying De-
lays (µ = 0.5)

[26] [25] Theorem 2
K n = 1 n = 2 n = 3 n = 4

[0.00 0.10 0.00] 13.41 13.47 13.74 18.42 19.84 20.18
[0.00 0.20 0.00] 6.49 6.54 6.86 9.25 9.98 10.17
[0.00 0.40 0.00] 3.02 3.08 3.39 4.61 4.99 5.12
[0.05 0.20 0.00] 6.68 6.72 6.90 9.25 10.00 10.21
[0.20 0.20 0.00] 0.21 0.22 0.43 0.77 0.89 0.95
[0.05 0.20 0.02] 6.54 6.71 6.82 9.16 9.91 10.17
[0.05 0.20 0.05] 0.27 0.32 0.38 0.67 0.82 0.84

4.2. Controller design
The proposed method is validated on calculating the almost

accurate delay margins for any given PID controllers. In this
section, how to guide the controller design with enhanced dy-
namic performance is discussed by using the obtained almost
accurate delay margins as an additional performance index. It
verifies that selecting controllers with the presented method
has improved reasonability in comparison with fixed studies
[34, 27]. Figure 9 shows delay margins (with respect to KP,
KI = 0.15, KD = 0) calculated with different methods.
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Figure 9: The estimated delay margins with different methods

As shown in Figure 9, when KP increases from 0 to 0.6,
the delay margin increases at first and then decreases. For
guaranteeing the stability of power systems, choosing K1 =

[0.1 0.15 0] and K2 = [0.2 0.15 0] obtains the maximal allow-
able delay upper bounds τa = 14.76s and τb = 15.37s, respec-
tively. In contrast, through Theorem 1, the allowable maximum
delay margin reaches τc = 16.26s with K3 = [0.45 0.15 0].
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Considering different scenarios, simulations are implement-
ed to show superiorities of K3 over K1 and K2 in the dynam-
ic performances. Assume step loads of 0.05 pu and 0.08 pu
appearing in areas 1 and 2, respectively. When time delays
τn

v = 10s, τn
v = 15s, and τn

v = 16s are introduced into the trans-
mission channels, Figure 10 describes the responses of two-area
LFC schemes with different controllers.
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Figure 10: Responses of the two-area LFC scheme with different delays. (K1
[34],K2 [27], K3 Theorem 1). (a) τnv = 10s, (b) τnv = 15s,(c) τnv = 16s.

In Figure 10, through the proposed method, the designed
controller enhances the dynamic performance of the LFC
scheme while keeping the best tolerance against time delays.
Whereas, based on the existing methods, controllers K1 or K2
loses their capability. Therefore, conservative results cannot
reflect right variation tendencies of delay margins against KP,
reducing dynamic performance of the designed controller.

Secondly, assume delay margin τv
n = 7s. By setting n = 4

in Theorem 1, Figure 12 depicts stable regions of PI gains for
two-area LFC schemes. The other two stable regions are given
by [34, 27]. As shown in Figure 12, more freedom is allowed to
design controllers by the proposed method, e.g., when KP = 0.7
is fixed, we can choose K4 = [0.7 0.09 0] and K5 = [0.7 0.2 0]
based on [34] and [27], respectively, but with Theorem 1, K6 =

[0.7 0.28 0] is allowable.
When random time delays (τ1, τ2 ∈ [0, 5]s) are introduced

into in the two-area LFC system, Figure 11 records state re-
sponses of area 1. Controller K6 enables systems to be stable
with smaller frequency derivation and less settling time than K4
and K5 do. Therefore, we can design the LFC schemes with
enhanced dynamic performance by using the almost accurate
delay margins as an additional performance index in this paper.

4.3. Calculation efficiency verification

In this section, by comparing with the frequency-domain
method [15] and existing time-domain methods [25, 26], the
improved computational efficiency of this paper is validated for
online stability analysis.
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10-4
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Figure 11: Responses of area 1 for the two-area LFC system with different
controllers. (K4 [34],K5 [27], K6 Theorem 1).
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Figure 12: Stable regions of PI controllers under different methods.

Firstly, by comparing with the frequency-domain method,
the calculation capability of Theorem 1 is verified. The num-
ber of decision variables (vT1) and the maximum order (mT1) of
LMI (10) can be calculated as follows by referring to [8].

vT1 =
(Nnn1+n1+n2)(Nnn1+n1+n2+1)

2
+Nn1(n1+1)

mT1 = Nnn1 + (N + 1)n1 + n2

Table 9 shows detailed computational performances of the t-
wo methods by taking the IEEE 39-bus system as a numerical
example. tT1 represents the calculation time spent on obtain-
ing the delay margin by Theorem 1. “Na” denotes the method
considered needs too much time to determine delay margins.

Table 9: Calculation Performance Comparisons on IEEE 39-Bus System with
Constant Delays

Theorem 1 Exact [15]
n 0 1 2 3 4 5 −

vT1 622 1594 3142 5266 7966 11242 −
mT1 52 76 100 124 148 172 −

tT1(s) 2.0 5.8 21.5 58.6 139.6 301.1 Na

As we can see, the increased n enlarges the scale of LMI
(10), and more CPU time is required for determining the upper
bounds. Whereas, as LKF (11) is established by combining (6),
it employs delayed part x1 ∈ Rn1 instead of the original system
state x ∈ Rn1+n2 to deal with the delay information. Weighting
matrices has decreased order, and thus, the computational bur-
den of the LMI-based condition is obviously lowered. Thus,
the method proposed is effective for the stability analysis of the
IEEE 39-bus system. Whereas, the method in [15] has to com-
pute the high-order characteristic equation based on the original
system model, losing its capability of obtaining delay margin-
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Table 8: Comparisons of Computational Performance on Deregulated Two-Area LFC Scheme with Time-Varying Delays

[26] [25] Theorem 2 Ratio
vTa mTa tTa(s) vTb mTb tTb(s) vT2 mT2 tT2(s) vT2/vTa mT2/mTa tT2/tTa vT2/vTb mT2/mTb tT2/tTb

13949 182 927.6 4615 104 99.3 955 49 4.4 6.9% 26.9% 0.5% 20.7% 47.1% 4.4%

s. Thus, the calculation efficiency of the proposed method is
verified.

Secondly, to verify the calculation efficiency of Theorem 2,
the number of decision variables and the maximum order of
LMIs in Theorem 2 (vT2,mT2), Theorem 1 [25] (vTa,mTa), and
Theorem 1 [26] (vTb,mTb) can be calculated with the following
formulas.

vT2 =
((2n + 1)n1 + n2(2n + 1)n1 + n2 + 1)

2
+

3n1(n1 + 1)
2

+ (n+)2n2
1

mT2 = (2n + 3)n1 + n2

vTa = 82n2
1 + 82n2

2 + 164n1n2 + 7n1 + 7n2

mTa = 14n1 + 14n2

vTb = 27n2
1 + 27n2

2 + 54n1n2 + 4n1 + 4n2

mTb = 8n1 + 8n2

When the deregulated two-area LFC scheme is considered,
the numerical computation indices of different methods are giv-
en in Table 8. It is clear that, compared with the stability cri-
teria in [25] and [26], our result significantly reduces the size
of LMI-based condition together with decision variables. Thus,
only 4.4% the computation time is required by Theorem 2 for
calculating delay margins in comparison with Theorem 1 in
[26]. By comparing Theorem 2 and Theorem 1 in [25], the
percentage is decreased to 0.5%. Here verifies the computation
efficiency of Theorem 2.

5. Conclusion

This paper has investigated the delay-dependent stability of
the delayed cyber-physical power systems (DCPPS). Based on
the time-domain method, a flexible regulation scheme has been
presented by developing the stability criteria in terms of linear
matrix inequality techniques (LMIs) and an algorithm. As the
proposed method is adjustable in conservatism and calculation
efficiency, the algorithm has been designed with a threshold pa-
rameter to calculate the desired upper bounds and meet the de-
mand of computation efficiency.

Case studies have employed the two-area LFC schemes and
the IEEE 39-bus system as test systems. It has been verified that
the proposed method can realize the particular requirements in
less conservative results or less computation complexity. Espe-
cially, presetting the proposed time-domain method with the ze-
ro threshold parameter reaches almost non-conservative delay
margins. When the delay margin is employed as an additional
index to guide controller design, such a method has been vali-
dated with more reliability and effectiveness. Moreover, with-
in the allowable range of calculation accuracy reduction, the
flexible regulation scheme has been validated in online stabili-
ty analysis with the obviously increased computation capability
compared to the frequency-domain method.

The proposed techniques are variable in terms of compu-
tational burden and accuracy. They can be extended to de-
sign event-triggered LFC schemes, which adaptively adjusts the
threshold parameter of the event-triggered LFC scheme based
on the variable bandwidth status and system output change.
Thus, the communication burden is lessened while ensuring
desired control performance. Additionally, the presented ap-
proaches are available for investigating the delay-dependent
stability analysis of the delayed wide-area damping control sys-
tems (WADCs) to design reliable controllers. In the other hand,
to improve the control performance and quality of the delayed
LFC system, the accurate measurement, analysis, and predic-
tion of network time delays are of great significance. This pa-
per focuses on improving the analysis accuracy of the maxi-
mum allowable upper bounds while improving the reliability of
the selected controller. Whereas, how to predict the time delay
that the LFC system will suffer to adjust the controller gains
remains to be investigated. Moreover, the derivation of theoret-
ical bounds for the introduced conservatism for a certain class
of systems still remains to be investigated in our future work.

Appendix I

Table 10 shows parameters for the traditional two-area LFC
scheme with two generators. Table 11 presents parameter of
the 10 units IEEE 39-bus system based three-area LFC scheme.
The parameters of deregulated two-area LFC scheme are listed
in Table 12 where each area has two generation companies and
distribution companies.

Table 10: Parameters of Traditional Two-Area LFC Scheme

Area Tt Tg R D β M α T12
1 0.30 0.10 0.05 1.00 21.0 10 1.00 0.19682 0.40 0.17 0.05 1.50 21.5 12 1.00

Table 11: IEEE 39-Bus System based Three-Area LFC Scheme Parameters

Area Tt Tg R D β M α Ti j

1
G1 0.3742 0.0804 0.0471 0 21.2314 100 0.1703 T12=0.4166G2 0.3888 0.0774 0.0541 0 18.4843 6.06 0.5523 T13=1.3272G3 0.3645 0.0748 0.0518 0 19.3050 7.16 0.2774

2

G4 0.3707 0.0759 0.0540 0 18.5185 5.72 0.2543
T21=0.4166G5 0.3770 0.0729 0.0470 0 21.2766 5.20 0.3830
T23=0.2959G6 0.4316 0.0791 0.0459 0 21.7865 6.96 0.3175

G7 0.3657 0.0722 0.0481 0 20.7900 5.28 0.0452

3
G8 0.3665 0.0805 0.0484 0 20.6612 4.86 0.3981 T31=1.3272G9 0.4222 0.0737 0.0479 0 20.8768 6.90 0.4398 T32=0.2959G10 0.4324 0.0852 0.0525 0 19.0476 8.40 0.1621
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