Late Quaternary Ponto-Caspian Dinoflagellate cyst assemblages from the Gulf of Corinth, Central Greece (eastern Mediterranean Sea)
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Abstract
We present here the first long Quaternary record of organic-walled dinoflagellate cyst assemblages analysed from sediment cores retrieved during the International Ocean Discovery Program (IODP) Expedition 381 in the Gulf of Corinth. Site M0078A is located in the central part of the Gulf of Corinth (GoC), which is a semi-isolated marine basin that was repeatedly isolated and reconnected to the Mediterranean Sea, during the Quaternary glacial/interglacial cycles. Our results show that dinoflagellate cysts are sorted in two major ecogroups, each group alternatingpresenting alternations between marine and isolated/brackish conditions. The marine intervals are characterizcharacterised by high dinocyst diversity whereas , while the isolated intervals are dominated by taxa thriving in low- salinity conditions such as Spiniferites. cruciformis and Pyxidinopsis. psilata. In several of these samplesassemblages, S. cruciformis is so prevalent that it forms almost monospecific assemblages. The low salinity dinocyst assemblages are reported for the first time outside the Ponto-Caspian region and they show a close affinity to modern assemblages from the Black Sea-, Caspian -Sea and Marmara Seas. The alternations between marine and brackish conditions recorded in the Gulf of Corinth reflect changes in surface water salinity (SSS) and temperature (SST), in response to the Quaternary glacial-interglacial cycles. These seem to be in good agreement with regional and global marine isotope and sea-level records. Our findings suggest that the study region sensitively responds sensitively to climate forcing at orbital time scales and that local factors most likely drive shifts in dinoflagellate species composition and diversity. 
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1. Introduction

Organic-walled dinoflagellate cysts are the resting phase in the life cycle of a single- celled eukaryotic plankton of the phylum Dinoflagellata (e.g., Fensome et al., 1993; Head, 1996). They are mostly free-living micro-organisms occupying a wide range of environments from fresh water to the open ocean, and from the tropics to high latitudes (e.g., Marret et al., 2020; Van Nieuwenhove et al., 2020). Dinoflagellate cyst assemblages are mostly encountered in marine environments, but they can also be found in low salinity and freshwater conditions (Evitt et al., 1985; Kouli et al., 2001; McCarthy et al., 2011; Panagiotopoulos et al., 2014; Mudie et al., 2017). Previous studies have highlighted their strong potential as biostratigraphic and paleopalaeoenvironmental indicators (e.g., Mudie, 1987; Louwye et al., 1999; Mudie et al., 2002b; Louwye et al., 2004; Mudie et al., 2004; Marret et al., 2004; De Schepper et al., 2009; Dybkjær et al., 2007; Mertens et al., 2009a, Mertens et al., 2012b; Zonneveld et al., 2013; De Schepper et al., 2015; Mudie et al., 2017; Londeix, 2018; Matthiessen et al., 2018; El-Soughier et al., 2019; Zorzi et al., 2019; Marret et al., 2020; Van Nieuwenhove et al., 2020), in particular in environments where other proxies are rare or absent.
Connectivity between lakes, seas and oceans plays a critical role in shaping the physical and geochemical conditions within each basin by facilitating the exchange of water and biota. The connection to the open sea can significantly impact the basin's circulation pattern, water chemistry, and depositional environment as well as its biodiversity. Nowadays, the Gulf of Corinth is connected with to the Gulf of Patras (Ionian Sea) through the Rion Strait (Figure 1), creating a bathymetrically restricted ‘fjord-like’ marine embayment with fully marine conditions (Poulos et al., 1996). This connection of the Gulf of Corinth to the Mediterranean Sea is governed by the interplay between eustatic sea level and changes in sill geometry at the Rion Strait in the west (Perissoratis et al., 2000; Stanev et al., 2001; Rohling et al., 2014; Mc Neill et al., 2019a) and tectonic uplift in to the east (Collier and Thompson, 1991; McMurray and Gawthorpe, 2000; Papanikolaou et al., 2015; Pallikarakis et al., 2019). The Rion strait has a maximum depth of 62 m, and a prominent terrace is formed at a 60–62 m water depth. This terrace is a coastal erosional terrace in a large lake with a long fetch, while the sinuous incised channel present to the west of the strait, can be interpreted as a fluvial outlet channel during low sea-level stands (Perissoratis et al., 2000). The Gulf of Corinth was isolated from the Mediterranean Sea during the last sea-level lowstand, and the 60 m deep sill at Rion-Antirion was flooded by the sea at about 12,000– 13,000 years BP (e.g., Perissoratis et al., 2000). Similarly, the Gulf was isolated from the Mediterranean Sea during the lowstands of Marine Isotopic Stages (MIS) 4 and 6, while the MIS 3 highstand is not well defined in the area (Chappell and Shackleton, 1986; Fairbanks, 1989; Skene et al., 1998). Prior to 400 ka, the connection of the Gulf with the open ocean was mainly from the east through the Saronic Gulf and the present-day Corinth Isthmus (Collier and Thompson, 1991; Pallikarakis et al., 2019; Gawthorpe et al., 2022).
[bookmark: _Hlk109124509]The link to climate variability sea-level fluctuations The link to climate-driven sea-level fluctuations observed in other low salinity, semi-enclosed or endorheic basins located eastwards (i.e., Sea of Marmara, Black Sea and Caspian Seas) have resulted in the isolation and reconnection of the previous  these basins with the Mediterranean Sea (Kvasov 1975; Svitoch et al. 2000; Mudie et al., 2017). These three seas were connected during the late Miocene (Popov et al., 2006) but since then, the Even though nowadays the Caspian Sea is isolated from the Black Sea and consequently the Mediterranean Sea, in the past, the Caspian-Marmara-Black Sea basins were once connected (late Miocene, Popov et al., 2006). The Caspian Sea was became isolated and occasionally reconnected with the other basins after ca. 2.6 Ma, during the Akchagylian period, (Forte and Cowgill, 2013), and remained periodically connected during the Pliocene, the Pleistocene, and the early Holocene (Boomer et al., 2000; Naderi Beni et al., 2013; Haghani et al., 2016). The Black Sea was also isolated from the north Aegean Sea until ca. 12,000 years BP, when the Mediterranean Sea penetrated the Dardanelles Strait (Aksu et al., 1999b; Aksu et al., 2002b; Karatsolis et al., 2017; Dimiza et al., 2020; Aksu and Hiscott, 2022). Studies of recent dinoflagellate cyst assemblages across the Aegean-Black-Caspian Seas corridor have demonstrated the sensibility sensitivity of dinoflagellate cysts to different salinities and have been successfully applied to reconstruct past salinity gradients (e.g., Mudie et al., 2004; Marret et al., 2004; Mertens et al., 2009; Mertens et al., 2012b; Bradley et al., 2012; Mudie et al., 2017). 
The Black Sea is the largest anoxic marine basin in the world, it is shallow in the northeast and is intensely influenced by river inputs (Aksu et al., 2000; Sorokin, 2002; Chepalyaga, 2007). Based on the analysis of paired Sr isotope and palaeosalinity data, the Black Sea appears to be strongly influenced by variations in glacial extent within the Dnieper River catchment and the resultant erosion of Sr from granitic basement rocks, where the Sr ratios are high (Bista et al., 2021). During the last interglacial period, the Black Sea received a meltwater influx from the Fennoscandian ice sheet, enhancing with freshwaterfreshening the Marmara and the Aegean Seas and eventually the eastern Mediterranean Sea (Vadsaria et al., 2022). The Marmara Sea is a small tectonic trench with narrow straits and shallow sills that link the Black Sea to the Aegean Sea (NE Mediterranean Sea; Aksu et al., 2000; Aksu et al., 2002; Mudie et al., 2017), while the Caspian Sea is the largest intracontinental lake (Marret et al., 2004; Chepalyga, 2007). The Gulf of Corinth, despite its smaller size (105 km long, 30 km wide) and the significantly lower riverine input, is quite comparable with these basins. It is quite similar to the Marmara Sea and especially with the Sea of Marmara that has a similar with regard to size, bathymetry, watershed, climate and, sedimentation rates; they both and underwent the same paleopalaeoenvironmental changes during the Quaternary (McHugh et al., 2008; Mudie et al., 2002a) ). In addition, their size, bathymetry, and watershed are equivalent, and they both werewith a  disconnected disconnection from the open sea during the Late Glacial Maximum (MIS 2; Campos et al., 2013). 
The evaluation of the timing and form type of transition from lacustrine (isolated), to brackish (semi-isolated) or marine conditions can be accurately traced by meansthrough of aquatic palynomorph analysis (i.e., freshwater algae, dinoflagellate cysts and foraminiferal test organic linings). One of the main advantages of studying dinoflagellate cyst assemblages throughout successive glacial-interglacial intervals is the continuous presence and preservation of these palynomorphs in alternating environmental conditions. , while cCalcareous microfossils, such as foraminifera and coccolithophores are restricted to intervals when the basin GoC was connected to the global ocean. Organic-walled dinoflagellate cysts (dinocysts) are generally abundant and well-preserved in the sediments of the Black Sea Corridor (BSC). In the low-oxygen stratified waters of these brackish water basins, dinocysts are the main proxy for studying changes in sea-surface conditions and phytoplankton biodiversity (e.g., Mudie et al., 2002a; Marret et al., 2004; Sorrel et al., 2006; Bradley and Marret, 2013). The high potential of dinocysts as environmental indicators in the BSC is because 1) calcareous phytoplankton are frequently poorly preserved (Giunta et al., 2007) and 2) in the BSC, planktonic foraminifera occur only in the Marmara Sea (Mudie et al., 2002a). The analysis of the dinoflagellate cyst assemblages contributes to further comprehending and reconstructing the salinity gradients that developed during the transition of the basin from marine to isolated conditions. The surface salinity signal inferred from the dinoflagellate cysts in those afformentionedaforementioned neighboringneighbouring basins reveals the changes in the depositional paleopalaeoenvironment and determines the relationship among the climate-driven marine ecosystem response and the other mechanisms controlling basin subsidence, sill elevation and eustatic sea level. 
The main scope of this study is to examine the alternations between marine and isolated/semi-isolated depositional environments in relation to the eustatic sea level changes and active tectonics in the Gulf of Corinth using the a record of the phytoplankton resting phase of dinoflagellatesrecord. Preliminary studies in the IODP retrieved deposits from the Gulf of Corinth confirmed the preservation of dinocysts in all depositional environments in contrast to other marine/aquatic biotic proxies that present discontinuous occurrences (McNeill et al., 2019b). Therefore, the salinity-sensitive dinoflagellate cyst assemblages are an excellent tool for the reconstruction of the palaeoenvironmental shifts during glacial and interglacial periods in the Gulf of Corinth basin is an excellent physical laboratory to test the reliability of the use of dinoflagellate cyst.s as salinity indicators in under stress environments like the isolated intervals.  



1. Area setting
The Gulf of Corinth extensional basin is an ESE-trending arm of the Ionian Sea, with a length of ca. 120 km and a surface area of ca. 2300 km2 (Figure 1). It reaches the open sea in the west, through the 2 km -wide and 55 m-deep Rion Strait. The Rion strait has a maximum depth of 62 m and a prominent terrace is formed at a 60–62 m water depth (Perissoratis et al., 2000). To the east, it the Gulf is separated from the Saronic Gulf by the 6 km-wide and up to 90 m -high Corinth Isthmus, where a ship canal has been dug during the late 1800s. Its The eastern part has two arms: the Lecheon Gulf in the south, which adjoins the isthmus and is up to ca. 200 m-deep, and the Alkyonides Gulf in the Northnorth, separated from the Gulf by the Perachora Peninsula (Perissoratis et al., 2000).
[bookmark: tw-target-text]The submarine bathymetry of the Gulf of Corinth consists of four main physiographic provinces: a) the continental shelf; b) the continental slope; c) the continental rise and d) the abyssal plain. This system is completed by the Delphic Plateau and the Alkyonides Basin (Heezen et al., 1966). Water depth in the abyssal plain, Iin the central basin of the Gulf of Corinth, reaches more than 800 m an abyssal plain with water depths >800m occurs. This flat area is characterizcharacterised by low gentle gradients <0.5º (Poulos et al., 1996). The water masses within the basin are separated into two main categories: a) euphotic zone (0-–200 m) wherein temperature and salinity seasonally vary seasonally with depth; and waters below 200 m, where the temperature and salinity remain almost constant. Sea-surface temperature and salinity range between 25°C and 38.55 psu (summer) and 14.3°C and 38.35 psu (winter), respectively. Below 200 m, they remain almost constant at 13.3°C and 38.57 psu (summer) and 12.8°C and 38.41 psu (winter), respectively (Anderson and Carmack, 1973). Seasonal fluctuations ofin the concentration of dissolved oxygen are observed, with higher saturation values between February and August (Friligos et al., 1985) and maximum saturation (>80%) just below the sea surface. However, the water column from the sea floor to just below -200 mbelow 200 m to near the sea floor contains oxygen,is oxygenated, indicating renewal processes. The wWater circulation is dominated by a semi-diurnal baroclinic tide generated in the deep centre of the Gulf GoC (Drakopoulos and Lascaratos, 1998) that is characterizcharacterised as a microtidal environment (Tsimplis, 1994). In the central part of the GulfGoC, the velocity of the currents is very low (<8 cm/s, Poulos et al., 1996), whereas high- velocity bottom currents and upwellings are generated in the western part at Mornos and Nafpaktos bays where the Mornos River is discharging (Rubi et al., 2022). The surface water circulation is dominated by the funnelingfunnelling of both wind and water through the narrow Rion Straits, where near-surface current velocities can exceed 100 cm/s (Piper et al., 1990). 
In the Corinth Rift area, more than 2.5 km of sediments accumulated during the last approximately 5 Ma, recording its complete geological history within the onshore and offshore sedimentary deposits (Nixon et al., 2016). Late Quaternary sediment accumulation in the Gulf of Corinth GoC has been controlled by two factors: the position of the sea -level relative to the Rion Strait sill and alluvial sediment input from rivers resulting in alternating marine and lacustrine sediments (e.g., Ori, 1989; Gawthorpe et al., 1994; Rohais et al., 2007; Backert et al., 2010; Palyvos et al., 2010; Leeder et al., 2012; Ford et al., 2013). When the sea -level fell below the level of the Rion Strait sill (which is today at -62 m), the Gulf GoC was transformed into an isolated systembecame isolated. . However, when the sea -level was only a few meters above the Rion Strait sill, it remained connected with the Ionian Sea, characterised by and marine conditions together with high input of freshwater conditions with a high freshwater content prevailed. When the sea- level was significantly higher, open marine conditions were restored. Under marine conditions, low gradient (suspended load) deltas, such as those entering the Gulf of Corinth, deposited most of their sediment on the shelf, but supplied lacustrine turbidites by underflow when the Gulf was isolated (e.g., Hemelsdaël et al., 2021; Cullen et al., 2022). Steep gradient (bed load) deltas like the Selinous and Vouraikos Rivers of Peloponnesos Peloponnese supply turbidites to the basin floor under both marine and lacustrine conditions, but the importance of mass movement appears greater under lacustrine conditions (Perissoratis et al., 2000). Before 400 kilo-annum (ka), the connection of the GoC with the open ocean was mainly from the east, through the Saronic Gulf and the present-day Corinth Isthmus (Collier and Thompson, 1991; Pallikarakis et al., 2019; Gawthorpe et al., 2022).
The onshore syn-rift sediments, demonstrating a thickness of up to ~2.5km, may be divided into three lithostratigraphic groups: a Lower Group characterized by alluvial to lacustrine sediments deposited in the Late Pliocene; a Middle Group (2.5-1.8Ma to 0.7-0.45Ma ago) dominated by lacustrine fan deltas; and an Upper Group (0.7-0.45Ma ago to present) characterized by alternating marine and lacustrine sediments (e.g., Ori, 1989; Gawthorpe et al., 1994; Rohais et al., 2007; Backert et al., 2010; Palyvos et al., 2010; Leeder et al., 2012; Ford et al., 2013). 
The IODP Exp. 381 ‘Corinth Active Rift Development’ drilled three sites (M0078, M0079 and M0080 in the Alkyonides Gulf) and sampled the most recent syn--rift deposits (~1-2 Ma) reaching a maximum depth of 705 m below sea floor (mbsf). The preliminary sedimentological, micropalaeontological and geochemical analyses of the recovered deposits allowed the identification of two major lithostratigraphic units. The upper LU1 (further subdivided into subunits from LU1.1 up to 1.16) represents an interval of periodical isolation and reconnection of the GoC with the Mediterranean Sea in response to the global sea-level fluctuations; the lower LU2 characterises a more isolated environment (Shillington et al., 2019). Several subunits of the M0078 core were characterised by the relatively high abundances of benthic and/or planktonic foraminifera, suggesting marine conditions (e.g. LU1.1, 1.3, 1.7), whereas, in other intervals, foraminifera were completely absent (McNeil et al., 2019b). The occurrence of marine diatoms and calcareous nannoplankton also suggests marine conditions, whereas they were absent in the isolated subunits (e.g. LU 1.2, 1.4, 1.6) (McNeil et al., 2019b). In contrast to the discontinuous occurrence of these calcareous and siliceous proxies (McNeill et al., 2019b), dinocysts are present all through the sequence and their assemblages represent well the alternations between the isolated intervals and the marine transitions. 
(McNeill et al., 2019b).  
This is the longest and highest resolution record of its kind located in a young extensional basin at the point of connection to the global ocean and provides the first constraints concerning the age of the full rift sequence, syn-rift stratigraphy, rates and timings of rift tectonic processes, sediment fluxes and basin environmental conditions (McNeill et al., 2019b; Shillington et al., 2019). The rift basin was periodically isolated from marine conditions as sea level fluctuated and as the rift moved vertically due to tectonics. Preliminary studies from siteThe age constraints of the deposits are mainly based on the study of site M0079 which suggest reported significant climate-driven changes in paleopalaeoenvironment, sediment accumulation and geochemistry during the last ~850 ka, correlating well with the Marine Isotopic Stages of this young rift (McNeill et al., 2019a; McNeill et al., 2019b; Gawthorpe et al., 2022). T, according to magnetostratigraphy, he identified Brunhes/Matuyama boundary (0.773 Ma) was foundand several dating points as well and these findings were correlated with the reference PISO-1500 RPI curve, providinging a high-resolution age-depth model ; (Maffione and Herrero-Bervera, 2022) for the deposits. The Brunhes/Matuyama reversal has been also recognized at site M0078 at the depth of 385.99 mbsf (McNeill et al., 2019b). The deposits of sites M0079 and M0078, both originating from the  central GoC, coreshave been correlated in detail by Gawthorpe et al. (2022), providing the age frame for the present study.; ; ). The studied dinoflagellate cyst microfossil assemblages present well the alternations between the isolated intervals and the marine transitions, as well as the variations of the taxa and their ecological preferences, between the successive marine and isolated intervals, representing a good sea level-paleoclimatic record for the last the last ~750 ka (McNeill et al., 2019a).

1. Material and Methods

The sSite M0078, drilled during IODP Exp. 381, is a long record of the synriftsyn-rift sedimentation (McNeill et al., 2019b). The siteIt is located in the central part of the Gulf of Corinth (38°8′41.802″N 22°45′30.251″E) at a water depth of 859.5 m (Figure 1). The sedimentary sequence drilled 610.43 mbsf that were divided into two main Lithostratigraphic Units (LU). Deposition during the upper one, LU1 (0-–385.14 mbsf), is primarily controlled by eustatic sea level, and dominated by detrital clay- and silt-grade carbonate (Figure 2). This interval has been divided into 16 subunits (LU1.1-1.16) in with respect to the alternation of marine and isolated/semi-isolated intervals, while with a number ofseveral facies associations (FA) have been described (McNeill et al., 2019b; Figure 2). Below 385.14 mbsf, LU2 is composed almost entirely of weakly laminated to homogeneous highly bioturbated mud (FA12). The boundary between LU1 and LU2 is sharp and marked by an abrupt change from laminated greenish- graygrey muds to homogeneous light- graygrey muds downhole (McNeill et al., 2019a).

3.1 Sampling and laboratory procedure (Borehole M0078A)
The sSampling of core M0078A for palynological analysis was carried out at ~1.8 m intervals in 2018 at the Bremen Core Repository at the University of Bremen, Germany. For the present study, a total of 294 samples distributed within LU1 were studied. Approximately three grams of dry sediment were prepared for palynological analysis using the same chemical preparation protocol developed during the IODP Exp. 381 onshore phase in Bremen Core Repository (McNeill et al., 2019b). Samples were treated at the Laboratory of Historical Geology and PaleontologyPalaeontology of the National and Kapodistrian University of Athens using hot hydrochloric acid (HCl 37 %), placed in a hot water bath atfor ~20 min,  and cold hydrofluoric acid (HF 38 %), for approximately three days. The residues were repeatedly washed with distilled water until they were neutralised, and then sieved through a 10 μm sieve. One Lycopodium tablet (Batch No.: 483216/18583 spores) (was added at the start of treatment for estimating the concentration of palynomorphs in each sample. The residue was finally transferred to 1.5ml eppendorfEppendorf tubes for storage and mounted in glycerineglycerine. 

3.2 Microscopic Analysis
Palynological analysis has been conducted under the transmitted light microscope Zeiss AxiolabAxilla 5 at magnifications of ×400 and ×1000. Microscopic photographs of specimens were taken with a Zeiss AxioCam 208 colorcolour camera. All samples processed were analyzedanalysed for their dinoflagellate cysts content  in order to establish determine the paleopalaeoenvironmental interpretationconditions. The encountered dinocysts were exceptionally well preserved in the vast majority of the samples analysed. Where possible, 200 dinoflagellate cysts were counted; samples containing fewer than 50 cysts were excluded. In the few cases where rRelatively poor preservation and/or low counts of dinoflagellate cysts were encounteredobserved, e.g., in the interval 207-– 237 mbsf, these samples were excluded from the analysis. 
The identification of dinocysts was based on the work by Wall and Dale, (1974),; Head et al., (1993);, Rochon et al., (1999); , Mudie et al., 2 (2001); , Rochon et al. (2002(; , Mudie et al., 2 (2002b); , Marret and Zonneveld, 2 (2003); , Marret et al., 2 (2004); , dDe Vernal and Marret, 2 (2007); , Mertens et al., 2 (2009a, b ; 2012a; 2017a, b; 2018a, b; 2020); Mertens et al., 2012a; , Zonneveld et al., 2 (2013); , Zonneveld and Pospelova, 2 (2015); , Mertens et al., 2017; Mudie et al., 2 (2017); , Soliman and Riding, 2 (2017); , De de Vernal et al., 2 (2018); , Londeix et al., 2 (2018); , Mertens et al., 2017a, b; Gurdebeke et al., 2 (2018);  Mertens et al., 2018a, b; Mertens et al., 2020 and ; Van Nieuwenhove et al., 2 (2020). Microscopic analysis revealed two distinct morphotypes of Lingulodinium machaerophorum. This species exhibits a great variability in the length of the processes in response mainly to salinity variations (Wall et al., 1973, Mertens et al., 2009a, Mertens et al., 2012b). Therefore, L. machaereophorum with short processes (<10μm) as L. machaerophorum s.p. and L. machaerophorum with long processes (>10μm) as L. machaerophorum s.l. were distinguished. Operculodinium centrocarpum has been recorded to exhibit variations in processes and based on that O. centrocarpum sensu Wall and Dale, 1966 is the morphotype with “normal” (> 7 μm) and O. centrocarpum with the morphotype with “reduced” (< 5–7 μm) processes (Mudie et al., 2017).  Only O. centrocarpum sensu Wall et Dale, 1966 with normal processes was recognized during the microscopic analysis.

3.3 Statistical Analysis
A visual representation of the square-root transformed, data matrix was achieved through a shade plot (Clarke and Gorley, 2015). 
The results of the microscopic analysis were processed statistically. At first, the pPercentages of each taxon were calculated based on the total sum of the entire dataset were calculated of counted specimens. Unidentified species Taxa not identified at the species level (e.g., Spiniferites spp., Impagidinium spp.) were excluded from the statistical analysis as their paleoenvironmental preferences are not clearthese groups may contain species with different ecological requirements. The dataset was subjected to non-metric multidimensional scaling (nMDS) and to Principal Component (PCA) Analysis analyses(PCA). The PCA analysis was selected in order to test the qualitative paleopalaeoenvironmental results. The non-metricn MDS analyzesanalyses the transposed dataset in order to demonstrate differences between the species. Prior to the nMDS analysis, percentages were square-root transformed to stabilize the variances (Clarke and Gorley, 2015). A Bray-Curtis similarity index was used to identify possible species – environment relationships (Clarke and Gorley, 2015). Statistical All statistical analyses were is of the dinoflagellate assemblages was performed using Primer version 7 (Clarke and Gorley, 2015).

4 Results
The dinocyst assemblages are characterizcharacterised by high concentrations, especially in intervals representing isolated conditions in the GulfGoC, with a mean concentrations of  26,63029.875 cysts/g. The cyst diversity is extremely low, with, in several cases, an almost monospecific assemblage. Opposingly, in the marine intervals, assemblages are characterizcharacterised by high diversity, while the cyst concentration is generally lower, with a mean concentration ogfs 24,6323.5 cysts/g. 
Microscopic analysis showed several alternations of diverse dinocyst assemblages that may be grouped into two main paleopalaeoenvironmental conditions (Figure 3). The palynological analysis has shown that the low salinity intervals and the marine intervals correlate well with the Lithostratigraphic Units (McNeill et al., 2019b). Plotted results In the shade plot (Figure 3) highlight the dominance of it is well featured that, especially during the isolated intervals, S. cruciformis and P. psilata are the most dominant taxain the isolated intervals; , whereas the monospecific assemblages consist of cysts of S. cruciformis. The results of the microscopic analysis are presented in detail below. 
Isolated/semi-isolated intervals:
[bookmark: _Hlk94695403]The dinocyst assemblages encountered within the intervals described below consist of the low salinity indicators Spiniferites. cruciformis, Pyxidinopsis. psilata, Caspidinium rugosum, Impagidinium caspienense and Lingulodinium machaerophorum with short processess. p. These assemblages support the notion of the occurrence of distinct isolated/semi-isolated intervals of the Gulf of Corinth when fresh – brackish water conditions should have been occurring. S.piniferites cruciformis and P. psilata are the most dominant species during those intervals, however, a distinct variability in those assemblages is recorded. Representative dinoflagellate cyst species are illustrated in Plate 1. 	Comment by Eugenia Fatourou: Line 354 (and throughout the manuscript, lines 484, 491, 494) : Please careful to spell out genus names when starting a sentence => Pyxidinopsis psilata.
LU1.2 (21.43- –91.62 mbsf, 56 samples): The dominant taxa are P. psilata and S. cruciformis, C. rugosum is, with in high abundances reaching mean values of 75%, while; only a few representatives of I. caspienense, and L. machaerophorum with short processess.p. are present (Figure 3). The following species In very low concentrations even almost absent have been encountered the species Tuberculodinium. vancampoae, Polysphaeridium. zoharyi, Operculodinium. ccentrocarpum sensu Wall et Dale 1966, L. machaerophorum s.l., Nematosphaeropsis. labyrinthus, Tectatodinium. pellitum, representatives of the Impagidinium group, Spiniferites group and several brown cysts are present in very low concentrations.. 
LU1.4 (123.765– -177.59 mbsf, 45 samples): This zone is characterizcharacterised by the dominance of S. cruciformis, reaching 88%. P. psilata has a strong presencee in the samples encountered, while whereas C. rugosum and L. machaerophorum with short processess.p. are almost absent. 
LU1.6 (188.45–-198.52 mbsf, 7 samples): This zone is characterizcharacterised by the co-dominance of S. cruciformis and P. psilata, while whereas the presence of C. rugosum is confirmed observed only by a few representatives.
LU1.8 (206.22–-235.65 mbsf, 28 samples): S. cruciformis is the dominant taxon reaching 90% in this interval as well. P. psilata is present in lower abundances and C. rugosum is almost absent.
LU1.10 (260.37–-286.67 mbsf, 29 samples): In contrast to the other LUs, this Unit is characterizcharacterised by the dominance of P. psilata which exceeds 80% of the assemblages in some samples (e.g., 268.07, 283.81, 285.6 mbsf). Whereas Although S. cruciformis shows a strong signal, it becomes completely absent when P. psilata is dominant.
LU1.12 (303.32–- 323.01 mbsf, 20 samples): S. cruciformis is the major component of the dinocyst assemblage (mean -representation is 90%), while whereas P. psilata is characterizcharacterised by lower relative abundances.
LU1.14 (334.16–-365.48 mbsf, 6 samples): The assemblage is characterizcharacterised by the strong signal of P. psilata, while S. cruciformis occurs in lower relative abundances.
LU1.16 (370.3–-384.3 mbsf, 1 sample): The most dominant taxon in this sample was S. cruciformis with percentages of 96%. A few P. psilata cysts complement the assemblage.
Marine intervals
The dinocyst assemblages recovered within the marine intervals of M0078A record are characterizcharacterised by a high diversity (30 different species) and concentrations ranging from 40 to 6500 cysts/gand with mean concentrations of 24,632 cysts/g, as well as with many representatives of the Spiniferites group, Nematosphaeropsis. labyrinthus, Operculodinium. ccentrocarpum sensu Wall et Dale 1966, Lingulodinium. machaerophorum s.l., P.olysphaeridium zoharyi, Tectatodinium. pellitum, Bitectatodinium tepikiense, representatives of Impagidinium group, and some brown cysts. The assemblages of each Lithostratigraphic Unit are described in detail below and featured in Figure 3.
[bookmark: _Hlk98416717]LU1.1 (0.00–-20.19mbsf, 20 samples): This interval is characterizcharacterised by the highest dinocyst diversity throughout the sequence. The Spiniferites group representatives are S. belerius, S. bentorii, S. bulloideus, S. membranaceus, S. mirabilis, S. ramosus, S. lazus, and a few cysts of S. cruciformis, which could be characterizcharacterised as tolerant to marine conditions. From the Impagidinium group, I. aculeatum, I. paradoxum, I. patulum, I. sphaericum, and I. strialatum are present. Other species such as, Achomosphaera spp., Ataxodinium choane, O. centrocarpum sensu Wall et Dale 1966, L. machaerophorum s.l., N. labyrinthus, P. zoharyi, cysts of Pentapharsoadinium dalei, T. psilatumpellitum and, B. tepikiense are encountered, while the brown cysts Brigantedinium spp. (B. cariacoense and B. simplex), Echinidinium spp., Lejeunecysta oliva, Quinquecuspis concreta, Selenopemphix quanta and Selenopemphix nephroides complement the assemblages.
LU1.3 (95.05–-121.88mbsf, 22 samples): The dinocyst assemblages appear similar to the LU1.1 ones, however less diverse. However, in this interval, Tuberculodinium. vancampoae is encounteredobserved. Interestingly, in the interval 100.35-105.7mbsf (represented by four samples), S. cruciformis was the most dominant taxon, while whereas a lack of several marine species (e.g., representatives of the Spiniferites group) and a total absence of all brown cysts are registeredrecorded. 
LU1.5 (180.69–-187.82, 8 samples): ΤheThe most characteristic species of this assemblage were N. labyrinthus, S. mirabilis, S. ramosus and O. centrocarpum sensu Wall et Dale 1966. 
LU1.7 (199.9–-205.62, 7 samples): The species encountered were Achomosphaera spp., A. choane, C. rugosum, I. aculeatum, I. paradoxum, I. patulum, I. sphaericum, I. strialatum, O. centrocarpum sensu Wall et Dale 1966, L. machaerophorum s.I., N. labyrinthus, P. zoharyi, cysts of P. dalei, P. psilata, S. belerius, S. bentorii, S. bulloideus, S. membranaceus, S. mirabilis, S. ramosus, S. lazus, T. pellitum, B. tepikiense, Brigantedinium spp., Echinidinium spp., L. oliva, Q. concreta, S. quanta, and a few specimens of P. psilata and S. cruciformis. S. cruciformis was present in high percentages in the last two samples (205.27 and 205.62mbsf).
LU1.9 (236.43–-259.72mbsf, 23 samples): Poor dinocyst preservation was recorded in several samples within this interval, while whereas some others were barren of any palynological content. In the samples with good dinocyst preservation, the occurring species are were A. choane, O. centrocarpum sensu Wall et Dale 1966, S. mirabilis, S. ramosus, S. lazus, B. tepikiense, Brigantedinium spp., L. oliva, Q. concreta, S. quanta as well as a few specimens of P. psilata and S. cruciformis. It was observed that the conditions were marine. 

LU1.11 (288.06–-298.4mbsf, 12 samples): The species characterizcharacterising this interval are A. choane, I. acuelatumaculeatum, I. paradocumparadoxum, I. patulum, I. sphaericum, I. strialatum, O. centrocarpum sensu Wall et Dale 1966, L. machaerophorum s.l., N. Labyrinthus, P. zoharyi, cysts of P. dalei, S. mirabilis, S. ramosus, S. lazus, B. tepikiense, Brigantedinium spp., L. oliva, Q. concreta, S. quanta as well as a few specimens of P. psilata and S. cruciformis. However, four samples (289.47–-291.84mbsf) were barren as observedsimilarly as in LU1.9.   
[bookmark: _Hlk98416543]LU1.13 (324.04–-333.15mbsf, 8 samples): In this interval the samples 324.04–-326.8 mbsf are characterizcharacterised by high diversity. The Spiniferites group representatives are S. belerius, S. bentorii, S. bulloideus, S. mirabilis, S. ramosus, S. lazus, and whereas a few cysts of S. cruciformis , were also encounteredwhich could be characterized as tolerant to marine conditions. From the Impagidinium group, I. aculeatum, I. paradoxum, I. patulum, I. sphaericum and I. plicatum were observed. Other species such as, O. centrocarpum sensu Wall et Dale 1966, L. machaerophorum s.l., N. labyrinthus, P. zoharyi, cysts of P. dalei, T. pellitum, T. vancampoae and, B. tepikiense are encountered, while whereas the brown cysts Brigantedinium spp. (B. caracoensecariacoense and B. simplex), L. oliva, Q. concreta and, S. quanta complement the assemblages. The most dominant species in both samples were L. machaerophorum s.l., S. ramosus and Brigantedinium sp. The sample at 328.51 mbsf was barren. Below the depth of 329.74 mbsf,  dominance of S. cruciformis dominated and was accompanied by a few representatives of P. psilata and C. rugosum has been recorded.
Statistical results
The PCA analysis (Figure 4) yields yielded two main different groups of dinocyst assemblages. The first principal component explains 62.2% of the total variance and shows positive loadings for all species except for S. cruciformis. The positive loadings can be related to marine assemblages and the rest of theremaining low- salinity indicators, such as P. psilata, I. caspienensce, C. rugosum and L. machaerophorum s.p.. Negative loadings are related to the most dominant taxon, S. cruciformis. 
[bookmark: _Hlk98417539]The second principal component axis explains 21.7% of the total variance and shows positive loadings for S. cruciformis, P. psilata, C. rugosum, I. caspienense and Achomosphaera sp. (which is very close to zero) and negative loadings for all marine assemblages and species (except Achomosphaera sp.). The positive loadings appear to be related to brackish assemblages, which are accompanied by increases in percentages of S. cruciformis.
In the nMDS analysis (Figure 5a), S. cruciformis, P. psilata, C. rugosum, I. caspienense and L. machaerophorum s.p. have negative scores and are shown in the top part of the diagram, indicating that they have similar environmental preferences. All other species have positive scores and are grouped in the bottom of the diagram and most of them on the right, while only two species are on the bottom left side (S. nephroides and I. plicatum). P. zoharyi and T. vancampoae seem to be on the same conceivable line. 

5 PaleoPalaeoenvironmental Interpretation - Discussion

[bookmark: _Hlk99031129][bookmark: _Hlk98766984]The dinoflagellate cyst record of M0078A shows distinct alternations between marine and brackish assemblages in good agreement with the lithostratigraphic unit scheme from McNeill et al. (2019b). Those alternations can be associated with Quaternary isostatic sea-level fluctuations and are clearly observed in Figure 2 (PC1 axiscurve). The PCA analysis arranges sorts the samples into two main groups with distinct dinocyst assemblage compositions and confirms the occurrence of distinct paleopalaeoenvironmental conditions during the study intervals (Figure 4). Interestingly, in some cases, samples that are assigned to marine (or isolated/semi-isolated) intervals based on the LUs, appear displaced from marine to brackish (or from brackish to marine) assemblages. Those samples mostly correspond to transitional intervals. The nMDS analysis (Figure 5b) shows a clear separation between the marine and the low- salinity assemblages. All brackish species are on the top part of the diagram, while marine species accumulate at the bottom (Figure 5a). The alignment of P. zoharyi and T. vancampoae is most likely related to their similar temperature preferences as both species are reported as thermophilic (e.g., Mudie at et al., 2017).

5.1. Marine Dinocyst Assemblages
Marine dinocyst assemblages are characterizcharacterised by high diversity. Several representatives of the Spiniferites group, as well as N. labyrinthus, O. centrocarpum sensu Wall et Dale 1966, L. machaerophorum s.l., P. zoharyi, T. pellitum, B. tepikiense, representatives of Impagidinium group, and some brown cysts, are the main taxa encountered. 
[bookmark: _Hlk99021128][bookmark: _Hlk99021362]Several dinocysts found in high relative abundances in the Gulf of CorinthGoC have oceanic and fully-y marine distribution or can be found in great numbers in high -productivity areas, such as upwelling regions and areas influenced by river discharge. N. labyrinthus, O. centrocarpum sensu Wall et Dale 1966, S. mirabilis, S. ramosus and, B. tepikiense have an oceanic distribution, (Wall et al., 1977; Harland, 1983; Dale and Dale, 1992; Matthiessen, 1995; Rochon et al., 1999, Zonneveld et al., 2013; Marret et al., 2020); S. mirabilis and S. ramosus occur in high-productivity areas although they can be found in  open ocean waters as well (Zonneveld et al., 2013; Mudie et al., 2017). Spiniferites mirabilis can also, be considered as a warm species (Global SST: -0.8-29.8 °C; SST Marmara and Black Seas: 5.5 °C - 24 °C; Marret and Zonneveld 2003; Zonneveld et al., 2013; Mudie et al., 2017), buthowever, in the GoC deposits, it it was always found with the oceanic species S. ramosus and B. tepikiense. Tectatodinium. pellitum, another species recorded in the Gulf of CorinthGoC, has a widespread distribution in deep, fully marine waters, as well as and in regions of high productivity and a wide range of bottom water oxygen (Zonneveld et al., 2013). Impagidinium species encountered in the Gulf of Corinth such as I. aculeatum, I. paradoxum, I. patulum, I. sphaericum and I. strialatum (Figure 3), are fully marine and have an oceanic distribution. In specificSpecifically, I  strialatumI. strialatum has an open oceanic distribution, from temperate to equatorial regions with well-ventilated bottom waters, . Impagidinium I. aculeatum has a widespread distribution, although it exhibits its highest abundance is encountered outside the Arctic and Antarctic regions in central oceanic oligotrophic environmentsand in low salinity waters, and. Impagidinium. paradoxum is present in temperate to equatorial areas, from restricted to fully marine environments. ImpagidiniumI. sphaericum can be found from coastal areas to open ocean and regions with low seasonal salinity due to melting ice, while whereas I. patulum occurs in temperate to equatorial areas and sporadically in subpolar and polar regions (Zonneveld et al., 2013; Marret et al., 2020). In the Gulf of Corinth, the Impagidinium species were mostly encountered in marine intervals (i.e., LUs 1.1, 1.2, 1.7 and 1.13), in low abundances, while with I. aculeatum appearappearing tho beto be the most common representative (Figure 3). I. sphaericum, I. patulum and I. strialatum appear occur in lower abundances and they seem to be grouped on the right side of the nMDS (Figure 5a).
Opposingly, S. membranaceus, S. hyperacanthus, S. bulloideus, S. bentorii, S. delicatus and L. machaerophorum s.l. are exhibiting a neritic or coastal distribution (Marret and Zonneveld, 2003; Zonneveld et al., 2013; Zonneveld and Pospelova, 2015). S. nephroides and I. plicatum are encountered in low abundances in our record and are grouped together in the bottom left side of the nMDS analysis (Figure 5a). Both species are known mostly from restricted to coastal waters of temperate to equatorial regions (Zonneveld et al., 2013; Zonneveld and Pospelova, 2015). S. Selenopemphix nephroides is usually found in seasonally mesotrophic to eutrophic upwelling or oligotrophic areas while whereas I. plicatum is observed in oligotrophic to mesotrophic areas. They prefer well- ventilated bottom water, but S. nephroides is tolerant to anoxic conditions (Zonneveld et al., 2013; Zonneveld and Pospelova, 2015; Mudie et al., 2017). 
The presence of the thermophilic species T. vancampoae and P. zoharyi in that were observed in marine dinocyst assemblages from sites in the Levant, the Red Sea, the Gulf of Oman, and the northern Arabian Sea (Rossignol, 1962; Wall and Dale, 1967; Bujak et al., 1980; Marret and Zonneveld, 2003; Elshanawany and Zonneveld, 2016; Mudie et al., 2017) suggests the occurrence of warm surface water conditions in the Gulf of Corinth during interglacial periods. 
The dinocyst assemblages of LU1.1, 1.3, 1.7, 1.9 and LU1.11 (Figure 3) indicate the occurrence of fully marine conditions, confirming the connection of the Gulf of Corinth with open sea during interglacials as a result of sea-level rise (McNeill et al., 2019b). However, some interesting variations in the assemblage composition of each interval are observed. The highest diversity of dinoflagellate cysts is observed in LU1.1 (corresponding to the Holocene), while in LU1.5 (corresponding to MIS 7a/c; Gawthorpe et al., 2022) the assemblages are characterizcharacterised by the dominance of N. labyrinthus, O. centrocarpum sensu Wall et Dale 1966, S. mirabilis and S. ramosus. Within LU1.3 (correlating to MIS 5c/e; Gawthorpe et al., 2022), the presence of thermophilic species such as T. vancampoae indicates warmer climatic conditions (Zonneveld et al., 2013; Zonneveld and Pospelova, 2015; Mudie et al., 2017). The temporal increase of S. cruciformis abundance at 100.35– -105.7mbsf (Figure 3) indicates salinity fluctuations during MIS 5. The Last Interglacial Complex (LIC, MIS 5) is known for its climatic variability as it is characterizcharacterised by the succession of cool and dry stadial (MIS 5b and 5d) and warm and wet interstadial (MIS 5a, 5c and 5e) phases (e.g., Shackleton, 1969; Shackleton et al., 2003; Tzedakis et al., 2004a; Sánchez-Goñi, 2007; Brewer et al., 2008; Capron et al., 2010; Tzedakis et al., 2012; Sánchez-Goñi et al., 2013; Milner et al., 2016; Sinopoli et al., 2018, Sinopoli et al., 2019). The temporal isolation of the Gulf of Corinth could tentatively be correlated with the increase of ice volume and drop of sea level occurring during such a stadial phase, most probably the MIS 5d (Figure 2). MIS 5d is the first cooling event in the MIS 5, and it is characterizcharacterised by reduced temperatures and precipitation (Tzedakis et al., 2007; Brewer et al., 2008) in many European sites (e.g., Les Echets and La Grande Pile: Guiot et al., 1989; Guiot et al., 1990; Tenaghi Philippon: Milner et al., 2013; Milner et al., 2016), while in other sites, this reduction is less pronounced (e.g., Lake Ohrid: Sinopoli et al., 2018; Sinopoli et al., 2019). The LU1.5-1.6-1.7 are associated with MIS 7 (see Figure 2). According to the plottedour data, this stage seems to be divided by two low salinity peaks, a very distinct one (LU1.6) and a very small peak (within LU1.5). MIS 7 is the shortest interglacial period of the mid-late Quaternary (Figure 2), which is divided into 5 sub-stages, 3 interstadial periods (MIS 7e, 7c and 7a) and 2 stadials (deep stadial 7d and brief stadial 7a) (Tzedakis et al., 2004b; Desprat et al., 2006; Roucoux et al., 2008; Fletcher et al., 2013; Donders et al., 2021). The LU1.9, LU1.11 and LU1.13 are correlated with the MIS 9, 11 and 13, respectively. The poor preservation of dinocysts in several samples of LU1.8 and 1.9 could be connected to the bed type classification of graded beds (G1a, c, d) recognized also in the correlated site M0079 (Gawthorpe et al., 2022).
The occurrence of brackish assemblages within the identified as marine LUs (McNeill et al., 2019b) has been recorded in LU1.7 (205.27 and 205.62 mbsf), LU1.11 (296.29 and 297.62 mbsf) and at the lower part of LU1.13 (329.74–-333.15 mbsf; Figure 3), indicating short periods of isolation of the Gulf GoC from the Mediterranean Sea. The low- salinity character of these assemblages is further confirmed by the PCA analysis (Figure 4). However, they most probably feature the occurrence of transitional conditions as they are mainly recorded either at the beginning, or at the end, of each LU. Finally, LU1.13 seems to be more complex, as the two first samples record fully marine conditions, while the rest whereas the others have brackish dinocyst assemblages. 

5.2. Brackish/ isolated assemblages
The glacial and interglacial cycles reflect the expansion and the decrease of the continental ice, related to the variability of the incoming solar radiation caused by the Earth’s orbit. During glacial periods, the global sea level drops, because of due to the extension of the ice sheets, causing gulfs and semi-isolated regions to disconnect from the open ocean, such as the confined region of the Gulf of Corinth. When the sea level fell below the level of the Rion Strait sill (which is today at -62 m), the Gulf GoC was transformed into an isolated system or, if the sea level was a few meters above the Rion Strait sill, into a marine area with a high freshwater content (see section 2, Area setting). The low salinity assemblages of the M0078A sedimentary archive are a striking features of the dinocyst record and document periods when the Gulf of CorinthGoC was isolated from the Mediterranean Sea. Those isolated/semi-isolated intervals, also recorded also in the neigboringneighbouring site M0079, correlate with the eustatic low sea level during the glacial intervals (McNeill et al., 2019a). These eustatic sea-level cycles are similar to those recorded in the Black Sea during the last 430 ka BP (Hoyle et al., 2021). In the Black Sea, six minor sea-level cycles were identified, three sea-level cycles existed starting at about 480 ka BP, followed by another three minor cycles mostly at lowstands (Winguth et al, 1997).
The low salinity assemblages of the Gulf of Corinth mainly consist of S. cruciformis, P. psilata, C. rugosum, I. caspienense and L. machaerophorum s.p. (Plate 1). S. cruciformis is the dominant species in the Gulf of CorinthGoC (Figure 3) and thrives in low--salinity conditions or even sometimes freshwaters (Wall and Dale, 1973; Kouli et al., 2001; Mudie et al., 2001; Mudie et al., 2002b). In the Gulf of Corinth, S. cruciformis forms 1–-4 described in Mudie et al. (2001) were encountered (Plate 1),; in contrast to other sites that,  thise species lacks the membranous flange or are consists mostly of C or B morphotype B or Cs (Lake Pannon, : Mudie et al., 2017; Lake Kastoria, : Kouli et al., 2001; sediments in Caspian Sea, : Marret et al., 2004; respectively). The appearance occurrence of all the four forms in the brackish assemblages of the Gulf of CorinthGoC most probably indicates fluctuations in sea-surface salinity (Mudie et al., 2001; Mudie et al., 2002b; Mudie et al., 2004). This species occurs today in brackish environments with seasonal SSS between 12.1 to 18.3 psu in the Black Sea,and Caspian Seas (Mudie et al., 2001; Marret et al. 2004; Mudie et al., 2004; Mudie; et al., 2017) and some freshwater lakes in Turkey and Greece (Kouli et al., 2001; Leroy and Albay, 2010; Mertens et al., 2012a) and rarely, in the Mediterranean Sea (Zonneveld et al., 2013). Recent findings show its presence in brackish environments (Marret et al. 2004; Mertens et al., 2012a). Limited fossil occurrences of the species in the freshwater lakes of Kastoria in Greece (Kouli et al. 2001) and Sapanca in Turkey, alongside other low salinity indicators (Leroy and Albay, 2010) imply its possible tolerance to freshwater conditions. However, Spiniferites cruciformis has never been found until now in recent freshwater settings (Mertens et al., 2012a).
Pyxidinopsis. psilata is encountered in high abundances (even becoming dominant in several samples; Figure 3) in the Gulf of Corinth and it is characterizcharacterised as a low salinity indicator. In the study area, it was found mostly with smooth wall and a rhomboidal, spherical, or cruciform central body (Plate 1), in contrast to the Black and Marmara Seas where the smooth wall morphotype was found only in low abundances and in the Caspian Sea the verruvcate morphotype was rare (Mudie et al., 2017). This species can be considered as a euryhaline, temperate, sub-tropical to tropical species (Zonneveld et al., 2013; Zonneveld and Pospelova, 2015). Even though P. psilata was found mostly in coastal sites, it is not restricted to coastal areas (Zonneveld et al., 2013). This species is common in late Pleistocene to early Holocene intervals in shelf and deep basin cores of the Marmara and Black Seas, as well as intervals of deep-water cores of the Caspian Sea, where it was recorded with other brackish indicators such as S. cruciformis and I. caspienense (Mudie et al., 2017; Mudie et al., 2018). 
Caspidinium. rugosum is encountered in the Gulf of CorinthGoC in high abundances in LUs 1.2, 1.4 and 1.6, while in the other LUs, it is just present (Figure 3). In the GulfGoC, this species was found with a reduced size (starting from 20 μm, see Plate 1) compared to previous studies reporting the same species from Central Asia Seas (Marret et al., 2004). It is known to be present in reduced salinity conditions and moderate temperatures (Mudie et al., 2017). Caspidinium. rugosum is largely restricted to the Caspian and Aral Seas, with the only other occurrence being one specimen at each of five scattered sites in the northern Black Sea (Mudie et al., 2001; Marret et al., 2004; Mudie et al., 2004; Mudie et al., 2017). 
In the low salinity assemblages of M0078A, the cysts of L. machaerophorum s.p. (Plate 1) appear to have shorter processes arranged close to each other, in accordance withper previous observations that have shown the strong relationship between the length of the processes and their number and density (Mertens et al., 2012b). In the Gulf of Corinth, it is present in low abundances in marine and isolated intervals (LU1.1, 1.2, 1.3, 1.4, 1.5, 1.11), most likely indicating tolerance to higher SSS and changes in SST. The process-length variation was initially related to salinity variations in the Black Sea (Wall et al., 1973), while in the Caspian Sea the process length (<10μm) was related to higher annual SST and lower SSS (Mertens et al., 2012b). High abundances were also observed in sediments near upwelling areas or in highly stratified waters such as, the Black Sea and Marmara Seas (Mertens et al., 2012b). In Figure 5a, this species is clearly grouped well with the brackish indicators, but is also plotted near to Achomosphaera sp., indicating a distribution both in neritic and shelf regions (Zonneveld et al., 2013; Zonneveld and Pospelova, 2015; Mudie et al., 2017). This species is continuously present in Black Sea sediments since its reconnection with the Mediterranean Sea during the Holocene (Mudie et al., 2001; Mudie et al., 2004; Marret et al., 2009; Mertens et al., 2012). 
Finally, the low salinity indicator I. caspienense is observed only in the uppermost isolated interval of the Gulf of Corinth (LU1.2), which might explain the great distance between I. caspienense and the other low salinity indicators in the nMDS diagram (Figure 5a). This taxon has been commonly associated with oligotrophic, low- productivity conditions (Marret et al., 2004; Mudie et al., 2017). It is considered as an endemic species, found in high abundances (also as dominant species) in the Caspian and Aral Seas (Marret et al., 2004; Mudie et al., 2017). This taxon was present in low abundance in Holocene sediments from Marmara Sea (Roberts, 2012) and the SW Black Sea (Marret et al., 2009), but it has not been encountered in cores from deeper water (Mudie et al., 2017). However, it must be highlighted here that the phylogenetic study of this species by Mertens et al. (2017) concluded that it was not endemic to the Caspian Sea but also occurring in the Baltic Sea, the cyst being produced by the thecate Gonyaulax baltica. This thecate has been observed to produce spiniferate and impagidinioid specimens, possibly in relation to environmental conditions, notably salinity.
The two uppermost isolated/semi-isolated LUs of the M0078A core (LU1.2, and 1.4) record two very distinct brackish assemblages. During LU1.2, S. cruciformis, P. psilata and C. rugosum have very high relative abundances, with S. cruciformis and P. psilata being codominant, and suggesting the occurrence of low salinity conditions in the Gulf of CorinthGoC. The presence, in very low abundances even meagre, of T. vancampoae and P. zoharyi and other marine representatives in several samples within the LU1.2 most likely indicate fluctuations in temperature as well as occasional connection with the open sea. The LU1.2 correlates with MIS 2-5a (Gawthrope et al., 2022), a period marked by significant millennial climate variability which could explain the fluctuations observed in the Corinth record. MIS 5a is characterizcharacterised by temperate conditions in the region and it is included into the warm and wet interstadial periods of MIS 5 (Helmens et al., 2014; Panagiotopoulos et al., 2014; Sadori et al., 2016; Ferguson et al., 2018; Sinopoli et al., 2019). In MIS 4-2, the two glacial maxima included hasve been recognized in the regional paleopalaeoclimatic record (e.g., Tzedakis et al., 2002; Panagiotopoulos et al., 2014; Wulf et al., 2018). The MIS 2 is the most recent glaciation and includes the coldest climatic conditions of the last glacial cycle, the Last Glacial Maximum (LGM; Yokoyama et al., 2000; Fletcher et al., 2010; Hughes et al., 2015; Ferguson et al., 2018; Ishiwa et al., 2019, Leontaritis et al., 2020). MIS 4 also reaches full glacial conditions in Europe and the North Atlantic Ocean (Guiot et al., 1989; Mangerud et al., 2011; Anjar, 2012; Ferguson et al., 2018; Shackleton et al., 2021). MIS 3 is characterizcharacterised by climatic warming phases, the Dansgaard-Oeschger (DO) events, which are rapid transitions from cold stadial to warm interstadial phases,  and followed by a slow return to cold stadial conditions (e.g., Cacho et al., 1999; Capron et al. 2010; Panagiotopoulos et al., 2014). The DO warm events can be compared to MIS 5c and 5a (Oppo et al., 2006; Engels et al., 2008; Ferguson et al., 2018). During the MIS 3, into certainwithin some stadials, the Heinrich (HEs) events, also took place (Heinrich, 1988). These events are characterizcharacterised by abrupt climatic changes. According to our results, the LU1.2 is characterizcharacterised mainly by brackish conditions. However, marine species, such as, T. vancampoae, P. zoharyi, O. centrocarpum sensu Wall et Dale 1966, L. machaerophorum s.l. and, N. labyrinthus etc., have also been encountered in very low concentrations, indicating that the GulfoC was temporally connected and disconnected from the Mediterranean Sea (Figures 2 and 3). These marine conditions and the presence of warm species in several samples could be correlated with the 5a interstadial period.
In LU1.4, S. cruciformis is the most dominant species suggesting that the GoCulf of Corinth is was significantly more isolated, compared to the last glacial period. The LU1.4 is correlated with MIS 6, which is characterizcharacterised by very cold and dry conditions, especially during the second part of this glacial period (Roucoux et al., 2006; Rohling et al., 2014; Sinopoli et al., 2019; Leontaritis et al., 2022). 
In LU1.6 and LU1.8, S. cruciformis continues to be the most dominant species downcore, which points to an isolated environment, while whereas in LU1.10, the most dominant species is P. psilata, possibly indicating an increase in SST. The LU1.6 corresponds to the stadial MIS 7d (see section 5.1). The LU1.8 and LU1.10 are correlated with MIS 8 (Fletcher et al., 2013) and 10, respectively. 
The LU1.12, 1.14 and 1.16 are characterizcharacterised by the dominance of S. cruciformis in very high concentrations and reflect a very restricted environment, with very low salinity or even freshwater conditions. The LU1.12 is correlated with the MIS 12 (Koutsodendris et al., 2019; Gawthorpe et al., 2022; Maffione and Herrero-Bervera, 2022).
The lower part of LU1 ends at 385.99 mbsf (end of LU1.16) and it is correlated with the Brunhes – Matuyama Boundary (~773 ka; McNeill et al., 2019b; Gawthorpe et al., 2022; Maffione and Herrero-Bervera, 2022).
Some samples in this interval such as 21.43 mbsf (LU1.2), 248.01 mbsf (LU1.8) and 260.31 mbsf (LU1.10) were displaced, in the PCA plot (Figure 4) and were grouped with marine assemblages. Most likely transitional conditions occurred during these intervals as these samples are mainly recorded either at the beginning or at the end of each LU.
[bookmark: _Hlk98940600]The dinooflagellate cyst assemblages described from the GoCulf of Corinth record show strong affinities to the Black Sea, the Sea of Marmara, and the Caspian Sea assemblages (Stanev et al., 2001; Rochon et al., 2002; Gómez et al., 2004; Marret et al., 2004; Leroy et al., 2007; Marret et al., 2009; Mertens et al., 2012b; Zonneveld et al., 2013; Jansson et al., 2014; Zonneveld and Pospelova, 2015; Mertens et al., 2017b; Mudie et al., 2017;   Lewis et al., 2018; Marinova et al., 2018; Richards et al., 2018; Hoyle et al., 2019; Hoyle et al., 2021). Most of the taxa recorded in the Gulf of CorinthoC deposits, especially in brackish intervals, have been previously reported from the Black and the Marmara Seas, while similarities with the Caspian Sea dinocyst assemblages are also evidenced. The brackish dinocyst assemblages encountered in the GoC were identified for the first time outside the Ponto-Caspian region. Among these low-salinity species, only S. cruciformis has been found in coastal areas of the eastern Mediterranean and Aegean Seas (Zonneveld et al., 2013). Opposingly, P. psilata, C. rugosum and I. caspienense are reported only from the Marmara, Black, and Caspian Seas (Table 1). These low salinity indicators of the Gulf of Corinth are only a few brackish representatives of the identified brackish assemblages of the Marmara, Black and Caspian Seas.

Conclusion
The Gulf of Corinth sedimentary record of the Gulf of Corinth is characterizcharacterised by distinct shifts in the dinoflagellate cyst assemblages, revealing fluctuations in surface water salinity and temperature, in response to the global sea-level changes and trace orbital -driven climate shifts as shown in the global Marine Isotope Record. Dinoflagellate cysts are sorted into two major ecogroups presenting reflecting alternations between marine and isolated/brackish conditions.
During the interglacial periods, the Gulf of Corinth is characterizcharacterised by a high diversity of the dinoflagellate cysts assemblages as a result of the prevalence of fully marine conditions as the Gulf was connected with the Mediterranean Sea. The presence of thermophilic species indicates higher temperatures in comparison to other eastern Mediterranean sites. Opposingly, during glacial periods, the dinocyst assemblages appear are less diverse and controlled dominated by low salinity dinocysts, indicating the isolation of the Gulf of Corinth. The dominance of S. cruciformis cysts in selected isolated intervals, corresponding to MIS 6, 8 and 12 implies the occurrence of very restricted, even close to freshwaterlow salinity conditions during those glacial periods.
The Gulf of CorinthGoC dinoflagellate cyst assemblages, especially the brackish, show distinct similarities to those described in other regional basins such as Black Sea, Caspian Sea, Marmara Sea. The low-salinity dinoflagellate cysts encountered hold an amazing and unique feature as, apart from S. cruciformis, they are recorded for the first time outside the boundaries of Ponto-Caspian region. 
The occurrence of species of the Impagidinium group during the marine intervals in the Gulf of Corinth confirms a wide communication with theopen sea and the occurrence of well-oxygenated, deeper waters and higher salinity than in the other basins. 
The sedimentary sequence of the Gulf of Corinth has the potential to become a long and high-resolution regional archive of palaeoenvironmental changes for the eastern Mediterranean Sea. Downcore dinoflagellate cyst analysis is part of ongoing research (Fatourou et al. in prep). The correlation of dinocyst findings with other biotic and abiotic proxy analyses such as other marine microfossils, pollen, sediment properties or geochemistry, combined with a robust age-depth model based on magnetostratigraphy, tephrochronology and other absolute dating methods will allow the establishment of this new regional reference record. 
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Figure captions
Figure 1: Map showing the topography of the Gulf of Corinth, the study site M0078A (modified from McNeill et al., 2019a and Gawthorpe et al., 2022) and regional setting. In the inset map the shorelines during lowstand (-100m) intervals is are featured in grey.
Figure 2: Site M0078A: Lithostratigraphic Units (LU), facies associations (FA), samples analyzanalysed (in red triangles), Brackish/Marine dinoflagellate cyst curve,  and PC 1 of the samples, TIC and TOC curves. FA1: Homogenous mud, FA2: Greenish, gray grey mud with dark gray grey to black silty-to-sandy beds (cm-scale) FA3: Light gray grey to white sub-mm laminations (cc or aragonite) alternating with mud-silt beds, FA4: Laminated greenish gray grey to gray grey mud with muddy beds, FA5: Greenish, gray grey mud with homogeneous cm-thick gray grey mud beds, FA6: Green bedded partly bioturbated mud, silt and sand,FA10: Interbedded mud/silt and dm-thick sand beds, FA11: Interbedded mud/silt and cm-thick sand beds, FA12: Light gray grey to buff, homogenous. to weakly stratified mud. Facies associations,  and LUs, TOC and TIC are from McNeill et al., 2019b. Sediment lithology coloured according to facies association
Figure 3: Shade plot: visual representation of the species encountered in the different LUs (LU1.1 to LU1.16). Samples were arranged based on core depth. White colour indicates absence, black the highest abundance in the dataset, while all the different colours suggest low (blue colour), medium (green colour) and high presence (orange and red).   
Figure 4: PCA plotPlot of the first two axis of the Principal Component AxesAnalysis.
Figure 5: nMDS – species (a), nMDS – samples (b): non-metric MultidimentionalMultidimensional Scaling Analysis for the samples and species.
Plate 1: Light microphotographs of the main species encountered in brackish/isolated intervals of the Gulf of Corinth. Scale bar= 20μm. 1–-9: S.piniferites cruciformis, 10–-14: Pyxidinopsis. psilata, 15– -16: Caspidinium. rugosum and 17–-18: Lingulodinium.  machaerophorum s.p. (<10μm).
Plate 2: Light microphotographs of the main species encountered in marine intervals of the Gulf of Corinth. Scale bar= 20μm. 1-2: Ataxodinium choane, 3-4: Lingulodinium machaerophorum s.l., 5-6: Nematosphaeropsis labyrinthus, 7-9: Operculodinium centrocarpum sensu Wall et Dale 1966, 10-11: Polysphaeridium zoharyi, 12-14: Spiniferites mirabilis, 15-16: Quinquecuspis concreta, 17: Brigantedinium sp., 18: Brigantedinium simplex.
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