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ABSTRACT

The effects of real combined variances in components and modules of aero engines, due to production tolerances or deteriora-

tion, on the performance of an aircraft engine are analysed in a knowledge-based process. For this purpose, an aero-thermodynamic

virtual evaluation process that combines physical and probabilistic models to determine the sensitivities in the local module aerody-

namics and the global overall performance is developed. Therefore, an automatic process that digitises, parameterises, reconstructs

and analyses the geometry automatically using the example of a real turbofan high-pressure turbine blade is developed. The influ-

ence on the local aerodynamics of the reconstructed blade is investigated via a computational fluid dynamics (CFD) simulations.

The results of the high-pressure turbine (HPT) CFD as well as of a Gas-Path-Analysis for further modules, such as the compressors

and the low-pressure turbine, are transferred into a simulation of the performance of the whole aircraft engine to evaluate the overall

performance. All results are used to train, validate and test several deep learning architectures. These metamodels are utilised for a

global sensitivity analysis that is able to evaluate the sensitivities and interactions. On the one hand, the results show that the aerody-

namics (especially the efficiency ηHPT and capacity ṁHPT ) are particularly driven by the variation of the stagger angle. On the other

hand, ηHPT is significantly related to exhaust gas temperature (Tt5), while specific fuel consumption (SFC) and mass flow ṁHPT are

related to HPC exit temperature (Tt3). However, it can be seen that the high-pressure compressor has the most significant impact

on the overall performance. This novel knowledge-based approach can accurately determine the impact of component variances on

overall performance and complement experience-based approaches.

INTRODUCTION

Novel aircraft engines, such as the ultra high-bypass aircraft engines, will play a crucial role in the future development and

increased efficiency of modern aircraft Merkl (2016). Since the performance and, above all, the economy of an aircraft are directly

and inextricably linked to the performance of the aircraft engine, constant efforts are being made to increase both the thrust genera-

tion and the fuel efficiency of engines. These continuing demands for more power and less fuel consumption ultimately lead to new

and modern engine architectures that work even closer to the aerodynamic, thermal, and structural limits of the various components

of the whole jet engine von der Bank et al. (2014).

However, the resulting design optimisations and modifications (e.g. 3D optimised blades) lead to more complex parts and functional

integration within a part or assembly and thus also to an increasing sensitivity in geometric variations. Due to the high degree of

interactions between the components and between individual parts within the components, geometry deviations that occur due to

manufacturing and repair tolerances, as well as deterioration (e.g. erosion), can have a much greater impact on efficiency and per-

formance than in previous generations of aircraft engines. Lavainne (2003) describes the geometry variations of compressor blades

and names typical production scatter in the order of up to 1.5% in the chord length, 0.8% in the leading or trailing edge thickness, and

2.5% in stagger angle. Particularly in the case of modern aircraft engines, where experience and data are not available, knowledge-

based approaches that investigate the influence of geometric variances on the overall system are essential.

Therefore, in Reitz et al. (2018) a virtual process for geometric evaluation of compressor blades was developed to determine the
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influence of geometry variations. Using measured compressor blades, high sensitivites of the loss coefficient and efficiency to aero-

dynamic blade parameters such as camber and stagger angle were identified.

Furthermore, Bammert and Sandstede (1976) already investigated the effects of manufacturing tolerances on the performance of

turbines. For example, the enthalpy decreased by 15%, mass flow increased by 15%, and efficiency of the axial turbine fell by 1.4%

when the blade thickness was reduced for the first two stages of a four-stage axial turbine. A thickening of the last two stages of

the same turbine, on the other hand, causes an increase in the enthalpy gradient by 6% and a drop in the mass flow by 6%. The

efficiency drops disproportionately by 3%. In Schwerdt et al. (2017), investigations were carried out on worn and factory-new

first-stage turbine rotors. For this purpose, both blades were digitised using a 3D laser scanner, built up as a numerical model and

numerical simulations were carried out. In the evaluation, differences were detected in the pressure and temperature field on the

blade surface of the examined blades.

Based on the production and deterioration as well as repair influences, there are no exactly identical blades; each blade has its own

individual parameter combinations within the permissible production tolerances. Consequently, each blade has individual aero-

dynamic properties. Numerical analysis of each individual blade is not practical, rather, probabilistic studies are used for simple

analysis of the individual parameters. In Scharfenstein et al. (2013), 500 blades were digitally measured and evaluated. For this

purpose, the three-dimensional geometry was reduced to two-dimensional sections and completely described by means of 14 blade

parameters (Heinze et al., 2014). With the help of these determined parameters, it was possible to set the limits for the random

generation of the samples, which were used in a Monte Carlo simulation. A sample of 50 blades showed that there is a strong

dependence of the reduced mass flow and reaction degree on the stagger angle, as well as a strong dependence of the efficiency

to the trailing edge thickness. A similar probabilistic approach was used by Ernst et al. (2016) for analysing a data set containing

of 20 measured low-pressure turbine (LPT) blades that showed significant geometric variations due to operation. The probabilistic

simulations with 100 samples were performed for several operating points that showed a strong dependency on the chosen operating

point. The polynomial-based sensitivity analysis identified the stagger angle and the trailing edge thickness as the most important

parameters for the change in aerodynamic efficiency.

In Gilge et al. (2019), real surfaces of worn compressor blades of a conventional high-bypass turbofan were measured and evaluated.

The variations can be seen both in the roughness height (quantified by the roughness parameters) and qualitatively in the shape of

the roughness structures. These structures are oriented at an angle of 45° to 90° perpendicular to the flow direction and are caused

by oil and flow particles.

In Seehausen et al. (2020), the obtained roughness information was transferred to a CFDmodel of the V2500-A1 high-pressure com-

pressor and the effect of complex surface structures on the overall compressor performance was evaluated. The simulations with

stage roughness variations show that the first stage has the greatest impact on compressor performance. Furthermore, the surface

roughness influences the narrowing and displacement of the compressor maps to a high degree, thereby decreasing the pressure ratio

much more significantly than the capacity and efficiency in all speed curves considered. In general, these studies show that geometry

variations and surface roughness have a significant influence on the integral pressure ratios π , mass flows ṁ, and efficiencies η ,

which directly affects the overall performance of the whole aircraft engine and can be investigated by gas path analysis (Spieler

et al., 2008; Volponi, 2014).

In Goeing et al. (2020a), the findings of the roughness study already discussed were transferred into a whole aircraft engine per-

formance simulation program and their effect on the overall performance was analysed at various steady-state operating points

and transient manoeuvres. It was shown that the exhaust gas temperature is increased by more than 20% at steady-state operating

points and transient temperature loads by up to 30%. Furthermore, combined deterioration of high-pressure compressor (HPC) and

HPT was investigated in Goeing et al. (2020). The characteristic effects of the investigated deterioration on performance can be

summarised as follows:

1. SFC and Tt5 can be used to determine the degree of deterioration.

2. Temperature downstream the combustor (Tt4) and the rotational speeds in combination can be used to identify the components

affected by the deterioration.

3. The distance to the stability limit in the HPC and the deviation between the transient and steady-state operating lines differ

significantly for HPT and HPC deterioration.

4. Both HPC and HPT degradation have significant influences on the global engine behaviour, but HPC degradation has a

significantly stronger effect on the stability of the engine.

The methods described above usually focus on a single module or the module interactions, but do not connect all process steps (see

Figure 1). To meet the requirements of the Collaborative Research Centre (CRC) 871 ”Product Regeneration”, which captures both,

the system complexity and the degradation of system components in order to provide the fundamentals for an efficient regeneration

of complex capital goods such as high-bypass aircraft engines, a communication structure between the process steps is developed.

The communication structure with the virtual twin of the aircraft engine, which allows to assess the performance of individual blades

and to obtain module-based sensitivities, enables interaction with a virtual twin of the regeneration in order to choose regeneration

paths.
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Figure 1 Virtual performance evaluation process of the system demonstrator.
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Figure 2 Measurement system scanning a blade.

In this work, the developed process is demonstrated using the first stage of the HPT blade of the V2500 turbofan engine as

an example in a high Technology Readiness Level of 7. The V2500 turbofan with low-pressure compressor (LPC), intermediate-

pressure compressor (IPC), HPC, HPT, LPT, and a common thrust nozzle, from IAE (International Aero Engines) typically powers

the Airbus A320-100 representing medium-range aircraft. The paper discusses first how the blades used are digitised, parameterised

and reconstructed automatically for an automated meshing process. Subsequently, the CFD set-up and the performance simulation

are outlined, and both, the sensitivity analyses and the metamodels employed are presented. A DoE is carried out to quantify the

global sensitivities of geometry variations and aero-thermodynamics. Finally, the virtual process is run on the best and worst HPT

blades to illustrate the influence of isolated and combined module variances on the performance. This combines the different meth-

ods for evaluating local aerodynamics and global performance, providing a knowledge-based process that examines the causalities

between component variations and performance changes from the bottom up.

METHODOLOGY FOR THE EVALUATION OF THE VIRTUAL TWIN OF THE AEROENGINE

In this chapter, the single steps of the virtual process for a component evaluation are discussed (see Figure 1). The virtual

analysis is carried out on the example of the first HPT rotor stage blade of the V2500-A1. Based on the IFAS research aircraft

engine, performance data of the V2500-A1, information, and geometries of the HPT, which are necessary for a CFD set-up, are

available. In order to develop the real repair process in CRC 871 (Aschenbruck et al., 2014), a large number of HPT-blades were

required. This high number could not be provided by the V2500-A1, so the repair process was developed on scraped HPT-blades

of the V2500-A5.

Digitisation of HPT blades

A fringe projection system is used (Betker et al., 2020) for the digitisation of the blade geometry. In order to automate the

process and reduce systematic errors, the projector and camera of the measuring system are positioned with a serial robot. The

projector projects an alternating stripe pattern on the scraped and heavily deteriorated blades to measure the geometry from root to
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Figure 3 Blade section of deteriorated blade at mid-span.
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Figure 4 Heavily deteriorated HPT blade used in this project.

tip. The camera captures the deflection of the stripes. A measuring computer calculates the distance to the camera from these images

and creates a point cloud from it. With a high dynamic range measurement, blades with different optical surface properties can be

measured.

The blade is clamped using a workpiece carrier and a zero point clamping module, that is mounted on a rotation stage. On this stage,

three projectors are mounted and project a stochastic pattern on the blade. This pattern, overlapping measurements, and the special

geometry of the workpiece carrier are then used to merge the point clouds of the 13 single measurements to a combined point cloud.

The coordinate system of the measurement system is calibrated once with a normal. Because of the low absolute accuracy, as well

as the assembly tolerances of the workpiece carrier, the position and orientation of the measured blade varies in the fixed coordinate

system. An iterative closest point algorithm aligns the worn blade to a reference blade to determine the parameters of each blade on

the same positions. After the alignment, blade slices of 1.2 mm around the planes that are used in the next steps are extracted and

parameterisation (±600 µm) are extracted and converted into a 3D-model with surfaces. Additionally, a convex hull is used which
allows the robust closing of holes from heavy damage and cooling air holes.

The alignment is performed by an Iterative Closest Point Algorithm. The alignment is carried out globally, since individual geometry

parameters are not sufficient due to the geometry variations. Due to the strong wear in the blade tip, the alignment is only used in

the range from the foundation to 5 mm below the blade tip. The iteration is converged if the change is less than 3 micrometers or 30

iterations are exceeded(Nübel and Denkena, 2022).

After the marcrosopic geometric properties of the investigated blades, the small-scale surface structures are optically measured

with a con-focal laser scanning microscope (Keyence VK-X200). In the process, the measurement of surface roughness is per-

formed at five positions on the suction side and at four positions on the pressure side at mid-span with a 20× magnification lens.

For CFD simulations an equivalent sand-grain roughness ks is required to analyse surface roughness and compare different rough

surfaces. In Nikuradse (1933) and Schlichting (1936) the equivalent sand-grain roughness was introduced, which describes the

aerodynamic resistance of the surface roughness. In Bons (2010) a detailed overview of established correlations for converting a

technical roughness to an equivalent sand-grain roughness is described. To assess the complexity of a three dimensional roughness

topology, Hohenstein et al. (2013) and Gilge et al. (2019) propose using the shape and density parameter Λs of Sigal and Danberg

(1990). Therefore, the approach of Bons (2005):

log

(
ks

k

)
=−0,43log(Λs)+0,82 (1)

with the roughness parameter k described by the surface parameter Sa as proposed by Gilge et al. (2019) is used in this process.

Here, the equivalent sand-grain roughness is averaged separately along the suction and the pressure side.

Parameterisation

The digitised blade is analysed in 20 different blade sections at constant radial positions based on the slices from the digitisation.

Each blade section is parameterised by algorithms based on Heinze et al. (2014) and Ernst et al. (2016) and exemplified in Figure 3.

The camber is approximated by the Delaunay triangulation (Aurenhammer, 1991), where the middle points of enveloping circles

around the Delaunay triangles correspond to the camber line. This approach fails near regions with high curvature, e.g. leading-

or trailing -edge. Therefore, different filters, based on the curvature of the camber, are applied in regions near the trailing- and the

leading-edge in order to remove outliers. The leading-edge camber is approximated by a second order function attaching to the

estimated camber based on the Delaunay triangulation and the trailing-edge by a first-order function, resulting in crossings with the
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Table 1 Digitised blade parameters

Tip gap in

mm

Leading

edge radius

in mm

Chord

length in

mm

Trailing-

edge

thickness in

mm

Stagger an-

gle in °

Roughness

suction side

ks in µm

Roughness

pressure

side ks in

µm
symbol r rLE l tT E γ RSS RPS

Max 1.64 2.32 32.73 1.1 -40.34 32.07 118.6

Min 0.59 1.96 32.01 0.25 -45.15 4.19 11.4

95% CI ±0.05 ±0.05 ±0.15 ±0.05 ±0.30 ±1.46% ±1.46%

blade´s macroscopic geometry. These crossings are the leading-edge and trailing-edge stagnation points which are used for rotating

the blade around the origin and shifting the profile that the leading-edge stagnation point is placed at the coordinate system´s origin

and the trailing-edge is horizontally aligned with the origin. This simplifies further calculations. The leading-edge radius rLE is

approximated by fitting a circle within the given blade geometry using a least-square method solved by a Levenberg-Marquardt

algorithm (Moré, 1978). This algorithm is used also for fitting an ellipse at the trailing-edge giving the parameter aT E along the

camber line axis and bT E orthogonal to the camber. Furthermore, the curvature of the camber line has to be within certain defined

tolerances. Stagger angle γ and chord length l are calculated by trigonometric functions. The geometric parameters considered in
this work are shown in Table 1 including their absolute ranges and 95% confidence intervals. The absolute ranges are derived of

the min-max value of each geometric parameter within the 36 digitised blades. The measurement accuracy of the digitisation and

parameterisation is determined by measuring two blades in five different fixtures. The point clouds are aligned and the parameters

extracted. The maximum deviation for each parameter is used as approximation of the measurement accuracy. Additionally, the

range of surface roughness applied to the CFD simulations is presented with a relative error of the optical measurements based on a

confidence level of 95% (see Gilge et al. (2019)).

Reconstruction of HPT blade and sample generation

The blade reconstruction is performed using an original CAD blade geometry and altered based on the difference between refer-

ence and measured blades. This difference is applied for all blade sections along the span. In this work, the reference blade is defined

as the least deteriorated one. Changing the geometry of the leading- and trailing edge requires smoothing between the new circles (for

leading-edge) or ellipses (for trailing-edge) and the rest of the profile geometry for obtaining a continuous surface. Otherwise, the al-

gorithm used is based on Ernst et al. (2016).

flow

inlet
outlet

first vane

first blade

second vane

second blade

interfaces

Figure 5 HPT simulation setup with studied first rotor blade

highlighted in red.

The ranges of the parameters are shown in Table 1 and a total

of 250 blades with different geometries is reconstructed, each

representing a combination of different geometry parameters

and surface roughness. In order to carry out the numerical

experiment effectively, a uniform Latin-hypercube sampling

(McKay et al., 2000) is used. The tip gap variations are in-

cluded during the meshing process. The roughness is imple-

mented in the CFD setup on both, the suction and the pressure

side. The digitised blades of the first rotor stage belong to a

V2500-A5, while only original blade geometries of all rows

of the V2500-A1 are available for usage in the computational

models. To overcome this issue, the geometric variations are

normalised with the blade height, assuming that both variants

of the V2500 show geometrically similar wear.

CFD simulations of HPT with deteriorated first rotor

Based on the reconstructed blades, numerical set-ups are

developed and simulated in a fully automated process. The

CFD simulations are necessary to connect the effects of local deterioration, here first rotor blade, with the module performance.

First, the meshes of the 2-stage HPT are constructed using Numeca Autogrid. The meshing parameters are set constant for all

reconstructions to ensure mesh independence of the numerical solution. According to the DoE, the different tip gaps are included in

the meshing. A total of 211 HPT simulations with a deteriorated first rotor blade are successfully meshed. For 39 combinations of

geometric parameters, the meshing fails due to negative cell volumes or connectivity problems across the rows. In Figure 5 a mesh of

an HPT is illustrated with the first blade highlighted in red. The original HPT geometry was already used in Goeing et al. (2020) for

evaluating combined compressor and turbine deterioration. Secondly, the simulations are performed using the non-commercial flow

solver T RACE version 9.1 of the German Aerospace Center (DLR) (Nuernberger, 2004; Franke et al., 2005; Kugeler et al., 2008).
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The three-dimensional Favre-averaged Navier-Stokes equations are solved by a finite-volume method with structured multi-block

meshes. Roe’s second-order upwind scheme is used for the discretisation of the convective fluxes, while the diffusive fluxes are

solved by a second order central difference scheme. In an automated pre-processing, the boundary conditions of the aerodynamic

design point at take-off with a rotational speed of 13,972 rpm prescribed by the performance simulation are transferred to the CFD

set-up. Next to the boundary conditions, the equivalent sand-grain roughness ks is specified at suction and pressure side of the

first blade row. At the inlet, a total pressure of approximately 2,823 kPa and a total temperature of approximately 1,735 K is used.

Additionally, a turbulence intensity of 4% and a turbulent length scale of 0.00208 m is set, which are typical for turbomachinery

flows. At the outlet, a static pressure of 491.6 kPa is specified. Subsequently, periodic steady-state simulations with one pitch are

conducted using the k−ω turbulence model of Wilcox (1988), assuming that the analysed blade represents the entire row. For the

blade to vane interfaces mixing planes are used and the stagnation point anomaly fix by Kato and Launder (1993) is applied. The

sidewalls are modelled through a wall function. In general, a non-dimensional distance of the first cell from the wall of y+ < 1 is

obtained at the blade’s surfaces, which allows resolving the viscous sublayer using the Low-Reynolds approach. Nevertheless, the

first rotor blade is modelled by the wall function due to the increased wall shear stress caused by surface roughness. The logarithmic

profile is described by:
U
uτ

= u+ =
1
κ

ln
(
y+

)
+C+ with uτ =

√
τw

ρ
(2)

as friction velocity uτ . As a result of rough surfaces, the value C+ of the logarithmic profile is expressed as a function of ks, which

results in:

C+ → 1
κ

ln
(

1
k+s

)
+8.4 (3)

according to Wilcox (1988). A post-processing is applied to calculate the pressure ratio π and the polytropic efficiency ηpoly of each

generated sample. The polytropic efficiency ηpoly is calculated from the total pressure ratio π and the total temperature ratio τ as

follows:

π =
pt,out

pt,in
, τ =

Tt,out

Tt,in
, ηpoly =

κ −1
κ

log(π)
log(τ)

. (4)

Although an accurate initial flow solution is used, a CFD simulation of a mesh with approximately 8M cells requires about 84

CPUh for a converged solution. A mass flow difference between inlet and outlet, a change in efficiency, and a change in pressure

ratio of less than 0.1% satisfy the stopping criterion.

For the validation the original CAD blade geometry with a hydraulically smooth surface is used. The CFD simulations predict a

polytropic efficiency of 88.68%, a pressure ratio of 5.2, and a massflow of 47.28 kg/s, while performance simulation gives 88.80%,

5.1 and 48.02 kg/s for same boundary conditions. With the same setup a mesh convergence study is conducted, resulting in a GCI

of 0.136% for the mass flow, 2.59% for the polytropic efficiency, and 0.005% for the pressure ratio.

Performance simulation of the overall aircraft engine

In order to evaluate the influence of isolated and combined module variances on the whole turbofan engine a performance

model of the V2500-A1 aircraft engine is developed to analyse the on- and off-design performance. The model is part of a model-

based non-linear gas path analysis (NLGPA) to calibrate the performance model to real aircraft engines (here a factory-new and

deteriorated V2500-A1 turbofan engine (see Table 2)).

This analysis investigates the ranges in which the miscellaneous compressors and turbines wear out in addition to the HPT.

In conjunction with the CFD simulations of the HPT, the NLGPA and, thus, the virtual process allow a combination of the overall

aircraft engine performance with the local effect of deterioration. This analysis is presented by the schematic flow chart illustrated

in Figure 6 and is implemented in Matlab (Kurzke and Halliwell, 2018; Salomon et al., 2021).

The off–design calculation procedure consists of an iterative simulation process which requires various input data, such as environ-

mental conditions. Moreover, further aircraft engine-specific boundary conditions are required, being crucial for the thermodynamic

cycle at a reference point, also referred to as the engine’s on–design operating point. This point represents the basic framework of the

jet engine and defines the interaction between the miscellaneous turbomachines, secondary air system, geometry (e.g. nozzle area),

and number of revolutions in order to fulfil the thermodynamic cycle. Further boundary condition, such as the steady-state perfor-

mance maps of the compressors and turbines are required. Hereon, quantities related to the compressor and turbines are denoted with

Table 2 Maximum thrust 109 kN

Value SFC Pt5 Tt3 Tt5 N1 N2
Unit g/(kN·s) kPa K K rpm rpm

V2500-A1 10.23 142 850 806 4,981 13,972

IFAS - V2500 A1 10.56 138 835 850 4,959 13,757
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(.)C and (.)T sub-indexes, respectively. These characteristic diagrams describe the mass flow ṁ, pressure ratio π , and efficiency η

of the turbomachines by different rotational speeds. Furthermore, auxiliary coordinates, the so-called GL–lines, are placed through

the diagram, which are necessary for the iteration of the algorithm. The on-design performance values and the boundary conditions

for the V2500-A1 jet engine are based on Goeing et al. (2020), as well as on the data of the IFAS-research aircraft engine.

After the aircraft engine–specific boundary conditions have been imported and the operating point to be reached has been defined,

the analysis starts the iterations. A distinction is made between the outer loop, in which the rotational speed N2 is varied until the

required aircraft engine thrust is reached, and the inner loop, in which a correct thermodynamic cycle, based on the input parameters,

is matched through iterations. Matching in this context means iterating within the performance maps until: 1) the turbine power

PT output matches the compressor power PC, as defined by the error function EP in Equation (5); 2) the mass flow is maintained,

as defined by the error function Eṁ in Equation (6); and 3) the nozzle pressure pnozzle,t8 is equal to the downstream LPT pressure

pLPT,t8 (including friction), as defined by the error function EN in Equation (7). The convergence limits are 1e-6.

EP = PT−PC = ∆htT · ṁ−∆htC · ṁ (5)

Eṁ = ṁT− ṁC (6)

EN = pnozzle,t8− pLPT,t8 (7)

Inputs:

boundary conditions

(e.g. On-design Mach

number, and altitude),

performance maps, N2

Initialization:

N1, GLC, GLT,

BPR, and Tt4

Global Cycle Calculation:

Inlet

Fan

LPC

HPC

Combustor

HPT

LPT

Nozzle

Newton iteration:

N2 = N2,new

Convergence: Ei = 0 ?

Convergence: FN?

Operating Point:

(e.g. Thermodynamics

Mass flows

Rotational speed)

Newton-Raphson iteration:

N1 = N1,new
GLC = GLC,new

GLT = GLT,new

BPR= BPRnew

Tt4 = Tt4,new

NLGPA: Jet engine?

Newton-Raphson iteration:

∆ṁ = ∆ṁnew
∆π = ∆πnew
∆η = ∆ηnew

Performance Maps:

(Compressors,

Turbines)

Yes

Yes

No

No

d

Figure 6 Global off-design calculation procedure for high-

bypass turbofans. Used for non-linear GPA and to train the

artificial intelligence.

Based on the on–design input parameters, the initial values

of all necessary parameters are provided for the first iter-

ation. The iteration parameters for the inner loop at any

rotational speed N2 are the turbine entry temperature Tt4,
bypass ratio (BPR), the rotational speed N1, and the auxil-

iary coordinates GLT and GLC. Based on these, the operat-

ing point (constant thrust) of each individual aircraft engine

is defined and a global cycle process calculation can be car-

ried out. The next step is to validate whether Equation (5),

Equation (6), and Equation (7), are fulfilled and the error

functions approaches zero. If this is not the case, then the

iteration parameters are varied using the Newton–Raphson

method until an operating point is found. The iteration pa-

rameter are varied throughout the ranges of all performance

maps until a matching cycle according to Equation (5) - (7)

is found. The next step is to check if this correct cycle also

achieves the required thrust. If not, the rotational speed

N2 is varied using the Newton–Raphson method. Here the

convergence limit is 1e-5.

The global aircraft engine matching process is described

with these iterations and is used in the DoE to physically

calculate the relationship between state of jet engine and

performance output. The state of the engine is described

by the variation of the maps through the scaling factors (∆)

of π , ṁ and η .

In order to estimate the scaling factors for the LPC, IPC

and HPC, as well as for the LPT, the performance model

is calibrated to a factory-new and to the worn aircraft en-

gine. The calibration is done via non-linear GPA, in which

the performance map is iterated by scaling factors ∆ via

Newton-Raphson method until the performance model has

the same performance output as the investigated aircraft en-

gine. Here, the convergence limits are 2e-2 is assumed to

be sufficient.

Sensitivity analysis

A fundamental knowledge of the effects of variations

in the input variables of a model on the output variables

is of paramount importance in a variety of engineering do-

mains. Sensitivity analysis examines precisely these rela-

tionships. Saltelli et al. (2004) provide the following def-

inition of sensitivity analysis: ”The study of how uncer-

tainty in the output of a model (numerical or otherwise)
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can be apportioned to different sources of uncertainty in

the model input”. Therefore, an effective and wide-ranged group of sophisticated sensitivity instruments are variance-based meth-

ods (Saltelli et al., 2010). The Sobol indices (Sobol, 2001) are a widely utilised representative of this type of sensitivity analysis

tools for model outputs. These indices not only allow to identify the direct effects of particular input factors on the variances of

output variables, but also of all potential impacts due to interaction effects between the variances of the inputs on the outputs.

Sobol indices

In the following text a brief description of the Sobol indices according to (Sobol, 2001; Saltelli et al., 2010; Kucherenko et al.,

2012) is provided. For more information and a detailed derivation, see, e.g., (Sobol, 2001; Saltelli et al., 2010).

Consider a model Y = f (x1,x2, . . . ,xn) defined in Rn with Y denoting the model’s output, f the model function and xi the i-th
real-valued random input variable with a distribution function p(xi). Let the input vector x = (x1,x2, . . . ,xn) be divided into two

subsets y = (xi1 ,xi2 , . . . ,xis) with 1 ≤ s < n and its complement z = (xi1 ,xi2 , . . . ,xin−s), so that Y = f (x) = f (y,z). Then the total

variance of Y can be written as:

V =Vy [Ez( f (y,z))]+Ey [Vz( f (y,z))] . (8)

Normalising and decomposing Equation (8) byV leads to the closed-order effect index Sy and the total-effect index ST
y with respect

to subset y

Sy =
Vy [Ez( f (y,z))]

V
ST

y =
Ez [Vy( f (y,z))]

V
. (9)

Under the assumption of independent input variables, both Equations in (9) are known as Sobol indices. For the case of y being
not arbitrary but univariate, i.e. v = {xi}, |v|= 1, Sy is known as a first-order Sobol index, representing the contribution of xi alone

on the total variance of the output. The total-effect Sobol index ST
y measures first and higher order effects, i.e., the contribution of

xi to the variance of the output, incorporating all variances caused by xi’s interactions with any other input variable or variables.

Since the analytical determination of the Sobol indices is not feasible in the context of this work, the Monte Carlo based estimators

according to Saltelli et al. (2010) are utilised.

Kucherenko indices

Even though Sobol indices are an excellent tool for conducting comprehensive variance-based sensitivity analysis, their ap-

plicability is based on the constraining assumption of independent input variables. However, in practical applications, such as

the interdependent performance of the miscellaneous modules inside of an aircraft engine, this assumption might be untrue. In

Kucherenko et al. (2012) an approach is provided to generalise the Sobol indices that allows to perform comprehensive sensitivity

analyses, taking into account dependencies among input variables.

The first-order effect Kucherenko index is formulated according to Equation 9 as:

Sy =
1
V

[∫
Rs

p(y)dy
[∫

Rn−s
f (y, z̄) p(y, z̄ | y)dz̄

]2

− f 2
0

]
, (10)

and equivalent, the total-effect Kucherenko index is given by:

ST
y =

1
2V

∫
Rn+s

[ f (y,z)− f (ȳ,z)]2 p(y,z)p(ȳ,z | z)dydȳdz, (11)

with z̄ being the notation specifying a random vector generated from the conditional joint density function p(y, z̄ | y), distinct from
vector z, generated by the non-conditional density function p(y,z). p(y) denotes the marginal distribution function of y, p(y, z̄ | y) is
the conditional probability density function of z̄ given y and f0 = E(Y ).

Note that the sum of all first-order effect Sobol indices is equal to or smaller than one, and the sum of all total-effect Sobol

indices is equal to or greater than one (Glen and Isaacs, 2012). However, in the presence of dependencies in the model inputs, this

does not hold for the Kucherenko indices. More information and a detailed derivation of the Kucherenko indices are provided in

Kucherenko et al. (2012).

In practice, the analytical determination of the Kucherenko indices is often not feasible. Therefore, the present Monte Carlo

estimators for their indices in Kucherenko et al. (2012), that are utilised in this work. Both estimators require a conditional sampling.

Metamodeling

In sensitivity analysis for the vast majority of cases, a relatively large sample size is mandatory. In aerodynamic engineering,

however, many of the models employed are highly complex and simulations are consequently computationally demanding. As a

result, generating sufficient samples is often too expensive or even unfeasible. A common approach to address this challenge is to

develop and utilise metamodels that replicate the functionality of the original model, while being less complex and consequently

less computationally intensive ( see (Shahsavani and Grimvall, 2011; Ben Abdessalem and El-Hami, 2014)). In the context of

aerodynamic engineering in general, and aircraft engine diagnostics in particular, suchmetamodels are increasingly based on artificial
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Figure 7 Architecture of a deep learning neural network.

intelligence and deep learning approaches (see for example Khan and Yairi (2018); Fentaye et al. (2019)). With these, larger sample

sizes can be generated with less computational effort and thus, common sensitivity analysis tools can be applied.

In this work, artificial neural networks are trained to guarantee a sufficient sample size for the respective sensitivity analysis.

A schematic layout of such a network is shown in Figure 7. It basically consists of an input layer, one or more hidden layers and an

output layer. The number of neurons per layer, as well as the number of hidden layers, depends on the particular original model and

cannot be generalised. The number of input neurons, as well as the number of output neurons, typically follows the number of input

and output variables of the model to be mapped. Each neuron of a layer is weighted connected to each neuron of the predecessor

and successor layer. For a detailed description of neural networks in general and fitting function networks in particular, as well as

their training and handling, see Rafiq et al. (2001) or Samarasinghe (2016). Note, that the utilization of an artificial neural network,

such as employed in this work, represents only one potential approach among various approaches, such as, e.g., polynomial chaos

expansion, to perform sensitivity analysis under the condition of a small data set. Here, the methods were exclusively chosen for

the purpose to present proof of concept further methods will be investigated in subsequent work of the authors.

RESULTS AND DISCUSSION

The virtual process described in themethodology allows an instantaneous prediction of the effect of production scatter and of the

deteriorated blades on the overall jet engine performance. Based on the physical model and metamodels the impact on aerodynamics

and performance will be estimated.

HPT Sensitivities for single rotor deterioration

The performance sensitivity analysis of the overall aircraft engine requires significantly more than 211 performance samples

of the HPT. To expand the data, the described neural network as metamodel with three hidden layers, ten neurons per layer, eight

input neurons, three output neurons, 15 epochs, and the Levenberg-Marquardt as back propagation algorithm is used. With these

parameters a sufficient optimum was found, and for example, reducing the number of hidden layers results in a decrease in accuracy.

Especially the epochs and neurons per layer showed an insensitivity for small changes in regards to prediction accuracy. For each

neuron a sigmoid function is utilised as activation function.The final meta model reached a mean squared error of 1e-4 for all

three outputs combined within a ten-times cross validation. Further improvement in accuracy would require more samples as well

as further studies on different meta model approaches. The required extension of the geometric input is performed based on a

Latin-hypercube sampling. Then, a variance-based sensitivity analysis is conducted on the input and output of the metamodel by

means of Sobol indices. This approach is validated by analysing the 211 original performance samples with the variance-based

sensitivity approach according to Plischke (2010) and Plischke et al. (2013), so called EASI (Effective Algorithm for Computing

Global Sensitivity Indices). This approach is purely based on existing data and does not require a specific input sampling. The

sensitivity analysis is conducted on the three integral aerodynamic outputs in respect to the geometric inputs. First, a non-monotonic

relationship is identified between mass flow and polytropic efficiency based on scatter plots. Classic correlation coefficients, e.g.

Spearman’s or Pearson’s Rank correlation coefficient, are not sufficient in these cases. However, variance-based sensitivity studies

are more suitable for detecting such non-monotonic relationships Saltelli et al. (2010). For the original CFD data the EASI indices

of first-order indicate a direct sensitivity between stagger angle γ on pressure ratio π and mass flow ṁ approximately close to 1. This

indicates negligible influence of the other geometric parameters for these output parameters. The EASI indices show a sensitivity

of around 0.1 for the influence of tip gap on pressure ratio and mass flow. However, due to the small sample size these results may

include uncertainties and all other geometric parameters can be neglected. The polytropic efficiency has a sensitivity of 0.6 for γ and

0.2 for tip gap r. The influence of the tip gap is explained by the direct dependency of mass flow over the blade’s surface resulting

in higher pressure differences between pressure and suction side, and the leakage mass flow over the blades tip, which does not

distribute to the turbines work conducted. The observation of the stagger angle agrees with the literature of Ernst et al. (2016) and
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Figure 8 EASI indices for CFD data.
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Figure 9 Sobol indices after applying the HPT-metamodel.

Högner et al. (2016). The influence of the tip gap agrees with Yaras and Sjolander (1992).

The sample size is increased according to Saltelli et al. (2004) with N = n ·(Number o f Inputs+2)with seven input parameters
and n = 211 to N = 18,432 samples for the Sobol sensitivity analysis by means of Latin-hypercube sampling. For all inputs and

outputs under consideration, a convergence study of the mean as well as of the 2nd to 4th central moment was conducted. All

examined variables converge according to the sample size N employed. Solely the output π exhibits slight leaps in the 3rd and 4th

central moment. However, these have no influence on the results obtained, see Figure 10. The relationships of the original data are

confirmed on the metamodel output, which is shown in Figure 9. Leading-edge radius, trailing-edge thickness, chord and surface

roughness on both blade sides are negligible for all output parameters. Mass flow is completely determined by the stagger angle.

The polytropic efficiency has a Sobol index of 0.6 for the stagger angle and 0.35 for tip gap, which is increased for the tip gap by

0.15 in comparison with the approximation of the original data set. For the pressure ratio the sensitivity regarding the tip gap is

decreased further and the stagger angle is held constant versus in the original data.

It is shown that the estimated variance-based sensitivity analysis of the original data is similar to the Sobol analysis with a

metamodel based on the original data. However, for this study it is only possible to analyse the direct relationship between inputs

and outputs, i.e., first-order indices. Higher-order effects, that can show the systems interactions of input variables and their combined

influence on the output variables, require larger sample sizes. Subsequently, an analysis of total-order effects purely based on the

metamodel can not be validated and is therefore not conducted within this study.

Performance Analysis

In order to estimate the impact on the overall performance of the V2500-A1 aircraft engine, the ranges of the scaling factors of

each turbomachine have to be estimated. These ranges are determined on the one hand by CFD of the HPT, and on the other hand by

the NLGPA of a factory-new and operational stressed aircraft engine V2500 (see Figure 6 and Table 2). The resulting scaling factors

are an identifier for the real range of degradation of the compressors and turbines in the turbofan. These parameters are validated by

previous studies (Goeing et al., 2020,a) and further literature (Maiwada et al., 2016; Cruz-Manzo et al., 2018) (see Table 3). Thus,

the ∆ṁ and ∆π of the HPC have the most significant impacts (-8%), followed by ∆η of the HPT (-6%). Furthermore, the smallest

impact was found for the LPT (-1% and -2%). Based on these scaling factors ∆, a uniform Latin-hypercube sampling is performed to

simulate the performance of 200,000 different combinations of varying V2500-A1 turbofan engines at the same thrust level. Next,

70% of the results are used as a training set and 30% as a validation and testing set for the neural network. The mean square error

of the metamodel is less than 1e-8.

This metamodel is used with 1e6 random parameter configurations within the parameter space to evaluate the isolated and combined

sensitivities. The input variables are interdependent, due to the power balance and mass conservation (see Equation (5) and (6)),

so a variance-based sensitivity analysis according to Kucherenko which is able to analyse such interdependent input variables is

performed.

In Figure 10 the isolated (first) and isolated plus interacting (total) sensitivities of measurable variables are shown. Therefore, the

first- order indices are represented with blue for Tt5, green (SFC), light red (Tt3), yellow (N1), purple (N2) and brown (Pt5) bars.

The stacked red bars represent the total indices. Further on, the 95% confidence interval is shown as a black error bar for the first-

order and a grey error bar for the total order. Scaling factors ∆ (e.g. IPC or Combustor) with an influence of less than 0.05 are

neglected for the sake of clarity.

As shown in Figure 10, most of the peaks are located at the HPC and HPT. In particular, the EGT (0.44/0.38) and the SFC (0.36/0.32)

are responded to the efficiency of the HPC/HPT. It is noticeable that the temperature Tt3 reacts on the efficiency of the HPC (0.56),

as well as the mass flow of HPT (0.30), while the mass flow of the HPC has a significant influence on the HP-System rotational speed

N2 (0.64). N2 also reacts to the efficiency of the HPC/HPT (0.14/0.13). Furthermore, there is a significant relationship between

N1 speed and the pressure ratio and the mass flow rate of the LPC (0.57/0.42). In addition, the pressure Pt5 reacts sensitively to

efficiency of the LPC and LPT (0.23/0.24).

In order to illustrate the virtual process and to demonstrate the significance of the interactions on the overall performance, the

described methods are performed on the real HPT blade in Figure 4 as an example. The geometry of the worn blade, roughness
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Table 3 Scaling factors based onCFD, NLGPAand

Literature

LPC IPC HPC HPT LPT
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Figure 10 First and Total Kucherenko Indices of the scaling factors and

overall performance output.

parameters, and of their confidence limits are derived and supplied to the process. Subsequently, the metamodel of the CFD is used

to obtain the module aerodynamics and scaling factors. The HPT efficiency is reduced by 2.4±0.2%, the pressure ratio is reduced by

0.046±0.003, and the mass flow is increased by 0.64±0.08 kg/s compared to new blades. These substantial aerodynamic changes

of the scrapped HPT blade confirm the heavy deterioration stated earlier.

In the next step, these results are integrated in five aircraft engine configurations Θ by means of the performance metamodel. The

configurations represent the following health conditions

1. Θ1 - deteriorated HPT

2. Θ2 - deteriorated HPT and LPC

3. Θ3 - deteriorated HPT, LPC, and IPC

4. Θ4 - deteriorated HPT, LPC, IPC, and HPC

5. Θ5 - deteriorated HPT, LPC, IPC, HPC, and LPT.

The scaling factors of the compressors and the LPT are based on the values in the Table 3. Besides, the influence of the HPT blade

on the Tt5 is shown in Figure 11.

For this purpose, the Tt5 difference between the real and the new turbine blade over the various configurations Θ is shown. The

red bar represents the influence of the HPT, the blue bar the influence of all other deteriorated modules on the Tt5 temperature. As

expected, Tt5 increases the most due to a deteriorated HPT and HPC. It is particularly noticeable that the impact of a the HPT blade

on the Tt5 is not constant for each configuration. Especially, for the aircraft engines Θ3 and Θ4, the difference decreases from 50 K

to 41 K. This effect can be explained by the interdependence of the various modules, e.g. the throttling of the various compressors

due to degradation. It agrees with the high global sensitivity previously described and already shown in Figure 10. The strength

of these interaction effects is indicated by the red bars in Figure 10. The interaction effects are particularly significant for modules

whose isolated influence is low (see IPC and Θ3). The relationship and level between HPT deterioration and Tt5 is comparable to

studies on real aircraft engines (see Zaita et al. (1997)).

CONCLUSIONS

Variability in the modules due to production tolerances and wear directly affect the aircraft engine performance. To analyse

this influence, a virtual process is developed which is able to predict overall aircraft engine performance, using the example of

the first blade of the HPT in the V2500 turbofan engine. For this purpose, 36 deteriorated HPT blades are automatically digitised,

their geometry evaluated, and their aero-thermodynamic effects determined at the level of the module. In a Gas Path Analysis

of the HPT and the remaining modules (compressors and LPT), the overall aircraft engine performance is estimated. The use of

CFD simulations for the HPT allows the local deterioration to be directly related to the engine performance, whereby a detailed

understanding is established.

Based on the results of the physical models, metamodels are developed which are used to evaluate the isolated sensitivities within

the HPT and isolated and interacting sensitivities within the aircraft engine. The results of variance-based sensitivity analysis can

be summarised as:
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Figure 11 Impact on Tt5 of miscellaneous aircraft engine health conditions Θ using the example of the real HPT blade in

Figure 4.

1. Stagger angle γ of the HPT blade of the first stage has the most significant influence on η , π and ṁ (see Figure 9).

2. Next to γ a relationship between tip gap and efficiency is detected; the remaining geometric variations only have a minor

influence.

3. Tt5 and SFC react most strongly to ηHPC and ηHPT , Tt3 to ṁHPC and ṁHPT , as well as N2 to ṁHPC, and N1 to ṁLPC and πLPC
(see Figure 10).

4. The sensitivity of a module with geometric variances on the aircraft engine performance depends on the condition of the

remaining modules (see Figure 11).

These results of this knowledge-based approach are used to improve detection and the understanding of the sensitivities of the

overall engine performance to the blades’ geometries, which is an essential area in production, as well as in maintenance, repair,

and overhaul (MRO) and in operation. While studies of isolated modules might help to quantify the impact of geometric variations

as a first step, the analysis of the whole aircraft engine is required to obtain accurate descriptions of the aircraft engine’s efficiency

and condition.

The virtual process described shows that virtual twins are capable of evaluating aircraft engine performance. It is possible

to integrate such a performance assessment with the virtual twin of an MRO shop as a basis for a rule-based decision making on

component regeneration. The virtual twin even shows the possibility of matching certain deteriorated modules with each other and

how this will impact the overall aircraft engine.

In future studies, the HPT process shown can be directly applied for further module evaluations (e.g. HPC, LPC, and LPT) that

can be implemented in the aircraft engine performance analysis to characterise additional local deterioration effects. Furthermore,

the described simplifications can be addressed and eliminated by larger sample sizes for further increasing the process accuracy.

Finally, it is possible to further increase the accuracy of the process using more samples to compensate for the simplifications

described.

NOMENCLATURE

ṁ Mass Flow

η Efficiency

γ Stagger Angle

ω Specific Dissipation Rate

π Pressure Ratio

Θ Jet Engine Configuration

AI Artificial Intelligence

BPR Bypass Ratio

C Compressor

CAD Computer-Aided Design

CFD Computational Fluid Dynam-

ics

DoE Design of Experiment

EP,EP,EN Error Function

EASI Effective Algorithm for Com-

puting Global Sensitivity In-

dices

EGT,Tt5 Exhaust Gas Temperature

f Model Function

FN Thrust

GL Auxiliary Coordinates

H Hidden Layer

h Enthalpy

hp High-Pressure

HPC High-pressure Compressor
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HPT High-pressure Turbine

IAE International Aero Engines

IPC Intermediate-pressure Com-

pressor (Booster)

k Turbulent Kinetic Energy

ks Equivalent Sand-Grain

Roughness

l Airfoil Chord

l p Low-Pressure

LPC Low-pressure Compressor

(Fan)

LPT Low-pressure Turbine

MRO Maintenance, Repair and

Overhaul

N1 Rotational Speed of LP-

System

N2 Rotational Speed of HP-

System

NLGPA Non-linear Gas Path Analyse

p(·) Distribution Function

p(·, · | ·) Conditional Probability Den-

sity Function

p(·, ·) Non-Conditional Probability

Density Function

P Pressure or Power

r Tip Gap

rLE Leading Edge Radius

RSS,RPS Roughness Suction/Pressure

Side

Sa Surface Parameter

Sy First-Order Effect

Kucherenko/Sobol Index

ST
y Total-Order Effect

Kucherenko/Sobol Index

SF Scaling Factor

SFC Specific Fuel Composition

T Turbine or Temperature

t Total

tT E Trailing Edge Thickness

V Variance

xi Real-Valued Random Input

Variable

Y Model

y+ Non-dimensional Wall Dis-

tance
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