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Abstract: Mycoplasma sp. comprises cell wall-less bacteria with reduced genome size and can infect
mammals, reptiles, birds, and plants. Avian mycoplasmosis, particularly in chickens, is primarily
caused by Mycoplasma gallisepticum (MG) and Mycoplasma synoviae. It causes infection and pathology
mainly in the respiratory, reproductive, and musculoskeletal systems. MG is the most widely
distributed pathogenic avian mycoplasma with a wide range of host susceptibility and virulence. MG
is transmitted both by horizontal and vertical routes. MG infection induces innate, cellular, mucosal,
and adaptive immune responses in the host. Macrophages aid in phagocytosis and clearance, and B
and T cells play critical roles in the clearance and prevention of MG. The virulent factors of MG are
adhesion proteins, lipoproteins, heat shock proteins, and antigenic variation proteins, all of which
play pivotal roles in host cell entry and pathogenesis. Prevention of MG relies on farm and flock
biosecurity, management strategies, early diagnosis, use of antimicrobials, and vaccination. This
review summarizes the vital pathogenic mechanisms underlying MG infection and recapitulates
the virulence factors of MG–host cell adhesion, antigenic variation, nutrient transport, and immune
evasion. The review also highlights the limitations of current vaccines and the development of
innovative future vaccines against MG.

Keywords: Mycoplasma gallisepticum; virulence factors; cytoadhesion; immune evasion; vaccine
development

1. Introduction

The genus Mycoplasma is the simplest self-replicating microorganism, with genome
size varying from 500 to 1500 kilobase pairs (kbp) [1]. Mycoplasmas are one of the most
significant pathogens of poultry, goats, cattle, pigs, fishes, and a broad spectrum of other
animals. Although mycoplasmas have small genome sizes, they employ complex molecular
mechanisms for host-cell interaction and pathogenesis [1]. They are cell wall-less microbes
phylogenetically related to low G+C Gram-positive bacteria. They followed degenerative
evolution and belong to the class Mollicutes (In Latin: Soft skin) [1]. Mycoplasmas lack
peptidoglycan cell walls and are surrounded by a single cytoplasmic membrane with
lipoproteins. Mycoplasmas lack biosynthetic pathways and thus forage on their host
for their nutritional necessities [2]. Mycoplasma lipoproteins play a critical role in host-
cell interactions and pathogenesis since they commonly come into interaction with the
extracellular environment [1].

In 1898, Nocard and Roux cultivated a bovine pleuropneumoniae-like organism, which
led to the emergence of a new area of science—mycoplasmology. Till the early 20th century,
there was a debate about whether mycoplasma was a bacteria or a virus. In 1935, a group
of scientists identified that mycoplasma shares similar characteristics with L forms of
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bacteria (strains of bacteria that lack cell walls) in its filterability, morphology, and colony
formation [3]. Later, for about 30 years, mycoplasmas were believed to be L-form variants
of other common bacteria. With the advancement in genomic data analysis, the low guanine
and cytosine content of mycoplasmas were estimated. Along with this, the inability to
perform biosynthetic pathways and reduced genome size differentiated mycoplasmas from
the bacterial L form [1,4]. Another unique characteristic of mycoplasmas is the use of the
UGA codon to encode tryptophan, and this is due to the presence of tRNA, which is capable
of reading the UGA termination codon as tryptophan [4].

A range of non-pathogenic and pathogenic mycoplasmas have been reported in
different species of birds [5]. Around 23 species of mycoplasmas are been reported in
birds. Among them, the most important, common, and pathogenic mycoplasmas are M.
gallisepticum, M. synoviae, M. iowae, and M. melegreditis [5,6]. In chickens and turkeys, M.
synoviae causes infectious synovitis mainly involving the synovial membranes of joints
and tendon sheaths. In the last decade, M. synoviae, either as a single or mixed infection
with infectious bronchitis and/or Newcastle disease viruses, has been reported to cause
respiratory disease. Mycoplasma iowae infection results in reduced hatchability and embryo
mortality along with leg troubles in juvenile turkeys [6]. Mycoplasma meleagridis is specific
to turkeys, and its infection is associated with skeletal abnormalities and airsacculitis [6].

Out of the four mycoplasmas, M. gallisepticum (MG) is a major pathogen of gallinaceous
and certain non-gallinaceous avian species [7], Figure 1. This highly transmissible organism
is the etiologic agent of ‘chronic respiratory disease’ in chickens and other birds. Clinical
symptoms of MG infections in these species include rales, coughing, sneezing, nasal
discharge, and swollen infraorbital sinuses. The consequences of MG infection include
mortality; increased carcass condemnation; reduced egg production, hatchability, and
feed efficiency; and weight gain [8]. Due to the substantial performance and production
losses, MG has been described as the most economically important pathogenic Mycoplasma
species affecting poultry [8]. MG infection is reported worldwide and listed in the World
Organization for Animal Health (OIE) [9].
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America [11,12]. Later, MG was also reported to cause disease in songbirds, including 
American goldfinches [12], purple finches [13], and house sparrows [14]. Game birds, in-
cluding pheasants and partridges, as well as chukar partridges, have been reported to be 
infected by MG [15]. It also causes infection in other birds including peafowl [16], Japanese 
quail [17], bobwhite quail, pigeons, ducks and geese [18], yellow-naped Amazon parrots, 

Figure 1. Structure of M. gallisepticum. (A) Negatively stained image of M. gallisepticum
(Source: M.H.B. Catroxo and A.M.C.R.P.F. Martins under Creative Commons Attribution 3.0 Un-
ported, https://app.dimensions.ai/details/publication/pub.1004322571, accessed on 12 February
2023 and https://en.wikipedia.org/wiki/Mycoplasma_gallisepticum#/media/File:Mycoplasma_
gallisepticum.jpg, accessed on 12 February 2023). (B) Representational image of M. gallisepticum.

MG can cause illness in a range of avian species, including chickens. MG causes
infectious sinusitis in turkeys [10] and epidemic conjunctivitis in house finches in North
America [11,12]. Later, MG was also reported to cause disease in songbirds, including
American goldfinches [12], purple finches [13], and house sparrows [14]. Game birds,
including pheasants and partridges, as well as chukar partridges, have been reported to be
infected by MG [15]. It also causes infection in other birds including peafowl [16], Japanese
quail [17], bobwhite quail, pigeons, ducks and geese [18], yellow-naped Amazon parrots,
greater flamingos, and peregrine falcons [19,20]. MG in chickens not only causes CRD but
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also opens the way for other co-infecting pathogens, such as E. coli, and low pathogenic
avian influenza subtype H9N1, causing severe economic losses [21].

Owing to the high pathogenic activity of MG in avian species that leads to a huge
economic loss in avian industries, a comprehensive review is undertaken in the current
article on this species covering its mode of infection, pathogenesis, and vaccine develop-
ment status.

2. Transmission

M. gallisepticum follows two routes for transmission—either by transovarian (vertical)
transmission or by lateral entry through direct contact (horizontal transmission) [21].

2.1. Vertical

Vertical transmission may happen in ovo (egg) and in embryo, and transmission to the
progeny (egg transmission) possibly happens as a consequence of respiratory infection of
hens, owing to the adjacency of the abdominal air sacs to the oviduct [22]. The transmission
rates are expected to differ broadly under different conditions, among individual birds, and
at different times during the same outbreak. The transmission is found to be the highest
during the acute phase of the disease when MG levels in the respiratory tract are high. The
vaccine strain ts-11 is capable of vertical transmission [23].

2.2. Horizontal

Horizontal transmission may occur by respiratory aerosols, hatchery transmission,
direct contact with infected birds, or indirect modes. Environmental factors and fomites
are the reason for transmission through indirect mode. Fomites left in the feeder are the
foremost cause of horizontal transmission. Infection via contaminated food is an example
of an environmental factor in indirect transmission [24]. The hatchery transmission may
occur through debris from broken eggs that act as a source of infection for other birds.
Infection transmission studies show that many strains of MG cause lowered egg production,
higher hatch failure owing to embryo death, and lowered fertility [25]. A diagrammatic
representation of modes of transmission is illustrated in Figure 2. Survival of MG was
reported to be longer on several parts of organisms, such as feathers, the contents of eggs,
human skin for a day or two, and on bird feeders for one day [26,27]. Regular cleaning and
disinfection may reduce the spread of this organism.
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3. Pathogenesis and Host Immune Response

Different strains of Mycoplasma sp. are host specific, but some species have the capa-
bility to colonize other species [28]. The flask-shaped structure of the Mycoplasma with a
terminal tip often exhibits gliding motility, and the tip structure facilitates strong attach-
ment to the host cell. The presence of cytoadherence molecules GapA and CrmA assist in
the initial adhesion and attachment of MG to the host cell surface [29]. Subsequent to initial
colonization at the upper respiratory tract, MG spreads to the lower respiratory tract and
causes bronchitis, airsacculitis, and pneumonia [30]. After primary attachment, MG causes
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the release of mucus at the epithelial sites as a result of an inflammatory response [29].
MG enters into non-phagocytic cells to escape from the host immune system and spread
infection throughout the host [29]. Cytokines released following MG infection play a crucial
role in pathogenesis by activation of leukocytes [29]. Infection of MG occurs through the
airway and bronchial epithelial cells, followed by attachment to host cell surfaces. The next
step involves the inhibition of protein and DNA synthesis in the host cells and reduced
mucus production. The systemic invasion of MG into the host cells leads to pathology,
immunosuppression, and production losses [28]. A simplified version of the pathogenesis
of MG is represented in Figure 3.
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The steep increase in antibody titers against virulent proteins of MG indicates the
occurrence of a strong humoral immune response in chickens when infected through direct
contact and/or aerosols [31]. Systemic IgM was detected in the first week of infection,
before infiltration. Later, B-lymphocyte proliferation was noticeable in the trachea, at
approximately 3 weeks post-infection [32]. An elevated concentration of IgA antibodies
was detected in the trachea after 2 weeks post-M. gallisepticum infection [29,33]. These
studies conclude that the chicken humoral immune response is crucial in the prevention of
infection from MG [29].

The importance of T and B cells against MG infection has been demonstrated. Birds
with thymectomy and bursectomy had an extensively increased severity of disease with
MG infection compared to control birds [34,35]. The predominant presence of B cells in
chicken trachea post-MG infection reflected the crucial role played by the B cells [35]. After
4 days of MG infection, CD4+ T cells and CD8+ T cells were reported to be observed in
the lamina propria of the trachea [33]. Cytokines and chemokines also play significant
roles at some point in MG infection [36]. B and T cells are non-specifically stimulated
by pro-inflammatory cytokines and chemokines. Distorted expression of cytokine and
chemokine-related genes such as CCL-20, IL-8, IL-12, IFN-γ, IL-1β, MIP-1β, RANTES,
CXCL-13, and CXCL-14 were revealed arbitrarily via the activation of toll-like receptor-2
(TLR) by MG lipoproteins. Distorted expression of these genes was also observed in an
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NF-κB pathway-dependent manner by MG lipoproteins [37]. The above studies imply
that subsequent to initial attachment and propagation, cytokines and chemokines mediate
a lympho-proliferative inflammatory response in the respiratory tract. Collectively, MG
is able to induce both innate and adaptive mechanisms of the host immune responses.
Macrophages are important components aiding in phagocytosis and clearance of MG. In
this immunological event, B and T cells play critical roles in the clearance and dissemination
of MG. Therefore, their diagnosis seems very important in the process of vaccination.

4. Diagnosis of Mycoplasma gallisepticum

The isolation of the organism in a cell-free medium or direct detection of its DNA
in infected tissues or swab samples are the two methods used to confirm the diagnosis
of MG infection. The use of serological testing for diagnosis is also common [21]. As
a confirmatory test, hemagglutination-inhibition is performed because nonspecific false
agglutination reactions might happen, particularly following the injection of inactivated
oil-emulsion vaccines or infection with M. synoviae. However, advancements in molecular
biology have provided a rapid and sensitive replacement for conventional culture methods,
which need specialized methodologies and expensive reagents. Polymerase chain reactions,
random amplified polymorphic DNA, arbitrarily primed polymerase chain reactions,
and multiplex real-time polymerase chain reactions are some of the molecular diagnostic
procedures used to identify Mycoplasma. ELISA is used as a primary confirmation test in
several countries [37]. Bacterial isolation, in addition to serological and genetic tests, is
being used for monitoring MG infection. The ability to differentiate between antibodies
generated by spontaneous infection and those evoked by vaccination in vaccinated flocks
is a limitation of commonly used serological techniques for diagnosis. In contrast, the
culture needed for MG isolation may take at least 21 days and may even be hindered by the
other bacteria’s fast growth. Molecular genetic assays such as genomic template stability
and multi-locus sequence typing, and sequencing could help to differentiate the three
vaccination strains, but it takes time [38,39]. To detect specific avian Mycoplasma DNA,
real-time PCR and conventional PCR are usually employed instead of culture, but these
two PCR techniques can only detect avian Mycoplasma species or allow for the simultaneous
identification of M. gallisepticum and M. synoviae.

5. Virulence and Immune Evasion Proteins

MG encodes a range of proteins that act as virulent proteins, adhesion proteins,
lipoproteins, heat shock proteins, and antigenic variation proteins [28,29]. Table 1 outlines
the list of key virulence factors associated with MG infection and pathogenesis. The
literature review indicated that each of the virulent factors has shown a specific role in the
pathogenesis and immune induction of MG.

Table 1. Virulent proteins of M. gallisepticum involved in infection process.

Function Protein Gene Annotation Reference

Adhesion

GapA M. gallisepticum A_0934 [29,40]

CrmA M. gallisepticum A_0939 [29,40]

Hlp3 M. gallisepticum A_0928 [41]

PlpA M. gallisepticum A_1199 [41]

OsmC-like protein M. gallisepticum A_1142 [42]

Immune evasion

vlhA 1.04 M. gallisepticum A_0070 [43]

vlhA 2.02 M. gallisepticum A_0117 [43]

vlhA 3.03 M. gallisepticum A_0380 [43]

vlhA 4.07 M. gallisepticum A_0977 [43]

vlhA 5.13 M. gallisepticum A_1261 [43]

Phase variation PvpA M. gallisepticum A_0258 [44]

Heat shock proteins GroEl M. gallisepticum A_0152 [45]
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5.1. Adhesions

MG has a high affinity towards chicken respiratory epithelial cells and attaches to their
surface [7]. In the host, the colonization of this pathogen occurs in the respiratory tract
through a definite attachment organelle, which is tapered at one end (terminal bleb-like
structure) of the organism. Hence, cytoadherence is a crucial step in Mycoplasma infection,
and adhesion proteins play a vital role in this process [29,46]. MG GapA and CrmA are the
most important adhesion proteins present within the bleb structure and are indispensable
for successful colonization in host cells [29,47]. MG exhibits an adhesion mechanism similar
to the human respiratory pathogen M. pneumonia [48]. The adhesion protein P1 in M.
pneumoniae is analogous to MG GapA [49]. In addition to the primary cytoadherence
proteins, fibronectin-binding proteins such as PlpA and Hlp3 [41] and the heparin-binding
protein OsmC-like protein could contribute to host cell adhesion and colonization.

5.2. Immune Evasion

The immune evasion of MG is regulated by the vlhA gene family. This family consists
of 43 vlhA genes located in five loci [43]. The major function of this gene family is to
engender antigenic diversity, which assists in immune evasion during infection [38]. The
VlhA gene family shows phase variation during the acute phase and immune evasion
during the chronic phase of infection [43,50]. The phase variation may occur impulsively
or by an immune attack, and is crucial for the survival of MG in host cells [51–53]. Various
mechanisms for phase variation, such as gene conversion, site-specific recombination, DNA
slippage, and reciprocal recombination, are utilized by different species of Mycoplasmas [53].
The vlhA gene products are speculated to be engaged in the attachment of host apolipopro-
tein A1 [54–56] and red blood cells [57]. Among the other vlhA genes, vlhA 3.03, 2.02,
and 4.07 genes are primarily expressed in the initial phase of infection, whereas vlhA 1.04
is expressed in the later stages of infection. The prototype followed by MG to express
the dominant vlhA gene during the course of infection is stochastic and its mechanism is
unknown [50].

5.3. Phase Variation by Mycoplasmas

One of the important factors for pathogenesis and chronic infection is prodigious
phenotypic variation by Mycoplasmas [58,59]. A putative cytoadhesion-related protein
(PvpA) is a phase variable protein identified by host immune cells [60]. PvpA is an integral
membrane protein without lipids and has a surface-exposed C-terminal, showing size
variation within strains. PvpA genes of MG show high similarity with P30 and P32 proteins
of human MG pathogens variants such as M. pneumoniae and M. genetalium [44].

5.4. Heat Shock Proteins

The heat shock proteins are highly conserved and maintain cellular proteins from heat
shock, inflammation, and infection [61]. GroEl is among the heat shock protein family,
also known as Hsp60 or Group 1 chaperonin. GroEl is identified as a virulent protein and
complements adhesion in MG [45].

6. Prevention from M. gallisepticum

In the poultry industry, the best prevention approach is to obtain M. gallisepticum
infection-free birds and fertile eggs. This would sustain the MG-free status of the flocks,
and birds will be free of infection, sero-conversion, or disease. These will cut off potential
vertical MG or hatchery transmission of MG. If this is not achievable for any reason,
producers need to learn to live with MG-positive flocks, and put in various prevention
strategies to minimize the infection, spread, sero-conversion, disease, and production
declines. Strict biosecurity and routine sanitation are quintessential to avoid the spread of
MG infection. A large number of poultry farms within a small geographical area increase
the probability of exposure and spread of disease [62]. An effective monitoring system
and early diagnosis are needed to prevent or control an MG infection outbreak. Sanitation
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and hygienic methods should be followed during the artificial insemination of birds to
decrease potential vertical transmission. In some countries, a number of poultry producers
use antimicrobial agents for the treatment and control of MG infection in flocks [63]. The
most commonly used antimicrobials in poultry farms are pleuromultilins, macrolides
fluoroquinolones and tetracyclines [64]. The extensive use of antimicrobials can lead to the
development of antimicrobial resistance in MG, resulting in futile treatment [65]. The lack
of cell walls in MG highly reduces the choice of current antibiotics. Another major concern
while using antimicrobials is that they can enter the food chain and may cause side effects
in humans [66] and an increase in antibiotic resistance. As an alternative to antibiotics,
both inactivated and live MG vaccines have been used for decades now. Though there is
no complete immunity in poultry against MG infection, broadly, MG vaccination reduces
the Mycoplasma load, disease severity, and production losses. With international efforts
to minimize the use of antibiotics in livestock, the use of MG vaccines and vaccination
programs are preferred in a number of countries.

7. Currently Available Vaccines against M. gallisepticum

Vaccination against MG was first recommended by Adler and his team and has
been used as a control measure for mycoplasmosis in poultry since the 1960s [67]. Both
bacterins/inactivated and live attenuated vaccines have been used in the prevention of
MG [67]. The list of current commercially available vaccines against MG infection is given
in Table 2. Due to an increase in antimicrobial resistance and reduced antibiotic efficacy to
control MG infections, the elimination of this disease is frequently coupled with novel and
effective vaccines, and improvement of existing vaccines.

Table 2. Examples of commercially available vaccines against M. gallisepticum.

Strain Name Manufacturer

Strain F

Mycoplasma gallisepticum vaccine Shandong Lvdu Biosciences [68]

CEVAC MG F CevaSanteAnimale [68]

PoulvacMyco F Zoetis United States [68]

AviPro® MG-F Elanco [69]

Strain K VAXXON® MG Live Vaxxinova® International BV [70]

Strain ts-11 VAXSAFE MG VACCINE (MG TS-11) Bioproperties Pty LTD [68]

Strain 6/85
Nobilis MG 6/85 MSD Animal Health [68]

MYCOVAC-L® Merck [69]

Strain S6 VAXXON® MG Inac Vaxxinova® International BV [70]

Strain R
MG-Bac Vaccine Zoetis United States [68]

AviPro104 MG BACTERIN Lohmann Animal Health
International [68]

Many isolates of MG have been used to produce inactivated vaccines in a number
of countries. In the literature, the R strain appears to have been made available for many
decades, and has been reported to decrease respiratory symptoms, respiratory tract lesions,
egg transmission, and production loss due to MG [67,71]. Conversely, others have reported
that the protection they offer against infection and respiratory disease was inconsistent. The
foremost benefit of oil emulsion bacterins over live attenuated vaccines is the reduced risk of
reversion to virulent forms and the ability to induce high levels of humoral antibodies [72].

7.1. Bacterins/Inactivated Vaccine

Many isolates of MG have been used to produce inactivated vaccines in a number of
countries. The R strain appears to be available for many decades, and have been reported to
decrease respiratory symptoms, respiratory tract lesions, egg transmission and production
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loss due to MG (Table 2). Conversely, the protection they offer against infection and
respiratory disease was inconsistent with R strain. The foremost benefit of oil emulsion
bacterins over the live attenuated vaccines is the reduced risk of reversion to virulence
form, ability to induce high levels of humoral antibodies and protection against drops in
egg production (Table 2).

7.2. Live-Attenuated Vaccines
7.2.1. First Generation (1975–2000)

The first live attenuated MG vaccine strain described was the F strain. Many experi-
mental challenge studies have confirmed the efficacy of the F strain vaccine in preventing
air sac infection, respiratory illness, loss of egg production, and egg transmission [73],
with no effects on egg quality [74]. In layer chickens, vaccination with the F strain prior
to the onset of laying prevents the shedding of the vaccine strain into eggs, though they
tend to shed and transmit the vaccine strain by contact. Still, the F strain is capable of
causing respiratory symptoms in broilers [75] and also in turkeys, causing outbreaks in
turkeys in the field [76]. Studies show that the F strain can remain in the upper respiratory
tract throughout the life of the chicken [77]. The delivery mode for the F strain vaccine is
intranasal instillation or coarse spray and eye drops.

In the early 1990′s, the 6/85 vaccine strain was developed in the USA. It is not virulent
in chickens and turkeys, and no bird-to-bird transmissions have been reported. This vaccine
strain is evident in the upper respiratory tract for 4 to 8 weeks post-vaccination and does
not provoke a measurable serological response [76,77], signifying the limitation of the 6/85
vaccine strain in terms of defense and period of immunity [77].

The ts-11 vaccine strain was developed from an Australian MG isolate through chemi-
cal mutagenesis [78], and the mode of administration is by eye drop. This vaccine shows less
or no virulence in turkeys and chickens, and MG was not transmitted between birds [78]. It
offers protection against MG infection, lowers losses in egg production [77,78], and limits
vertical transmission of virulent MG [35]. The ts-11 vaccine strain after administration
becomes available in the upper respiratory tract throughout the life of the bird and evokes
long-term immunity [35]. The protective immunity induced by the ts-11 vaccine is dose-
dependent and shows a variable serological response in vaccinated chickens [79,80]. A few
studies showed the potential reversion of ts-11 to a virulent strain in the field and that it
acquired the potential for vertical transmission [64].

7.2.2. Second Generation (2000-Present)

With the advancement in technology, many MG vaccine candidates such as GT5 [81],
MG 7 [29], K-strain [67], and ts-304 [82] have been researched as substitutes to address the
concerns about existing vaccine strains. Vaccine candidates GT5 and MG 7 were derived
from virulent strain Rlow. The serial passage of the virulent strain Rlow resulted in the
Rhigh strain, and subsequent complementation of Rhigh with the cytoadherence gene GapA
resulted in the GT5 vaccine strain [7,29,81]. The MG 7 strain was developed by insertion of
transposon in the middle of the virulent dihydrolipoamide dehydrogenase (lpd) gene [83].
Experimental vaccination studies with both GT5 and MG 7 strains have been shown to
protect infected chickens from tracheal lesions and colonization of MG in the trachea [81].

The K-strain is persistent in the upper respiratory tract for about 5 months and demon-
strated protection for chickens against tracheal lesions caused by MG [84]. The K-strain
offers protection equivalent to commercial F strain and ts-11 vaccines [85]. The ts-304, a
variant of the ts-11 strain, with the presence of the GapA gene tends to be more protective
against virulent MG in lower doses than ts-11 in turkeys and chickens [86]. The protective
immunity of ts-304 lasts for at least 57 weeks after a lone inoculation at 3 weeks old [86].

7.3. Genetic Engineered Vaccines

In recent times, recombinant vaccines are gaining interest. This vaccine comprises the
identification and cloning of immunogenic factors in a suitable expression system [87,88].
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Functional transposons in Mycoplasmas such as Tn916 and Tn4001 were used in the con-
struction of mutant, gene expression, cellular tagging, and protein functional analysis [89].
To date, two recombinant vaccine candidates have been developed against MG infection
viz. GT5 (attenuated and genetically modified M. gallisepticum strain) and fowlpox virus-
encoding MG genes [81,90]. More recently Zhang et al. [88] used a recombinant adenovirus
to express the S1 spike glycoprotein of infectious bronchitis virus (IBV) and the TM-1
protein of MG in HEK293 cells. The recombinant adenovirus retained the parental bio-
logical characteristics, successfully expressed target proteins, produced elevated levels of
antibodies, and considerably decreased the clinical signs and lesions subsequent to IBV
and MG challenge [88].

8. Future Vaccines

The development of efficacious vaccines against MG is essential for the future. Most
of the current vaccine development strategies are based on single antigens or different
antigens, but nonetheless in a single shot. Thus, the new epitope-based vaccines are
considered to be an excellent futuristic approach. An antigen contains the epitope, which
is the basic unit that is capable of eliciting either a cellular or humoral immune response.
A multi-epitopic vaccine is made up of a series of epitopic (antigenic) peptides, thus
facilitating the prevention of infection or inducing an immune response. An ideal multi-
epitopic vaccine is designed in such a way that it should have epitopes that can elicit
cytotoxic and helper T lymphocytes and B cells’ immune response against the targeted
microorganism [88]. Multi-epitope-based vaccines are advantageous when compared to
conventional vaccines. They are cheaper to develop, do not involve microbial culturing,
and can outdo several wet lab procedures, thus saving time. Epitope-based vaccines
also decrease the risk associated with the reversal of virulence, unlike the live attenuated
strains. Furthermore, the epitopes can be sensibly engineered and optimized to boost their
effectiveness in evoking stronger immune responses and have increased chemical stability
due to their small size. They offer safety, as they do not involve entire pathogens and
are extremely specific and stable. Due to the presence of multiple epitopes, the vaccine
candidate can bind multiple HLA alleles at a time and can ensure the desired immune
response among a heterogeneous population. Multi-epitopic vaccines have been developed
for the following poultry pathogens: Newcastle disease virus, avian influenza A (H7N9)
virus [91], and Eimeria parasitic infection [92]. Epitope-based vaccines are gaining attention
due to their specificity [93]. Recently, a multi-epitope-based vaccine utilizing an up-to-
the-date immuno-informatics approach has been proposed against MG [94,95]. The use
of recombinant vaccine technologies can endow a safe and efficient vaccine against MG
infections, although further exploration and validation are required.

Currently, most of the vaccine expression system for multi-epitopic vaccine produc-
tion is based on bacterial, yeast, and mammalian expression systems. These conventional
vaccine production systems have several disadvantages. For example, in the bacterial
expression system, the problems encountered were difficulty in expressing higher eukary-
otic proteins, accumulation of endotoxins, and protease contamination of the host. In the
yeast expression system, the main setback is hyper-glycosylation, while in the mammalian
expression system, the disadvantages of high costs, slow cell growth, and higher chances
of contamination were recorded [95].

For the past two decades, apart from the conventional production platforms and
technologies used in manufacturing vaccines, drugs, and other biologics by industries
and pharmaceutical companies, research on the plant-based production of vaccines for
veterinary diseases has gained attention. This is due to exhilarating prospects such as the
possibility of developing an edible vaccine that has the potential to develop safe, effective,
stable, and economical prophylactics, vaccines, and medicines for a variety of ailments,
including infectious disorders. It can also be produced on a large scale at a low cost and
with no chance of contamination. In the case of edible vaccines, there would be no need
for a cold chain during transportation and storage. In addition, plants can produce and
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process eukaryotic vaccine proteins better than other expression systems. The purified
plant-produced vaccine can be administered via intramuscular, intranasal, ocular, and oral
routes [96,97].

The production of a plant-derived vaccine requires the transfer of the target gene into
the plant for protein expression (Figure 4). The protein expression can be achieved by
stable or transient expression. When the gene of interest is permanently incorporated into
the plant genome through nuclear or plastid integration, it is known as stable expression,
whereas in transient expression, the production of the desired protein is achieved without
integration of the target gene into the plant cell genome.
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An ideal vaccine should be effective as well as affordable, easy to administer to a
large population, elicit long-lasting cellular and humoral immunity, be non-pathogenic,
contain fewer side effects, and be less likely to contaminate the environment, as it has been
observed in recent pandemics [98–100]. Hence, in the near future, plant-based vaccines will
gain popularity because of the above-listed advantages and due to their cost-effectiveness
as they are free from cross-contamination from other animal sources, easily transportable in
cold-chain storage, and can be easily grown and expanded in a short span of time. Taking
these advantages into consideration, for future vaccine development, plants can be used as
biofactories. Hence, prior to making a large investment in a possible product, this should
be taken into account.

9. Conclusions

MG is one of the most common and important diseases in chickens and turkeys, and
infection with this pathogen can lead to a reduction in meat or egg production globally. The
existing MG vaccines, including live-attenuated, inactivated (bacterins), and recombinant
vaccines, have not provided an acceptable or consistent level of protection against MG
infection, disease, or production losses in the past decades. With growing worldwide
concerns regarding antibiotic resistance against MG, finding an alternative but effective
control for MG infection and losses is highly desirable. Vaccines based on the adhesion and
phase variation proteins of MG are the most suitable candidates to prevent and control
M. gallisepticum infection and to sustain better health, welfare, and production of poultry.
Selective epitope-based vaccines can also be a potential candidate. Though increasing
research has been undertaken on these potential vaccines, ultimately the vaccine type,
safety, effectiveness, functional mechanisms, and immunogenicity should be extensively
studied through in vivo studies.
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