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Abstract. We give an explicit graph formula, in terms of decorated
boundary strata classes, for the wall-crossing of universal Brill-Noether
classes.

More precisely, fix n > 0 and d < g , and two stability conditions
ϕ+ and ϕ− for degree d compactified universal (over Mg,n) Jacobians
that lie on opposite sides of a stability hyperplane. Our main result is a
formula for the difference between wd(ϕ

+) and the pullback of wd(ϕ
−)

along the (rational) identity map Id : J d
g,n(ϕ

+) 99K J d
g,n(ϕ

−). The cal-
culation involves constructing a resolution of the identity map by means
of subsequent blow-ups.
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1. Introduction

The Brill–Noether theory of line bundles on nonsingular algebraic curves
is a classical pillar of XIX century algebraic geometry, which has been re-
discovered and reused to prove important contemporary results. Broadly
speaking, the theory is about studying the space of line bundles of a fixed
degree having a fixed number of linearly independent global sections (see
[ACGH85] and references therein for a survey of the classical results).

For fixed integers g, n (we will assume for uniformity of notation, that
g ≥ 2 and n ≥ 1), and d there exists a universal Jacobian J dg,n →Mg,n, a
moduli space that parameterizes isomorphism classes of degree d line bundles
over smooth, n-pointed curves of genus g. From now on we assume d < g and
define the universal Brill–Noether class wd as the fundamental class in J dg,n
of the locus Wd of line bundles that admit a nonzero global section. This
locus has fiberwise codimension g − d overMg,n and it is empty for d < 0.
In this paper we study extensions of this class to different compactifications
of the universal Jacobian.

The moduli spaceMg,n admits a natural, modular and well-studied com-

pactification Mg,n obtained by adding (Deligne–Mumford) stable pointed
curves. On the other hand, there are several natural compactifications of
J dg,n over Mg,n. In the words of Oda–Seshadri [OS79], this should not be
seen as a drawback of the theory, but rather a merit.

In [KP19] Kass–Pagani constructed an affine space of stability conditions
V d
g,n with an explicit hyperplane arrangement, with the property that ev-

ery ϕ ∈ V d
g,n produces a compactification J dg,n(ϕ) of the universal Jacobian,

with good properties (it is a nonsingular DM stack) when ϕ is not on a
hyperplane. This space comes with a natural origin — a canonical stability
— and so far most of the attention has been devoted to compactified Jaco-
bians corresponding to this particular value (or to its perturbations when
the latter belongs to some hyperplanes), see [GZ14], [HMP+].

In this paper we study how the Brill–Noether classes, suitably extended to

classes wd(ϕ) on J
d
g,n(ϕ), vary in ϕ. What we mean by this is the following:

for different stability conditions ϕ1, ϕ2, the identity on the common open set
J dg,n of line bundles on smooth curves defines a rational map

Id : J dg,n(ϕ1) 99K J
d
g,n(ϕ2),
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and we can then compute the difference wd(ϕ2)− Id∗wd(ϕ1). By “compute”,
we mean produce an explicit “graph formula”, as in the case of tautological
classes on the moduli space of curves Mg,n, which can all be expressed as
linear combinations of “decorated boundary strata classes” (see [Pan18]).

While an established theory of a tautological ring for J dg,n(ϕ) is not yet
available (a large literature is available for the case of a single curve, the
case of the universal moduli space has recently been the subject of impor-
tant results in [Yin16], [BHP+], [HMP+]), there are several natural classes
on each compactified universal Jacobian, and “decorated boundary strata

classes”, supported on the boundary of J dg,n(ϕ), may be defined in complete

analogy with the case ofMg,n. In fact, an important underlying motivation
for our work is to develop a categorical and wall–crossing framework for a
theory of tautological classes over compactified universal Jacobians.

We now discuss what we mean by “a suitable extension” for the class
wd(ϕ). One possible approach is to take the Zariski closure, but this is very
hard to control, and it does not have good formal properties (for example,
it does not commute with base change). Another approach is to consider

sheaves in J dg,n(ϕ) that admit a nonzero global section, but that locus is,
in general, not of the expected dimension and not equidimensional. Our
extension instead is by means of the Thom–Porteous’ formula. By virtue
of its universal property, there is a tautological (or Poincaré) sheaf Ltau(ϕ)
on the universal curve π : Cg,n → J

d
g,n(ϕ). We define the extension as the

degeneracy class

(1.1) wd(ϕ) := cg−d(−R•π∗Ltau(ϕ)),

as in [Ful98, Chapter 14]. By the Thom–Porteous formula (see loc.cit.),
the restriction of wd(ϕ) to J dg,n equals the (Poincaré dual of the) original
Brill–Noether class wd. We compare (1.1) with the class of the Zariski
closure in Proposition 3.38. The class (1.1) is supported on the universal
Brill–Noether locus, but in general the latter does not have the expected
codimension, hence its fundamental class does not coincide with (1.1) (more
details in Proposition 4.18).

The class (1.1) is the formal analogue of the λg−d class on Mg,n (the
Hodge bundle R•π∗(ωπ) being replaced by −R•π∗L). Given the important
role that the λ-classes have played in the enumerative geometry of curves /
intersection theory for moduli of curves, it is legitimate to expect that the
same will be true of wd(ϕ). Also, as observed in Remark 3.32, the class (1.1)
is independent of the choice of a tautological line bundle Ltau(ϕ). This is not
the case for other natural classes, e.g. the first Chern class of the pull-back
of the tautological line bundle via some section, or the pushforward of a
power of the latter under a forgetful morphism.

In this paper we assume that ϕ+ and ϕ− are on opposite sides of a stability
hyperplane (Definition 5.1), and we give an explicit graph formula for the
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difference

wd(ϕ
+)− Id∗wd(ϕ

−).

In order to achieve this, we first produce a nonsingular resolution of the
identity

J̃ dg,n(ϕ+, ϕ−)

J dg,n(ϕ+) J dg,n(ϕ−)

p

p−

Id

by an explicit sequence of blow-ups of J dg,n(ϕ+). We use this resolution to
give, in Theorem 7.4, an explicit and closed graph formula for the difference

p∗(wd(ϕ
+)) − p∗−(wd(ϕ−)) in the cohomology of J̃ dg,n(ϕ+, ϕ−). Finally, we

calculate the push-forward of that formula via p to write a formula (again
a graph formula, explicit and closed) for the difference wd(ϕ

+)− Id∗wd(ϕ
−).

Our construction of J̃ dg,n(ϕ+, ϕ−) and our formulas are complicated by
the fact that, for some of the hyperplanes, the locus where the identity is

undefined fails to be irreducible. In those cases, the space J̃ dg,n(ϕ+, ϕ−)
is constructed as an explicit sequence of blow ups along centers that have
transversal self-intersection, and this construction plays an important part
in our paper.

In this introduction we describe the particular case of our construction
and formula when the indeterminacy locus is irreducible (this occurs in
many cases, and in some sense in most cases as long as n > 1). Then the

indeterminacy locus J ′
β ⊂ J

d
g,n(ϕ

+) generically parameterizes curves with 2
nonsingular components of genus, say, gX and gY , carrying markings S and
Sc, and joined at a certain number of nodes, say t, together with line bundles
of some fixed bidegree, say, (d−dY , dY ). The locus J ′

β can be parameterized
by a “resolved stratum”

fβ : Jβ → J ′
β ↪→ J

d
g,n(ϕ

+)

(which we simply call “a stratum” in the main body of the paper), where
the t nodes are parameterized: a general point of Jβ is a triple of a (|S|+ t)-
pointed curve of genus gX , a (|Sc| + t)-pointed curve of genus gY , and a
line bundle of bidegree (d − dY , dY ). The conormal bundle to fβ has rank
t and it splits as a direct sum of line bundles, whose first Chern classes we
call Ψ1, . . . ,Ψt (see Remark 7.30 for more details on how these relate to the
“classical” ψ-classes inMg,n). The base change to Jβ of the universal family

π : Cg,n → J
d
g,n(ϕ

+) consists of two irreducible components, say πX : X →
Jβ and πY : Y → Jβ, of genus gX and gY respectively, each carrying a
tautological sheaf LX and LY (obtained by pulling back Ltau(ϕ+)).

In this particular case, our main result becomes:
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Theorem. (Corollary 7.33 with m = 1.) If ϕ+ and ϕ− are on opposites
sides of a stability hyperplane (Definition 5.1) and the indeterminacy lo-

cus of the identity morphism Id : J dg,n(ϕ+) 99K J
d
g,n(ϕ

−) is irreducible, the

difference wd(ϕ
+)− Id∗wd(ϕ

−) equals

∑
s+j+λ=g−d−t

(
gY − dY − j − 1

g − d− j − s

)
fβ∗
t!(

cs(−R•πX∗ LX(−X ∩ Y )) · cj(−R•πY∗ LY ) · hλ(Ψ1, . . . ,Ψt)

)
,

where hλ is the complete homogeneous polynomial of degree λ in t variables.

The special case d = g − 1 of the above formula, when the Brill–Noether
class is a divisor (the theta divisor), was discovered in [KP17, Theorem 4.1].
In that case the calculation was massively simplified by the fact that the
classes have codimension 1, and therefore, because the total space is non-
singular, no blowup is required.

Theorem 7.4 is the main result in this paper. It computes the pull-back

to the resolution J̃ dg,n(ϕ+, ϕ−) of the difference wd(ϕ+)− Id∗wd(ϕ
−) in terms

of decorated boundary strata classes. The formula for the difference in

J dg,n(ϕ+) is obtained by pushing the latter forward along a blow-down mor-
phism, which generates more complicated coefficients.

The starting point to construct the resolution J̃ dg,n(ϕ+, ϕ−) is the obser-

vation that the tautological sheaf for ϕ+ is not ϕ−-stable, and the locus J ′
β

where it fails ϕ− stability generically parameterizes curves with 2 nonsingu-
lar irreducible components (throughout called a “vine curve”) and a fixed
bidegree. When the locus J ′

β is irreducible, the resolution is constructed by

blowing up J dg,n(ϕ+) at J ′
β. The two components X ′ ∪ Y ′ of the pull-back

of the universal curve to the exceptional divisor E are now divisors (“uni-
versal twistors”) in the blowup of the universal curve, and after suitably
tensoring by one of them, the sheaf Ltau(ϕ+) becomes ϕ−-stable. The latter

sheaf defines the other morphism J̃ dg,n(ϕ+, ϕ−)→ J
d
g,n(ϕ

−) by the universal
property. The main technical difficulty is to suitably identify a sequence of
blowups at centers that have transversal self-intersection, which allows one
to generalize the above reasoning to the case when the base locus J ′

β is not
irreducible.

Note that other resolutions of the identity map may also be constructed
following existing literature ([AP21], [Hol21], [MW20], [HMP+], [CGH+]),
but those constructions yield singular spaces.

In Section 3 we introduce the objects we work with, compactified uni-
versal Jacobians and Brill–Noether classes. In Section 4 we write axioms
for “resolved” strata of normal crossing stratifications, and then prove some
general intersection theory results that are valid in this context. The main
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geometric ideas here are not entirely new, but we could not find a suit-
able reference in this generality, and we believe that this axiomatic point of
view will prove helpful in the current research landscape. In Section 5 we
discuss the combinatorial aspects that arise from a wall-crossing situation
where there are stability conditions ϕ± are on opposite sides of a given sta-
bility hyperplane (Definition 5.1). Our paper is concerned with the case of
rank 1 sheaves on nodal curves, and the combinatorics of Section 5 should
be the shadow of a theory for higher dimension and rank. The central defi-
nition is that, for each graph G and divisor D on G and choice of stability
conditions ϕ± on opposite sides of a hyperplane, of a poset Ext(G,D) of
“extremal” subsets of the vertices of G. Section 6 gives the construction of

the resolution J̃ dg,n(ϕ+, ϕ−). Finally, in Section 7 we are then ready to em-
ploy intersection theory techniques and calculate the wall-crossing term. At
the end of Section 7 we explain how the pullback of the wall-crossing term
via an Abel–Jacobi section can be explicitly calculated in terms of decorated
boundary strata classes inMg,n by employing the main result of [PRvZ20].

In the background of this work, we produce two results that we believe
are of independent interest. The first is Theorem 3.29, where we interpret

the universal quasistable family over J dg,n(ϕ) (also known in the literature
as Caporaso’s family from [Cap94], see also [MMUV22] and [EP16]) as a

fine compactified universal Jacobian J dg,n+1(ϕ
′) with one extra point.

Secondly, as part of Proposition 3.38, we describe the collection of stabil-
ity conditions for d < 0 such that wd(ϕ) = 0. One can choose a suitable

Abel–Jacobi section σ :Mg,n → J
d
g,n(ϕ) and obtain a zero class σ∗wd(ϕ).

A different formula for the latter as a linear combination of standard tauto-
logical classes was given in [PRvZ20] by means of the GRR formula. This
gives tautological relations inMg,n (see Remark 3.42 for the details). Note
that these relations are in degree larger than g (the degree is g− d for nega-
tive d), the same range of Pixton’s double ramification relations (proven by
Clader-Janda in [CJ18]).

1.a. Related work. An important motivation that we have not mentioned
in the above discussion, is its relation with the (possibly twisted) double
ramification cycle. For a review of the latter and related literature, we ad-
dress the reader to [BHP+] and [HMP+, Section 1.1]. We refer to [PRvZ20,
Section 3.3] for how the double ramification cycle relates to the Brill–Noether
classes discussed here. As pointed out in loc.cit., the theory on how these
classes are extended to the boundary and then pulled back toMg,n via some
Abel–Jacobi section is trivial for nodal curves of compact type (i.e. the mod-
uli space of multidegree zero line bundles is compact) and for curves with
1 node, and the complement of the locus of all such curves is generically
parameterized by vine curves.

In [BHP+] the authors discuss the theory of a “universal double ramifica-
tion cycle” as an operational class of degree g in the Artin stack of families
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of line bundles on families of nodal curves, which correspond to “universally
intersecting with the closure of the zero section”. Our extensions (1.1) could
also be described in that language, and in fact the construction of an oper-
ational class would avoid a lot of technical difficulties owing to the fact that
the classes (1.1) obviously commute with base change.

In this paper we do not discuss a modular description of our resolution

J̃ dg,n(ϕ+, ϕ−). We expect that one such description should be possible fol-
lowing the recent work [Mol22b] by Molcho. The same author has also
recently proved in [Mol22a] that the pull-back of the Brill–Noether classes
wd(ϕ) via all Abel–Jacobi rational sections is tautological inMg,n (this was
conjectured in [PRvZ20, Section 4.1]).

1.b. Acknowledgments. To be added after the refereeing process.

2. Notation and preliminaries

2.a. Posets. In this paper we will work with many posets (typically, the
one underlying some category of stratifications, and some of its subposets).
Here we recollect the relevant notation.

Definition 2.1. Let P be a finite partially ordered set (or a poset).
A subset C of P is called a chain, if the partial order on C induced by P

is a total order on C.
A poset is ranked if for every element a, all maximal chains having a as

the largest element have the same length (called the rank of a).
The poset P is called a forest, if for every a ∈ P the lower set {b ≤ a} is a

chain. More generally, we say that a subset F ⊆ P is a forest if F together
with the partial order induced by P is a forest.

If a > b and there exists no c such that a > c > b, then we say that a
covers b, and write a⋗ b.

2.b. Graphs. By a graph we mean a finite, connected, undirected multi-
graph, decorated with a genus function and markings (see for example
[CCUW20, Section 3.1] and [MMUV22, Section 2.1] for a precise definition).

If G is a graph, we write V (G) for its set of vertices and E(G) for its set of
edges, we write g : V (G) → N for the genus function and leg : {1, . . . , n} →
V (G) for the markings function.

If S ⊆ V (G), we writeG(S) for the complete subgraph ofG on the vertices
S, and say that G(S) is the subgraph of G induced by S.

Given V1, V2 ⊆ V (G), we write E(V1, V2) for the edges that have one
endpoint in V1 and another in V2 (if the edge is a loop, we include it if and
only if its adjacent vertex is in both V1 and V2).

If G is a graph and E ⊆ E(V (G)), we denote by GE the graph obtained
from G by adding exactly 1 vertex, denoted ve, in the “interior” of each edge
e ∈ E. We call each such ve an exceptional vertex of GE .

A graph G is stable if

2g(v)− 2 + |E({v}, {v}c)|+ | leg−1(v)| > 0
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for every vertex v ∈ V (G).

2.c. Families of curves and sheaves. A nodal curve C is a reduced and
connected projective scheme of dimension 1 over some fixed algebraically
closed field, with singularities that are at worst ordinary double points. The
(arithmetic) genus of C is pa(C) = h1(C,OC). A subcurve X of C is a
connected union of irreducible components of C. Its complement Xc is the
union of the other components of C.

A n-pointed curve is a tuple (C, p1, . . . , pn) where C is a nodal curve, and
p1, . . . , pn are pairwise distinct nonsingular points of C. Its dual graph G(C)
has the irreducible components of C as vertices, the nodes of C as edges, the
geometric genus (resp. the marked points) of each component as the genus
(resp. the markings) decoration.

A morphism f : C ′ → C of nodal curves is a semistable modification if it is
obtained by contracting some subcurves, not necessarily irreducible, E ⊂ C ′

such that g(E) = 0 and |E∩Ec| = 2. Every subcurve E ⊂ C ′ contracted by
f is called an exceptional curve of f . A semistable modification such that
every exceptional curve is irreducible is called a quasistable modification.

A coherent sheaf on a nodal curve C has rank 1 if its localization at each
generic point of C has length 1. It is torsion-free if it has no embedded
components. If the stalk of a torsion-free sheaf F over C fails to be locally
free at a point P ∈ C, which must necessarily be a node, we will say that F
is singular at P . If F is a rank 1 torsion-free sheaf on C we say that F is
simple if its automorphism group is Gm or, equivalently, if removing from
C the singular points of F does not disconnect X.

A family of nodal curves over a C-scheme S is a proper and flat morphism
C → S whose fibers are nodal curves. (Throughout, all families C/S will
admit a distinguished section in the S-smooth locus of C). A semistable
(resp. a quasistable) modification of the family C/S is another family C′/S
with a S-morphism f : C′ → C that is a semistable (resp. a quasistable)
modification (as defined above) on all geometric points s ∈ S.

If T is a S-scheme, a family of rank 1 torsion-free simple sheaves parame-
terized by T over a family of curves C → S is a coherent sheaf F of rank 1 on
C ×S T , flat over T , whose fibers over the geometric points are torsion-free
and simple.

If F is a rank 1 torsion-free sheaf on a nodal curve C, the (total) degree
of F is degC(F ) := χ(F )− 1 + pa(C).If X ⊆ C is a subcurve, we denote by
FX the maximal torsion-free quotient of F ⊗OX . The total degree and the
degree of FX and FXc are related by the formula

(2.2) degC(F ) = degX F + degXc F + δX∩Xc(F ),

where δS(F ) is the number of points in S where the stalk of F fails to be
locally free.
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A line bundle F ′ on a semistable modification f : C ′ → C is called posi-
tively admissible (see [EP16]) if degE(F

′) is either 0 or 1 on every exceptional
subcurve of f . The following results follow from [EP16, Section 5].

Proposition 2.3. Let π : C → S and π′ : C′ → S be families of nodal curves
and f : C′ → X be a semistable modification. Let F ′ be a positively admissible
sheaf on C′ and set F = f∗(F

′).

(1) The sheaf F is a torsion free rank-1 sheaf and R1f∗(F
′) = 0, in

particular f∗(F
′) commutes with base change. Moreover, we have

that R•π∗(F ) = R•π′∗(F
′).

(2) The sheaf f∗(F
′) is invertible if and only if degE(F

′) = 0 on every
exceptional subcurve of f . Moreover, in this case, F ′ = f∗f∗(F

′).
(3) If f is a quasistable modification and degE(F

′) = 1 for every ex-
ceptional subcurve, then C′ = PC(F

∨) and F ′ is isomorphic to the
tautological line bundle OPC(F∨)(1).

(4) More generally, we have that f factors as X ′ g−→ PC(F
∨) → X, and

O(1) ∼= g∗(F
′) and F ′ ∼= g∗(O(1)).

In particular, we have the following.

Corollary 2.4. Let C → S be a family of nodal curves. Taking the direct im-
age under the quasistable modification gives a bijection between isomorphism
classes of positively admissible line bundles on quasistable modifications of
C/S, and isomorphism classes of families of rank 1 torsion free sheaves on
C.

We now define the multidegree of a sheaf on a nodal curve as the multide-
gree of the unique positively admissible line bundle as in the above corollary.

A degree d pseudodivisor on a graph G is a pair (E,D) where E ⊆ E(G)
and D ∈ Divd(GE) satisfies D(v′) = 1 for each exceptional vertex v′. When
E is empty, we simply write D in place of the pair (∅, D).

Given a degree-d rank 1 torsion free sheaf F on a curve C, we define
the multidegree deg(F ) of F as the pseudodivisor (E,D) on the dual graph
G(C) of C as follows. The set E is the set of edges of G(C) that correspond
to nodes of C where F is not locally free. The divisor D on G(C)E is defined
by D(v) = degCv

(FCv) if v ∈ V (G(C)) ⊆ V (G(X)E) and D(v) = 1 for every
exceptional vertex v. By Equation (2.2), we have that (E,D) is a degree-d
pseudodivisor.

Note also that a rank 1 torsion free sheaf on C is simple if and only if its
multidegree (E,D) has the property that E does not disconnect the graph
G(C).

2.d. Moduli spaces and graphs. Here we discuss some general notation
on moduli spaces of curves. We refer the reader to [ACG11] for more details
on nodal curves and their dual graphs.

A n-pointed curve (C, p1, . . . , pn) is stable if |Aut(C, pi)| < ∞. We will
sometimes abuse notation and write C for (C, pi). For example, we will say
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that the genus of (C, pi) is g to mean that the h1(C,OC) = g, the arithmetic
genus of the underlying curve C is g.

We will denote byMg,n the moduli spaces of stable n-pointed curves of
genus g. The moduli space comes admits a stratification by dual graphs,
which we now discuss.

2.d.1. Stable graphs. We denote by Gg,n the small category of stable, n-
pointed graphs of genus g (where we have fixed a choice of 1 object for each
isomorphism class). Morphisms G → G′ are given by an edge contraction
followed by an isomorphism. (More details in [ACG11] and [MMUV22]).
There is a natural functor Gg,n+1 → Gg,n that forgets the last point and
stabilizes the graph.

2.d.2. Stratification of moduli of stable curves. ForG ∈ Gg,n there is a gluing
morphism

fG :MG :=
∏

v∈V (G)

Mg(v),n(v) →
[ ∏
v∈V (G)

Mg(v),n(v)/Aut(G)
]
→M′

G ↪→Mg,n.

We say that G, or MG, or fG, is a (resolved) stratum of Mg,n. We re-

gardMG as a “resolved stratum” and its imageM′
G as the corresponding

“embedded stratum”.
The codimension 1 strata are the following divisors generically parame-

terizing curves with 1 node:

(1) the divisor ∆irr, generically parameterizing irreducible curves
(2) for 0 ≤ i ≤ g and S ⊆ [n] (except i = 0 and |S| < 2 and i = g and
|S| > n − 2), the divisor ∆i,S = ∆g−i,Sc generically parameterizing
curves with 2 components, of which one of genus i carrying the
marked points in S.

On the (resolved) stratum the normal bundle to fG splits as a direct sum
of line bundles

NfG =
⊕

e∈E(G)

Le.

We denote by Ψe = −c1(Le). (Recall that, if e is the edge whose half edges
h(e), h′(e) are based at v, v′ ∈ V (G), then the cotangent line bundles to h(e)
and h′(e) are denoted by Lh(e) and Lh′(e) and its first Chern classes ψh(e)
and ψh′(e). We then have Le = L∨

h(e) ⊠L∨
h′(e) and so Ψe = ψh(e) +ψh′(e), but

this will not play a role.)
In Section 4 we will define what the category of (resolved) strata induced

by normal crossing divisors on a DM stack, and will interpret the category
Gg,n as the category of strata of the nonsingular DM-stack Mg,n induced
by the normal crossing divisor ∆ = ∆irr ∪

⋃
i,S ∆i,S .
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3. Compactified Jacobians and Universal Brill–Noether
Classes

In this chapter we introduce the basic objects of study in this paper,
compactified universal Jacobians, and extensions of universal Brill–Noether
classes by means of Thom–Porteous formula. We also recall the results on
the stability space of compactified universal Jacobians that we will need
later.

3.a. The universal stability space. Here we recall the definition and first
results on the stability space of a single curve and on the universal stability
space V d

g,n from [KP19].

Definition 3.1. For a fixed graph G, we define the space of polarizations

V d
stab(G) :=

ϕ ∈ RV (G) :
∑

v∈V (G)

ϕ(v) = d

 ⊂ RV (G).

For V ⊆ V (G), we write ϕ(V ) for
∑

v∈V ϕ(v).

Every morphism f : G→ G′ of graphs induces a morphism f∗ : V
d
stab(G)→

V d
stab(G

′) by setting

(3.2) f∗ϕ(v
′) =

∑
f(v)=v′

ϕ(v)

and we define the space of universal polarizations as the limit (or inverse
limit)

V d
g,n := lim←−

G∈Gg,n

V d
stab(G),

i.e. as the space of assignments
(
ϕ(G) ∈ V d

stab(G) : G ∈ Gg,n
)
that are com-

patible with all graph morphisms.

We now present a simple description of the universal stability space V d
g,n

that follows from [KP19, Corollary 4.3]. The result requires that we intro-
duce some notation for graphs of “vine curves”.

Definition 3.3. A vine curve triple (i, t, S) consists of two natural numbers
i, t and a subset S ⊆ [n], such that 0 ≤ i ≤ g, 1 ≤ t, i + t ≤ g + 1, and
such that if (i, t) = (0, 1) then |S| ≥ 2, if (i, t) = (0, 2) then |S| ≥ 1, if
(i, t) = (g, 1) then |Sc| ≥ 2 and if (i, t) = (g − 1, 2) then |Sc| ≥ 1.

A vine curve is a stable graph G(i, t, S) associated to a vine curve triple,
which consists of two vertices of genus i and g− i respectively connected by
t edges, and with marking S on the first vertex and Sc on the second vertex.
We will always assume that S contains the first marked point.

The stability space V d
stab(G(i, t, S)) is an affine subspace of R2. We can

parameterize it by means one variable xi,t,S by taking the inverse image
under the projection onto the first factor. That means, we describe

V d
stab(G(i, t, S)) = {(xi,t,S , d− xi,t,S) : xi,t,S ∈ R} ⊂ R2.
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We now introduce the stability space of “vine curves” using the previous
definition.

Definition 3.4. We let

T dg,n :=
∏

(i,t,S)
a vine curve triple

V d
stab(G(i, t, S)).

Then we define:

(1) The vector space Cdg,n as the quotient of T dg,n obtained as the product

of all vine curve triples of the form V d
stab(G(i, 1, S)).

(2) The vector space Dd
g,n is the quotient of T dg,n obtained as the product

of all V d
stab(G(0, 2, {j}) for j = 1 . . . , n.

Throughout we will use the coordinates xi,t,S introduced in the end of Def-

inition 3.3 on the spaces T dg,n and on its quotients Cdg,n and Dd
g,n.

There are natural restriction affine linear maps:

τd : V
d
g,n → T dg,n, ρd : V

d
g,n → Cdg,n ×Dd

g,n

One of the main results of [KP19, Section 3] is that the universal stabil-
ity space embeds into the “vine curves” stability space, and that ρd is an
isomorphism.

Proposition 3.5. ([KP19, Lemma 3.8, Corollary 3.4]) The affine linear
map τd is injective. The vector space homomorphism ρ0 is an isomorphism.
Each morphism ρd is an isomorphism of affine spaces.

3.b. The stability hyperplanes. We will later see in Section 3.c that for
every universal stability condition ϕ ∈ V d

g,n there exists a compactified uni-
versal Jacobian parameterizing ϕ-stable (rank 1, torsion free) sheaves on
every (flat) family of n-pointed stable curves of genus g. Here we combina-
torially introduce the degenerate locus of V d

g,n, which will later be seen to
be the locus of ϕ’s such that there exist strictly semistable sheaves on some
stable curves. We will introduce the degenerate locus as a union of hyper-
planes (which one could think of as a finite, non-centered, toric hyperplane
arrangement). This explicit description is taken from [KP19, Section 5].

Definition 3.6. We say that a polarization ϕ ∈ V d
stab(G) is degenerate if for

some subset ∅ ⊊ V0 ⊊ V (G) the quantity

(3.7)
|E(V0, V

c
0 )|

2
+
∑
v∈V0

ϕ(v)

is an integer.
We say that a universal stability condition ϕ ∈ V d

g,n is degenerate if for

some G ∈ Gg,n, the G-component ϕ(G) is degenerate in V d
stab(G).

The degenerate locus is a locally finite union of affine hyperplanes, and
we will soon describe these hyperplane explicitly. Let us start with a simple
example.
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Example 3.8. (Vine curves). IfG is a vine curve, after identifying V d
stab(G) =

R by projecting onto the first factor (as done in the end of Definition 3.3),
we have that the degenerate locus is a locally finite collection of points that
only depends on the parity of the number of nodes t. If t is even, the de-
generate locus corresponds to the Z ⊂ R. If t is odd, the degenerate locus
corresponds to the 1

2 + Z ⊂ R.

We now give an explicit description of the degenerate locus in V d
g,n, based

on [KP19, Section 5]. By Proposition 3.5, we have that V d
g,n ⊂ T dg,n, where

the latter is the stability space of vine curves (one for each topological type),
with coordinates xi,t,S for each vine curve triple (i, t, S) (see Definition 3.3).

For each vine curve triple (i, t, S) and integer k, define the (translate of
the coordinate) hyperplane

(3.9) T dg,n ⊃ H(i, t, S; k) :=

{
{xi,t,S = k} for even t,

{xi,t,S = 1
2 + k} for odd t.

One main result of [KP19, Section 5] is that the degenerate locus in the uni-
versal stability space is the pull-back of translates of coordinate hyperplanes
in the stability space of vine curves. More precisely:

Proposition 3.10. ([KP19, Lemma 5.8]) The degenerate locus in V d
g,n is a

union of hyperplanes. Each hyperplane is the inverse image via the affine
linear embedding τd : V

d
g,n ⊂ T dg,n of a hyperplane of the form H(i, t, S; k).

This description hides the difficulty that the embedding τd has, in general,
a very high codimension.

A more explicit description of the degenerate locus can be obtained via
the isomorphism V d

g,n
∼= Cdg,n × Dd

g,n. When expressing the hyperplanes of
(3.9) in terms of the coordinates xi,1,S and the coordinates xj := x0,2,{j}, by

[KP19, Theorem 2] we have1

(3.11) xi,t,S =
2g − 2i− t
2g − 2

·
∑
j∈S

xj +
2i− 2 + t

2g − 2
·

(
d−

∑
j /∈S

xj

)
whenever t ≥ 2. Therefore, the stability hyperplanes take the following form

(3.12) H(i, 1, S; k) =

{
xi,1,S = k +

1

2

}
for all vine curve triples (Definition 3.3) of the form (i, 1, S) (the boundary
divisors inMg,n that generically parameterize curves with 2 components)
(3.13)

H(i, t, S; k) =

2g − 2i− t
2g − 2

·
∑
j∈S

xj +
2i− 2 + t

2g − 2
·

(
d−

∑
j /∈S

xj

)
= k +

t

2


1Note that the formula in loc.cit is translated by the coordinates of a “degree-d canon-

ical stability condition” – a choice of an origin in V d
g,n that we do not discuss here.
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for all vine curve triples (i, t, S) with t ≥ 2.
Note that the degenerate locus parameterized by the hyperplanes in (3.12)

and (3.13) may come with multiplicities. In other words, there exist different
(i1, t1, S1; k1), (i2, t2, S2; k2) such thatH(i1, t1, S1; k1) = H(i2, t2, S2; k2). We
will now analyse these hyperplanes and study when they may coincide.

It is immediate to observe that a necessary condition for two hyerplanes
of this form to coincide, is that their corresponding subset of marked points
must also coincide:

Proposition 3.14. If any two hyperplanes H(i1, t1, S1; k1) and H(i2, t2, S2; k2)
coincide, then S1 = S2.

Proof. Straightforward. □

First we deal with the hyperplanes of (3.12), occurring on compact type
vine curves (or divisorial vine curves). Those are all simple:

Proposition 3.15. The hyperplanes in (3.12) are pairwise distinct and each
of them is distinct from any of the hyperplanes in (3.13).

Proof. Straightforward. □

The next proposition is about hyperplanes of the form (3.13) with S ̸=
[n]. As we shall discuss in Section 5.c, a stability hyperplane of this type
witnesses a change of stability on loci of vine curves that are disjoint.

Proposition 3.16. If S ̸= [n] and (i1, t1; k1) ̸= (i2, t2; k2) are such that
H(i1, t1, S; k1) and H(i2, t2, S; k2) are equal, then 2i1 + t1 = 2i2 + t2.

Proof. Straightforward. □

The most interesting vine curves from the point of view of the stability
decomposition are those with S = [n]. Over those vine curves it can occur
that two stability hyperplanes of the form (3.13) coincide. For example,
if d = 0, by fixing

∑
j∈[n] xj = g − 1 one sees that all hyperplanes of the

form H(i, t, [n]; k) with i+ ⌈t/2⌉+ k = g coincide (note that this is a finite
collection, because of the constraints i+ t ≤ g + 1, i ≥ 0 and t ≥ 2).

3.c. Compactified Jacobians, universal and semistable family. Here
we define, for every nondegenerate ϕ ∈ V d

g,n, a fine compactified universal Ja-

cobian J dg,n(ϕ), parameterizing ϕ-stable sheaves. The construction is taken
from [KP19, Section 4], in the language of pseudodivisors from [AP20, Sec-
tion 4]. Each fine compactified Jacobian will come with a normal crossing
stratification category (an abstract definition of this notion will be given
and discussed in the next section).

We also describe (Theorem 3.29) a quasistable modification of the uni-

versal curve Cg,n(ϕ) → J dg,n(ϕ) as a certain (n + 1)-universal Jacobian

J dg,n+1(α(ϕ)).
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Definition 3.17. For ϕ ∈ V d
stab(G) we say that a pseudodivisor (E,D) is

ϕ-semistable if

(3.18) ϕ(V0)− degV0(D) +
|E(V0, V

c
0 )|

2
≥ 0

for every V0 ⊆ V (GE). We say that (E,D) is ϕ-stable if the inequality above
is strict for every V0 such that V0 ̸= V (GE) and V0 is not contained in the
set of exceptional vertices. Given v0 ∈ V (G), we say that (E,D) is (ϕ, v0)-
quasistable if the inequality is strict for every V0 such that V0 ̸= V (GE) and
v0 ∈ V0.

As stipulated in Section 2.c, when E = ∅, we will simply write D for
(∅, D).

Remark 3.19. By [AP20, Proposition 4.6] if a pseudodivisor (E,D) on G
is (ϕ, v0)-quasistable for some (ϕ, v0), then E ⊆ E(G) does not disconnect
G.

Remark 3.20. We have introduced the degenerate locus of V d
stab(G(X))

and of V d
g,n in Definition (3.6). We claim that, in both cases, an element ϕ

is nondegenerate if and only if all semistable pseudodivisors are stable. The
“only if” is immediate. The other implication is proved in [KP19, Section 5].

We now define stability for rank 1 torsion free sheaves on curves.

Definition 3.21. ([KP19, Definition 4.2]) Let C be a nodal curve with
dual graph G(C) and let ϕ ∈ V d

stab(G(C)). A rank 1 torsion-free sheaf F of
degree d on C is ϕ-(semi)stable if its multidegree deg(F ) is a ϕ-(semi)stable
pseudodivisor.

If P ∈ Csm is a nonsingular point of C in the component Cv0 , we say that
F is (ϕ, P )-quasistable if deg(F ) is (ϕ, v0)-quasistable.

If C ′ → C is a semistable modification of C and C ′ is a positively admissi-
ble line bundle on C ′, we say that F ′ is ϕ-(semi)stable or (ϕ, P )-quasistable
if so is f∗(F

′).

For ϕ ∈ V d
stab(G(C)) and P ∈ C, we define J dϕ,P (C) to be the subscheme

of Simpd(C) parameterizing (ϕ, P )-quasistable sheaves.

Note that if F is a rank 1 torsion free sheaf on C then (1) if F is (ϕ, P )-
quasistable then it is simple, and (2) the sheaf F is simple if and only if its
multidegree (E,D) has the property that E ⊆ G(C) is nondisconnecting.

Remark 3.22. Let ϕ ∈ V d
stab(G(C)) and p ∈ Csm be as above. Let ϕ′ ∈

V d
stab(G(C)) be a small perturbation of ϕ obtained by subtracting a small
ϵ > 0 to ϕ on the vertex of G(C) containing P , and by subtracting a small
positive amount on all other components (so that

∑
ϕ′(v) =

∑
ϕ(v) = d).

Then (ϕ, P )-quasistability coincides with ϕ′-stability which in turn coin-
cides with ϕ′-semistability,
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We are now ready to introduce the notion of universal polarizations and
compactified Jacobians. Each universal polarization will give rise to a fine
compactified Jacobian, and to a stratification category. Recall that, for any
1 ≤ i ≤ n, we denote by σi :Mg,n → Cg,n the i-th smooth section.

Definition 3.23. Let ϕ ∈ V d
g,n be a universal polarization.

We define Cg,n(ϕ) to be the category whose objects are (G, (EG, DG))
where G is an object of Gg,n and (EG, DG) is a ϕ-semistable pseudodivisor
on G. A morphism (G, (∅, DG))→ (G′, (∅, DG′)) in Cg,n(ϕ) is a morphism
f ∈ MorGg,n(G,G

′) such that the induced homomorphism f∗ : Div(G) →
Div(G′) on divisors satisfies f∗(D) = D′. We refer to [AP20, Section 2.1] for
the notion of a morphism (G, (EG, DG)) → (G′, (EG′ , DG′)) when EG, EG′

are nonempty.
Similarly, we define Cg,n(ϕ, σi) to be the category whose objects are

(G, (EG, DG)) and (EG, DG) is (ϕ, σi)-quasistable. (By abuse of notation,
σi gives the choice of the element legG(i) ∈ V (G) for each stable graph G).

We say that a family of rank 1 torsion-free simple sheaves of degree d
on a family of stable curves is ϕ-(semi)stable or (ϕ, σi)-quasistable if that

property holds on all geometric fibers. We define J dg,n(ϕ) to be the moduli
stack parameterizing ϕ-semistable sheaves on families of stable curves. We

define J dg,n(ϕ, σi) to be the moduli stack parameterizing (ϕ, σi)-quasistable
sheaves on families of stable curves.

Notation 3.24. If ϕ ∈ V d
g,n is nondegenerate then, by Remark 3.20 we have

that all semistable sheaves are stable. It follows that for every 1 ≤ i ≤ n we

have the equalities Cg,n(ϕ) = Cg,n(ϕ, σi) and J dg,n(ϕ) = J dg,n(ϕ, σi), where
σi :Mg,n → Cg,n is the i-th section.

Remark 3.25. For ϕ ∈ V d
g,n degenerate and for all 1 ≤ i ≤ n we can

describe Cg,n(ϕ, σi) (resp. J
d
g,n(ϕ, σi)) as Cg,n(ϕ) (resp. J

d
g,n(ϕ

′
i)) for some

nondegenerate perturbation ϕ′i of ϕ. (As done in Remark 3.22 for a single
curve).

In order to achieve this, we let ϕ′i by subtracting from ϕ an arbitrarily
small ϵ > 0 on each curve on its irreducible component containing the section
σi, and by subtracting a small quantity on all other components (so for all
curves, the sum over all irreducible components of the values of ϕ and of
ϕ′i coincide). The fact that such ϕ′i can be constructed in a way that is
compatible with graph morphisms follows by using Proposition 3.5.

The following guarantees the existence of universal moduli spaces.

Theorem 3.26. ([KP19, Corollary 4.4] and [Est01]/[Mel19]) For all ϕ ∈
V d
g,n and 1 ≤ i ≤ n the stack J dg,n(ϕ, σi) is a nonsingular Deligne–Mumford

stack, and the forgetful morphism J dg,n(ϕ, σi) → Mg,n is representable,
proper and flat.



WALL-CROSSING OF UNIVERSAL BRILL-NOETHER CLASSES 17

The moduli stacks of Theorem 3.26 are called fine compactified universal
Jacobians.

As observed in [KP19, Remark 4.6], the fine compactified (universal) Ja-
cobians produced by this construction are the same as those defined by
Esteves and Melo [Est01, Mel19].

By virtue of its universal property, the universal family π : Cg,n(ϕ) →
J dg,n(ϕ) carries some tautological (or Poincaré) sheaves Ftau(ϕ). These are
of fiberwise total degree d and ϕ-stable. They are not unique, but the

difference of any two of them is the pullback of a line bundle from J dg,n(ϕ).
One way to make a definite choice of a tautological sheaf is to assume that
it is trivial along a given smooth section.

Note that, as described in [CMKV15], the total space Cg,n(ϕ) is singular.
A natural desingularization of Cg,n(ϕ), carrying a tautological line bundle
Ltau(ϕ), was provided by Esteves–Pacini in [EP16] by using a semistable
modification of the universal family. Here we will give an alternative de-
scription of it using a compactified universal Jacobian with one extra point.

Remark 3.27. We observe that there is a natural map α : V d
g,n → V d

g,n+1,
with image in the degenerate locus, defined as follows.

If G is the stable graph obtained as the stabilization of the (n+1)-pointed
graph G′ after the n+1 marking is removed, then there is a natural bijection
between the vertices of G′ and those of G, except possibly for 1 extra genus
0 vertex of G′. Then define α(ϕ) as the assignment on G′ that is defined
by this bijection and that is 0 on the extra genus 0 vertex of G′ (when that
exists). The extra genus 0 vertex could be a tail (when it is connected to the
complement by 1 edge) or a bridge (when it is connected to the complement
by 2 edges). The fact that ϕ is compatible for graph morphisms implies the
same property for α(ϕ).

Notation 3.28. We will slightly abuse the notation and, for ϕ ∈ V d
g,n, we

will simply write ϕ ∈ V d
g,n+1 in place of α(ϕ) ∈ V d

g,n+1.

We now show that a quasistable modification of the universal curve can

be described as the morphism π′ : J dg,n+1(ϕ, σi) → J
d
g,n(ϕ, σi) that forgets

the last point and stabilizes, thus mapping each (C ′, p1, . . . , pn+1, F ) to
(C, p1, . . . , pn, f∗F ), where f : C

′ → C is the stabilization of (C, p1, . . . , pn).
In order to do that, for each fixed i = 1, . . . , n, we define a morphism

ψ : J dg,n+1(ϕ, σi)→ Cg,n(ϕ, σi) by

(C ′, p1, . . . , pn+1, L) 7→ (C, p1, . . . , pn, f∗L, f(pn+1))

where f : C ′ → C is the stabilization of the curve (C ′, p1, . . . , pn). Then we
show that ψ is the stabilization of π′.

Theorem 3.29. For each 1 ≤ i ≤ n, the forgetful morphism ψ defined above
is the unique positively admissible quasistable modification of the universal
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curve over J dg,n. A tautological line bundle on J dg,n+1(ϕ, σi) is

(3.30) Ltau := σ∗n+1(F ′
tau)⊗ σ∗1(F ′−1

tau ),

where F ′
tau = F ′

tau(ϕ) is a tautological sheaf on the universal curve

π : Cg,n+1(ϕ, σi)→ J
d
g,n+1(ϕ, σi).

Proof. We apply Proposition 2.3 to show that the morphism ψ is a qua-
sistable modification of the universal curve.

Let us begin by proving that ψ is a quasistable modification of Cg,n(ϕ, σi).
Firstly, if C = C ′, then f is an isomorphism, so ψ is an isomorphism locally
around (C ′, p1, . . . , pn+1, L). If C ̸= C ′, then we have two cases. Either
pn+1 belongs in a rational tail and, in this case, L = f∗f∗(L) so ψ is again
an isomorphism locally around (C ′, p1, . . . , pn+1, L). Or, pn+1 is in a bridge
E ⊂ C ′ such that no other marked points are in E. We will now focus on
this case.

If degE(L) = 0, then by Proposition 2.3, we have that L = f∗f∗(L)
and again the map ψ is an isomorphism locally around (C ′, p1, . . . , pn+1, L).
We are left with the case where degE(L) = 1. In this case, we have that
f∗(L) is not locally free around f(pn+1), which is a node. More so, we
have that ψ−1(C, p1, . . . , pn, f∗(L), f(pn+1)) is isomorphic to P1. Indeed, ev-
ery L′ obtained from gluing L|Ec and OE(1) will have the property that
ψ(C ′, p1, . . . , pn+1, L

′) = (C, p1, . . . , pn, f∗(L), f(pn+1)). The possible glu-
ings are paremeterized by a P1, and we are done.

Secondly we observe that degE(Ltau) = 1 for each exceptional component
E contracted by ψ. In order to show that, it suffices to construct a noncon-
stant map δ : P1 → E such that δ∗(Ltau) = O(1). Let (C, p1, . . . , pn, L, p)
correspond to the point in the universal curve that is contracted by E. That
means that p is a node of C and that L fails to be locally free at p. We
construct a family X/P1 by gluing two sections on two families X1/P1 and
X2/P1. The family X1 is the trivial family Cνp × P1 (where νp denotes the
normalization at p) carrying the n trivial sections p1, . . . , pn and the gluing
sections are the points q1, q2 such that νp(qi) = p. The family X2 is the
blowup of the trivial family P1 × P1 at [0 : 1] × [0 : 1] and [1 : 0] × [1 : 0]
with a further section pn+1 defined as the inverse image of a constant section
(different from [0 : 1] and [1 : 0]) and the two gluing sections are the strict
transforms of the sections [0 : 1] and [1 : 0]. Then we choose any line bundle

F on X with the property that F |X1 = L and F |X2 = O(∆̃), for ∆̃ the
strict transform of the diagonal in X2. Then F is (ϕ, σi)-quasistable, and
so the datum of (X,F ) defines a morphism δ. By construction, we have

that δ∗(Ltau) = σ∗n+1(F ) = σ∗n+1(O(∆̃)), which equals O(1) because σ∗n+1

intersects ∆̃ at 1 reduced point.
Then we prove that the direct image ψ∗Ltau of the line bundle defined

in (3.30) equals Ftau ⊗ π∗(M) for some line bundle M . By the previous
part combined with Proposition 2.3, we conclude that ψ∗Ltau is rank 1 and
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torsion-free. By [KP19, Appendix 7], it is enough to prove that this equality
occurs on an open subset U of Cg,n(ϕ) whose complement has codimension
at least 2. It is easy to show equality over the open set U that is the universal

curve over the line bundle locus in J dg,n(ϕ) (this follows because ψ|ψ−1(U)

is an isomorphism over U , and because the restriction of F ′
tau to the open

set π−1(ψ−1(U)) ⊂ Cg,n+1(ϕ, σi) is a line bundle). This concludes the proof
that ψ is a positively admissible quasistable modification.

Uniqueness follows from Corollary 2.4. □

3.d. Brill–Noether classes. To the data of a flat family π : C → S of
nodal curves of arithmetic genus g over a nonsingular scheme S and a rank
1 torsion-free F on C of fiberwise degree d, we can associate the Brill–Noether
(or Thom–Porteous) class

(3.31) wd(C/S,F) := cg−d(−R•π∗F).
This class is supported on the subscheme

Wd(C/S,F) = {s ∈ S : h0(Cs,Fs) > 0} ⊂ S
and when the latter is of the expected codimension g − d, it coincides with
its fundamental class (with a suitably defined scheme structure– see [Ful98,
Chapter 14]). If h0(Cs,Fs) = 0 for all s ∈ S, then the complex −R•π∗F =
R1π∗F is a vector bundle of rank g − 1− d, so the Chern class wd(C/S,F)
equals zero.

Here are a couple of further basic remarks on these classes.

Remark 3.32. If I is a line bundle on S, then we have

wd(C/S,F) = wd(C/S,F ⊗ π∗I).
Indeed, by [Ful98, Example 3.2.2] we have

(3.33) cj(−R•π∗F ⊗ I) =
j∑
i=0

(
g − d− 1− i

j − i

)
ci(−R•π∗F) · c1(I)j−i

for all j ≥ 0. The result follows because, for j = g − d, the binomial
coefficient vanishes unless when i = j.

Remark 3.34. Let f : C′ → C be a semistable modification of the family of
nodal curves π : C → S, and let L be a positively admissible line bundle on
C (see Section 2.c). By Proposition 2.3, we deduce

(3.35) R•(π ◦ f)∗L = R•π∗(f∗L).
Conversely, if F is a rank 1 torsion free simple sheaf on a family of stable
curves C/S, there exists a quasistable modification C′ of C and a line bundle
L on C such that R•f∗(L) = f∗L = F and thus (3.35) occurs.

The same construction and remarks apply to the case of the semistable

modification π : C′g,n(ϕ) → J
d
g,n(ϕ) of the universal family, and its tauto-

logical line bundle L = Ltau (see [PRvZ20]). We will denote by wd(ϕ) the
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corresponding universal class in Ad(J dg,n(ϕ)) and with Wd(ϕ) the subscheme
over which it is supported.

Remark 3.36. When restricted to smooth curves, the scheme Wd(ϕ)|J d
g,n

is reduced, irreducible, and of relative codimension g − d (it is the image of
the d-th symmetric product via the Abel map). The closure of Wd(ϕ)|J d

g,n
in

J dg,n(ϕ) is contained in Wd(ϕ) and when the two coincide, we have wd(ϕ) =
[Wd(ϕ)].

Remark 3.37. In general, the scheme Wd(ϕ) fails to be irreducible and of
the expected dimension. For example, if ϕ is a stability condition such that
the line bundles of bidegree (d1, d2) are ϕ-stable on curves in the boundary
divisor ∆i,S , and either d1 > i or d2 > g − i, then Wd(ϕ) contains the

pullback of ∆i,S in J dg,n(ϕ).
We will discuss more on this matter in Proposition 3.38 and Remark 4.18.

We conclude this section by providing sufficient conditions for the Brill–
Noether class 3.31 defined by the Thom–Porteous Formula to coincide with
the class of the Brill–Noether locus. Some parts of the proof of the next two
propositions will require to employ the fact that Cg,n(ϕ) is a stratification

of J dg,n(ϕ), which we will discuss in the next section. For this reason, we
postpone the proof of the next result to Section 4.b.1.

As in Section 3.b, we fix coordinates for V d
g,n
∼= Cdg,n × Dd

g,n, and let

V d
g,n ∋ ϕ = ((xi,1,S)(i,S), (x1, . . . , xn)) where xj = x0,2,j for each 1 ≤ j ≤ n.

Proposition 3.38. We have that Wd(ϕ) is the closure of Wd(ϕ)|J d
g,n

(in

particular it is reduced, irreducible and of the expected codimension, and
wd(ϕ) = Wd(ϕ)) if and only if ϕ = ((xi,1,S)(i,S), (x1, . . . , xn)) is as follows

(1) If d = g − 1, for i− 3/2 < xi,1,S < i+ 1/2 for all (i, S).
(2) If d = g − 2, for i − 3/2 < xi,1,S < i − 1/2 for all (i ≥ 1, S) and
−3/2 < x0,1,S < 1/2 for all S, and

i− 2 <
2g − 2i− t
2g − 2

·
∑
j∈S

xj +

(
d−

∑
j /∈S

xj

)
· 2i− 2 + t

2g − 2
< i+ 1

for all vine curve triples (i, t, S) with t ≥ 2.
(3) Never if 0 < d ≤ g − 3.
(4) If d < 0, for d−1/2 < xi,1,S < 1/2 for all (i, S), and the coordinates

x1, . . . , xn satisfy

(3.39) d− 1 <
2g − 2i− t
2g − 2

·
∑
j∈S

xj +

(
d−

∑
j /∈S

xj

)
· 2i− 2 + t

2g − 2
< 1

for all vine curve triples (i, t, S) with t ≥ 2. (3.39).
(5) If d = 0, for −1/2 < xi,1,S < 1/2 for all (i ≥ 1, S), for −3/2 <

x0,1,S < 1/2 for all S, and when the coordinates x1, . . . , xn satisfy
(3.39) for all vine curve triples (i, t, S) with t ≥ 2.
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We now explicitly define a stability condition that, in each of the cases
(1),(2),(4),(5) listed above, belongs to the ranges that we have identified for
Wd(ϕ) to equal the closure of its restriction to the open part. (This shows,
in particular, that these ranges are not empty).

Definition 3.40. For G ∈ Gg,n, define the stabilized-canonical divisor Ks
G

to equal zero at every vertex contained in some rational tail2, and for every
other v to equal Ks(v) = 2g(v)− 2+ val′(v), where val′(v) is the number of
edges at v (counting each loop twice), except the edges that are contained
in some rational tail.

Then define the stabilized canonical element ϕdscan(G) =
d

2g−2 ·K
s
G ∈ V d

g,n.

Note that the above is different from the canonical stability ϕdcan ∈ V d
g,n

chosen as the origin in [KP17].

3.d.1. Pull-back via Abel–Jacobi sections. Fix integers d = (k; d1, . . . , dn)
such that d = d1 + . . . + dn and integers f = (fi,S)i,S for every boundary
divisor G(g − i, 1, S) ∈ Gg,n. Define the universal line bundle

(3.41) L = Ld,f = ωkCg,n/Mg,n

 n∑
j=1

djxj +
∑
i,S

fi,Sc · Ci,Sc

 ,

where Ci,Sc ⊂ Cg,n is the component3 over the boundary divisor ∆g−i,S =

MG(g−i,1,S) ⊂Mg,n that contains the sections in Sc. Then define ϕ = ϕd,f ∈
V d
g,n to be the multidegree of L.
If ϕ+ = ϕ+d,f is a nondegenerate small perturbation of ϕ, then we have

that the universal line bundle L is ϕ+-stable, and it defines a (Abel–Jacobi)

section σ = σ+d,f :Mg,n → J
d
g,n(ϕ

+).

Remark 3.42. Assume d < 0, k = 0, and d satisfies di ≤ 1 for all i,
and at most one of the di’s equals 1. Assume that f satisfies d ≤ fi,Sc +∑

j∈S dj ≤ 0 for all (i, S). Then ϕd,f satisfies the conditions of Item (4) in
Proposition 3.38.

By Proposition 3.38 the pullback

(3.43) σ∗d,f (wd) = 0 ∈ Ad(Mg,n),

gives a relation. The LHS of (3.43) can be explicitly written as a linear com-
bination of standard generators of the tautological ring of Mg,n by means
of [PRvZ20, Theorem 1] (see also Corollary 3.7 and Equation 3.9 of loc.cit).

2a rational tail is a complete subgraph whose genus is 0 and that is connected to its
complement by exactly 1 edge

3these unnatural conventions will simplify the formulas in Remark 7.39 and Exam-
ple 7.40



22 ALEX ABREU AND NICOLA PAGANI

4. Normal crossing stratification categories and blowups

In this section we define the axioms needed for a category of (resolved)
strata of a space stratified by normal crossing divisors that are not necessar-
ily simple normal crossing. We use this formalism to write some intersection
theoretic formulas (the excess intersection formula and the GRR formula
for the total Chern class) that we will use to derive our main result Theo-
rem 7.4. Then we define the blow-up category at a stratum with transversal
self-intersection. A construction of such strata categories starting from a
normal crossing divisor, and more generally from a toroidal embedding, is
given in [MMUV22, Definition 3.5].

The main examples we are generalizing are (a) the poset obtained by
intersecting the components of a simple normal crossing divisor and (b) the
stratification ofMg,n by topological type, induced by the boundary divisors
∆ = ∆irr ∪

⋃
i,S ∆i,S (see Section 2.d). In the latter case, the relevant

category is the category Gg,n of stable n-pointed graphs of genus g with
morphisms given by graph contractions.

4.a. Categories of resolved strata for a normal crossing stratifica-
tion. Let C be a finite skeletal category with a terminal object • such that
every morphism is an epimorphism.

Remark 4.1. In C we have that Mor(α, α) = Aut(α). Indeed, if f ∈
Mor(α, α), then there exist natural numbers a > b such that fa = f b, and
since f is an epimorphism we have that fa−b = IdA, which proves that f is
an isomorphism.

If α and β are distinct elements, we also have that if Mor(α, β) ̸= ∅ then
Mor(β, α) = ∅. Indeed, assume that there exists f : α → β and g : β → α.
By the observation we would have that both f ◦ g and g ◦ f are automor-
phisms, which implies that both f and g are isomorphisms, this contradicts
the fact that C is skeletal. This means that the set Obj(C) has a natural
poset structure given by α ≥ β if Mor(α, β) ̸= ∅.

We say that such C is a (normal crossing) stratification category if its
underlying poset is ranked with rank function cd with minimum element
the terminal object, having cd(•) = 0 and it satisfies the following axiom:

Axiom 1. For each f : α → β there exist exactly cd(f) := cd(α) − cd(β)
pairs

(β′,Aut(β′)g) ∈ Obj(C)× (Aut(β′)\Mor(α, β′))

such that, for each such pair, there exists i : β′ → β with cd(i) = 1 and
f = i ◦ g. (Note that (a) the existence of such i is independent of the choice
of the representative g in the left coset g := Aut(β′)g); and (b) since g is an
epimorphism, the morphism i is necessarily unique).

From now on we will also fix some notation on C.

(1) We write fα for the unique element of Mor(α, •).
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(2) If fi : α→ βi are morphisms for i = 1, . . . ,m, we define

Aut(f1, . . . , fm) := {τ ∈ Aut(α); fi ◦ τ = fi for every i = 1, . . . ,m}.
Note that Aut(fα) = Aut(α).

(3) For each morphism f : β → γ and object α ∈ Obj(C), we define
Mor(α, f) := Aut(f)\Mor(α, β). When f = fβ, we simply write

Mor(α, β) := Mor(α, fβ) = Aut(β)\Mor(α, β).
(4) For each morphism f : α → β, we let Sf denote the set of all pairs

(β′, g) satisfying the condition in Axiom (1). Moreover, for each
(β′, g) ∈ Sf we denote by ig,f := i : β′ → β the morphism defined in
Axiom 1. We define Sα := Sfα .

Here are the most relevant examples in this paper.

Example 4.2. (Simple normal crossing). Let X be a nonsingular variety
and D = D1 + . . .+Dk be a simple normal crossing divisor. To this we can
associate a category C whose objects are the strata and morphisms are the
inclusions. This category C is finite, skeletal, has a terminal element, every
morphism is an epimorphism, it is ranked by codimension, and it satisfies
Axiom 1.

The category C is simple normal crossing if in addition to Axiom 1, it
satisfies:

Axiom 2. For every α, β ∈ Obj(C) the set Mor(α, β) has at most one
element.

Example 4.3. The second example is C = Gg,n introduced in Section 2.d.
The terminal object here is the trivial graph with 1 vertex of genus g carrying
all the markings, and no edges. The rank function is the number of edges.
The set Sf of a morphism f : G→ G′ is naturally identified with the set of
edges of G that are contracted by f . In particular, SG equals the edge set
E(G).

The rank 1 objects, the boundary divisors, are either graphs with two
vertices connected by one edge (corresponding to the divisors ∆i,S , see 2.d),
or the graph consisting of 1 vertex of genus g − 1 with 1 loop.

Example 4.4. The main example in this paper is the category C = Cg,n(ϕ)
that we introduced in Definition 3.23, an enhancement of the category Gg,n
discussed above. The terminal object is the trivial graph endowed with the
unique function that maps its unique vertex to the integer d. The rank of an
object (G, (EG, DG)) equals |Edges(G)| + |EG|. For f : (G′, (E′

G, DG′)) →
(G, (EG, DG)), the set Sf is naturally identified with the set of edges con-
tracted by f .

The rank 1 objects are (G, (EG, DG)) with G a rank 1 object of Gg,n and
(EG, DG) a ϕ-stable pseudodivisor (which implies EG = ∅).

Example 4.5. To a nonsingular variety X (or DM stack) endowed with a
normal crossing divisor D, [MMUV22, Definition 3.5] associates a stratifi-
cation category that respects Axiom 1 above.
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Note that the construction of loc.cit in the caseX =Mg,n andD = ∆irr+∑
(i,S)∆i,S , which we discussed in Example 4.3, produces the quotient of the

category Gg,n of stable graphs where 2 morphisms are identified whenever
they are the same on the corresponding edge sets. (See [MMUV22, Figure 2]
for examples of automorphisms that are identified to the identity). A similar
phenomenon happens for the category of Example 4.4.

In this paper we prefer instead to work with the usual category of stable
graphs (and its enhancements).

The next proposition is the analogue of the fact that the set of strata
that contain a given stratum is in natural bijection with the subsets of the
divisors that define that stratum.

Proposition 4.6. Given a morphism f : α→ β and 1 ≤ k ≤ cd(α)−cd(β),
there is a natural bijection between the set of pairs

{(γ, j) ∈ Obj(C)×Mor(α, γ) : cd(γ)− cd(β) = k and ∃h : γ → β, f = h◦ j}
(note that h above is unique) and the set P(k, Sf ) of subsets of Sf containing
k elements.

We start by observing the following:

Remark 4.7. Given a factorization f : α
j−→ γ

h−→ β, there is a natural
inclusion j∗ : Sh ↪→ Sf given by (β′, g′) 7→ (β′, g′ ◦ j).

Moreover, we claim that for each j ∈ Mor(α, h) we have a well-defined

j
∗
(Sh). Indeed, the map j∗ is the same as (j ◦τ)∗ for every τ ∈ Aut(γ → β).

Proof. We first observe that by Remark 4.7, there is a natural map λk,f
from the set of pairs, call it Xk,f , to the set P(k, Sf ) of k-elements subsets

of Sf , obtained by λk,f ((γ, j)) := j∗(Sh).

Then we prove that the cardinality of Xk,f equals
(cd(α)−cd(β)

k

)
, which is

also the cardinality of P(k, Sf ). This is achieved by induction on cd(α) −
cd(β) and double counting. For each c ∈ Sf , let Xk,f,c be the subset of
Xk,f of elements whose image via λf contains c. By induction hypothesis,

we have that |Xk,f,c| =
(cd(α)−cd(β)−1

k−1

)
. By Axiom 1 the number of elements

of {(a, b) : a ∈ Xk,f , b ∈ λk,f (a)} equals k · |Xk,f | and, it also equals

(cd(α) − cd(β)) ·
(cd(α)−cd(β)−1

k−1

)
. These two equalities prove that |Xk,f | =(cd(α)−cd(β)

k

)
.

Finally we prove that each λk,f is surjective. First we prove that this is the
case for k = cd(α)− cd(β)−1 (or equivalently when cd(γ) = cd(α)−1). By
the previous paragraph, λk,f is, for this k, a function between sets of the same
cardinality, so it is equivalent to prove that it is injective. Let a1, a2 ∈ Xk,f

be such that λk,f (a1) = λk,f (a2) and let c be the only element of Sf \λk,f (a1).
If a1 ̸= a2, then λ

−1
k,f ({c}) contains at most cd(α)−cd(β)−2 elements, but in

the previous paragraph we have established that |Xk,f,c| = cd(α)−cd(β)−1;
this contradicts the assumption a1 ̸= a2.
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To prove surjectivity of each λk,f we argue by induction on cd(α)−cd(β).
Let S ∈ P(k, Sf ). Choose T ⊃ S with T ∈ P(cd(α) − cd(β) − 1, Sf ).

By the previous paragraph, there exists d = (δ, h) such that λk,f (d) =
T and a factorization of f = h ◦ g through δ, so T = g∗(T ′) and S =
g∗(S′) for some S′ ⊂ T ′ subsets of Sh. We have cd(δ) − cd(β) = cd(α) −
cd(β) − 1. By applying the induction hypothesis to λk,h, we find c ∈ Xk,h

such that λk,h(c) = S′, and so λk,f (g
∗c) = S. This concludes the proof of

surjectivity. □

We will now define some important geometric notions in the stratification
category.

Definition 4.8. Fix fi : αi → β for i = 1, . . . ,m, and f : γ → β. Let
gi : γ → αi for i = 1, . . . ,m be a collection of morphisms such that fi◦gi = f .

We say that the collection (gi) is generic with respect to the tuple (f, (fi))
if Sf =

⋃m
i=1 g

∗
i (Sfi).

We say that the collection (f, (fi)) is transversal at (gi) if g∗i (Sfi) ∩
g∗j (Sfj ) = f∗(Sβ) for very i ̸= j.

Following the above definition, we write Int(f1, . . . , fm)f to denote the
set of all generic tuples (g1, . . . , gm).

Remark 4.9. Fix the same data of the above definition. Let (τ1, . . . , τm) be
a tuple in

∏
Aut(fi) and let (g1, . . . , gm) be a generic collection, then (τ1 ◦

g1, . . . , τm ◦ gm) is also generic. A similar result holds for an automorphism
τ ∈ Aut(f). That is: (gi) is generic if and only if (gi◦τ) is generic. This gives
a natural left action of

∏
Aut(fi) and right action of Aut(f) on Int((fi)).

Following the remark, we define

Int(f1, . . . , fm)f :=
∏

Aut(fi)\ Int(f1, . . . , fm)f
and

Ĩnt(f1, . . . , fm)f := Int(f1, . . . , fm)f/Aut(f).

Elements of Int(f1, . . . , fm) will be denoted by (g1, . . . , gm), while the ele-

ments of Ĩnt(f1, . . . , fm) will be denoted by (g1, . . . , gm)Aut(f).
When f1 = . . . = fm = f ′, we write SInt((f ′)m)f to denote the set of sets

(not tuples) {g1, . . . , gm} (here the gi must be pairwise distinct) such that
(g1, . . . , gm) ∈ Int((f ′)m)f .

4.b. Normal crossing stratifications. We say that a category C as in the
previous section is the category of strata of a nonsingular DM-stack X• if
there exists a functor

C→ nonsingular DM-stacks

α 7→ Xα

f : α→ β 7→ Xf : Xα → Xβ

such that
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(1) The morphisms Xf : Xα → Xβ are proper and local complete inter-
section of codimension cd(f).

(2) The quotient stack
[

Xα
Aut(f)

]
is the normalization of the image of Xf .

(3) The normal bundle Nf of Xf can be written as Nf =
⊕

e∈Sf
Le,

where, for a pair e = (β′, g) ∈ Sf , we define Le := g∗(Nig,f ).
(4) If fi : αi → β for i = 1, 2 are two morphisms, then the following

diagram ⊔
f : γ→β

(g1,g2)Aut(f)∈Ĩnt(f1,f2)f

[XG/Aut(g1, g2)] Xα1

Xα2 Xβ

Xg1

Xg2

Xf1

Xf2

is a fiber diagram.

From now on we will abuse the notation and, for f ∈ Mor(α, β), we simply
write f : Xα → Xβ in place of Xf : Xα → Xβ.

Notation 4.10. We will use a prime to denote the image of a morphism
f : Xα → Xβ. In other words, X ′

f := Im(f) ⊆ Xβ and, in particular,

X ′
α := Im(fα) ⊆ X•.
We also say that the objects X ′

α are the embedded strata and the objects
Xα are the (resolved) strata.

The two main examples in this paper are that ofMg,n and that of J dg,n(ϕ):

Example 4.11. The category Gg,n is a category of strata of the nonsingular

DM-stackMg,n. If G ∈ Gg,n, we writeMG for the corresponding stratum

andM′
G for its image inMg,n ([ACG11, Chapter XII, Section 10]).

Example 4.12. The category Cg,n(ϕ) is a category of strata of the nonsin-

gular DM-stack J dg,n(ϕ) ([MMUV22, Section 3]). If (G, (E,D)) ∈ Cg,n(ϕ),

we write JG,(E,D) for
4 the corresponding stratum and J ′

G,(E,D) for its image

in J dg,n(ϕ).

The point made in Example 4.12 allows us to complete the proof of Propo-
sition 3.38. The next section is devoted to completing that proof.

4.b.1. Proof of Proposition 3.38.

Proof. (1) If d = g − 1, the result of 3.38 follows from [KP17, Theo-
rem 4.1].

4each such stratum also depends on ϕ, but we do include this dependency to ease the
notation
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(2) Assume that d = g − 2. In order to reach our conclusion, we prove
that ϕ is in the claimed range if and only if the intersection of Wd(ϕ)

with the boundary of J dg,n(ϕ) has codimension larger than the ex-
pected codimension 2. Also, the strata that generically parameterize
curves whose irreducible components are singular can be excluded,
because the existence of a nonzero global section is equivalent if those
components are smoothened.

Firstly, we analyse the boundary divisors, which have the form
J(G(i,1,S),D). The range of ϕ in the claim is equivalent to constraining
the divisor D to equal (i−1, g− i−1). It is straightforward to verify
that the locus cut out in J(G(i,1,S),D) by the condition of admitting
a global section has codimension at least 2 in J(G(i,1,S),D), hence it

has codimension at least 3 in J dg,n(ϕ).
If, on the other hand, the divisor D is of the form (k−1, g−k−1)

for k ̸= i, then either J(G(i,1,S),D) is contained in Wd(ϕ), or their
intersection has codimension 1 in J(G(i,1,S),D). In both cases, their

intersection has codimension smaller than or equal to 2 in J dg,n(ϕ).
Then we analyse the codimension 2 strata JG,D. If G is a tree, the

stability condition is uniquely determined by the stability condition
on the boundary divisors, and so is the stable degreeD – the problem
has been resolved in the previous paragraph. We assume therefore
that G = G(i, 2, S) is a vine curve with 2 nodes. Using the change of
coordinates (3.11), the range identified in our statement is equivalent
to requesting that the stable divisor D on G(i, 2, S) equals one of
(i− 2, g− i), (i− 1, g− i− 1), (i, g− i− 2) or (i+1, g− i− 3). In all
these cases, one can check that the generic element of JG,D does not
admit a global section. Conversely, if D is not one of those 4 cases,
the stratum JG,D is contained in Wd(ϕ). This concludes our proof.

(3) Assume that 1 ≤ d ≤ g − 3. In order to reach our conclusion, it
is enough to prove that for every ϕ, the intersection of Wd(ϕ) with
some boundary divisor has codimension smaller than or equal to the
expected codimension g − d.

We take i = ⌊g2⌋ and pick any S ⊆ [n], and show that the intersec-

tion of Wd(ϕ) with the preimage of ∆i,S in J dg,n(ϕ) contains a locus

of codimension smaller than or equal to g − d in J dg,n(ϕ) .
The stable bidegree D such that the intersection JG(i,1,S),D ∩

Wd(ϕ) has largest codimension is D = (d2 ,
d
2) for d even (resp D =

(d−1
2 , d+1

2 ) for d odd). The intersection has codimension ⌈g−d−1
2 ⌉+2

in J dg,n(ϕ) and, for d ≤ g − 3, this number is smaller than or equal
to g − d.

(4-5) Assume that d ≤ 0.
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Assume first that ϕ is not in the given range. Then, arguing as
in the case d = g − 2 above, one can check that in some boundary
divisor or in some codimension 2 vine curve locus (depending on
which inequality ϕ fails to satisfy) the intersection with Wd(ϕ) has
codimension larger than the expected one (which is g for d = 0, and
by which we mean that the locus is not empty when d < 0).

Assume now that ϕ is in the given range. We will use the following
result:

Proposition 4.13. If ϕ ∈ V d
g,n is nondegenerate and such that the

inequality

(4.14) ϕC0 ≤
∣∣C0 ∩ Cc0

∣∣
2

.

holds for all (C, p1, . . . , pn) ∈ Mg,n and for all subcurves C0 ⊆ C,
then
(a) if d = 0, then F ∈Wd(ϕ) if and only F is the trivial line bundle.
(b) if d < 0, then Wd(ϕ) = ∅.

Proof. Part (a) is [HKP18, Lemma 8, Lemma 9]. Part (b) follows
from Lemma 4.15 below.

□

By applying Proposition 4.13, and observing that both ϕ and
the multidegree D of line bundles are stable for graph morphisms,
and arguing as in the proof of Proposition 3.5, we conclude that
Inequality (4.14) is satisfied for all curves C and subcurves C0 if
and only if it is satisfied for all vine curves C (and taking C0 to
be one of its irreducible components). After applying the change of
coordinates (3.11), this is equivalent to the given range.

The only remaining case to consider is when d = 0 and −3/2 <
x0,1,S < −1/2 for some S. In that case, the intersection of the com-

ponent JG(0,1,S),(−1,1) with Wd(ϕ) has codimension g+1 in J dg,n(ϕ),
hence the intersection is in the closure of the restriction of Wd(ϕ) to
the open part.

□

In the proof of Proposition 4.13 we used the following.

Lemma 4.15. Assume d < 0. Let C be a nodal curve, and let ϕ ∈ V d
stab(C)

be such that Inequality (4.14) holds for all subcurves C0 ⊆ C. Then every
ϕ-stable rank-1 torsion-free sheaf F on C satisfies H0(C,F ) = 0.

The lemma generalizes to the case d < 0 the argument given in in [Dud18,
Lemma 3.1] and [HKP18, Lemma 8].

Proof. Let F be one such sheaf. If F is ϕ-stable, the inequality

(4.16) degC0
(F ) <

∣∣C0 ∩ Cc0
∣∣

2
− δC0(F ) + ϕC0
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holds for all subcurves ∅ ̸= C0 ⫋ C. The latter, combined with (4.14),
implies the inequality

(4.17) degC0
(F ) <

∣∣C0 ∩ Cc0
∣∣− δC0(F )

for all subcurves ∅ ̸= C0 ⫋ C.
The fact that the latter inequality holds on all subcurves C0 implies that

F admits no nonzero global sections. Indeed, if such a section s existed
denote by C ′ its support. Note that C ′ ̸= C because the degree of F is
negative. Hence, C ′ ̸= C and we have the inequality

degC′(F ) ≥
∣∣C ′ ∩ C ′c

∣∣− δC′(F ),

contradicting (4.17). □

We conclude this interlude by observing that for all degrees “in the mid-
dle”, the Brill–Noether cycle cannot be of the expected codimension.

Remark 4.18. Assume that 1 ≤ d ≤ g − 5. We claim that there exist
no ϕ such that Wd(ϕ) has the expected codimension g − d. To show this,
we argue in a very similar way to the case 1 ≤ d ≤ g − 3 of the proof of
Proposition 3.38. We let i = ⌊g2⌋ and pick any S ⊆ [n]. In the same way as
discussed in loc.cit., for 1 ≤ d ≤ g − 5, the intersection of Wd(ϕ) with the

preimage of ∆i,S in J dg,n(ϕ) contains a locus of codimension strictly smaller

than g − d in J dg,n(ϕ), and this proves our claim.

4.c. Intersection theory formulas. In this section we enunciate and prove
some results concerning the intersection theory of this stratification. From
now on in this section we fix X• and its stratification functor.

Since most of our computations are done using Chern classes, we will
abuse the notation as we now explain. Let p1, p2, q be polynomials in vari-
ables xi,j such that p1 = qp2. Assume that Li are elements in the K-theory
of X, and that A = p1(cj(Li)) and B = p2(cj(Li)) are formal polynomials

in the Chern classes of Li. We will write A
B to mean the class q(cj(Li))∩ [X]

in the Chow group of X.
More generally, we will write A

B ∈ A
∗(X) to mean that there exists poly-

nomials p1, p2, q and K-theory elements Li satisfying the conditions in the
previous paragraph.

The main motivation for this is [Ful98, ], which states that, for a vector
bundle N

c(L⊗ ∧•N)

crkN (N)

is a polynomial in the Chern classes of L and of N .
In this language, we have the following excess intersection formula.
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Proposition 4.19. Let fi : αi → β for i = 1, 2 be two morphisms in C and
fix classes Ai/ccd(fi)(Nfi) ∈ A∗(Xαi), then

f1∗

( A1

ccd(f1)(Nf1)

)
f2∗
( A2

ccd(f2)(Nf2)

)
=

∑
f : γ→β

(g1,g2)Aut(f)∈
Ĩnt(f1,f2)f

f∗
|Aut(g1, g2)|

( g∗1A1g
∗
2A2

ccd(f)(Nf )

)

where gi = 1, 2 are the base change morphisms (as in Section 4.b, Item (4)).

Proof. This follows directly from Item (4) in Section 4.b and from the excess
intersection formula (see [Ful98, Proposition 17.4.1]). □

We will also be using the following corollary of the above formula.

Corollary 4.20. Let fi : αi → β be two morphisms in C and let

Ai
ccd(fi)(Nfi)

∈ A∗(Xαi)

be such that Ai is invariant under Aut(fi), then the following holds

f1∗(
A1

ccd(f1)(Nf1
))

|Aut(f1)|

f2∗(
A2

ccd(f2)(Nf2
))

|Aut(f2)|
=

=
∑

f : γ→β

f∗
|Aut(f)|

( ∑
(g1,g2)∈Int(f1,f2)f

g∗1A1g
∗
2A2

ccd(f)(Nf )

)
Proof. We expand the formula in Proposition 4.19 to obtain

f1∗

( A1

ccd(f1)(Nf1)

)
f2∗
( A2

ccd(f2)(Nf2)

)
=

∑
f : γ→β

(g1,g2)∈Int(f1,f2)f

f∗
|Aut(f)|

( g∗1A1g
∗
2A2

ccd(f)(Nf )

)

because |(f : γ → β, (g1, g2)Aut(f))| = |Aut(f)|/|Aut(g1, g2)|. From there,
we have that

f1∗(
A1

ccd(f1)(Nf1)
)f2∗(

A2

ccd(f2)(Nf2)
) =

=
∑

f : γ→β
(g1,g2)∈Int(f1,f2)f

|Aut(f1)||Aut(f2)|
f∗

|Aut(f)|
(
g∗1A1g

∗
2A2

ccd(f)(Nf )
)

and the result follows. □

Next, we apply the above to obtain a self-intersection formula.

Corollary 4.21. Let f : α→ β, then(
f∗

|Aut(f)|

( A

ccd(f)(Nf )

))k
=

∑
f ′ : γ→β

f ′∗
|Aut(f ′)|

( ∑
(g1,...,gk)∈
Int(f,...,f)f

∏k
j=1 g

∗
i (A)

ccd(f ′)(Nf ′)

)
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The latter will be used to prove the following GRR formula for the total
Chern class (deduced from the usual one, involving the Chern character).

Proposition 4.22 (GRR for the total Chern class). Let f : α → β be a
morphism and let F be an element in the K-theory of Xα with rational
coefficients. Then

c(
f∗(F)
|Aut(f)|

) = 1+
∑
m≥1

f ′ : γ→β

f ′∗
|Aut(f ′)|

( ∑
{g1,...,gm}∈
SInt((f)m)f ′

∏m
j=1 g

∗
i (c(

∧•N∨
f ⊗F)− 1)

ccd(f ′)(Nf ′)

)

(This is inspired by [Ful98, Theorem 15.3]).

Proof. We begin with the usual GRR formula

ch
( f∗(F)
|Aut(f)|

)
= f∗

( ch(F)
|Aut(f)|

td(Nf )
−1
)
,

which, combining with the formula for the Todd class, implies

chn
( f∗(F)
|Aut(f)|

)
=

f∗
|Aut(f)|

(
chn(

∧•N∨
f ⊗F)

ccd(f)(Nf )

)
.

By the inversion formula to express the total Chern class in terms of the
Chern character (see e.g. [PRvZ20, Equation 3.9]), we deduce

c
( f∗(F)
|Aut(f)|

)
= exp

( f∗
|Aut(f)|

(∑
n≥1

(−1)n−1

n chn(
∧•N∨

f ⊗F)
ccd(f)(Nf )

))
.

Setting A :=
∑

n≥1
(−1)n−1

n chn(
∧•N∨

f ⊗F), we will then compute

⋆ := exp

(
f∗

|Aut(f)|

( A

ccd(f)(Nf )

))

⋆ = 1 +
∑
k≥1

(
f∗

|Aut(f)|

( A

ccd(f)(Nf )

))k 1
k!

= 1 +
∑
k≥1

∑
f ′ : γ→β

f ′∗
|Aut(f ′)|

( ∑
(g1,...,gk)∈Int((f)k)f ′

∏k
i=1 g

∗
i (A)

ccd(f ′)(Nf ′)
· 1
k!

)

= 1 +
∑

f ′ : γ→β

f ′∗
|Aut(f ′)|

( ∑
m≥1

{g1,...,gm}∈SInt((f)m)f ′
k1,...,km≥1

∏m
i=1 g

∗
i (A)

ki

ccd(f ′)(Nf ′)
· 1

(
∑m

i=1 ki)!

)

= 1 +
∑

f ′ : γ→β

f ′∗
|Aut(f ′)|

( ∑
m≥1

{g1,...,gm}∈SInt((f)m)f ′

∏m
i=1(exp(g

∗
i (A))− 1)

ccd(f ′)(Nf ′)

)
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The claim is then obtained by applying again the inversion formula in the
form

exp(A) = c(

•∧
Nf ⊗ F ).

□

4.d. Blow-up. Starting from a category C as in 4.a, here we define the
blow-up category at a stratum with transversal self-intersection. Then for
a fixed stratification functor X, we interpret the blow-up category as the
stratification of the blow-up of the nonsingular DM-stack X at that stratum.

Definition 4.23. We say that an object δ ∈ Obj(C) has transversal self-
intersection if for every pair g1, g2 : γ → δ, the sets g∗1(Sδ), g

∗
2(Sδ) are either

equal or disjoint.

Remark 4.24. If g∗1(Sδ) = g∗2(Sδ), then g1 = g2 ∈ Mor(γ, δ). See Proposi-
tion 4.6.

Example 4.25. Let C = G2k+1,1 for some k ≥ 1. We claim that the vine
curve graph G = G(k, 2, {1}) does not have transversal self-intersection.

Indeed, let G′ be the “triangle” graph with 2 vertices of genus k and
a third vertex of genus 0 carrying the marking. There are two different
morphisms g1, g2 : G

′ → G and g∗1(SG) ∩ g∗2(SG) consists of 1 edge.

Definition 4.26. Let δ be an object of C with transversal self-intersection.
We define the blowup category Blδ C of C at δ as follows.

First consider the following category. Its set of objects consists of pairs
(γ,m) where γ is an object of C and m is a function Mor(γ, δ) → P(Sγ)
such that

(4.27) ∅ ̸= m(g) ⊆ g∗(Sδ) for every g ∈ Mor(γ, δ).

Its morphisms (γ1,m1) → (γ2,m2) are morphisms f : γ1 → γ2 such that
for every g1 ∈ Mor(γ1, δ) we have that one of the conditions hold

(1) there exists g2 ∈ Mor(γ2, δ) such that g1 = g2 ◦ f and m1(g1) ⊆
f∗(m2(g2)),

(2) or m1(g1) ∩ f∗(Sγ2) = ∅.

We then define Blδ C as a skeleton of the above category.

Proposition 4.28. The category Blδ C is naturally ranked, and it satisfies
Axiom (1) from Section 4.a.

Proof. Straightforward. □

Remark 4.29. The rank of (γ,m) is

rk(γ)−
∑

g∈Mor(γ,δ)

|m(g)|.

Moreover, the set S(γ,m) (the codimension 1 strata that contain a fixed

stratum (γ,m)) is naturally identified with Sγ\(
⋃
g∈Mor(γ,δ)m(g))∪Mor(γ, δ).
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Recall Notation 4.10. We define h : X̃β → Xβ to be the blow up of Xβ

at the union of the images X ′
g1 ⊆ Xβ for every g1 : γ → β such that there

exists g2 : γ → δ satisfying (g1, g2) ∈ Int(fβ, fδ)fγ . We define Xβ,m to be∏
g∈Mor(γ,δ)

P
( ⊕
e∈m(g)

Le
)
.

Proposition 4.30. The functor

Blδ C→ nonsingular DM stacks

(γ,m) 7→ Xγ,m

is a stratification of BlX′
δ
X•.

Proof. This follows from [MPS23, Section 4.5] (see also [KKMSD73, The-
orem 6, p.90]) where the nonsingular DM stack is constructed as the star
subdivision of the cone stack associated to the stratification. □

Remark 4.31. When there exists no morphism γ → δ, there exists a unique
m such that the pair (γ,m) ∈ Blδ C. The latter is the stratum that corre-
sponds to the strict transform of the image X ′

γ ⊂ X•.

Remark 4.32. Suppose that δ is a stratum with transversal self intersection
and f : γ → β is a morphism such that Mor(β, δ) = ∅. Let (γ,m) be an
object in Blδ C. Then the morphism f lifts to a morphism (γ,m)→ (β,∅)
in Blδ C if and only if f∗Sβ ∩

⋃
g∈Mor(γ,δ)m(g) = ∅. (That is, when X ′

γ,m is

contained in the strict transform of X ′
β in BlX′

δ
X•).

In this paper, the main example of the above construction is going to be
the case where C is the category Cg,n(ϕ) of Example 4.12, or a blowup of
the latter. We now describe the example of 1 blowup of Cg,n(ϕ) at one of
the centers that will be relevant for our main result.

Example 4.33. Let ϕ ∈ V d
g,n and (G,D) ∈ Cg,n(ϕ) be the lift of a vine

curve G = G(i, t, S) by some ϕ-stable divisor D.

Morphisms f : (G′, (E′, D′))→ (G,D) correspond to subsets Tf ⊂ V (G′E′
)

such that the complete subgraphs G(Tf ), G(T
c
f ) in G′E′

are connected and

of genus i, g − i− t+ 1, the markings S are on G(Tf ) and the markings Sc

are on G(T cf ), and D′(G(Tf )) = D(v1) and D′(G(T cf )) = D(v2) (for v1, v2

the two vertices of G). We let E(Tf ) ⊆ E(G′E′
) be the subset of t edges

that separate G(Tf ) from G(T cf ).

Assume that (G,D) is a stratum5 with transversal self-intersection. The

category Bl(G,D) Cg,n(ϕ) defined above stratifies the blowup BlJ ′
(G,D)

J dg,n(ϕ).
We can describe more explicitly its objects as tuples (G′, E′, D′, α) such
that (G′, (E′, D′)) ∈ Obj(Cg,n(ϕ)) and α is a choice, for each morphism

5because of Lemma 5.27, in this paper we will never need to blowup any strata of the
form (G,E,D) with E ̸= ∅
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f : (G′, D′) → (G,D) (up to automorphisms of (G,D)), of a subset ∅ ̸=
α(Aut(G,D)f) ⊆ E(Tf ).

We now define the psi-classes associated to a given stratum γ ∈ C. Recall
that each e ∈ Sγ corresponds to a morphism je : γ → βe where the latter
has rank 1. Then define the psi-classes

(4.34) Ψβe := −c1(Le) = −c1(NXβe
X•), ψγ,e := j∗eΨβe

(see Item (3) in the beginning of Section 4.b) for Le).
We will now state and prove a pushforward formula for monomials in

psi-classes under the blowdown morphism. We begin by introducing some
notation.

Recall Remark 4.29. For an object (γ,n) in Blδ C we define the sets

Sγ\δ := Sγ \
⋃

j : γ→δ

j∗(Sδ),

FUδ(γ,n) :=
⋃

j : γ→δ

j∗(Sδ) \ n(j),

CUδ(γ,n) :=
⋃

j : γ→δ

n(j).

(The symbols FU and CU will acquire some meaning in Section 7 as cer-
tain collection of edges, see Equation (7.19).) Note that the unions can
equivalently be taken over Mor(γ, δ) instead of over all morphisms. (See
Remark 4.7).

We define Hδ
γ,n((g

′
e′)e′∈Sγ,n) as the set of tuples ((ae)e∈Sγ , (ge)e∈Sγ ) of

non-negative integers satisfying ae = 0 for every e /∈ FUδ(γ,n),∑
e∈n(j)

(ge + 1) = g′
j
+ 1 +

∑
e∈j∗(Sδ)\n(j)

ae

for every j ∈ Mor(γ, δ) ⊆ Sγ,n, and ge = g′e for every e ∈ Sγ \ CUδ(γ,n) ⊆
Sγ,n.

For a morphism h : (γ,n) → (β,m) and a tuple (g′e′)e′∈Sβ,m
we define

h∗(g′e′) as the tuple

(h∗(g′e′))ẽ :=

{
g′e′ if ẽ = h∗(e′) for some e′

−1 if ẽ ∈ Sγ,n \ h∗(Sβ,m).

We define Mδ(γ) to be the set of all function m : Mor(γ, δ) → P(Sγ)
satisfying Equation (4.27).

Corollary 4.35. Let p : BlXδ′ X• → X• be the blowdown morphism, and fix
integers (g′e′ ≥ 0)e′∈Sβ,m

. Then the pushforward

p∗
f(β,m)∗

|Aut(β,m)|

( ∏
e′∈Sβ,m

Ψ
g′e
e′

)
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equals

∑
γ∈C

fγ∗
|Aut(γ)|

( ∑
n∈Mδ(γ)

h∈Mor((γ,n),(β,m))

∑
(ae,ge)∈

Hδ
γ,n(h

∗(g′
e′ ))

(−1)ae
(
ge
ae

)
Ψge−ae
e

)
.

Proof. Follows from [BL05, Theorem 4.8] (or [Alu10, Theorem 4.2]). □

5. Combinatorial aspects of Wall-Crossing

In this section we fix two stability conditions ϕ+ and ϕ− “on opposite
sides of a stability hyperplane H” (Definition 5.1), and give a description

of what will turn out to be the stratification category C̃ = C̃(ϕ+, ϕ−) of

the resolution J̃ dg,n(ϕ+, ϕ−), which we will formally construct in the next
section.

Objects of this category are defined in Definition 5.28 as triples (G,D,α)

where (G,D) is an object of J dg,n(ϕ+) and α is a certain “vine function”
to be introduced in Definition 5.15. This generalizes the case of 1 blowup,

described in Example 4.33. Then we study the subcategory C̃E = C̃(ϕ+, ϕ−)
of the strata that are in the intersection of the exceptional divisors — this
is the category appearing in our main result Theorem 7.4. The condition

that singles out objects of C̃E ⊂ C̃ is that the function α should be full, as
defined in Definition 5.15. We then see in Proposition 5.21 that the datum
of a full vine function is equivalent to that of a full forest, and this gives a

simpler description of the objects of C̃E , which is the one that we will use
in Theorem 7.4.

Recall from 3.b that there are 3 types of hyperplanes. If H is as in (3.12),

then no blowup is required and Cg,n(ϕ) = C̃. The second case is when H
is as in (3.13) and S ̸= [n]. That case will be discussed in 5.c. The most
difficult case is when H is as in (3.13) and S = [n].

Definition 5.1. Let ϕ+, ϕ− ∈ V d
g,n be nondegenerate, and let H be a sta-

bility hyperplane (see Section 3.b). We say that the polarizations ϕ± are on

opposite sides of the hyperplane H if ϕ0 = ϕ−+ϕ+

2 ∈ H is the only degenerate

point of the segment [ϕ+, ϕ−] ⊂ V d
g,n.

In other words, H ∋ ϕ0-semistability implies ϕ+ or ϕ− stability, and ϕ±

are small perturbations of ϕ0. Throughout we fix H,ϕ± and ϕ0 as in the
above definition.

5.a. Extremal sets, vine functions and full forests. In this section we
prove some of our bulk combinatorial results that have to do with wall-
crossing, focusing on the “extremal” multidegree, i.e. those multidegrees
that are ϕ+-stable but are not ϕ−-stable. We shall fix a n pointed graph G
of genus g and a divisor D on G throughout. (We are not imposing stability

conditions here, but the cases we are interested in are either G = G′E′
for
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some E′ ⊆ E(G) where G′ is stable, or G is obtained by forgetting the last
marking on a stable (n+ 1) pointed graph.)

For a subset V ⊆ V (G) we define6

β⋆(V ) := −deg(D|V ) + ϕ⋆(V ) +
|E(V, V c)|

2
, for ⋆ = +,−, 0.

Note that D is ϕ⋆-semistable (Definition 3.17) if and only if β⋆(V ) ≥ 0
for every V ⊂ V (G). Moreover, we have the following relation for β⋆ (see
[AP20, Lemma 4.1])

(5.2) β⋆(V ) + β⋆(W )− |E(V \W,W \ V )| = β⋆(V ∩W ) + β⋆(V ∪W ).

From now on in this chapter we will assume that D is ϕ+ semistable on
G. A subset V ⫋ V (G) is called extremal (with respect to ϕ+, ϕ− and D) if

(5.3) β+(V ) > 0 and β−(V ) < 0

In particular, this implies

ϕ+(V ) > ϕ−(V ).

Note that if V is extremal, then β0(V ) = 0.
We are now ready to define the main object of study in this section.

Definition 5.4. We define the poset Ext(G,D) = Extϕ+,ϕ−(G,D) as

{V ⊆ V (G);V is extremal, connected and with connected complement}
with the ordering given by inclusion.

Remark 5.5. If ι : (G,D)→ (G′, D′) is a specialization and V ′ ∈ Ext(G′, D′),
we have that ι−1(V ′) ∈ Ext(G,D).

Remark 5.6. Each element V of Ext(G,D) corresponds to a morphism
from G to an extremal vine curve stratum (G′, D′) (up to automorphisms
of (G′, D′)) obtained by contracting E(V, V ) and E(V c, V c).

We have the following results for extremal subsets.

Proposition 5.7. Let V1 and V2 be two extremal subsets. Then V1∩V2 and
V1∪V2 are either empty, extremal or equal to V (G). Moreover, we have that
E(V1 \ V2, V2 \ V1) = ∅ in all cases.

Proof. Write H0 = V1 ∩ V2, H1 = V1 \H0, H2 = V2 \H0 and H3 = V c
1 ∩ V c

2

(see Figure 1). Define α = |E(H1, H2)| = |E(V1 \ V2, V2 \ V1)|.
Since β−(H0∪H1), β

−(H0∪H2) < 0 we have that β0(H0∪H1) = β0(H0∪
H2) = 0. By (5.2) we have

β0(H0 ∪H1) + β0(H0 ∪H2)− α = β0(H0) + β0(H0 ∪H1 ∪H2),

and, because β0(H) ≥ 0 for every H, we deduce that α = 0, and β0(H0) =
β0(H0 ∪H1 ∪H2) = 0.

6We note that the existing definition of β(V ) in [Est01] and [AP20] are based on a
different sign convention, however all relevant properties remain the same.
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H0 H1

H2 H3

α

Figure 1

If H0 ̸= ∅, then β+(H0) > 0 and if H0 ∪H1 ∪H2 ̸= V (G), then β+(H0 ∪
H1 ∪H2) > 0. Since β0 = β++β−

2 , we have that β−(H0) < 0 (respectively,
β−(H0 ∪H1 ∪H2) < 0) if H0 ̸= ∅ (respectively, if H0 ∪H1 ∪H2 ̸= V (G)).
This finishes the proof. □

Proposition 5.8. Let V be an extremal set.
If V = V1 ⊔ V2 with E(V1, V2) = ∅ and V1, V2 ̸= ∅, then V1 and V2 are

extremal. Similarly, if V c =W1⊔W2 with E(W1,W2) = ∅ andW1,W2 ̸= ∅,
then W c

1 and W c
2 are extremal.

Proof. For the first part, we have that β0(V ) = β0(V1) + β0(V2), since
β0(V ) = 0, then β0(V1) = β0(V2) = 0 as well. So, β−(Vi), β

−(V2) < 0.
The second part is proven similarly. □

In what follows we will also need an additional hypothesis.

Hypothesis 1. If V ⊆ V (G) is extremal, then leg(1) ∈ V .

In particular, by Proposition 5.8, we have that if V ⊆ V (G) is extremal,
then G(V ) is connected. From now on in this chapter we will always assume
Hypothesis 1.

Hypothesis (1) fixes the following convention on ϕ+, ϕ−:

Remark 5.9. If V is an extremal set in Ext(G,D) then ϕ+(V ) > ϕ−(V ).
In particular, if we set S := leg−1(V ) and i := g(V ) and t = |E(V, V c)|,
then

x+i,t,S > x−i,t,S .

for fixed coordinates ϕ± = (x±i,t,S)(i,t,S) ∈ V d
g,n as discussed in Section 3.b.

Also, since ϕ+ and ϕ− are on opposite sides of a hyperplaneH = H(i0, t0, S0),
Hypothesis 1 is always satisfied upon possibly switching ϕ+ and ϕ−.

Remark 5.10. The results in this section hold more generally for when ϕ+

and ϕ− lie on opposite sides of a higher codimension stability plane (not
necessarilly a hyperplane, as in Definition 5.1), in which case Hypothesis 1
becomes restrictive.

Here are some important properties of Ext(G,D) that follow from Hy-
pothesis 1:



38 ALEX ABREU AND NICOLA PAGANI

Corollary 5.11. Let V1, V2 ∈ Ext(G,D), then either V1 ∪ V2 = V (G) or
there exists V ∈ Ext(G,D) such that V1 ∪ V2 ⊆ V .

Proof. Assume that V1∪V2 ̸= V (G). Then, by Proposition 5.7, we have that
V1∪V2 is extremal. By Hypothesis 1, we have that V1∪V2 is also connected.
Let W be a connected component of (V1 ∪ V2)c. By Proposition 5.8, we
have that W c is extremal. Moreover, since V1 ∪ V2 is connected (and G is
connected), so is W c. This proves that W c ∈ Ext(G,D) and V1 ∪ V2 ⊆
W c. □

Corollary 5.12. Let V1, V2 be elements of Ext(G,D) such that V1, V2 ⊆ V
for some V ∈ Ext(G,D). Then V1 ∩ V2 ∈ Ext(G,D).

Proof. By Proposition 5.7, we have that V1∩V2 is extremal and by Hypoth-
esis 1 we have that V1 ∩ V2 is nonempty and connected. All that is left is
to prove that (V1 ∩ V2)c = V c ∪ (V \ V1) ∪ (V \ V2) is connected. But this
follows from the fact that V c, V c

1 = V c ∪ (V \ V1) and V c
2 = V c ∪ (V \ V2)

are connected. □

We are now ready to introduce a key notion to describe the blowup cat-
egory of Cg,n(ϕ) at some vine curve strata.

Definition 5.13. For each (G,D) and lower set L ⊆ Ext(G,D), we say that
a function α : L → P(E(G)) is a vine function if the following conditions
hold

(1) α(V ) ⊆ E(V, V c) for every V ∈ L.
(2) For all V ∈ L we have α(V ) = ∅ if and only if there exists V ′ ⫋ V

with V ′ ∈ Ext(G,D) such that α(V ′) ∩ E(V, V c) ̸= ∅.

We usually think that L is part of the datum of α, and write Lα for the
domain of a vine function α. We also define |α| =

⋃
V ∈Lα

α(V ) ⊆ E(G).

Definition 5.14. Given a specialization ι : (G,D) → (G′, D′) we say that
the vine functions α and α′ are compatible with ι if

(1) ι−1(V ′) ∈ Lα for every V ′ ∈ Lα′ .
(2) if α′(V ′) ̸= ∅, then α(ι−1(V ′)) ̸= ∅.
(3) if e′ /∈ |α′| then ιE(e) /∈ |α|.

In that case we write ι : (G,D,α) → (G′, D′, α′) and say that the first
triple specializes to the second.

We will also need to introduce some subcategories of the stratification
category of Cg,n(ϕ), which will use only some vine functions which we call
“full”. We now introduce those, and then discuss how this notion is equiv-
alent to the combinatorial notion of a full forest.

Definition 5.15. We say that α is full if Lα = Ext(G,D), and |α| = E(G).

We will show in Proposition 5.21 how full vine functions are equivalent
to the following notion.

Definition 5.16. A forest V• ⊆ Ext(G,D) is a full forest in Ext(G,D) if
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(1) it contains all maximal elements of Ext(G,D), and
(2) the edge set satisfies E(G) =

⋃
V ∈V• E(V, V c).

We first prove some intermediate results in that direction. For a forest
V• ⊆ Ext(G,D), and for each V ′ ∈ Ext(G,D), we define

(5.17) next(V ′) = nextV•(V
′) :=

⋂
V ′⫋V ∈V•

V

(with the usual convention that the intersection over the empty set equals
V (G)).

Lemma 5.18. Let V• ⊆ Ext(G,D) be a full forest and let V1 and V2 be two
incomparable elements in V•. Then V1 ∪ V2 = V (G) and E(V c

1 , V
c
2 ) = ∅.

Proof. By Corollary 5.11 we have that either V1 ∪ V2 = V (G), or there
exists V ∈ Ext(G,D) such that V1, V2 ⊆ V . If the latter holds, Part (1) of
Definition 5.16 implies that V1 and V2 are comparable, a contradiction. So
V1 ∪V2 = V (G). The fact that E(V c

1 , V
c
2 ) = ∅ follows from Proposition 5.7.

□

Proposition 5.19. Let V• ⊆ Ext(G,D) be a full forest. Let V ′ ∈ Ext(G,D)
be a nonmaximal element and let V1, . . . , Vm be the elements of V• that are
minimal among those containing V ′. Then:

(1) For every i = 1, . . . ,m,

E(next(V ′) \ V ′, V c
i ) ̸= ∅.

(2) next(V ′) ̸= V ′.
(3) G(next(V ′)) is connected.
(4) If V ′ ∈ V•, then E(next(V ′) \ V ′, next(V ′) \ V ′) = ∅
(5) If V ∈ Ext(G,D) is such that next(V ′) ⊆ V , then there exists i ∈
{1, . . . ,m} such that Vi ⊆ V .

(6) all minimal elements of Ext(G,D) belong to V•.
(7) We have E(G) =

⊔
V ∈V• E(V,next(V ) \ V ).

Proof. For (1), we first notice that Vi, Vj are inconparable if i ̸= j, because
of the minimality condition. By Lemma 5.18, we have that E(V c

i , V
c
j ) = ∅

for all i ̸= j. Since V ′c = (next(V ′) \ V ′) ∪
⋃m
i=1 V

c
i and V ′c is connected,

we must have that E(next(V ′) \ V ′, V c
i ) ̸= ∅. Item (2) follows immediately

from (1).
For (3), just notice that next(V ′) is an extremal element by Proposi-

tion 5.7, then it is connected by Hypothesis 1.
The existence of an edge between vertices of next(V ′) \ V ′ would witness

the failure for V• to be full. Indeed, let V ∈ V• be an element. If V is in-
comparable with V ′, by Lemma 5.18, we have that V ∪V ′ = V (G), and that
implies that next(V ′) \V ′ ⊆ V and hence E(next(V ′) \V ′, next(V ′) \V ′))∩
E(V, V c) = ∅. If V ′ ⊆ V , then Vi ⊆ V for some i, and hence next(V ′) ⊆ V
which implies that E(next(V ′)\V ′, next(V ′)\V ′))∩E(V, V c) = ∅. If V ⊂ V ′,
then it is clear that E(next(V ′) \V ′,next(V ′) \V ′))∩E(V, V c) = ∅. By the
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condition that V• is a full forest, we have that E(next(V ′) \ V ′,next(V ′) \
V ′)) ∩ E(G) = ∅ and this completes the proof of Item (4).

Item (5). This follows from the fact that V (G) = next(V ′)∪
⋃m
j=1 V

c
j and

hence V c =
⋃m
j=1 V

c ∩V c
j . Since G(V

c) is connected and E(V c
i , V

c
j ) = ∅ for

j ̸= i (Lemma 5.18), so we have that there exists i ∈ {1, . . . ,m} such that
V c ∩ V c

j = ∅ for every j ̸= i. This means that Vi ⊂ V .

Item (6). Let V0 be a minimal element of Ext(G,D). If V0 is also maximal,
there is nothing to do. So we can assume that V0 is nonmaximal. Assume
by contradiction that V0 /∈ V•. From Items (2) and (3) we deduce that
E(V0, next(V0)\V0) ̸= ∅. Let V ∈ V• we will prove that E(V0, next(V0)\V0)∩
E(V, V c) = ∅ and get a contradiction. If V0 ⊆ V , then next(V0) ⊂ V (recall
that V0 ̸= V because V0 /∈ V•), then E(V0,next(V0) \ V0) ∩ E(V, V c) = ∅.
If V0 ̸⊆ V , we have that V0 ∩ V ⫋ V0 is extremal by Proposition 5.7; by
the minimality of V0 in Ext(G,D) we have that (V0 ∩ V )c = V c

0 ∪ V c is
not connected. Since V c

0 , V
c are connected, we have that V c

0 ∩ V c = ∅ and
hence V0 ∪ V = V (G). By Proposition 5.7 we have that E(V c

0 , V
c) = ∅.

Hence E(V0, V
c
0 ) ∩ E(V, V c) = ∅, indeed E(V0, V

c
0 ) = E(V0 ∩ V, V c

0 ) and
E(V, V c) = E(V0∩V, V c). In particular E(V0, next(V0)\V0)∩E(V, V c) = ∅.

Item (7). Let e be an edge of G and let V ′ be an element in V• that is
maximal among those with the property that e ∈ E(V ′, V ′c). For each V ′ ⫋
V ∈ V•, we must have that e ∈ E(V, V ), so we have that e ∈ E(V ′, next(V ′)\
V ′).

□

Proposition 5.20. Let α be a vine function and define

V• := {V ∈ Ext(G,D) : α(V ) ̸= ∅} ⊆ Ext(G,D).

Then the following hold.

(1) For every V0 ∈ Ext(G,D), we have that V•∩Ext(G,D)⊆V0 is a chain.
(2) The poset V• is a forest.
(3) α(V ) ⊆ E(V,next(V ) \ V ) for every V ∈ V•.

Proof. Let V1, V2 ∈ V• be such that V1, V2 ⊆ V0 and V1 and V2 are incompa-
rable. By Corollary 5.12, we have that V1 ∩ V2 ∈ Ext(G,D). Moreover, we
have that

E(V1 ∩ V2, (V1 ∩ V2)c) ⊆ E(V1, V
c
1 ) ∪ E(V2, V

c
2 ).

By the fact that α is a vine function, we have that there exists V ′ ⊆ V1 ∩V2
such that α(V ′) ∩ E(V1 ∩ V2, (V1 ∩ V2)c) ̸= ∅. This means that either
α(V ′) ∩ E(V1, V

c
1 ) ̸= ∅, or α(V ′) ∩ E(V2, V

c
2 ) ̸= ∅, which contradicts the

fact that α is a vine function and α(V1), α(V2) ̸= ∅. This concludes the
proof of Item (1). Item (2) follows directly.

We now prove (3). If next(V ) = V (G) there is nothing to prove. Other-
wise, we have

E(V, V c) \ E(V,next(V ) \ V ) ⊆
⋃

V ⫋V ′∈V•

E(V ′, V ′c),
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so α(V )∩(E(V, V c)\E(V,next(V )\V )) ̸= ∅ would imply α(V )∩E(V ′, V ′c) ̸=
∅ for some V ′ ∈ V• with V ⫋ V ′, thus contradicting the assumption that α
is a vine function.

□

We are now ready to prove the equivalence of full vine functions and full
forests.

Proposition 5.21. For each (G,D), the mapping defined in Proposition 5.20
induces a natural bijection between full vine functions and full forests in
Ext(G,D).

Proof. Assume that α is a full vine function and define V• = V α
• as in

Proposition 5.20. By loc.cit we have that V• is a forest and that α(V ) ⊆
E(V,next(V ) \ V ) for every V . The condition⋃

V ∈V•

α(V ) =
⋃

V ∈Ext(G,D)

α(V ) = E(G)

implies that
⋃
E(V,next(V )\V ) = E(G), which implies

⋃
E(V, V c) = E(G).

This proves that V• is a full forest.
We now study the inverse mapping. For a full forest V•, define

α := αV•(V0) =

{
∅ if V0 /∈ V•;
E(V0,next(V0) \ V0) if V0 ∈ V•.

We claim that α is a vine function. Condition (1) in Definition 5.13 follows
from the fact that E(V0,next(V0) \ V0) ⊆ E(V0, V

c
0 ) for every V ∈ V•.

Let us prove Condition (2). First, we see that αV•(V0) = ∅ if and only if
V0 /∈ V•. By the definition of α it is clear that if V0 /∈ V•, then α(V0) = ∅.
On the other hand, if α(V0) = ∅ and V0 ∈ V•, then E(V0,next(V0)\V0) = ∅,
but this is a contradiction with the fact that next(V0) induces a connected
subgraph of G and next(V0) \ V0 ̸= ∅ (see Proposition 5.19).

Now we show that if α(V0) = ∅, then we can find V ′ ∈ Ext(G,D) with
V ′ ⊆ V0, such that α(V ′) ∩ E(V0, V

c
0 ) ̸= ∅. By the previous paragraph, we

have that V0 /∈ V•. Since V• contains all minimal elements of Ext(G,D)
(by Proposition 5.19), we have that there exists V ∈ V• contained in V0.
Let V ′ be the maximum such element. This maximum exists because V•
is a forest that contains all maximal elements of Ext(G,D). By Item (5)
of Proposition 5.19 and the maximality of V ′, we have that next(V ′) ̸⊆
V0. Moreover, by Item (4) of Proposition 5.19 we have that E(next(V ′) \
V0,next(V

′) ∩ V0 \ V ′) = ∅. Since next(V ′) induces a connected subgraph
(this is Item (3) of Proposition 5.19), we have that E(V ′,next(V ′)\V0) ̸= ∅,
and since

E(V ′, next(V ′) \V0) ⊆ E(V ′,next(V ′) \V ′)∩E(V0, V
c
0 ) = α(V ′)∩E(V0, V

′
0)

we have that α(V ′) ∩ E(V0, V
′
0) ̸= ∅ as needed.
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We now prove that if there exists a V ′ ∈ Ext(G,D) with V ′ ⫋ V0
such that α(V ′) ∩ E(V0, V

c
0 ) ̸= ∅, then α(V0) = ∅. Assume by con-

tradiction that there exist V0, V
′ ∈ V• such that α(V0) ̸= ∅, and that

V ′ ⫋ V0 and α(V ′) ∩ E(V0, V
c
0 ) ̸= ∅. Since α(V0), α(V

′) ̸= ∅, we have
that V0, V

′ ∈ V•. Since V ′ ⫋ V0, we have that next(V ′) ⊆ V0 as well, so this
means that E(V ′, next(V ′) \ V ′) ∩ E(V0, V

c
0 ) = ∅, a contradiction (recall

that E(V ′,next(V ′) \ V ′) = α(V ′)). This concludes the proof that α is a
vine function.

The fact that α is full follows from Item (7) of Proposition 5.19.
□

Definition 5.22. A morphism ι : (G,D, V•) → (G′, D′, V ′
•) is a morphism

ι : (G,D) → (G′, D′) such that ι−1(V ′) ∈ V• for every V ′ ∈ V ′
• . This is

equivalent of saying that ι is compatible with αV• and αV ′
• .

Given morphisms ιi : (G,D,α)→ (Gi, Di, αi) for i = 1, . . . , k, we say that
the collection (ι1, . . . , ιk) is generic if

(1) for every edge e ∈ E(G) \ |α| there exists some i ∈ {1, . . . , k} and
some e′ ∈ E(Gi) \ |αi| such that e = ιi,E(e

′);
(2) for every V ∈ Lα such that α(V ) ̸= ∅, there exists i and V ′ ∈ Lαi

with αi(V
′) ̸= ∅ such that ι−1(V ′) = V .

Remark 5.23. We will see in the next section how this definition of “generic”
matches the one given in Definition 4.8.

Proposition 5.24. Let ιi : (G,D,α)→ (Gi, Di, αi) be a generic collection.
If all αi are full, then α is full as well.

Proof. This follows directly. □

The next result will imply that all the strata that we blow-up have
transversal self-intersection.

Proposition 5.25. Assume (G,D,α) is such that G is a vine curve and
Lα = ∅. Let fi : (G

′, D′, α′) → (G,D,α) for i = 1, 2 be generic. Assume
that for all V ∈ Ext(G′, D′) such that V ⊆ f∗1 (v0)∩f∗2 (v0), we have V ∈ Lα′.
Then (f1, f2) is transversal.

Proof. Denote by Vi = f∗i ({v0}). Assume that V1 ∪ V2 ̸= V (G). This means
that V1 ∩ V2 ∈ Ext(G,D) and hence in Lα′ . Since E(V1 ∩ V2, (V1 ∩ V2)c) ⊆
E(V1, V

c
1 )∪E(V2, V

c
2 ), that would mean that there exists V ′ ∈ Lα′ such that

α(V ′) ∩ E(V1 ∩ V2, (V1 ∩ V2)c) ̸= ∅, and in turn, if e ∈ α(V ′) ⊆ E(V1, V
c
1 )

we would have a contradiction with the fact that if e /∈ |α| but f∗i (e) ∈ |α′|.
So V1 ∪ V2 = V (G), which means that E(V1, V

c
1 ) ∩ E(V2, V

c
2 ) = ∅ □

The next proposition will be used to prove that the category C̃Y , defined
later, is a simple normal crossing stratification (as in Example 4.2).

Proposition 5.26. Let (G,D) be a stable, (n+ 1)-marked vine curve such
that vn+1 /∈ V for every V ∈ Ext(G,D). Let V• be a full forest, and
f1, f2 : (G

′, D′, V ′
•)→ (G,D, V•) be morphisms. Then f1 ∈ Aut(G,D, V•)f2.
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Proof. Upon further contraction of (G′, D′, V ′
•), we can assume that f1, f2 are

generic. This means that either (G′, D′, V ′
•) = (G,D, V•) or V

′
• = {V ′

1 , V
′
2}.

We have two cases, either V ′
1 ⊆ V ′

2 (up to swapping V ′
1 and V ′

2) or V
′
1 and

V ′
2 are incomparable. In the latter case, we have that V ′

1 ∪ V ′
2 = V (G′) by

Corollary 5.11, but that contradicts the fact that vn+1 /∈ V ′
1 ∪ V ′

2 .
In the former case, we have that g(V ′

1) = g(V ′
2), |E(V ′

1 , V
′c
1 )| = |E(V ′

2 , V
′c
2 )|,

leg−1(V1) = leg−1(V2) and D(V1) = D(V2). But that means that all the ver-
tices in V ′

2 \V ′
1 have genus 0, there are no marked points and the degree of D

equals 0. This is a contradiction with the fact that (G′, D′) is ϕ+-stable. □

We conclude this section by observing that the existence of a full func-
tion/forest rules out the presence of exceptional vertices.

Lemma 5.27. If Ext(G,D) admits a full forest, then G is stable.

Proof. Because D is ϕ+ semistable, if G fails to be stable, it contains an
exceptional vertex v (meaning that v has genus 0, no marked points, it has
valence 2 and D(v) = 1). Let e1, e2 be the two edges of G that contain v.

If (G,D) admits a full forest V•, then there are V1, V2 such that ei ∈
E(Vi, V

c
i ) for i = 1, 2. If v /∈ Vi for some i, then β⋆D(Vi) = β⋆(Vi ∪ {v}) + 1,

in particular β⋆D(Vi) > 0, a contradiction. This means that v ∈ V1 ∩ V2. On
the other hand, we have that e1, e2 ∈ E(V1 ∩ V2, (V1 ∩ V2)c), that V1 ∩ V2
is extremal (by 5.7), hence connected, and leg(1) ∈ (V1 ∩ V2). This is a
contradiction.

□

Recall that, as stipulated in Section 2.c, when E is empty, we simply write
(G,D) in place of (G, (∅, D)).

5.b. The stratification categories. In light of the results of the previ-

ous section, we are now ready to define the stratification category C̃, and

some other categories C̃E and C̃Y that will play an important role in our
proof of Theorem 7.4. In the next chapter we will interpret these cat-
egories as stratification categories of the resolution of the identity map

Id : J dg,n(ϕ+) 99K J
d
g,n(ϕ

−).

Definition 5.28. We define C̃ = C̃(ϕ+, ϕ−) as a skeleton of the category
whose objects are triples (G,D,α) such that (G,D) is an object of Cg,n(ϕ)
and α is a vine function with the property that Lα = Ext(G,D). Morphisms
are given as in Definition 5.14.

We define C̃E as the full subcategory of C̃ whose objects (G,D,α) with α
full. Equivalently (Proposition 5.20) objects are triples (G,D, V•) with V• a
full forest in Ext(G,D).

We then define the category C̃Y as a skeleton of the category whose objects
are triples (G,D, V•) where G is a n + 1 pointed stable graph of genus g,
the divisor D is (ϕ+, leg(1))-quasistable, and V• is a full forest such that
leg(n+ 1) /∈ V for every V ∈ V•. (By Lemma 5.18, this implies that V• is a
chain). Morphisms are specializations as in Definition 5.14.
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These categories will be interpreted geometrically in Remark 6.5. Note

that the rank 1 objects (the divisors) of C̃E are the triples (G,D, V•) such
that G is a vine curve and V• contains a single element (by Hypothesis 1,
the vertex containing the first marking).

5.c. The case of “good” hyperplanes. In this section, we fix a hyper-
plane H = H(i, t, S; k) that satisfies Sc ̸= ∅. In this case, we prove that
the corresponding exceptional vine curves loci in the compactified universal
Jacobian have pairwise empty intersections. The main result here is:

Proposition 5.29. The objects of C̃E are triples (G,D, V•) satisfying either

(1) G has no edges and V• is empty. This is the terminal object.
(2) G is a vine curve and V• has a single element V = {leg(1)}.
By Proposition 3.16, each vine curve as in (2) above is necessarily of the

form G(i− j, t+ 2j, S), for all j satisfying −t/2 < j ≤ min(i, g + 1− t− i).
Proposition 5.30. Let V ∈ Ext(G,D), then leg−1(V ) = S.

Proof. Let G′ := G/(E(V, V ) ∪ E(V c, V c)) be the vine curve associated to
V . If leg−1(V ) ̸= S, then (ϕ0)G′ is nondegenerate by Proposition 3.14. This
contradicts the assumption that V is extremal. □

For our next result, recall that the canonical divisor K log
G of a graph G is

defined by K log
G (v) = 2g(v)− 2 + |E(v)|+ | leg−1(v)| for all v ∈ V (G).

Lemma 5.31. If V1, V2 ∈ Ext(G,D), then K log
G (V1) = K log

G (V2).

Proof. We have that K log
G (V ) = 2g(V ) − 2 + |E(V, V c)| + | leg−1(V )|. By

Proposition 5.30, we have that | leg−1(V1)| = | leg−1(V2)|. By Proposi-
tion 3.16 we conclude that 2g(V1)−2+|E(V1, V

c
1 )| = 2g(V2)−2+|E(V2, V

c
2 )|.
□

Proposition 5.32. If (G,D) is a ϕ+-stable pair, then |Ext(G,D)| ≤ 1.

Proof. Assume that we have V1 ̸= V2 elements of Ext(G,D). By Proposition
5.30, we have that leg−1(V1) = leg−1(V2) ̸= ∅, so V1 ∩ V2 ̸= ∅. Moreover,
leg−1(V −c

1 ) = leg−1(V c
2 ) ̸= ∅, so V1 ∪ V2 ̸= V (G). By Propositions 5.7, 5.8

and 5.30 we have that V1 ∩ V2 ∈ Ext(G,D).
This means that we can assume V1 ⊆ V2. By Lemma 5.31 we have that

K log
G (V1) = K log

G (V2), which implies that K log
G (V2 \ V1) = 0, which is a

contradiction with the fact that G is stable. □

Corollary 5.33. We have that (G,D) has a full forest V• if and only if G
is a vine curve and β−D({leg(1)}) < 0.

Proof. By Proposition 5.32 we have that Ext(G,D) has at most one element.
Since V• must be nonempty, we have that V• = Ext(G,D). Since V• = {V }
is a full forest, we must have that E(G) = E(V, V c), and that G(V ) and
G(V c) are connected. This means that both V and V c are singletons and
hence that G is a vine curve. □
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Proof of Proposition 5.29. Let (G′, D′) be a pair with different specializa-
tions

ι1 : (G,D)→ (G1, D1) and ι2 : (G,D)→ (G2, D2)

to extremal pairs. By Remark 5.5 we have that

Ext(G′, D′) ⊇ ι−1
1 (Ext(G1, D1)) ∪ ι−1

2 (Ext(G2, D2)),

which means that Ext(G′, D′) has at least 2 elements, contradicting Propo-
sition 5.32. □

6. Nonsingular resolution of the identity

Let ϕ−, ϕ+ ∈ V d
g,n be on opposite sides of a stability hyperplane H (Defini-

tion 5.1). In this section we construct a nonsingular resolution J̃ dg,n(ϕ+, ϕ−)
of the identity map Id : J dg,n(ϕ+) 99K J

d
g,n(ϕ

−). We construct J̃ dg,n(ϕ+, ϕ−)
as an iterated blow up of J dg,n(ϕ+) at certain strata (Gi, Di) of vine curves
with extremal bidegrees.

To define the order in which we blow up the vine curves, we first introduce
a partial order. Let (Gi, Di), for i = 1, 2, be a pair where Gi is a vine curve
andDi is an extremal bidegree, we also set vi to be the vertex of Gi such that
β−Di

({vi}) < 0 (i.e., it is the vertex with the first marked point, in particular

ϕ+ ans ϕ− satisfy Hypothesis 1). We say that (G1, D1) ≤ (G2, D2) if there
exists (G,D) ∈ Cg,n(ϕ

+) and morphisms fi : (G,D) → (Gi, Di) such that

f−1
1 (v1) ⊆ f−1

2 (v2). Note that, in particular, f−1
i (vi) ∈ Ext(G,D) (see

Remark 5.5).
The next proposition guarantees that this preorder is indeed a partial

order.

Proposition 6.1. Assume (G1, D1), (G2, D2) are vine curve strata with
extremal bidegrees for ϕ+, ϕ−. Then (G1, D1) ≤ (G2, D2) if and only if
leg−1

G1
(v1) ⊆ leg−1

G2
(v2) and gG1(v1) ≤ gG2(v2) and gG1(v1) + |E(G1)| ≤

gG2(v2) + |E(G2)|.

Proof. The “only if” part follows immediately from the existence of a com-
mon degeneration (G,D), and the fact that for V1 ⊆ V2 then if V1, V2 ∈
Ext(G,D) or if V c

1 , V
c
2 ∈ Ext(G,D), then g(V1) ≤ g(V2). (Because elements

of Ext(G,D) and complements of elements of Ext(G,D) are connected).
For the “if” part, consider the graph G with 3 vertices w1, w2, w3 with

|E(w1, w3)| = λ and |E(w1, w2)| = |E(G1)|−λ and |E(w2, w3)| = |E(G2)|−
λ. Set gG(w1) = gG1(v1) and gG(w2) = gG2(v2)− gG1(v1) + λ− |E(G1)|+1,
and gG(w3) so that g(G) = g. The numerical assumptions in the claim
guarantee the existence of λ such that E(wi, wj) ≥ 1 for all i ̸= j and
g(w2), g(w3) ≥ 0. It is then straightforward to check that the given graph
G admits a morphism to G1 (by contracting E(w2, w3)) and to G2 (by
contracting E(w1, w2)).

□
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We are now ready to construct our resolution of the identity map.

Construction 6.2. Take any extension to a total order of the partial order
defined above on the set of pairs of vine curves with an extremal bidegree,
and denote this extension by (G1, D1) < (G2, D2) < . . . < (Gm, Dm).

Define Ji inductively as follows: J0 = J (ϕ+) and

Ji = BlJGi,Di,αi (Ji−1)

where αi is the only vine function on (Gi, Di) with Lαi = ∅, and JG,D,αi is

the strict transform of JGi,Di ⊂ J dg,n(ϕ+). Following this, let J̃ dg,n(ϕ+, ϕ−) :=
Jm.

Similarly, let Gi(P ) be the same vine curve Gi with an additional marked
point P on the vertex that is not legGi

(1), and denote by Di(P ) and αi(P )
the obvious lifts. Then define Ji(P ) inductively, starting from J0(P ) =
J g,n+1(ϕ

+, P ), and then

Ji(P ) = BlJGi(P ),Di(P ),αi(P )
(Ji−1),

and finally J̃ dg,n+1(ϕ
+, ϕ−;P ) := Jm(P ).

The first point to observe is that this blowup does not depend upon the
chosen extension to a total order.

Proposition 6.3. Let (Gi, Di), for i = 1, 2, be two pairs where Gi is a vine
curve and Di is an extremal bidegree. Set αi to be the unique vine function
on (Gi, Di) such that Lαi = ∅. If f1, f2 are morphisms fi : (G,D,α) →
(Gi, Di, αi) where Lα contains

{V ∈ Ext(G,D);V ⫋ f−1
i (vi)},

then f∗1 (E(G1)) ∩ f∗2 (E(G2)) = ∅.

Proof. This follows from Proposition 6.1 and from a straightforward analysis
of the possible common degenerations of two pairs (G1, D1) and (G2, D2)
that satisfy the two inequalities given in loc.cit. □

We immediately deduce:

Corollary 6.4. The blowup J̃ dg,n(ϕ+, ϕ−)→ J
d
g,n(ϕ

+) is independent of the
chosen extension to a total order. (It only depends on the partial order).

The same is true of J̃ dg,n+1(ϕ
+, ϕ−;P ).

Proof. By Proposition 6.3, if two vine curves are incomparable under the
partial order, their intersection is transversal, hence swapping the order of
the two blowups does not change the result. □

We let C̃ be the category whose objects are (G,D,α), where α is a vine

function with Lα = Ext(G,D). The morphisms of C̃ are given in Defini-
tion 5.14.
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Remark 6.5. The category C̃ defined in 5.28 is the category obtained by
blowing up Cg,n(ϕ

+) (as in Definition 4.26) at (G1, D1), then at (G2, D2),
. . . , and finally at (Gm, Dm). The case m = 1 was discussed in Exam-

ple 4.33, and the general case follows in the same way. The category C̃E is

the subcategory of C̃ generated by the exceptional divisors only.

The category C̃Y is the subcategory of the stratification category of the

stack J̃ dg,n+1(ϕ
+, ϕ−;P ) (same as C̃, but with an extra marking), whose

elements are the intersection of the components over the exceptional divisors
that do not contain the first marking.

Our main result in this section is then

Theorem 6.6. The stack J̃ dg,n(ϕ+, ϕ−) is nonsingular and the category C̃ =

C̃(ϕ+, ϕ−) is its blowup stratification from J dg,n(ϕ+). The same result holds

for J̃ dg,n+1(ϕ
+, ϕ−;P ). Moreover, the forgetful morphism J̃ dg,n+1(ϕ

+, ϕ−;P )→
J̃ dg,n(ϕ+, ϕ−) is the quasistable modification of the universal curve.

This follows as a combination of results in Section 4.d and Section 5.a.

Proof. To prove the first statement we apply Proposition 4.30 to the cate-
gory Cg,n(ϕ) of Example 4.12. The fact that each stratum (Gi, Di, αi) has
transversal self intersection in Ji−1 is Proposition 5.25 (see also Remark 6.5).

The second part follows from Theorem 3.29, and the fact that blowup
commutes with flat base change. □

Remark 6.7. Note that the vine curve strata Gi that are part of the da-
tum of our blowup, do not necessarily have themselves transversal self-
intersection (see Example 4.25) in Mg,n, so the procedure of Section 4.d

cannot be applied to blow up the strata G1, . . . , Gm in Mg,n to produce a
nonsingular DM stack with a stratification.

Moreover, similarly to Example 4.25, one can also see that the strata

(Gi, Di) do not themselves have transversal self-intersection in J dg,n(ϕ+).
In our construction each stratum (Gi, Di) only acquires a transversal self-
intersection once lifted to a stratum of Ji−1 by means of the function αi.

Let Y ′ be the Cartier divisor in J̃ dg,n+1(ϕ
+, ϕ−;P ) given by the sum of all

strata that correspond to (G,D,α), where (G,D) is a simple vine curve:

Y ′ =
m∑
i=1

J ′
Gi,Di,αi

Let L be the sheaf in J̃ dg,n+1(ϕ
+, ϕ−;P ) obtained by pulling back a tau-

tological sheaf in J dg,n+1(ϕ
+, P ) (see Theorem 3.29). We have the following

result.

Theorem 6.8. The line bundle L(−Y ′) is ϕ−-stable. In particular, the

stack J̃ dg,n(ϕ+, ϕ−) comes with two morphisms that resolve the identity map
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J dg,n(ϕ+) 99K J
d
g,n(ϕ

−). The first is the blow-down morphism (also defined
by L), and the second is the morphism defined by L(−Y ′).

Proof. By Proposition 3.10 and Remark 3.20, it is enough to check that
L(−Y ′) is ϕ− stable on all vine curves.

This follows from Construction 6.2. The divisor Y ′ ⊂ J̃ dg,n+1(ϕ
+, ϕ−;P )

is supported on the strata (Gi, Di, αi) of J dg,n(ϕ+), which are exactly the

vine curves where L fails to be ϕ+-stable. Moreover, over each J ′
Gi,Di , the

divisor Y ′ fiberwise intersects its complement at ti = |E(Gi)| points. Thus
tensoring by O(−Y ′) has the effect of modifying the bidegree of L on each
stratum (Gi, Di, αi) by (−ti,+ti) (where the first element of the pair is the
degree on the component of the vine curve that contains the first marking).
Thus, because the bidegree Di is extremal on Gi, the line bundle L(−Y ′) is
ϕ−-stable on (Gi, Di, αi) for all i = 1, . . . ,m. □

We conclude with the following observation.

Corollary 6.9. The Cartier divisor Y ′ ⊂ J̃ dg,n+1(ϕ
+, ϕ−;P ) is simple nor-

mal crossing, and the stratification category it generates (as in Example 4.2)

is C̃Y .

Proof. The first part follows from Proposition 5.26. The second part follows
directly from the definition of Y ′. □

7. Wall–Crossing Formulas

Let ϕ+, ϕ− ∈ V d
g,n be on opposite sides of a stability hyperplane H (Def-

inition 5.1). In this section we find a formula for the wall-crossing along
H of Brill-Noether classes in terms of push-forward of boundary strata
classes. We first give a formula in Theorem 7.4 on the nonsingular reso-

lution J̃ dg,n(ϕ+, ϕ−) of the identity map

Id : J dg,n(ϕ+) 99K J
d
g,n(ϕ

−)

that we defined in Section 6. Then we write a second formula in Corol-
lary 7.24 by taking the push-forward of that difference along the blow-down

morphism p : J̃ dg,n(ϕ+, ϕ−)→ J
d
g,n(ϕ

+).

The universal quasistable family J̃ dg,n+1(ϕ
+, ϕ−;P ) → J̃ dg,n(ϕ+, ϕ−) car-

ries two line bundles: the pullback L of a tautological line bundle on J dg,n(ϕ+)
and its modification L(−Y ′), the pullback of a tautological line bundle on

J dg,n(ϕ−) (see Theorem 6.8).
Our main result in Theorem 7.4 is a formula for the difference of the total

Chern classes of the derived pushforward of −L(−Y ′) and that of −L as an
explicit pushforward of classes supported on the boundary. Because on the
(unprimed) “resolved” strata the normal bundles split as a direct sum of
line bundles, our formula is better written on the “resolved” strata instead
of the embedded ones.
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Before stating the main results, let us fix some notation, for Theorem 7.4
and for Corollary 7.24.

For each pair (G,D) ∈ Cg,n(ϕ
+), denote by πG,D : CG,D → JG,D the pull-

back to JG,D of the universal quasistable family J dg,n+1(ϕ
+;P )→ J dg,n(ϕ+)

. The total space CJG,D
has one irreducilbe component C+v := CG,D,v for each

vertex v of G. We denote by π+v := πG,D,v : C+v → JG,D the induced map.

Also, for each V ⊂ V (G), we denote by π+V :
⋃
v∈V C+v → JG,D the induced

map on the union. We write X+ = X+
G,D := C+leg(1) and Σ+ = X+∩C+{leg(1)}c .

We also write Y +
V = C+V c for every V ⊂ V (G).

We can extend these notations to J̃ dg,n(ϕ+, ϕ−). Let us recall the geometry

of J̃ dg,n(ϕ+, ϕ−) from Section 6. For each 1 ≤ i ≤ m set βi := (Gi, Di)
to be the vine curves strata from Construction 6.2, so Jβi are the strata

of J dg,n(ϕ+) whose strict transforms of the images are blown-up, in the

given order, in J dg,n(ϕ+), to obtain J̃ dg,n(ϕ+, ϕ−). Recall that C̃E is the

category of the (resolutions of the closed) strata of J̃ dg,n(ϕ+, ϕ−) that are in
the intersection of the exceptional divisors E′

i.

Objects are triples (G,D, V•) for (G,D) ∈ Cg,n(ϕ). Each stratum J̃G,D,V•
admits a forgetful morphism pG,D,V• to JG,D, and we define πv, πV , X, Σ
and YV as the pullbacks via pG,D,V• of the corresponding items defined in
the previous paragraph for (G,D). Also, we set YG,D,V• :=

⋂
V ∈V• YV , note

that, by Proposition 5.7, YG,D,V• is nonempty if and only if V• is a chain (as

in the definition of C̃Y in Definition 5.28), and in that case, we have that
YG,D,V• = Ymax(V•).

Also, for some triple (G,D, V•), we define
(7.1)

FX
+ := −R•(π+

X)∗L+(−Σ+)|X+ ; F+
V := −R•(πV c)∗L+

|Y +
V

; H+
V := F+

V −
∑

V ′∈V•,
V ′⋗V

F+
V ′

and
(7.2)

FX := −R•(πX)∗L(−Σ̃)|X ; FV := −R•(πV c)∗L|YV
; and HV := FV −

∑
V ′∈V•,
V ′⋗V

FV ′ .

Note also that L is the pullback of L+, hence FX , FV and HV are the
pullback via pG,D,V of FX+ , F+

V and H+
V respectively.

Let Ei be the exceptional stratum of the blowup morphism J̃ dg,n(ϕ+, ϕ−)→
J dg,n(ϕ+), so that Ei → E′

i ⊂ J̃ dg,n(ϕ+, ϕ−) is the exceptional divisor, and
each E′

i is contracted to J ′
βi
. Following the notation in the previous para-

graph, we let then X ′
i ∪ Y ′

i denote the two irreducible components of the

restriction to E′
i of the universal quasistable family J̃ dg,n+1(ϕ

+, ϕ−;P ) →
J̃ dg,n(ϕ+, ϕ−), where X ′

i is the component containing the first marked point
and Y ′

i is the other component, and denote by Xi and Yi the base change
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to Ei of X
′
i and Y

′
i . Recall that the divisor Y ′ in Theorem 6.8 is precisely∑

i Y
′
i .

We now define psi-classes following (4.34). Each edge e ∈ E(G) defines
a morphism fe : JG,D → JG′,D′ to some codimension one stratum (G′, D′),
and we set

(7.3) ΨG′,D′ := −c1
(
NJG′,D′J

d
g,n(ϕ

+)
)
, Ψ(G,D,e) := f∗e (ΨG′,D′).

In Remark 7.30 we will discuss how these compare to the usual psi-classes
onMg,n.

Similarly, for a triple (G,D, V•) in C̃E , we have that SG,D,V• = V• (recall
the definition of SG,D,V• in Section 4.a Item (4)) and each V ∈ V• defines a

morphism fG,D,V : J̃G,D,V• → Ei for some i = 1, . . . ,m. As in Section 4.b

Item (3), we set LV := f∗G,D,VNEi(J̃ dg,n(ϕ+, ϕ−) and define the psi-classes

Ψi := −c1
(
NEi(J̃ dg,n(ϕ+, ϕ−)

)
, ΨG,D,V := f∗G,D,V (Ψi) = −c1(LV )

on Ei and on J̃G,D,V• respectively.
Finally, define the coefficient

bG,D,V ((jV )V ∈V• ; (kV )V ∈V•) := −
(
kV + gV − dV −

∑
V ′≥V jV ′ + (kV ′ + 1)

kV + 1

)
for each vectors (jV ≥ 0)V ∈V• and (kV ≥ 0)V ∈V• of nonnegative integers.

Theorem 7.4. The difference of total Chern classes

(7.5) ct(−R•π∗L)− ct(−R•π∗L(−Y ′))

in A∗
(
J̃ dg,n(ϕ+, ϕ−)

)
equals the boundary class

(7.6)∑
Γ=(G,D,V•)∈

C̃E\{•}

−fΓ∗
|Aut(Γ)|

( ∑
(jV ≥0)V ∈V• ,
(kV ≥0)V ∈V•

s≥0

cs(F̃
X)·

∏
V ∈V•

bG,D,V ((jV )V , (kV )V )·cjV (H̃V )·ΨkV

V

)
,

where the sum runs over all resolved strata Γ ∈ C̃E (intersection of excep-

tional divisors) of J̃ dg,n(ϕ+, ϕ−) (see Section 6), except the terminal object
(the open stratum).

Note that Formula (7.6) gives a total Chern class from which one can im-

mediately deduce the difference of the Brill–Noether classes on J̃ dg,n(ϕ+, ϕ−).
This is a more direct formula than e.g. the main result of [PRvZ20], where
an explicit formula is given for the Chern character, which then requires
inversion to obtain the desired Cher class.

Proof. We start our calculation by making use of the short exact sequence

(7.7) 0→ L(−Y ′)→ L → L|Y ′ → 0.
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on the quasistable family J̃ dg,n+1(ϕ
+, ϕ−;P ) → J̃ dg,n(ϕ+, ϕ−). For conve-

nience, define

F := −R•π∗(L), F̃ := R•π∗(L|Y ′).

We then apply Whitney’s formula

(7.8) ct(−R•π∗(L(−Y ′)))− ct(−R•π∗(L)) = (ct(F̃ )− 1) · ct(F )

for the total Chern class of the three terms in (7.7). This computes the

opposite of (7.5). From now on, we will mostly work on the term ct(F̃ )− 1.

For each Γ′ ∈ C̃E we let

F YΓ′ := −R•π∗L|YΓ′ .

We now apply the following

Lemma 7.9. (Inclusion-exclusion principle for a simple normal crossing
stratification.) Let D be a simple normal crossing divisor in X, and let C
be its category of strata. Then the following equality holds in the rational
K-theory of X:

L|D =
∑
α∈C

(−1)cd(α)−1L|Dα

By combining Lemma 7.9 with Lemma 6.9 (the fact that the Y ′
i are in-

deed simple normal crossing), and the multiplicativity of the total Chern
class, together with the fact that YΓ → Y ′

Γ is étale of degree |Aut(Γ)| (by
Corollary 6.9), we obtain

(7.10)

ct(F ) · (−1 + ct(F̃ )) = ct(F ) ·

−1 + ∏
Γ′∈C̃Y \{•}

ct

(
(−1)cdΓ′ fΓ′∗F

Y
Γ′

|Aut(Γ′)|

)
where C̃Y ⊆ C̃E is the image in J̃ dg,n(ϕ+, ϕ−) of the stratification induced by
Y ′
1 , . . . , Y

′
m (and in the product we have removed its terminal object), and

fΓ′ : J̃Γ′ → J̃ dg,n(ϕ+, ϕ−) =: J̃

is the (resolution of the closed) stratum J̃ ′
Γ′ .

For a fixed Γ′, we now aim to write each factor of the product in the
RHS of (7.10) as a pushforward via the corresponding stratum. We apply
Formula (4.22) (GRR for the total Chern class) to obtain that each factor

ct

(
(−1)cdΓ′ fΓ′∗F

Y
Γ′

|Aut(Γ′)|

)
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equals
(7.11)

1+
∑

Γ∈C̃E ,
k≥1

fΓ∗
|Aut(Γ)|

 ∑
{f1,...,fk}∈

SInt((fΓ)
k)f

Γ′

∏k
j=1

(
f∗j ct(

(∧•
N∨

J̃Γ
J̃ ⊗ (−1)cd(Γ′)FY

Γ′

)
− 1
)

ctopNJ̃Γ
J̃

 .

Note that intersections in C̃Y are not necessarily objects of the latter cate-

gory, so the product is taken over C̃E ⊇ C̃Y .
After that, to continue our derivation from Formula (7.10), we aim to

calculate the product of the terms in (7.11) for varying Γ′. We apply the
excess intersection formula Proposition 4.19 to the product (7.10), to deduce
that it equals

(7.12)
∑

Γ∈C̃E\{•}

1

|Aut(Γ)|
fΓ∗

( ∑
Γ1,...,Γk∈C̃Y

Qt⊆Mor(Γ,Γt) for all t=1,...,k
such that ∪tQt is generic

ct(FΓ) ·
∏
j=1,...,k,
f∈Qj

(
f∗ct(

(∧•N∨
J̃Γj

J̃ ⊗ (−1)cd(Γj)F YΓj

)
− 1

)
ctopNJ̃Γ

J̃

)
.

Now we focus on simplifying the term inside the pushforward fΓ∗. Fol-
lowing Proposition 4.6.for fixed Γ = (G,D, V•), there is a natural bijection
between the set of morphisms{
{Qt ⊆ Aut(Γ)\Mor(Γ,Γt)}t=1,...,k for Γ1, . . . ,Γk ∈ C̃Y s.t. ∪t Qt is generic

}
and the set {

{ℓ1, . . . , ℓM} ⊆ chains(V•) such that V• = ∪Mi=1ℓi
}

with M = |Q1|+ . . .+ |Qk|, given by

{Q1, . . . , Qk} 7→
k⋃
t=1

{f∗(VΓj ,•)}f∈Qj
.

Moreover, if fℓ : Γ → Γt is a contraction that corresponds to the chain
ℓ ⊆ V•, then f∗ℓ (F

Y
Γt
) = FΓ,max(ℓ) (in particular, the latter only depends

on max(ℓ) ∈ V•, and not on the whole chain). Furthermore, the pullback

f∗ℓ (NJ̃Γt
J̃ ) equals a direct sum of line bundles, which allows us to expand

the wedge product

•∧
f∗ℓ (NJ̃Γt

J̃ ) =
•∧⊕
V ∈ℓ

LV =
∑
S⊆ℓ

(−1)|S|
⊗
V ∈S

LV .
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In light of this, we rewrite the numerator inside the pushforward via fΓ
in (7.12) as∑

Γ1,...,Γk∈C̃Y

Qt⊆Mor(Γ,Γt),t=1,...,k
s. t. ∪tQt is generic

ct(FΓ) ·
∏

j=1,...,k,
f∈Qj

(
f∗ct

( •∧
N∨

J̃Γj

J̃ ⊗ (−1)cdΓjF YΓj

)
− 1

)
,

which equals
(7.13)

ct(FΓ)·
∑

{ℓ1,...,ℓM}⊆
chains(V•) s.t.
ℓ1∪...∪ℓM=V•

M∏
i=1

∏
S⊆ℓi

ct
(−1)|S|

⊗
V ∈ℓi

L∨
V ⊗ (−1)|ℓi|FΓ,max(ℓi)

− 1

 .

Next, we apply the inclusion-exclusion principle in the form∑
{ℓ1,...,ℓM}⊆chains(V•)

φ(ℓ1, . . . , ℓM ) =
∑
K⊆V•

∑
{ℓ1,...,ℓM}⊆

chains(V•) s.t.
ℓ1∪...∪ℓM=V•\K

(−1)|K|φ(ℓ1, . . . , ℓM )

for any function φ : chainsV• → Z, to eliminate the condition that
⋃M
i=1 ℓi =

V• in the last set of indices of (7.13). We thus obtain that (7.13) equals
(7.14)∑
K⊆V•

(−1)|K|ct(FΓ)·
∏

S∈chains(V•\K)

ct

(⊗
V ∈S

L∨
V⊗

∑
ℓ∈chains(V•\K)
such that S⊆ℓ

(−1)|S|+|ℓ|FΓ,max(ℓ)

)

We now apply Lemma 7.18 to simplify (7.14), so it becomes

(7.15)
∑

K⊆V•

(−1)|K|ct (FX) ·
∏

V0∈V•\K

ct

( ⊗
V ∈V•\K
V≤V0

L∨
V ⊗HK,V0

)
.

After all these simplifications, we now go back and replace (7.15) as the
numerator of the term in (7.12) that is pushed forward via fΓ, to obtain
that (7.12) equals

(7.16)
∑

Γ∈C̃E\{•}

fΓ∗
|Aut(Γ)|

(∑
K⊆V•(−1)

|K|ct (FX) ·
∏
V0∈V•\K ct

(⊗
V≤V0 L

∨
V ⊗HK,V0

)
ctopNJ̃Γ

J̃

)
.

Our final step to conclude repeatedly uses Formula (3.33) for the total
Chern class of the tensor product of a K-theory element times a line bundle,
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and then divide by

(7.17) ctopNJ̃Γ
J̃ =

∏
V ∈V•

−ΨV .

After combining the binomial coefficients by means of Vandermonde’s iden-
tity, we obtain that Formula (7.16) equals the final formula (7.6). (One way
to obtain the formula is to consider only the case K = ∅ in (7.15), then
expanding as a polynomial in {ΨV }V ∈V• , and considering only the monomial
containing

∏
V ∈V• Ψ

aV
V for all aV ≥ 1, and then lowering the exponents aV

by one because of the division by the term in (7.17)). □

We now prove the ancillary results used in the proof of Theorem 7.4.

Lemma 7.18. Let V• be a rooted forest, and let (xV )V ∈V• be formal vari-
ables. Let S ⊆ V• be a chain in V•. Then∑

ℓ∈chains(V•)
such that S⊆ℓ

(−1)|S|+|ℓ|xmax(ℓ)

equals

(1) −
∑

V ∈min(V•)
xV , if S = ∅

(2) 0, if there is V ∈ V• \ S such that V < max(S) and S ∪ {V } is a
chain, and

(3) xmax(S) −
∑

V ∈V•
V ⋗max(S)

xV , in all other cases.

Proof. Assume that S is nonempty and that there exists V ∈ V• \ S such
that V < max(S) and S ∪ {V } still is a chain. Then we can write∑

C∈chains(V•)
S⊂C

(−1)|S|+|C|−1xmax(C) =

=
∑

C∈chains(V•)
S⊂C,V /∈C

(−1)|S|+|C|−1xmax(C) + (−1)|S|+|C∪{V }|−1xmax(C∪{V })

since max(C) = max(C ∪ {V }), we have that the sum is 0.
Assume that S is nonempty and denote by max(S) = V0. Also assume

that S = {V ∈ V• : V ≤ V0}. Then we can write∑
C∈chains(V•)

S⊆C

(−1)|S|+|C|−1xmax(C) =
∑
V ∈V•

xV
∑

C∈chains(V•)
S⊆C,max(C)=V

(−1)|S|+|C|−1

If V = V0, then the condition S ⊆ C and max(C) = V0 is equivalent to
C = S, so ∑

C∈chains(V•)
S⊆C,max(C)=V

(−1)|S|+|C|−1 = −1.
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If V ⋗ V0, then the condition S ⊂ C and max(C) = V0 is equivalent to
C = S ∪ {V }, so ∑

C∈chains(V•)
S⊆C,max(C)=V

(−1)|S|+|C|−1 = 1.

If V < V0, then the sum is empty, and so it is 0.
If V ≫ V0, choose V

′ such that V0 < V ′ < V , and then∑
C∈chains(V•)

S⊆C,max(C)=V

(−1)|S|+|C|−1 =
∑

C∈chains(V•),
S⊆C,max(C)=V

V ′ /∈C

(−1)|S|+|C|−1+(−1)|S|+|C∪{V ′}|−1

which equals 0.
The case S = ∅ is similar. □

And now the inclusion-exclusion principle:

Proof. (of Lemma 7.9). It is enough to prove the statement for the case of
the structure sheaf L = O. Assuming that D = D1 +D2, we have the short
exact sequences

0→ O(−D1 −D2)→ O → OD1+D2 → 0

0→ O(−D1 −D2)→ O(−D2)→ OD1(−D2)→ 0

0→ O(−D2)→ O → OD2 → 0

0→ OD1(−D2)→ OD1 → OD1∩D2 → 0.

By combining these, we obtain the equality

OD1+D2 = OD1 +OD2 −OD1∩D2 .

The statement is then obtained by repeatedly decomposing D until all sum-
mands are irreducible. □

Our next task is to take the push-forward of Formula (7.6) via the blow-

down morphism p : J̃ dg,n(ϕ+, ϕ−) → J
d
g,n(ϕ

+), to produce an explicit graph
formula for the difference of the Brill–Noether classes. Recall the notation
for the strata JG,D that was set in the beginning of this section.

For V ∈ V•, we define the “close upper edges” and “far upper edges” as

(7.19) CU(V ) := E(V,next(V ) \ V ) and FU(V ) := E(V,next(V )c)

so there is a decomposition

E(V, V c) = CU(V ) ⊔ FU(V ).

For every collection (gV )V ∈V• of nonnegative integers, define the class

c(G,D,V•)((gV )V ∈V•) ∈ A•(J (G,D))
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to equal

(7.20)
∑

(ae,V )V ∈V•,e∈FU(V )

(ge,V )V ∈V•,e∈CU(V )

such that, for all V ∈V•,∑
(ge,V +1)−

∑
ae,V =gV +1

∏
e∈E(G)

Ψ
ge,k(e)−

∑
V ∈S(e)

ae,V

(G,D,e) ·

·
∏

V ∈S(e)

(−1)ae,V
(ge,k(e) −∑V ′∈S(e)

V ⊊V ′
, ae,V ′

ae,V

)
where, the ae,V and ge,V vary over the nonnegative integers, and for e ∈
E(G), we let k(e) ∈ V• be the unique (by Proposition 5.19) element such
that e ∈ CU(k(e)), and we let S(e) := {V ∈ V• : e ∈ FU(V )}.

For a given specialization h : (G′, D′, V ′
•)→ (G,D, V•), we define the pull-

back h∗((gV )) = h∗((gV )V ∈V•)V ′∈V ′
• by:

(7.21) h∗((gV )V ∈V•)V ′ :=

{
gV if V ′ = h−1(V ) for some V ∈ V•;
−1 otherwise.

We have then the following pushforward result.

Proposition 7.22. The following pushforward formula holds

(7.23) p∗

(
f(G,D,V•)∗

|Aut(G,D, V•)|

( ∏
V ∈V•

ΨgV
V

))
=

∑
(G′,D′)∈Cg,n(ϕ)

f(G′,D′)∗

|Aut(G′, D′)|

( ∑
V ′
• a full forest in Ext(G′,D′),

h∈Mor((G′,D′,V ′),(G,D,V ))

c(G′,D′,V ′
•)(h

∗((gV )))

)

Proof. Follows from Corollary 4.35. □

Our final step is to take the pushforward of our formula in Theorem 7.4 via

the blowdown morphism p : J̃ dg,n(ϕ+, ϕ−)→ J
d
g,n(ϕ

+). Note first that the K-
theory elements defined in (7.1) are pull-backs via p of similar classes, which
we will denote with the same name in the next result. The pushforward via
p is then obtained by combining Theorem 7.4 and Proposition 7.22.

Corollary 7.24. The difference wd(ϕ
+) − Id∗wd(ϕ

−) in Ag−d
(
J dg,n(ϕ+)

)
equals

(7.25) −
∑

(G,D)∈Cg,n(ϕ)

1

|Aut(G,D)|
f(G,D)∗( ∑

V• a full forest in Ext(G,D),
s+

∑
V jV +

∑
ge=g−d−|E(G)|

α(s, (jV ), (ge))·cs(FX+ )·
∏
V ∈V•

cjV (H
+
V )
∏
e

Ψge
(G,D,e)

)
,
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where each coefficient α(s, (jV )V ∈V• , (ge)e∈E(G)) is defined by

(7.26)
∑

(ae,V )(e,V )

(−1)|V•|
∏

e∈E(G)

∏
V ∈S(e)

(−1)ae,V
(
ge +

∑
V ′∈S(e)
V ′⊆V

, ae,V ′

ae,V

)
·

∏
V ∈V•

((∑
V⊆V ′(rkH

+
V ′ − jV ′)

)
−
(∑

e∈CN(V )(ge + 1 +
∑

V ′⊆V,
e∈FU(V ′)

ae,V ′)

)
∑

e∈CU(V ) ge + 1 +
∑

e∈CU(V )
V ′∈S(e)

ae,V ′ −
∑

e∈FU(V ) ae,V

)
,

where CN(V ) := E(next(V ),next(V )c), each a(e,V ) ranges over the integers,
and the indices (e, V ) range over all V ∈ V• and over all e ∈ E(V,FU(V )).

(Note that, because of the last binomial, the summand is zero except for
finitely many natural number values of ae,V , Also, note that H+

V depends
on V•).

Proof. First observe that the result amounts to taking the degree g− d part
of the pushforward via p of Formula (7.6).

The calculation that we are attempting has the form
(7.27)

p∗

 ∑
(G,D,V•)∈C̃E

f(G,D,V•)∗

|Aut(G,D, V•)|

 ∑
(gV )V ∈V•

p∗(G,D)(β(gV )V ∈V•
)
∏
V ∈V•

ΨgV
V

 .

for suitable classes β(gV )V ∈V•
∈ A∗(J (G,D)) as in (7.6). Since FX and HV are

pullback of FX+ and H+
V , by the push-pull formula, and by Proposition 7.22,

we obtain that (7.27) equals

(7.28)
∑

(G′,D′)∈Cg,n(ϕ)

f(G′,D′)∗

|Aut(G′, D′)|( ∑
V ′
• a full forest in Ext(G′,D′);

h∈Mor((G′,D′,V ′
•),(G,D,V•))

(gV ≥0)V ∈V•

h∗β(gV )V ∈V•
· c(G′,D′,V ′

•)(h
∗((gV )))

)
.

For a tuple (gV ′ ≥ −1)V ′∈V ′
• we define h : (G′, D′, V ′

•) → (G,D, V•) as the

unique contraction with the property that gV ′ ≥ 0 if and only V ′ = h−1(V )
for some V ∈ V•. That is, we contract each collection of vertices V ′ such
that gV ′ = −1 (see 7.21). We then define β(gV ′ )V ′∈V ′•

:= h∗(β(gV )V ∈V•
).

Formula (7.28) can then be simplified to
(7.29)∑
(G′,D′)∈Cg,n(ϕ)

f(G′,D′)∗

|Aut(G′, D′)|

( ∑
V ′ a full forest
in Ext(G′,D′);
(gV ′≥−1)V ′∈V ′•

β(gV ′ )V ′∈V ′•
· c(G′,D′,V ′

•)((gV ′))

)
.
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Now to obtain the final result, we rename (G′, D′) and V ′
• into (G,D) and

V•. Then we eliminate the indices (gV ) by means of the equality

gV = −1 +
∑

(ge,V + 1)−
∑

ae,V ,

and we replace the indices (ge,V ) with indices (ge) defined by ge := ge,k(e) −∑
V ∈S(e) ae,V . □

As promised earlier, here we compare the ψ classes on Jacobians with the
classical ones on moduli of curves.

Remark 7.30. Denote by f : JG,D → MG the forgetful morphism. For
every e ∈ E(G), we have:

Ψ(G,D,e) = f∗ΨG,e +∆G,D,e

Where ΨG,e = −c1(Le) is the first Chern class of the normal line bundle

corresponding to the node e on the stratum MG → Mg,n, and ∆G,D,e is
the divisor in JG,D corresponding to pointsrepresent sheaves that fail to be
locally free at the edge e.

7.a. The case of disjoint blowups. Our main results, Theorem 7.4 and
Corollary 7.24 massively simplify in the case when them vine curves β1, . . . , βm
are disjoint. This is for example the case for all hyperplanes on divisorial (or
compact type) vine curves (3.12) (Proposition 3.15) –in this case m equals 1
and no blowup is required–, and for all hyperplanes of the form (3.13) with
S ̸= [n] (Proposition 5.29).

In each of these cases, the category C̃E only contains the terminal object
and the resolved strata (βi, V

i
• ) where V

i
• = {Vi} contains only the one vertex

set Vi = {legβi(1)} for all i = 1, . . . ,m (Proposition 5.29).

Recall the notation from the previous section. We set X+
i , Y

+
i (respec-

tively, Xi, Yi) as the two components over βi (respectively, over (βi, V
i
• )).

We denote by gYi the genus of the fiber of Yi and by dYi the degree of the

universal line bundle on Yi. We also set F Yi+ = F+
Vi

and F Yi = FVi . Let ti be

the number of nodes of a general curve in βi, so |Aut(βi)| = ti!.
Then we have:

Corollary 7.31. When the hyperplane H = H(ϕ+, ϕ−) is such that the vine
curves β1, . . . , βm are pairwise disjoint, Formula (7.6) simplifies to

(7.32)

m∑
i=1

∑
si,ji,ki≥0

1

ti!

(
gYi − dYi − j − 1

ki + 1

)
· fEi∗

(
csi(F

Xi) · cji(F Yi) ·Ψ
ki
i

)
Proof. Follows immediately from Theorem 7.4. Note the simplification of
the minus sign in the definition of bG,D,V ((jV ); (kV )) and the minus sign
before fΓ∗ in Equation (7.6). □

We can also recast the main result of 7.24. by simply taking the pushfor-
ward along each Pti−1 bundle pi : Ei → βi. Note that the K-theory elements
FXi and F Yi are pull-backs of corresponding elements FXi

+ and F Yi+ on βi.
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For each i and 1 ≤ ri ≤ ti, let Ψi,ri be the first Chern class of the conormal
bundle to the ri-th gluing on the resolved stratum βi.

Corollary 7.33. When the hyperplane H = H(ϕ+, ϕ−) is such that the vine
curves β1, . . . , βm are pairwise disjoint, the formula in Corollary 7.24 equals
(7.34)∑
si+ji+λi=g−d−ti
for all i=1,...,m

1

ti!

(
gYi
− dYi

− ji − 1

g − d− ji − si

)
·fβi∗

(
csi(F

Xi
+ )·cji(F

Yi
+ )·hλi

(Ψi,1, . . . ,Ψi,ti)
)

where hλi is the complete homogeneous polynomial of degree λi in its entries.

Proof. This follows from Corollary 7.24 or, more directly, by applying the
push-pull formula to Corollary 7.31 combined with the fact that the push-
forward of Ψki

i along Ei → βi equals hki−ti+1(Ψi,1, . . . ,Ψi,ti). □

We now analyse some even more special cases of this, already special,
formula.

Remark 7.35. (The “compact type” hyperplanes). A special case of Corol-
laries 7.31 and 7.33 occurs whenH(ϕ+, ϕ−) is a hyperplane of the form (3.12).
In this case the generic locus where ϕ+ differs from ϕ− is a compact type

boundary divisor. In particular, m equals 1 and J̃ dg,n(ϕ+, ϕ−) → J
d
g,n(ϕ

+)
is the identity. The unique vine curve β = β1 consists of a boundary divi-
sor ∆g−gY ,S ⊂ Mg,n decorated with a unique pair of ϕ+-stable bidegrees,
say (d − dY , dY ). In this case the degree g − d part of the formula in 7.31
coincides with the formula in 7.33, and they equal to

(7.36)
∑

s+j+λ=g−d−1

(
gY − dY − j − 1

g − d− j − s

)
· fβ∗

(
cs(F

X
+ ) · cj(F Y+ ) ·Ψλ

)
.

7.b. Wall-crossing in low codimension. We now analyse the first few
cases of our main result, ordered by codimension.

7.b.1. Codimension 1. Let d = g − 1. In this case the classes wg−1(ϕ) are
divisors, also known under the name of theta divisors. This case was the
main result of [KP17].

Because each wg−1(ϕ) is a divisor class and J dg,n(ϕ+) is nonsingular, the
wall-crossing term equals zero across any hyperplane not of the form (3.12).

Assume that the hyperplane crossed is H = H(g − gY , 1, S; d− dY + 1
2).

Then Formula (7.36) collapses and it gives

wg−1(ϕ
+)− Id∗wg−1(ϕ

−) = (gY − dY − 1) · [Jβ]

for β = (G(g − gY , 1, S), (d − dY , dY )). This recovers [KP17, Theorem 4.1]

after observing that the divisor Jβ ⊂ J
d
g,n(ϕ

+) is the pullback of ∆g−gY ,S ⊂
Mg,n.
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7.b.2. Codimension 2. When d = g − 2, the classes wg−2(ϕ) have codimen-
sion 2. There are 2 types of hyperplanes where the wall-crossing term is not
zero.

If the hyperplane has the form (3.12), the vine curve β is a boundary
divisor. Assuming that H and β are as in the previous paragraph, then
Formula 7.36 reads

fβ∗

((
gY − dY − 1

g − d− 1

)
c1(F

X
+ ) +

(
gY − dY − 2

g − d− 1

)
c1(F

Y
+ ) +

(
gY − dY − 1

g − d

)
Ψ

)
.

If the hyperplane is of type (3.13), then the only cases when the formula
is nontrivial is for H = H(g−gY −1, 2, S, d−dY −1). While this hyperplane
might witness a change in stability on more than 1 vine curve, the intersec-
tion of any 2 would occur in codimension > 2 and hence not be relevant.
We can read the wall-crossing term off Formula (7.33):

m∑
i=1

(
gYi − dYi − 1

g − d

)
[Jβi ]

Here βi for i = 1, . . . ,m is a vine curve of the form (G(g− gYi −1, 2, S), (d−
dYi , dYi)) where the stability condition changes. (If Sc is not empty, then
m = 1).

7.c. Pullbacks via Abel–Jacobi sections. Fix integers d = (k; d1, . . . , dn),
f = (fi,S)i,S, and let L = Ld,f be the line bundle on the universal curve Cg,n
defined in Section 3.d.1. Let then ϕ+ and ϕ− be on opposite sides of a
hyperplane H (Definition 5.1), and such that L is ϕ+ stable. This defines

an Abel–Jacobi section σ = σd,f :Mg,n → J
d
g,n(ϕ

+). We now compute the
pullback of Formula 7.25 via σ.

For everyG ∈ Gg,n, define the divisorD = Dd,f onG as the multidegree of
L on any curve whose dual graph equals G. We then have a poset Ext(G) =
Ext(G,D), depending on ϕ+, ϕ−, defined in Section 5.

The total space CG → MG has one irreducilbe component Cv := CG,v
for each vertex v of G. We redefine πv = πG,v : Cv → MG. Also, for each

V ⊂ V (G), we denote by πV :
⋃
v∈V Cv → MG the induced map on the

union. We write X = XG = Cleg(1) and Σ = X ∩ C{leg(1)}c . We also write
YV = CV c for every V ⊂ V (G).

We then define the following K-theory elements inMG

FXd,f := −R•(πX)∗L(−Σ)|X ; F
d,f
V := −R•(πV c)∗(L|YV ); H

d,f
V := FV−

∑
V ′∈V•,
V ′⋗V

FV ′ .

The line bundle L also defines a section, possibly rational, σ− :Mg,n 99K

J dg,n(ϕ−).

Corollary 7.37. The difference

σ∗(wd(ϕ
+))− σ∗−(wd(ϕ−))
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equals

(7.38) −
∑

G∈Gg,n

1

|Aut(G)|
fG∗( ∑

V• a full forest in Ext(G),
s+

∑
V jV +

∑
ge=g−d−|E(G)|

α(s, (jV ), (ge))·cs(FXd,f )·
∏
V ∈V•

cjV (H
d,f
V )

∏
e

Ψge
(G,e)

)

where the coefficient α is defined in Equation (7.26).

Proof. Follows directly by pulling back (7.25) via σ. □

When the hyperplane H is such that the vine curves that fail ϕ−-stability
are disjoint, the latter can be simplified, as for Formula (7.34).

Remark 7.39. The pull-back of Formula 7.25 via the Abel–Jacobi section
σd,f can be explicitly computed via [PRvZ20, Theorem 1].

For a full forest V• in Ext(G), recall the definition of the next element
from (5.17). Defining ZV := Cnext(V )\V and set ΣV = ZV ∩

⋃
V ′⋗V CV ′c and

Σ′
V = ZV ∩ CV , we have

Hd,f
V = −R•(πV )∗((Ld,f )|ZV

(−ΣV )),

and the line bundle (Ld,f )|ZV
(−ΣV ) equals

ωk
ZV /MG

(
kΣ′

V +(k−1)ΣV +
∑

leg(j)∈
next(V )\V

djPj+
∑

leg(Sc)⊆next(V )\V

fi,ScCi,Sc |ZV

)
.

We note that ZV is the disjoint union Cv for v ∈ next(V ) \ V (see Proposi-
tion 5.19). Moreover, the line bundle above, restricted to each one of these
components, is precisely the pullback via the projectionMG →Mg(v),val(v)

of a line bundle as in [PRvZ20, Formula 0.1].

Example 7.40. As an illustration of Remark 7.39, we write the simpler
case where H corresponds to changing the stability condition on a single
vine curve β with t nodes, components of genus gX and gY , with markings
Sβ and Scβ respectively. ThenMβ =MgX ,|Sβ |+t×MgY ,|Sc

β |+t and we denote

by pX and pY the projections. In this case we have that

FXL =p∗X

(
−R•(πX∗ )

(
ωkX((k − 1)Σ +

∑
j∈Sβ

djPj +
∑
i≤gX

1∈S⊆Sβ

fi,Sβ\S · C
X
i,Sβ\S)

))

F YL =p∗Y

(
−R•(πY∗ )

(
ωkY (kΣ+

∑
j∈Sc

β

djPj +
∑
i≤gY
S⊆Sc

β

fi,Sc
β\S · C

Y
i,Sc

β\S
)

))
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Formula (7.38) for the difference σ∗(wd(ϕ
+))− σ∗−(wd(ϕ−)) in this case be-

comes∑
s+j+λ
=g−d−t

(
gY − dY − j − 1

g − d− j − s

)
fβ∗
t!

(
cs(F

X
L ) · cj(F YL ) · hλ(Ψ1, . . . ,Ψt)

)
.

The Chern classes above are computed in [PRvZ20, Theorem 1].

References

[ACG11] Enrico Arbarello, Maurizio Cornalba, and Phillip A. Griffiths. Geometry
of algebraic curves. Volume II, volume 268 of Grundlehren der mathema-
tischen Wissenschaften [Fundamental Principles of Mathematical Sciences].
Springer, Heidelberg, 2011. With a contribution by Joseph Daniel Harris.

[ACGH85] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris. Geometry of alge-
braic curves. Vol. I, volume 267 of Grundlehren der mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences]. Springer-
Verlag, New York, 1985.

[Alu10] Paolo Aluffi. Chern classes of blow-ups. Math. Proc. Cambridge Philos. Soc.,
148(2):227–242, 2010.

[AP20] Alex Abreu and Marco Pacini. The universal tropical Jacobian and the
skeleton of the Esteves’ universal Jacobian. Proc. Lond. Math. Soc. (3),
120(3):328–369, 2020.

[AP21] Alex Abreu and Marco Pacini. The resolution of the universal Abel map via
tropical geometry and applications. Adv. Math., 378:Paper No. 107520, 62,
2021.

[BHP+] Younghan Bae, David Holmes, Rahul Pandharipande, Johannes Schmitt,
and Rosa Schwarz. Pixton’s formula and Abel–Jacobi theory on the Picard
stack. arXiv:2004.08676.

[BL05] Lev Borisov and Anatoly Libgober. McKay correspondence for elliptic gen-
era. Ann. of Math. (2), 161(3):1521–1569, 2005.

[Cap94] Lucia Caporaso. A compactification of the universal Picard variety over the
moduli space of stable curves. J. Amer. Math. Soc., 7(3):589–660, 1994.

[CCUW20] Renzo Cavalieri, Melody Chan, Martin Ulirsch, and Jonathan Wise. A mod-
uli stack of tropical curves. Forum Math. Sigma, 8:Paper No. e23, 93, 2020.

[CGH+] Dawei Chen, Samuel Grushevsky, David Holmes, Martin Möller, and Jo-
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