Optimality Guarantees for Crystal Structure Prediction

Vladimir V. Gusev ${ }^{1,2}$, Duncan Adamson ${ }^{1}$, Argyrios Deligkas ${ }^{1} \ddagger$, Dmytro Antypov ${ }^{1}$, Christopher M. Collins ${ }^{3}$, Piotr Krysta ${ }^{2}$, Igor Potapov ${ }^{2}$, George R. Darling ${ }^{3}$, Matthew S. Dyer ${ }^{1,3}$, Paul Spirakis ${ }^{1,2 *}$, Matthew J. Rosseinsky ${ }^{1,3 *}$
${ }^{1}$ Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory, University of Liverpool; Liverpool, UK
${ }^{2}$ Department of Computer Science, University of Liverpool; Liverpool, UK.
${ }^{3}$ Department of Chemistry, University of Liverpool; Liverpool, UK.
\ddagger Present address: Department of Computer Science, Royal Holloway, University of London; London, UK.
*Corresponding authors. Emails: P.Spirakis@liverpool.ac.uk, M.J.Rosseinsky@liverpool.ac.uk

The structures of crystalline materials determine their properties, which enable essential technologies. Crystal structure prediction (CSP) can thus play a central role in the design of new functional materials ${ }^{1,2}$. Researchers have developed efficient heuristics to identify structural minima on the potential energy surface (PES) ${ }^{3-5}$. However, these methods, while often able to access all configurations in principle, provide no guarantees that the lowest energy structure has been found. Here we show that the structure of a crystalline material can be predicted with energy guarantees by an algorithm that finds all the unknown atomic positions within a unit cell by combining combinatorial and continuous optimisation. We encode the combinatorial task of finding the lowest energy periodic allocation of all atoms on a lattice as a mathematical optimisation problem of integer programming ${ }^{6,7}$, allowing guaranteed identification of the global optimum using well-developed algorithms. A single subsequent local minimisation of the resulting atom allocations then reaches the correct structures of key inorganic materials directly, proving their energetic optimality under clear assumptions. This formulation of CSP establishes a bridge to the theory of algorithms and affords the absolute energetic status of observed or predicted materials. It provides ground truth for heuristic or data-driven structure prediction methods, and is uniquely suitable for quantum annealers ${ }^{8-10}$, opening a path to overcome the combinatorial explosion of atomic configurations.
There are over 200,000 crystal structures known and held in curated databases as lists of atomic positions ${ }^{11,12}$. Knowledge of structure allows accurate prediction of stability, and in many cases properties. However, when considering a previously unreported composition without restriction to adopting structures that lie within the databases, the structure cannot be known and must be predicted to allow assessment of stability and properties. The central feature of CSP is that it begins with no information on the positions of the atoms in the unit cell and aims to find their exact arrangement ${ }^{13}$. To predict thermodynamically stable compounds, we ask whether there exists a crystal structure for a given composition with an energy below a given threshold, defined by the convex hull ${ }^{2}$. This decision version ${ }^{14,15}$ of CSP lies at the heart of in-silico material discovery. Over the years, significant effort has been invested in CSP approaches that aim to quickly identify low-energy structures. However, a formal algorithm, as postulated by the Church-Turing thesis ${ }^{16}$, should not only be able to identify such structures, but to provide a non-existence proof if the target energy cannot be reached. The tremendous difference between finding a solution and proving its
optimality is evident in mathematics, where confirmation of conjectures can take decades or even centuries as in the case of the Kepler conjecture ${ }^{17}$ about the densest sphere packings and its recently established generalisations ${ }^{18}$. The formal statement capturing this distinction is probably the most important open problem in computer science: $\mathrm{P}=\mathrm{NP}$ asks whether efficient ways of finding proofs of optimality exist ${ }^{19}$. To date, there are no methods for CSP of extended inorganic solids that provide energy optimality guarantees in the continuous space of unknown atomic positions, and thus no formal algorithm for this problem has been presented.

This is in stark contrast to the general optimisation theory, where formal algorithms for a wide range of problems have been devised and their optimality and approximation guarantees are thoroughly investigated ${ }^{19-21}$. One of the most general methods to introduce optimality guarantees for a variety of practical problems is integer programming ${ }^{6}$. This consists of rewriting the problem in a particular form by introducing integer decision variables, constraints, and an objective function corresponding to the task. Thus, optimisation algorithms can be applied to all encoded problems at once and developed in an abstract setting independent of the actual problem. This universality has led to widespread use of integer programming in areas such as logistics, manufacturing, healthcare, finance and computer vision ${ }^{7}$, and the development of robust methods and commercial solvers ${ }^{22,23}$. One of the key advances in this area is a class of branch-and-cut optimisation algorithms that are capable of rapidly eliminating large parts of the optimisation domain from consideration if the current best solution cannot be improved there. Modelling an optimization problem as an integer program addressed with the branch-and-cut method not only allows the solution of much larger problems than possible by brute force ${ }^{24,25}$, but also provides numerical upper and lower bounds on the optimal solution during the run and proof of optimality when the run is complete.
These benefits prompted the use of mathematical optimisation for diverse materials design challenges such as molecular conformation prediction ${ }^{26}$, molecular design ${ }^{27}$, protein folding ${ }^{28}$, Coulomb glass modelling ${ }^{29}$ and substitutions into perovskites ${ }^{30}$ and other known parent structures ${ }^{31}$. Benefitting from these demonstrated advantages of combinatorial guarantees, we provide a generally applicable CSP algorithm that addresses the continuous space of possible atomic sites to correctly predict a diverse set of structures. This method determines all the atomic positions previously unknown to the algorithm. The coupling of local minimisation to integer programming that we use allows exploration of the continuous space using strong optimisation methods on a discrete space to obtain physical energy guarantees. We start by considering the allocation of all the atoms that define the materials composition to a suitably dense set of discrete positions within a unit cell treated with periodic boundary conditions. Given a unit cell with a set of positions Pos $=$ $\left\{\operatorname{pos}_{1}, \operatorname{pos}_{2}, \ldots, \operatorname{pos}_{n}\right\}$, we find an assignment of a given number of atoms of species Types $=\left\{t y p_{1}, t y p_{2}, \ldots, t y p_{k}\right\}$ to them while minimising the interaction energy. Not all positions have to be occupied. In this work, these positions form a lattice and are specified by their fractional coordinates as $\left(\frac{i}{g}, \frac{j}{g}, \frac{k}{g}\right)$ for integers $i, j, k \in\{0,1, \ldots, g-1\}$, where g is the discretisation parameter, equal to the number of positions per side of the unit cell, that defines the discretisation, or separation between the lattice positions. A typical example is given in Figure 1, where the set Pos contains 64 uniformly distributed positions within the unit cell $(g=4)$ and Types $=\{S r, T i, O\}$.
We start the encoding of the atom allocation problem into an equivalent integer program by introducing binary variables $X_{\text {pos }}^{t y p}$ for every pos and typ, which capture our decision to place an atom of type $t y p$ at position pos. The value of $X_{\text {pos }}^{t y p}$ equals 1 if a typ atom occupies pos
and 0 otherwise. Since not all variable assignments are physical, e.g., both Sr and Ti cannot be located at the same position, we introduce additional linear constraints to ensure that all solutions of the program will correspond to physically reasonable atomic arrangements with the correct stoichiometry (Methods).

The remaining part of the encoding is the objective function - the interaction energy ${ }^{4,32}$ of the resulting allocation computed with periodic boundary conditions. Here, we focus on commonly used approaches based on interatomic potentials ${ }^{3}$ that represent the energy as the sum of the electrostatic interaction of ions treated as point charges and the repulsion contribution from closely located ions, addressing the widely studied class of ionic materials that enable key technologies ${ }^{33-35}$. Since the electrostatic interaction is long range, special summation methods are used, and the Ewald sum is arguably the most common ${ }^{36}$. An important observation that is critical for the encoding is that the Ewald sum can be rearranged into a finite sum over all pairs of atoms within a unit cell and these pairwise contributions can be computed independently of the positions of all other atoms within the unit cell (Methods). When repulsion is modelled using two-body potentials either in the form of classical forcefields (Buckingham, Lennard-Jones) or more flexible machine learning potentials ${ }^{32}$, the total potential energy of a crystal can be written as the sum of pairwise contributions. These individual summands for every possible allocation of a pair of ions can be computed independently and stored in a table. If we denote by $\alpha_{\text {pos }_{1}, \text { pos }_{2}}^{\text {typ }_{2}, t p_{2}}$ the constant value from this table that defines the energy contribution of ions $t y p_{1}$ and $t y p_{2}$ placed at pos_{1} and pos_{2} respectively, then the energy of an allocation can be written as:

$$
\begin{equation*}
E=\sum_{\substack{\text { pos }_{1}, \text { poss } \\ \text { typos, } \\ \text { tp }_{1}, \text { typ }_{2} \in T y p e s}} \alpha_{\text {pos }_{1}, \text { pos }_{2}}^{\text {typ }_{1}, t y p_{2}} \text { pos }_{\text {pos }_{1}}^{\text {typ }} X_{\text {pos }_{2}}^{\text {typ }} \tag{1}
\end{equation*}
$$

The term $\alpha_{\text {pos }_{1}, \text { os }_{2}}^{t y p_{1}, t p_{2}}$ is present if and only if both $X_{\text {pos }_{1}}^{t y p_{1}}$ and $X_{\text {pos }_{2}}^{t y p_{2}}$ are equal to 1 , which corresponds to both these positions being occupied in an allocation, ensuring correct energy values.

The set of variables $X_{\text {pos }}^{\text {typ }}$, chosen constraints, and the exact form of the energy function E in Equation (1) define an integer program (SI) whose candidate solutions are in one-to-one correspondence with allocations of atoms to lattice positions. It is a binary quadratic program, where its variables $X_{\text {pos }}^{t y p}$ appear in quadratic terms. Such optimisation problems are typically computationally intractable in the sense of the theory of NP-completeness ${ }^{19}$. However, many instances can be solved efficiently using branch-and-cut methods within existing optimisers ${ }^{22,23}$. They relax the problem by allowing the variables $X_{\text {pos }}^{\text {typ }}$ to take values between 0 and 1 , resulting in a more tractable problem with a smaller minimum objective value E. The branch-and-cut method maintains a solution to the relaxed problem in iterations, and by using "cuts" gradually narrows down the relaxed continuous feasibility space of the problem to finally reach the guaranteed optimal binary solution (Methods). We further apply space group symmetry to identify the minimal set of lattice positions that are unique given the symmetry, and introduce proximity constraints (Methods), reducing the run time of optimisation methods by focussing on desired subspaces. We will refer to the resulting search space of atom allocations to the lattice positions that satisfy all imposed constraints as the configuration space.

Exact solutions of different periodic lattice atom allocation problems can be used to nonheuristically investigate the PES. The configuration space and the corresponding integer program are specified for a given composition, which allows a branch-and-cut algorithm to find the same global optimum for this problem in every run. With this exact allocation of atoms on the lattice, we then lift the restriction that atoms only occupy lattice positions to predict crystal structure by local minimisation of these optimum configurations. The coupling of local minimisation to integer programming enables the exploration of the PES, which is a continuous space, using powerful optimisation algorithms on a discrete space (Figure 1). We investigate this approach to CSP (Table 1) on a prototype set of compositions that adopt cubic crystal structures: 21% of all materials in the ICSD 11 are cubic, including families of ionic materials that have gained considerable attention due to their functional properties such as garnet ${ }^{33}$, perovskite ${ }^{34}$ and spinel ${ }^{35}$.

The garnet structure of the first composition studied, $\mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{Si}_{3} \mathrm{O}_{12}$, cannot be simply explained based on individual sphere packings, requiring instead description as a cylindrical rod packing ${ }^{37}$. This reflects its complexity, with distinct twelve (Ca, dodecahedron), six (Al, octahedron) and four (Si , tetrahedron) coordination of the three electropositive elements by O (oxide occupies a general crystallographic position with no symmetry and is four-coordinated by Al, Si and two Ca). At a unit cell parameter of $11.9 \AA$ with a discretisation of $0.75 \AA(g=$ 16) in the $I a \overline{3} d$ space group, the integer programming formulation allocates the four distinct atomic positions required on the 62 unique lattice positions in one second on a desktop computer. The integer program also returns a guarantee of optimality for the periodic lattice atom allocation within this run time. This optimum allocation is sufficiently precise that the correct experimentally determined structure (Figure 2) is immediately recovered by one local minimisation of this single configuration, which requires a mean shift of approximately $0.29 \AA$ in atomic positions. The integer program thus identifies a configuration on a lattice that lies within the global minimum basin of the continuous PES and certifies that this is the lowest energy structure possible at this composition under the stated assumptions, because it provides guarantees of optimality.

In addition to $\mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{Si}_{3} \mathrm{O}_{12}$, we applied this integer programming CSP approach to investigate the PES of the following compositions: $\mathrm{SrTiO}_{3}, \mathrm{Y}_{2} \mathrm{O}_{3}, \mathrm{Y}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}, \mathrm{MgAl}_{2} \mathrm{O}_{4}$. Their experimentally determined structures correspond to the perovskite, bixbyite, pyrochlore and spinel structure types, respectively ${ }^{38}$. We investigated different supercells of SrTiO_{3} with up to 135 atoms in them to assess the scalability of the approach. The other structures highlight the complexity of multidimensional CSP with 56-160 atoms in the unit cell (Methods). Table 1 reports the configuration spaces that result in prediction of the experimentally determined structures, and the times required to guarantee that the solution, and thus the experimentally determined structure itself, is optimal given the composition in each of these archetypal cases.

For every composition (Table 1), local minimisation of the single global optimum allocation for a moderate discretisation of $0.6-0.7 \AA$ led to the correct structure. This indicates that periodic lattice atom allocations meaningfully capture crystal structures in continuous space and enable identification of the global minimum on the PES. The guaranteed bound on the energy difference between the continuous and discrete solutions can be computed and goes to zero as the discretisation becomes finer (SI). As the ions are not arbitrarily small, unlike lattice points, it is a physically reasonable hypothesis that a discretization of the order of 30$50 \%$ of the shortest interionic distances should allow the correct allocation to be identified. For all the examples in Table 1, discretisations that correspond to a fraction of a bond length
lead to globally optimal solutions in the continuous space, reflecting the role of ionic size in determining structure via repulsive contributions to the energy at short separations, supporting this hypothesis. Moreover, the allocation outcome was insensitive (Extended Data Tables 1-5) to the unit cell parameter (e.g., SrTiO_{3} returns the same allocation over 3-5 \AA). A possible explanation is that the change in unit cell size affects the whole pool of low energy solutions similarly, making the optimal allocation relatively stable and permitting reliable identification of structures.

While the solution of an integer program is guaranteed to be optimal in the discrete space of the lattice, for coarser discretisations we find that the local minimisation of that solution can be different from the global optimum in the continuous space, consistent with the hypothesis above. For lattice discretisations of $1.03 \AA$ to $1.49 \AA$, identification of the correct structure by one local minimisation of the global optimum atom allocation was predominantly but not uniformly possible. For $\mathrm{MgAl}_{2} \mathrm{O}_{4}$ with a $1.03 \AA$ discretisation $(g=8)$ and $P 23$ space group symmetry, the configuration space became large enough to contain low-energy lattice allocations that belong to local, rather than global, minima of the PES (Figure 2). Nevertheless, minimisation of the four lowest energy arrangements recovered the correct spinel structure. For higher symmetries, the lowest energy allocation even on this coarser lattice did afford the correct structure directly (Table 1).

A heuristic partially searches the PES for preferred configurations that are then locally minimised - success relies on identifying a configuration that lies on the walls of the global minimum (Figure 3). By contrast, integer programming considers all periodic lattice atom allocations simultaneously, identifying the globally optimal configuration. The branch-andcut algorithm allows us to discard large portions of the configuration space while retaining optimality, leading to brute force-like energy guarantees without actual brute force. By locally minimising these exact outcomes from the appropriate discretisation and unit cell parameters, we can obtain the guaranteed global minimum in CSP. Further development will integrate this configuration space screening with the space group symmetry and unit cell metric determination that is common to all CSP. Beyond that, as the solver maintains a valid solution, it can identify the global optimum much earlier than proving its optimality (Figure 3d). By foregoing optimality guarantees, it would be possible to investigate larger configuration spaces and use integer programming either as an independent heuristic tool or to complement allocation decisions in existing heuristic methods.

The current state of the art in computational complexity ${ }^{6}$ indicates that there will always be a combinatorial limit to the implementation of integer programs for CSP on classical computers, just as heuristics will eventually run out of capacity to explore complex structural spaces efficiently enough to generate reliable outcomes. Quantum computers have the potential to solve many problems faster than classical computers ${ }^{39}$, demonstrating the socalled quantum advantage ${ }^{40-42}$. While large-scale implementation of quantum computing is not imminent, more limited forms are increasingly available. One example is the quantum annealer ${ }^{43}$, a specialised hardware solver for quadratic unconstrained binary optimisation (QUBO) problems ${ }^{9}$ alongside other types of Ising machines ${ }^{10,44}$. The QUBO problem involves finding a 0,1 -assignment minimising an objective function containing only products of at most two binary variables. Equation (1) has exactly this form after elimination of constraints, creating a pathway to overcome the combinatorial explosion in CSP. We have verified the applicability of this approach to CSP by solving the structures of $\operatorname{SrO}(g=2$, $P 23), \mathrm{SrTiO}_{3}(g=2, \mathrm{Pm} \overline{3} m), \mathrm{ZrO}_{2}\left(g=4, P 2_{1} 3\right)$, and $\mathrm{ZnS}(g=4, P 23)$ on the 2000Q quantum annealer provided free by D-Wave via Leap ${ }^{45}$ (Methods).

The search routines that find the lowest energy periodic lattice atom allocations can be used to predict crystal structures with one subsequent local minimisation. Integer programming formulation of this search affords an algorithm that allows guaranteed identification of the global optimum in CSP and enables quantum computers to address the arising combinatorial challenges. The resulting structures are thus demonstrated to afford the lowest energy possible at a given composition, proving the optimality of the observed structures of archetypal materials under clear assumptions. This provides both ground truth for heuristic and data-driven structure prediction methods and essential understanding by guaranteeing the energetic status of experimentally isolated materials in the laboratory. Development of encodings and implementations that make best use of emerging software and hardware will define a distinct CSP based on optimality, certainty and quantum advantage enabling new workflows for synthetic prioritisation and property prediction.

Main text references

1. Collins, C. et al. Accelerated discovery of two crystal structure types in a complex inorganic phase field. Nature 546, 280-284 (2017).
2. Oganov, A. R., Pickard, C. J., Zhu, Q. \& Needs, R. J. Structure prediction drives materials discovery. Nat. Rev. Mater. 4, 331-348 (2019).
3. Woodley, S. M., Day, G. M. \& Catlow, R. Structure prediction of crystals, surfaces and nanoparticles. Phil. Trans. R. Soc. A 378, 20190600 (2020).
4. Oganov, A. R., Saleh, G. \& Kvashnin, A. G. Computational Materials Discovery. (Royal Society of Chemistry, London, 2018).
5. Wales, D. J. Energy Landscapes: Applications to Clusters, Biomolecules and Glasses. (Cambridge University Press, Cambridge, 2003).
6. Wolsey, L. A. Integer Programming. (Wiley, Hoboken, 2020).
7. Jünger, M. et al. 50 Years of Integer Programming 1958-2008. (Springer, Heidelberg, 2010).
8. Lucas, A. Ising formulations of many NP problems. Front. Phys. 2, 5 (2014).
9. Berwald, J. J. The mathematics of quantum-enabled applications on the D-Wave quantum computer. Not. Am. Math. Soc. 66, 832-841 (2019).
10. Mohseni, N., McMahon, P. L. \& Byrnes, T. Ising machines as hardware solvers of combinatorial optimization problems. Nat. Rev. Phys. 4, 363-379 (2022).
11. National Institute of Standards and Technology. Inorganic Crystal Structure Database (ICSD). Available at https://icsd.nist.gov.
12. Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. The Cambridge Structural Database. Acta Crystallogr. Sect. B 72, 171-179 (2016).
13. Woodley, S. M. \& Catlow, R. Crystal structure prediction from first principles. Nat. Mater. 7, 937-946 (2008).
14. Adamson, D., Deligkas, A., Gusev, V. \& Potapov, I. On the hardness of energy minimisation for crystal structure prediction. Fundam. Informaticae 184, 181-203 (2021).
15. Adamson, D., Deligkas, A., Gusev, V. V \& Potapov, I. The complexity of periodic energy minimisation. MFCS 2022, LIPIcs 241, 37 (2022).
16. Sipser, M. Introduction to the Theory of Computation. (Cengage Learning, Boston, 2012).
17. Hales, T. C. A proof of the Kepler conjecture. Ann. Math. 162, 1065-1185 (2005).
18. Cohn, H., Kumar, A., Miller, S. D., Radchenko, D. \& Viazovska, M. The sphere packing problem in dimension 24. Ann. Math. 185, 1017-1033 (2017).
19. Papadimitriou, C. H. \& Steiglitz, K. Combinatorial Optimization: Algorithms and Complexity. (Prentice Hall, New Jersey, 1998).
20. Goemans, M. X. Semidefinite programming in combinatorial optimization. Math. Program. 79, 143-161 (1997).
21. Williamson, D. P. \& Shmoys, D. B. The Design of Approximation Algorithms. (Cambridge University Press, Cambridge, 2011).
22. Gurobi Optimization LLC. Gurobi Optimizer Reference Manual. Available at https://www.gurobi.com (2022).
23. Kronqvist, J., Bernal, D. E., Lundell, A. \& Grossmann, I. E. A review and comparison of solvers for convex MINLP. Optim. Eng. 20, 397-455 (2019).
24. Applegate, D. L., Bixby, R. E., Chvátal, V. \& Cook, W. J. The Traveling Salesman Problem: A Computational Study. (Princeton University Press, Princeton, 2011).
25. Elf, M., Gutwenger, C., Jünger, M. \& Rinaldi, G. Branch-and-cut algorithms for combinatorial optimization and their implementation in ABACUS. Lect. Notes Comput. Sci. 2241, 157-222 (2001).
26. Havel, T. F., Kuntz, I. D. \& Crippen, G. M. The combinatorial distance geometry method for the calculation of molecular conformation. I. A new approach to an old problem. J. Theor. Biol. 104, 359-381 (1983).
27. Achenie, L., Venkatasubramanian, V. \& Gani, R. Computer Aided Molecular Design: Theory and Practice. (Elsevier Science, Amsterdam, 2002).
28. Babbush, R., Perdomo-Ortiz, A., O’Gorman, B., Macready, W. \& Aspuru-Guzik, A. Construction of energy functions for lattice heteropolymer models: efficient encodings for constraint satisfaction programming and quantum annealing. Adv. Chem. Phys. 155, 201-244 (2014).
29. Pörn, R., Nissfolk, O., Jansson, F. \& Westerlund, T. The Coulomb glass - modeling and computational experience with a large scale 0-1 QP problem. Comput. Aided Chem. Eng. 29, 658-662 (2011).
30. Hanselman, C. L. et al. A framework for optimizing oxygen vacancy formation in doped perovskites. Comput. Chem. Eng. 126, 168-177 (2019).
31. Yin, X. \& Gounaris, C. E. Search methods for inorganic materials crystal structure prediction. Curr. Opin. Chem. Eng. 35, 100726 (2022).
32. Behler, J. \& Csányi, G. Machine learning potentials for extended systems: a perspective. Eur. Phys. J. B 94, 142 (2021).
33. Wang, C. et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem. Rev. 120, 4257-4300 (2020).
34. Zhang, W., Eperon, G. E. \& Snaith, H. J. Metal halide perovskites for energy applications. Nat. Energy 1, 16048 (2016).
35. Zhao, Q., Yan, Z., Chen, C. \& Chen, J. Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev. 117, 10121-10211 (2017).
36. Toukmaji, A. Y. \& Board, J. A. Ewald summation techniques in perspective: a survey. Comput. Phys. Commun. 95, 73-92 (1996).
37. Andersson, S. \& O'Keeffe, M. Body-centred cubic cylinder packing and the garnet structure. Nature 267, 605-606 (1977).
38. Hyde, B. G., \& Andersson, S. Inorganic Crystal Structures. (Wiley, Hoboken, 1989).
39. Bharti, K. et al. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94, 15004 (2022).
40. Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460-1463 (2020).
41. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505-510 (2019).
42. Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75-81 (2022).
43. Johnson, M. W. et al. Quantum annealing with manufactured spins. Nature 473, 194198 (2011).
44. Inagaki, T. et al. A coherent Ising machine for 2000-node optimization problems. Science 354, 603-606 (2016).
45. McGeoch, C. C., Harris, R., Reinhardt, S. P. \& Bunyk, P. I. Practical annealing-based quantum computing. Computer 52, 38-46 (2019).
46. Chapter 1.3, International Tables for Crystallography, Volume A, 6th edition. (Wiley, Hoboken, 2006).

Compound	Space group of the structure	Number of ions in the unit cell	Cell parameter / A	Discretisation g	Space group symmetry	Number of unique lattice positions	Time / sec
$\begin{gathered} \mathrm{SrTiO}_{3}, \\ \mathrm{Z}=1 \\ \hline \end{gathered}$	$\underset{(221)}{P m \overline{3} m}$	5	3.9	4	$P 1$ (1)	64	3
$\begin{gathered} \mathrm{SrTiO}_{3}, \\ \mathrm{Z}=8 \end{gathered}$		40	7.8	8	$\begin{gathered} P 23 \\ (195) \\ \hline \end{gathered}$	56	56
$\begin{gathered} \mathrm{SrTiO}_{3}, \\ \mathrm{Z}=27 \\ \hline \end{gathered}$		135	11.7	6	$\begin{gathered} P m \overline{3} m \\ (221) \\ \hline \end{gathered}$	20	2
$\begin{gathered} \mathrm{SrTiO}_{3}, \\ \mathrm{Z}=27 \end{gathered}$		135	11.7	6	$\begin{aligned} & P m \overline{3} \\ & (200) \end{aligned}$	24	63
$\begin{gathered} \mathrm{SrTiO}_{3}, \\ \mathrm{Z}=27 \\ \hline \end{gathered}$		135	11.7	6	$\begin{gathered} P 23 \\ (195) \end{gathered}$	28	6823
$\mathrm{Y}_{2} \mathrm{O}_{3}$	$\begin{gathered} I a \overline{3} \\ (206) \\ \hline \end{gathered}$	80	10.7	8	$\begin{gathered} I a \overline{3} \\ (206) \\ \hline \end{gathered}$	17	1
$\mathrm{Y}_{2} \mathrm{O}_{3}$				8	$\begin{array}{r} I 2_{1} 3 \\ (199) \\ \hline \end{array}$	40	10
$\mathrm{Y}_{2} \mathrm{O}_{3}$				16	$\begin{gathered} I a \overline{3} \\ (206) \\ \hline \end{gathered}$	124	18
$\mathrm{Y}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}{ }^{\dagger}$	$\begin{gathered} F d \overline{3} m \\ (227) \\ \hline \end{gathered}$	88	10.2	8	$\begin{gathered} F d \overline{3} m \\ (227) \\ \hline \end{gathered}$	11	1
$\mathrm{Y}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}$				16	$\begin{gathered} F d \overline{3} m \\ (227) \end{gathered}$	51	1
$\mathrm{MgAl}_{2} \mathrm{O}_{4}$	$\begin{gathered} F d \overline{3} m \\ (227) \end{gathered}$	56	8.2	8	$\begin{gathered} F d \overline{3} m \\ (227) \end{gathered}$	11	1
$\mathrm{MgAl}_{2} \mathrm{O}_{4}$				16	$\begin{gathered} F d \overline{3} m \\ (227) \end{gathered}$	51	1
$\mathrm{MgAl}_{2} \mathrm{O}_{4}$				8	F23 (196)	22	1
$\mathrm{MgAl}_{2} \mathrm{O}_{4}{ }^{\dagger}$				8	P23 (195)	56	4085
$\mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{Si}_{3} \mathrm{O}_{12}$	$\begin{aligned} & I a \overline{3} d \\ & (230) \\ & \hline \end{aligned}$	160	11.9	8	$\begin{gathered} I a \overline{3} \\ (230) \\ \hline \end{gathered}$	17	1
$\mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{Si}_{3} \mathrm{O}_{12}$				16	$\begin{aligned} & I a \overline{3} d \\ & (230) \\ & \hline \end{aligned}$	62	1

Table 1. Configuration spaces that lead to prediction of the experimentally determined cubic crystal structures. The experimentally determined space group symmetry is given in the second column. The perovskite structure $\left(\mathrm{SrTiO}_{3}\right)$ was investigated for a varying number of formula units (Z). Other structure types, namely, bixbyite $\left(\mathrm{Y}_{2} \mathrm{O}_{3}\right)$, pyrochlore $\left(\mathrm{Y}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}\right)$, spinel $\left(\mathrm{MgAl}_{2} \mathrm{O}_{4}\right)$ and garnet $\left(\mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{Si}_{3} \mathrm{O}_{12}\right)$, were investigated using different configuration spaces. In all cases, the minima were not only identified, but proved to be optimal. The corresponding periodic lattice atom allocation problems are defined by the dimension of the unit cell and the number of lattice positions per side g. The space group symmetry defines the number of unique lattice positions that is proportional to the size of the integer program. The two configuration spaces labelled by \dagger require local minimisation of several low energy allocations on a lattice before the experimentally determined structure is identified, while in all other cases the global optimum periodic lattice atom allocation immediately leads to the correct structure after one local minimisation. The representative time needed to identify solutions of the corresponding integer programs alongside the proof of their optimality is for the hardware specified in Methods.
a Periodic lattice atom allocation
b Integer program

SrTiO_{3} structure

Fig. 1. Crystal structure prediction using integer programming. (a) Atoms defining a specific composition (illustrated here for SrTiO_{3}) are allocated to a suitably dense set of discrete positions in space under periodic boundary conditions. The resulting configurations generate candidate crystal structures that lie on the potential energy surface shown in (b), where they are represented as circles. Structure prediction can be performed by identifying and then locally minimising low-energy allocations to afford the lowest energy structure with atomic positions in continuous space. If the space of configurations is well-chosen, this leads to the correct crystal structure in a single local minimisation of the lowest energy global optimum allocation (star). Exhaustive evaluation of atomic configurations to identify the globally optimal allocation is achieved by encoding this task as an integer program. This is an established mathematical optimisation problem, which can be solved using existing solvers based on powerful algorithms and emerging quantum computers.

Fig. 2. Using integer programming to predict garnet $\left(\mathrm{Ca}_{3} \mathbf{A l}_{2} \mathrm{Si}_{3} \mathrm{O}_{12}\right)$ and spinel
$\left(\mathbf{M g A l}_{2} \mathbf{O}_{4}\right)$ structures. (a) The unique positions of a lattice with $0.74 \AA$ discretisation $(g=$ 16) in the $I a \overline{3} d$ space group. The space group ${ }^{46}$ is the group of symmetry operations that describe the symmetry of the unit cell. Atomic positions corresponding to the global optimum solution of the resulting periodic lattice atom allocation problem for $\mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{Si}_{3} \mathrm{O}_{12}$ are coloured: Ca (green), Al (light blue), Si (dark blue), O (red). Local energy minimisation of this solution, represented in (b), affords the correct garnet structure shown in (c) and (d). (e) The periodic lattice atom allocation for $1.02 \AA$ discretisation $(g=8)$ and $P 23$ space group symmetry for $\mathrm{MgAl}_{2} \mathrm{O}_{4}$ (left) that minimises into the correct spinel structure (right). (f) There are allocations in this configuration space that are lower in energy than (e), as quantified by the initial energy shown, but do not minimise into the correct structure, shown by comparison of the final energies with that in \mathbf{e}. The same discretisation with the higher symmetry F23 space group produces the lowest energy solution that immediately minimises into the correct structure.

Fig. 3. Comparison between heuristic and non-heuristic exploration of a potential energy surface. (a) A typical CSP scheme partially explores the surface by iteratively performing local minimisation (solid black arrows) of selected atomic configurations (diamonds) in a continuous space. These configurations are derived according to some search strategy (dotted red arrows) defined by a particular heuristic. (b) CSP leveraging integer programming performs exact global optimisation on the whole discrete configuration space of crystals generated by periodic atom allocation on a lattice, followed by local structural minimisation of a single (star), or several (triangles), low energy solution(s) in a continuous space. (c) Branch-and-cut algorithms designed for integer programs achieve the guaranteed global optimum periodic lattice atom allocation by separating all atomic configurations into branches roughly corresponding to the allocation decisions. Some branches (circles, located on \mathbf{b} to represent their position on the potential energy surface) are completely discarded (dotted line on \mathbf{b}), if all allocations are guaranteed to be worse than the best solution found so far (triangle). More promising branches (triangles) are explored before less promising ones (squares). The branch-and-cut tree is expanded until all configurations are assessed. (d) An optimisation run of the integer program solver on the periodic lattice atom allocation problem for SrTiO_{3} ($\mathrm{Z}=27$, Table 1). At every moment, a lower bound on the global optimum is available as well as the lowest energy allocation found so far. The run is completed when these energies match, providing a guaranteed solution. The global optimum is identified before the proof of optimality.

Methods

Configuration spaces

Every periodic lattice atom allocation problem, and the resulting configuration space in our computations, is defined by the following parameters:
(a) the number of atoms to allocate, dimensions of the unit cell, and the chosen forcefields.
(b) the number of potential atomic positions within a unit cell, which is controlled by the discretisation parameter g equal to the number of lattice points per cell side.
(c) proximity constraints specify how close two ionic species can be to each other.
(d) the desired space group of periodic allocations on a lattice.

To evaluate the applicability of the periodic lattice atom allocation for CSP, we have restricted ourselves to cubic structures and test the prediction of known cubic materials by minimising optimal configurations for variable unit cell size, symmetry and lattice discretisation. Selection of parameters of this kind is an integral part of every CSP code, thus, to assess integer programming encoding, rather than parameter screening, we limit ourselves to a range of parameters set around the experimentally determined value. The lattice parameters reported in Table 1 are the correct values rounded to the first decimal place. Additional computations (Extended Data Tables 1-5) suggest that any reasonable value close to the experimentally determined one will lead to the same outcome. The potential positions are uniformly distributed within the unit cell and their total number is equal to g^{3}. Symmetry constraints arise either from the space groups of the experimentally determined structures or their subgroups. In all reported cases, there was at least one configuration space leading to a successful prediction.

Potential energy of a crystal

The Ewald summation ${ }^{36}$ decomposes electrostatic interaction into three terms $U^{\text {self }}, U^{\text {real }}$ and $U^{\text {recip }}$. This split is controlled by a real parameter α and the summation is performed either in real space over the unit cell copies labelled by n or over the reciprocal lattice vectors m. We denote by V the volume of the unit cell, N the number of ions within it, q_{i} is the charge of the i-th ion, $r_{i j, n}$ is the distance between the i-th ion in the original cell and the j-th ion in the cell labelled by n, r_{i} is the position vector of the i-th ion within the original cell. The constituent parts are as follows:

$$
\begin{aligned}
& U^{\text {self }}=-\frac{\alpha}{\sqrt{\pi}} \sum_{i=1}^{N} q_{i}^{2}, U^{\text {real }}=\frac{1}{2} \sum_{i, j=1}^{N^{\prime}} q_{i} q_{j} \sum_{n} \frac{\operatorname{erfc}\left(\alpha r_{i j, n}\right)}{r_{i, n}}, \\
& U^{\text {recip }}=\frac{1}{2 \pi V} \sum_{i, j=1}^{N} q_{i} q_{j} \sum_{m \neq 0} \frac{\exp \left(-(\pi m / \alpha)^{2}+2 \pi i m\left(r_{i}-r_{j}\right)\right)}{m^{2}} .
\end{aligned}
$$

Here, m^{2} corresponds to the usual scalar product and the summation up to N^{\prime} simply excludes the case of $i=j$ for the original unit cell as it leads to division by zero. Since the reciprocal lattice vectors m and the distances $r_{i j, n}$ are well-defined as soon as the unit cell and the set of positions Pos are chosen, these sums can be rearranged and the coefficient in front of $q_{i} q_{j}$ can be computed independently of the atom allocation. By substituting the charges of elements $t y p_{1}, t y p_{2}$ for q_{i}, q_{j} and $\operatorname{pos}_{1}, \operatorname{pos}_{2}$ for their positions, we derive the electrostatic contribution part in $\alpha_{\text {pos }_{1}, \text { pos }_{2}}^{t y p_{1}, t y p_{2}}$. The repulsive part of the potential energy is obtained via direct summation, since it has a finite range.

The repulsive contributions depend on the composition and are given in Extended Data Tables $6\left(\mathrm{Y}_{2} \mathrm{O}_{3}, \mathrm{Y}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}, \mathrm{SrO} \text { and } \mathrm{SrTiO}_{3}\right)^{47}, 7\left(\mathrm{MgAl}_{2} \mathrm{O}_{4}{ }^{48}\right), 8\left(\mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{Si}_{3} \mathrm{O}_{12}{ }^{49}\right)$ and 9 $\left(\mathrm{ZrO}_{2}{ }^{50}\right.$ and $\left.\mathrm{ZnS}^{51}\right)$.

Local minimisations were performed using GULP ${ }^{52}$ and Atomic Simulation Environment ${ }^{53}$. Structures are visualised using VESTA ${ }^{54}$.

Solving integer programs

On a conceptual level, suppose that we are given a minimisation problem that depends on binary variables $X_{\text {pos }}^{t y p}$ with a feasible region defined by the constraints, as is the case for the periodic lattice atom allocation problem. Such optimisation problems are typically computationally intractable in the sense of the theory of NP-completeness ${ }^{19}$. This theory provides strong evidence for the nonexistence of efficient exact algorithms that always succeed in solving these problems, as in the case of CSP itself ${ }^{14}$. However, this intractability refers to the difficulty of building universal algorithms that would solve all possible instances. There are though techniques that can efficiently solve most instances. Branch-andcut is one of these efficient methods that deals with this intractability ${ }^{6,24}$.

The first step is a relaxation of the problem to enlarge the set of feasible solutions, most often by dropping some of the constraints, e.g., by allowing $X_{\text {pos }}^{\text {typ }}$ to be between 0 and 1. The minimum value of the objective function E in such a relaxed feasibility region then drops down, resulting in a lower bound on the original optimal value. Such a lower bound is maintained and refined during the iterative optimisation process. In addition to the lower bound, the solvers also compute and maintain an upper bound on the value of the objective E, which is simply its value at the best currently found feasible solution to the problem. This optimisation process can gradually tighten the relaxation by adding additional valid constraints known as cuts that are feasible for the original binary problem but unfeasible for the relaxed problem. Together with the upper and lower bounds, this allows systematic and efficient exploration of the search space in pursuit of the optimal solution. Branching relies on constraints that divide the relaxed problem into separate subproblems, where each such subproblem's feasible region is "closer" to a part of the original binary problem region. Which of those subproblems to explore is decided by the current lower and upper bound - if the lower bound happens to be larger than the best known upper bound, this implies that this particular subproblem cannot hold the original optimal binary solution and can thus be omitted. Finally, the optimality of the ultimate binary solution is certified by the fact that its objective value E matches the current lower bound.

The problem set out above is an example of a binary quadratic integer program, where its variables $X_{\text {pos }}^{\text {typ }}$ appear in terms that are quadratic. Relaxations of such programs are usually achieved by powerful linearisation techniques, where one replaces each product of two variables by a single fresh variable, thus obtaining a linear term in that new variable. This leads to a relaxed linear or semidefinite program ${ }^{20}$, which can then be solved efficiently by a multitude of techniques, such as Dantzig's simplex method or interior point methods ${ }^{19,55}$. Solvers based on optimisation theory thus lead to an exact solution to the integer program for which Equation (1) is the objective function that considers the entire search space and guarantees the optimality of that solution. Beyond that, many-body potentials can be incorporated into Equation (1) by adding products of more than two binary variables.

In practice, we were able to solve relatively large integer programs, e.g., $\mathrm{Y}_{2} \mathrm{O}_{3}$ at $g=16$ and $I a \overline{3}$ symmetry contained 248 binary variables and 30,628 quadratic terms. The combinatorics do influence the speed, as illustrated by the one hundred-fold increase in run time for $\mathrm{Z}=27$ SrTiO_{3} when the space group symmetry is reduced from $\operatorname{Pm} \overline{3} m$ to $P 23$, reflecting the larger number of allocations then possible on the same lattice. Moreover, as our encoding is largely oblivious to different representations of the same crystal, the number of different assignments of binary variables corresponding to equivalent crystals, including the global optimum, significantly increases. This generates equivalent solutions to the program, which are known to slow the branch-and-cut algorithm ${ }^{7}$. The presented integer program for the periodic lattice atom allocation problem is only one of many possible encodings, and different encodings for the same optimisation problem can lead to different run times and theoretical properties ${ }^{6}$. By developing specific encodings that address redundancies within periodic allocation problems, the branch-and-cut identification of the guaranteed minimum can be further accelerated.

Constraints for integer programs

The following constraints are always present and ensure that the resulting periodic lattice atom allocations are correct:

1. A constraint $\sum_{t y p \in \text { Types }} X_{\text {pos }}^{t y p} \leq 1$ for every pos \in Pos to prevent different atoms from occupying the same position. (exclusivity)
2. A constraint $\sum_{\text {pos } \in \text { Pos }} X_{\text {pos }}^{\text {typ }}=C_{\mathrm{typ}}$ for every species typ \in Types, where $C_{\text {typ }}$ is the desired number of atoms of species typ within the unit cell. (stoichiometry)

These additional constraints are used to focus the search on desired structure types and improve the running times:

1. Crystals have symmetry, so it is natural to constrain our search space by fixing the desired space group of the resulting allocation. The space group dictates which positions are symmetrically equivalent and must be occupied by the same chemical element, namely, these are positions belonging to the same crystallographic orbit. For every pair of such positions pos_{1} and pos_{2} we put $X_{\text {pos }_{1}}^{t y p}=X_{p_{0 s_{2}}}^{\text {typ }}$ for all typ \in Types. Note that we can, in principle, rewrite our encoding right away using these equalities by introducing new variables - one for every orbit and species, but modern solvers do this easily during the pre-solve stage while integrating other constraints as well.
(symmetry)
2. The exclusivity constraint can be further strengthened to preclude ions from occupying positions that are too close to each other. To estimate the size of an ion in a typical crystal, we rely on Shannon ionic radii, see below for the values used in the study. For every pair of positions pos_{1} and pos_{2} that are closer than, e.g., 75% of the sum of ionic radii of $t y p_{1}$ and $t y p_{2}$ atoms in our computations, we include the constraint $X_{\text {pos }_{1}}^{t y p_{1}}+X_{\text {pos }_{2}}^{t y p_{2}} \leq 1$. The selected percentage value is a hyper-parameter used to accommodate lattice distortion and imprecision of radii estimation. Practically, we avoid addition of a large number of such constraints and achieve a similar effect by putting a large positive coefficient in front of the term $X_{\text {pos }_{1}}^{t y p_{1}} X_{\text {pos }_{2}}^{t y p_{2}}$ in the objective function. If both variables are non-zero, then the energy of such an arrangement is very high, and it is excluded from consideration. (proximity)

The following values of Shannon ionic radii were used during computations ${ }^{56}: \mathrm{O}^{2-} 1.35 \AA, \mathrm{~S}^{2-}$ $1.84 \AA, \mathrm{Al}^{3+} 0.39 \AA, \mathrm{Y}^{3+} 0.9 \AA, \mathrm{Mg}^{2+} 0.57 \AA, \mathrm{Ti}^{4+} 0.42 \AA, \mathrm{Ca}^{2+} 1.0 \AA, \mathrm{Si}^{4+} 0.26 \AA, \mathrm{Zr}^{4+} 0.59$ $\AA, \mathrm{Zn}^{2+} 0.6 \AA, \mathrm{Sr}^{2+} 1.18 \AA$.

Quantum computing

Equation (1) contains only products of at most two binary variables and thus can be seen as the objective function of a QUBO problem. Periodic lattice allocation problems have additional constraints such as exclusivity and stoichiometry which we need to eliminate in order to use quantum annealers. We mimic the effect of these constraints via modification of the objective function. By adding additional penalty terms, we can ensure that an optimal solution of the modified program satisfies the constraints, otherwise, its energy is too high to be optimal. The term $\mu \sum_{\text {typ }_{1}, t y p_{2}} X_{\text {pos }}^{t y p_{1}} X_{\text {pos }}^{t y p_{2}}$, which is at least μ as soon as two different ion species are placed at pos, enforces the exclusivity condition if μ is a large enough positive number. By introducing the term $\gamma\left(C_{t y p}-\sum_{\text {pos } \in \text { Pos }} X_{\text {pos }}^{t y p}\right)^{2}$ with a large enough positive γ, we ensure that an optimal allocation must have the desired stoichiometry. This results in a QUBO problem that can be directly submitted to a quantum annealer, other hardware QUBO solvers ${ }^{10,44}$ or addressed with quantum approximate optimisation algorithms on gate-based quantum computers ${ }^{57}$. In practice, quantum annealers produce a range of allocations including the ones that violate these conditions, but their energies are high, and they are excluded during postprocessing.

We solved a variety of simple structures on the 2000Q quantum annealer provided free by DWave via Leap ${ }^{45}$. There are configuration spaces where the quantum annealer has been able to identify the global optimum allocation that minimises into the experimental structure, exactly as achieved with the classical computing approach. Specifically, we have obtained the rock salt structure of $\operatorname{SrO}(g=2, P 23)$, where the actual space group $F m \overline{3} m$ was replaced with $P 23$ to increase the complexity of the problem, the perovskite structure of $\mathrm{SrTiO}_{3}(g=2, \operatorname{Pr} \overline{3} m)$, the fluorite structure of cubic zirconia $\mathrm{ZrO}_{2}\left(g=4, P 2_{1} 3\right)$ and the wurtzite structure of $\mathrm{ZnS}(g=4, P 23)$. We used space group symmetry and a small number of lattice positions to limit the size of the resulting integer programs. Each optimisation run of the quantum annealer used up to 168 qubits and produced hundreds of allocations in milliseconds including several allocations corresponding to the global optimum. While the current generation of quantum annealers is limited in terms of the size of programs they can run, because of a lack of free qubits and their connectivity, and cannot guarantee optimality due to their high sensitivity to the noisy environment, the technology is being actively developed to overcome these drawbacks ${ }^{58}$.

We have deliberately used integer programs of the same form as used in classical computing for clarity and simplicity. The only adjustments were the annealing schedules, which control the optimisation process on the quantum computer, and the penalty terms used during constraint elimination of the resulting integer programs (Extended Data Table 10). These parameters had significant impact on the outcomes of predictions. The QUBO formulation introduced here can be further adjusted to better suit the quantum annealer. It is likely that by designing CSP encodings that are well-suited to the noisy intermediate-scale quantum computers, performance will improve, with the aim of effectively recovering optimality in almost all cases ${ }^{59}$. Hybrid quantum-classical computation ${ }^{60}$ could bring significant advantages of quantum computing for CSP even before the full potential of this technology is realised.

Equipment

Our computational experiments were done on a 40-core workstation (two 20-core Intel Xeon E5-2630v4 CPUs) running at 2.2 GHz with 64 Gb of RAM. Gurobi 9.5 was the integer programming solver used. Quantum computations were done on D-Wave 2000Q quantum annealer via Leap using the associated API (https://docs.ocean.dwavesys.com/en/stable/).

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its supplementary information files.

Code availability

An implementation of the integer programming encoding for periodic lattice allocation problem and subsequent CSP is available at https://github.com/lrcfmd/ipcsp.

Methods references

47. Collins, C., Darling, G. R. \& Rosseinsky, M. J. The flexible unit structure engine (FUSE) for probe structure-based composition prediction. Faraday Discuss. 211, 117131 (2018).
48. Binks, D. J. Computational Modelling of Zinc Oxide and Related Oxide Ceramics (PhD thesis). (University of Surrey, 1994).
49. Pedone, A., Malavasi, G., Menziani, M. C., Cormack, A. N. \& Segre, U. A new selfconsistent empirical interatomic potential model for oxides, silicates, and silicas-based glasses. J. Phys. Chem. B 110, 11780-11795 (2006).
50. Woodley, S. M., Battle, P. D., Gale, J. D. \& Catlow, C. R. A. The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation. Phys. Chem. Chem. Phys. 1, 2535-2542 (1999).
51. Wright, K. \& Jackson, R. A. Computer simulation of the structure and defect properties of zinc sulfide. J. Mater. Chem. 5, 2037-2040 (1995).
52. Gale, J. D. \& Rohl, A. L. The General Utility Lattice Program (GULP). Mol. Simul. 29, 291-341 (2003).
53. Hjorth Larsen, A. et al. The atomic simulation environment-a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).
54. Momma, K. \& Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 1272-1276 (2011).
55. Boyd, S. \& Vandenberghe, L. Convex Optimization. (Cambridge University Press, Cambridge, 2004).
56. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32, 751-767 (1976).
57. Farhi, E., Goldstone, J. \& Gutmann, S. A quantum approximate optimization algorithm. Available at https://arxiv.org/abs/1411.4028 (2014).
58. Hauke, P., Katzgraber, H. G., Lechner, W., Nishimori, H. \& Oliver, W. D. Perspectives of quantum annealing: methods and implementations. Reports Prog. Phys. 83, 054401 (2020).
59. Bian, Z. et al. Solving SAT (and MaxSAT) with a quantum annealer: foundations, encodings, and preliminary results. Inf. Comput. 275, 104609 (2020).
60. Ajagekar, A., Humble, T. \& You, F. Quantum computing based hybrid solution strategies for large-scale discrete-continuous optimization problems. Comput. Chem. Eng. 132, 106630 (2020).

Acknowledgments

We thank the Leverhulme Trust for funding via the Leverhulme Research Centre for Functional Materials Design. V.V.G. is grateful to M.W. Gaultois for fruitful discussions. The authors thank R. Savani for feedback on the manuscript.

Author contributions

All authors took part in discussions to frame the use of modern optimisation approaches in CSP. V.V.G. and A.D. conceptualised the idea of periodic lattice atom allocation. V.V.G. developed Ewald summation and QUBO encodings, implemented the approach and evaluated it on classical computers. Dm.A. and C.M.C. performed supplementary analysis of resulting structures. V.V.G. suggested the use of quantum annealers, V.V.G. and Du.A. performed evaluation. V.V.G., A.D., Dm.A., M.S.D., M.J.R. wrote the first draft of the manuscript. V.V.G., Du.A., C.M.C., P.K., I.P., P.S., and M.J.R. wrote the final draft of the manuscript. All authors were involved in discussions and evaluation of drafts during the writing process. P.S. and M.J.R. directed the research.

Competing interests

Authors declare that they have no competing interests.

Supplementary information

Supplementary Discussion and Supplementary Equations are provided.
Correspondence should be addressed to P.S. and M.J.R.

Extended Data

Unit cell size	-30%	-20%	-10%	Correct	$+10 \%$	$+20 \%$	$+30 \%$
eV/atom	infeasible	-22.989	-30.186	-31.704	-30.907	-29.273	-27.441

Extended Data Table 1. The change in energy of the optimal solution of the periodic lattice atom allocation problem for SrTiO_{3} with $g=4$ and P23 (195) space group symmetry constraint under varying unit cell size. If the unit cell is too small to accommodate all the ions while satisfying proximity constraints, then no solution is returned. This is the case for the unit cell that is 30% smaller than the experimentally determined structure ($2.7 \AA$ vs $3.9 \AA$). All other periodic lattice atom allocations listed above are locally optimised into the same correct structure despite having very different unit cell sizes (and energies), indicating that exact knowledge of cell parameters is not necessary for a successful application of this technique.

Unit cell size	-20%	-10%	Correct	$+10 \%$	$+20 \%$
$\mathrm{eV} /$ atom	-23.091	-27.254	-27.905	-27.098	-25.735

Extended Data Table 2. The change in energy of the optimal solution of the periodic lattice atom allocation problem for $\mathrm{MgAl}_{2} \mathrm{O}_{4}$ with $g=8$ and $F d \overline{3} m$ (227) space group symmetry constraint under varying unit cell size. All optimal configurations minimise into the correct spinel structure with the energy $-28.944 \mathrm{eV} /$ atom.

Unit cell size	-5%	Correct	$+10 \%$	$+15 \%$	$+20 \%$
$\mathrm{eV} /$ atom	-25.252	-26.262	-26.128	-26.251	-25.876

Extended Data Table 3. The change in energy of the optimal solution of the periodic lattice atom allocation problem for $\mathrm{Y}_{2} \mathrm{O}_{3}$ with $g=16$ and $I a \overline{3}$ (206) space group symmetry constraint under varying unit cell size. All optimal configurations minimise into the correct bixbyite structure with the energy $-27.395 \mathrm{meV} /$ atom. Note that the global optimal solution for the periodic lattice atom allocation problem for $\mathrm{Y}_{2} \mathrm{O}_{3}$ with the unit cell size -10% minimises into a structure with the energy $-26.392 \mathrm{eV} /$ atom, which is higher by 1.002 $\mathrm{eV} /$ atom than the correct structure, indicating that the optimal configuration has been changed.

Unit cell size	-15%	-10%	Correct	$+5 \%$	$+10 \%$
$\mathrm{eV} /$ atom	-28.680	-32.471	-35.002	-34.919	-34.388

Extended Data Table 4. The change in energy of the optimal solution of the periodic lattice atom allocation problem for $\mathrm{Y}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}$ with $g=16$ and $F d \overline{3} m$ (227) symmetry constraint under varying unit cell size. All optimal configurations minimise into the correct pyrochlore structure with the energy $-35.154 \mathrm{eV} /$ atom.

Unit cell size	-3%	-2%	Correct	$+5 \%$	$+10 \%$	$+15 \%$
$\mathrm{eV} /$ atom	-12.109	-12.176	-12.277	-12.327	-12.253	-12.302

Extended Data Table 5. The change in the optimal solution of the periodic lattice atom allocation problem under varying unit cell size for $\mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{Si}_{3} \mathrm{O}_{12}, \mathrm{~g}=16, I a \overline{3} d$ (230). All optimal configurations relax into the correct garnet structure with the energy -13.750 $\mathrm{eV} /$ atom.

Interaction	$\mathrm{A}(\mathrm{eV})$	$\rho(\AA)$	$\mathrm{C}\left(\mathrm{eV} \AA^{-6}\right)$
$\mathrm{Y}^{3+}-\mathrm{O}^{2-}$	23000	0.24203	0
$\mathrm{Sr}^{2+}-\mathrm{O}^{2-}$	1952.39	0.33685	19.22
$\mathrm{Ti}^{4+}-\mathrm{O}^{2-}$	4590.7279	0.261	0
$\mathrm{O}^{2-}-\mathrm{O}^{2-}$	1388.77	0.36262	175

Extended Data Table 6. Buckingham potential parameters for $\mathrm{Y}_{2} \mathrm{O}_{3}, \mathrm{Y}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}, \mathrm{SrO}$ and SrTiO_{3} with the cut-off radius of $10 \AA \AA^{47}$

Interaction	$\mathrm{A}(\mathrm{eV})$	$\rho(\AA)$	$\mathrm{C}\left(\mathrm{eV} \AA^{-6}\right)$
$\mathrm{Mg}^{2+}-\mathrm{O}^{2-}$	1284.380	0.2997	0
$\mathrm{Al}^{3+}-\mathrm{O}^{2-}$	1725.000	0.2897	0
$\mathrm{O}^{2-}-\mathrm{O}^{2-}$	9547.960	0.2192	32.00

Extended Data Table 7. Buckingham potential parameters for $\mathrm{MgAl}_{2} \mathrm{O}_{4} .{ }^{48}$

Interaction	$D_{i j}(\mathrm{eV})$	$\mathrm{a}_{\mathrm{ij}}\left(\AA^{-2}\right)$	$r_{0}(\AA)$	$C_{i j}\left(\mathrm{eV} \AA^{12}\right)$
$\mathrm{Ca}^{1.2+}-\mathrm{O}^{1.2-}$	0.030211	2.241334	2.923245	5.00
$\mathrm{Si}^{2 \cdot 4+}-\mathrm{O}^{1.2-}$	0.340554	2.006700	2.100000	1.00
$\mathrm{Al}^{1.8-}-\mathrm{O}^{1.2-}$	0.361581	1.900442	2.164818	0.90
$\mathrm{O}^{1.2-}-\mathrm{O}^{1.2-}$	0.042395	1.379316	3.618701	22.00

Extended Data Table 8. Force-field parameters for $\mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{Si}_{3} \mathrm{O}_{12}{ }^{49}$ The repulsive part is a combination of Morse and Lennard-Jones potentials as follows:
$D_{i j}\left(\left(1-\exp \left(-a_{i j}\left(r-r_{0}\right)\right)\right)^{2}-1\right)+\frac{c_{i j}}{r^{12}}$. This parameter set uses partial charge states on the ions.

Interaction	$\mathrm{A}(\mathrm{eV})$	$\rho(\AA)$	$\mathrm{C}\left(\mathrm{eV} \AA^{-6}\right)$
$\mathrm{Zr}^{4+}-\mathrm{O}^{2-}$	7290.347	0.2610	0
$\mathrm{O}^{2-}-\mathrm{O}^{2-}$	25.410	0.6937	32.32
$\mathrm{Zn}^{2+}-\mathrm{S}^{2-}$	613.356	0.3990	0
$\mathrm{~S}^{2-}-\mathrm{S}^{2-}$	1200.000	0.1490	120.0

Extended Data Table 9. Buckingham potential parameters for $\mathrm{ZrO}_{2}{ }^{50}$ and ZnS^{51}.

Crystal structure	μ	γ	Annealing time, $\mu \mathrm{s}$
SrO	100	100	200
SrTiO_{3}	100	100	200
ZrO_{2}	50	50	1000
ZnS	100	100	200

Extended Data Table 10. Parameters of the quantum annealing runs. In every case, the quantum annealer produced the correct periodic lattice atom allocation. The number of reads were between 100 and 300. Annealing time is given in microseconds. The presented coefficients μ and γ that were used to offset proximity and stoichiometry constraints to the objective function are defined in Methods.

