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 13 
The structures of crystalline materials determine their properties, which enable 14 
essential technologies. Crystal structure prediction (CSP) can thus play a central role in 15 
the design of new functional materials1,2. Researchers have developed efficient heuristics 16 
to identify structural minima on the potential energy surface (PES)3–5. However, these 17 
methods, while often able to access all configurations in principle, provide no 18 
guarantees that the lowest energy structure has been found. Here we show that the 19 
structure of a crystalline material can be predicted with energy guarantees by an 20 
algorithm that finds all the unknown atomic positions within a unit cell by combining 21 
combinatorial and continuous optimisation. We encode the combinatorial task of 22 
finding the lowest energy periodic allocation of all atoms on a lattice as a mathematical 23 
optimisation problem of integer programming6,7, allowing guaranteed identification of 24 
the global optimum using well-developed algorithms. A single subsequent local 25 
minimisation of the resulting atom allocations then reaches the correct structures of key 26 
inorganic materials directly, proving their energetic optimality under clear 27 
assumptions. This formulation of CSP establishes a bridge to the theory of algorithms 28 
and affords the absolute energetic status of observed or predicted materials. It provides 29 
ground truth for heuristic or data-driven structure prediction methods, and is uniquely 30 
suitable for quantum annealers8–10, opening a path to overcome the combinatorial 31 
explosion of atomic configurations. 32 

There are over 200,000 crystal structures known and held in curated databases as lists of 33 
atomic positions11,12. Knowledge of structure allows accurate prediction of stability, and in 34 
many cases properties. However, when considering a previously unreported composition 35 
without restriction to adopting structures that lie within the databases, the structure cannot be 36 
known and must be predicted to allow assessment of stability and properties. The central 37 
feature of CSP is that it begins with no information on the positions of the atoms in the unit 38 
cell and aims to find their exact arrangement13. To predict thermodynamically stable 39 
compounds, we ask whether there exists a crystal structure for a given composition with an 40 
energy below a given threshold, defined by the convex hull2. This decision version14,15 of 41 
CSP lies at the heart of in-silico material discovery. Over the years, significant effort has 42 
been invested in CSP approaches that aim to quickly identify low-energy structures. 43 
However, a formal algorithm, as postulated by the Church-Turing thesis16, should not only be 44 
able to identify such structures, but to provide a non-existence proof if the target energy 45 
cannot be reached. The tremendous difference between finding a solution and proving its 46 
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optimality is evident in mathematics, where confirmation of conjectures can take decades or 1 
even centuries as in the case of the Kepler conjecture17 about the densest sphere packings and 2 
its recently established generalisations18. The formal statement capturing this distinction is 3 
probably the most important open problem in computer science: P=NP asks whether efficient 4 
ways of finding proofs of optimality exist19. To date, there are no methods for CSP of 5 
extended inorganic solids that provide energy optimality guarantees in the continuous space 6 
of unknown atomic positions, and thus no formal algorithm for this problem has been 7 
presented. 8 

This is in stark contrast to the general optimisation theory, where formal algorithms for a 9 
wide range of problems have been devised and their optimality and approximation guarantees 10 
are thoroughly investigated19–21. One of the most general methods to introduce optimality 11 
guarantees for a variety of practical problems is integer programming6. This consists of 12 
rewriting the problem in a particular form by introducing integer decision variables, 13 
constraints, and an objective function corresponding to the task. Thus, optimisation 14 
algorithms can be applied to all encoded problems at once and developed in an abstract 15 
setting independent of the actual problem. This universality has led to widespread use of 16 
integer programming in areas such as logistics, manufacturing, healthcare, finance and 17 
computer vision7, and the development of robust methods and commercial solvers22,23. One 18 
of the key advances in this area is a class of branch-and-cut optimisation algorithms that are 19 
capable of rapidly eliminating large parts of the optimisation domain from consideration if 20 
the current best solution cannot be improved there. Modelling an optimization problem as an 21 
integer program addressed with the branch-and-cut method not only allows the solution of 22 
much larger problems than possible by brute force24,25, but also provides numerical upper and 23 
lower bounds on the optimal solution during the run and proof of optimality when the run is 24 
complete. 25 

These benefits prompted the use of mathematical optimisation for diverse materials design 26 
challenges such as molecular conformation prediction26, molecular design27, protein 27 
folding28, Coulomb glass modelling29 and substitutions into perovskites30 and other known 28 
parent structures31. Benefitting from these demonstrated advantages of combinatorial 29 
guarantees, we provide a generally applicable CSP algorithm that addresses the continuous 30 
space of possible atomic sites to correctly predict a diverse set of structures. This method 31 
determines all the atomic positions previously unknown to the algorithm. The coupling of 32 
local minimisation to integer programming that we use allows exploration of the continuous 33 
space using strong optimisation methods on a discrete space to obtain physical energy 34 
guarantees. We start by considering the allocation of all the atoms that define the materials 35 
composition to a suitably dense set of discrete positions within a unit cell treated with 36 
periodic boundary conditions. Given a unit cell with a set of positions 𝑃𝑜𝑠 =37 
	{𝑝𝑜𝑠!, 𝑝𝑜𝑠", … , 𝑝𝑜𝑠#}, we find an assignment of a given number of atoms of species 38 
𝑇𝑦𝑝𝑒𝑠 = {𝑡𝑦𝑝!, 𝑡𝑦𝑝", … , 𝑡𝑦𝑝$} to them while minimising the interaction energy. Not all 39 
positions have to be occupied. In this work, these positions form a lattice and are specified by 40 

their fractional coordinates as ( %
&
, '
&
, $
&
) for integers 𝑖, 𝑗, 𝑘 ∈ {0, 1, … , 𝑔 − 1}, where 𝑔 is the 41 

discretisation parameter, equal to the number of positions per side of the unit cell, that defines 42 
the discretisation, or separation between the lattice positions. A typical example is given in 43 
Figure 1, where the set 𝑃𝑜𝑠 contains 64 uniformly distributed positions within the unit cell  44 
(𝑔 = 4) and 𝑇𝑦𝑝𝑒𝑠 = {𝑆𝑟, 𝑇𝑖, 𝑂}. 45 

We start the encoding of the atom allocation problem into an equivalent integer program by 46 
introducing binary variables 𝑋()*

+,( for every 𝑝𝑜𝑠	and 𝑡𝑦𝑝, which capture our decision to place 47 

an atom of type 𝑡𝑦𝑝 at position 𝑝𝑜𝑠. The value of 𝑋()*
+,( equals 1 if a 𝑡𝑦𝑝 atom occupies 𝑝𝑜𝑠 48 
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and 0 otherwise. Since not all variable assignments are physical, e.g., both 𝑆𝑟 and 𝑇𝑖 cannot 1 
be located at the same position, we introduce additional linear constraints to ensure that all 2 
solutions of the program will correspond to physically reasonable atomic arrangements with 3 
the correct stoichiometry (Methods). 4 
 5 
The remaining part of the encoding is the objective function – the interaction energy4,32 of the 6 
resulting allocation computed with periodic boundary conditions. Here, we focus on 7 
commonly used approaches based on interatomic potentials3 that represent the energy as the 8 
sum of the electrostatic interaction of ions treated as point charges and the repulsion 9 
contribution from closely located ions, addressing the widely studied class of ionic materials 10 
that enable key technologies33–35. Since the electrostatic interaction is long range, special 11 
summation methods are used, and the Ewald sum is arguably the most common36. An 12 
important observation that is critical for the encoding is that the Ewald sum can be rearranged 13 
into a finite sum over all pairs of atoms within a unit cell and these pairwise contributions can 14 
be computed independently of the positions of all other atoms within the unit cell (Methods). 15 
When repulsion is modelled using two-body potentials either in the form of classical force-16 
fields (Buckingham, Lennard-Jones) or more flexible machine learning potentials32, the total 17 
potential energy of a crystal can be written as the sum of pairwise contributions. These 18 
individual summands for every possible allocation of a pair of ions can be computed 19 
independently and stored in a table. If we denote by α()*!,()*"

+,(!,+,(" the constant value from this 20 
table that defines the energy contribution of ions 𝑡𝑦𝑝!and 𝑡𝑦𝑝" placed at 𝑝𝑜𝑠! and 𝑝𝑜𝑠" 21 
respectively, then the energy of an allocation can be written as: 22 
 23 

𝐸	 = 	 ? α()*!,()*"
+,(!,+,("𝑋()*!

+,(!𝑋()*"
+,("

()*!,	()*"∈	0)*,
+,(!,	+,("∈	1,(2*

	
(1)	25 

 24 
The term α()*!,()*"

+,(!,+,(" 	is present if and only if both 𝑋()*!
+,(! and 𝑋()*"

+,(" are equal to 1, which 26 
corresponds to both these positions being occupied in an allocation, ensuring correct energy 27 
values. 28 
 29 
The set of variables 𝑋()*

+,(, chosen constraints, and the exact form of the energy function 𝐸 in 30 
Equation (1) define an integer program (SI) whose candidate solutions are in one-to-one 31 
correspondence with allocations of atoms to lattice positions. It is a binary quadratic program, 32 
where its variables 𝑋()*

+,( appear in quadratic terms. Such optimisation problems are typically 33 
computationally intractable in the sense of the theory of NP-completeness19. However, many 34 
instances can be solved efficiently using branch-and-cut methods within existing 35 
optimisers22,23. They relax the problem by allowing the variables  𝑋()*

+,( to take values 36 
between 0 and 1, resulting in a more tractable problem with a smaller minimum objective 37 
value E. The branch-and-cut method maintains a solution to the relaxed problem in iterations, 38 
and by using “cuts” gradually narrows down the relaxed continuous feasibility space of the 39 
problem to finally reach the guaranteed optimal binary solution (Methods). We further apply 40 
space group symmetry to identify the minimal set of lattice positions that are unique given 41 
the symmetry, and introduce proximity constraints (Methods), reducing the run time of 42 
optimisation methods by focussing on desired subspaces. We will refer to the resulting search 43 
space of atom allocations to the lattice positions that satisfy all imposed constraints as the 44 
configuration space.  45 
 46 
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Exact solutions of different periodic lattice atom allocation problems can be used to non-1 
heuristically investigate the PES. The configuration space and the corresponding integer 2 
program are specified for a given composition, which allows a branch-and-cut algorithm to 3 
find the same global optimum for this problem in every run. With this exact allocation of 4 
atoms on the lattice, we then lift the restriction that atoms only occupy lattice positions to 5 
predict crystal structure by local minimisation of these optimum configurations. The coupling 6 
of local minimisation to integer programming enables the exploration of the PES, which is a 7 
continuous space, using powerful optimisation algorithms on a discrete space (Figure 1). We 8 
investigate this approach to CSP (Table 1) on a prototype set of compositions that adopt 9 
cubic crystal structures: 21% of all materials in the ICSD11 are cubic, including families of 10 
ionic materials that have gained considerable attention due to their functional properties such 11 
as garnet33, perovskite34 and spinel35. 12 
 13 
The garnet structure of the first composition studied, Ca3Al2Si3O12, cannot be simply 14 
explained based on individual sphere packings, requiring instead description as a cylindrical 15 
rod packing37. This reflects its complexity, with distinct twelve (Ca, dodecahedron), six (Al, 16 
octahedron) and four (Si, tetrahedron) coordination of the three electropositive elements by O 17 
(oxide occupies a general crystallographic position with no symmetry and is four-coordinated 18 
by Al, Si and two Ca). At a unit cell parameter of 11.9Å with a discretisation of 0.75 Å (𝑔 = 19 
16) in the 𝐼𝑎3C𝑑 space group, the integer programming formulation allocates the four distinct 20 
atomic positions required on the 62 unique lattice positions in one second on a desktop 21 
computer. The integer program also returns a guarantee of optimality for the periodic lattice 22 
atom allocation within this run time. This optimum allocation is sufficiently precise that the 23 
correct experimentally determined structure (Figure 2) is immediately recovered by one local 24 
minimisation of this single configuration, which requires a mean shift of approximately 25 
0.29Å in atomic positions. The integer program thus identifies a configuration on a lattice 26 
that lies within the global minimum basin of the continuous PES and certifies that this is the 27 
lowest energy structure possible at this composition under the stated assumptions, because it 28 
provides guarantees of optimality. 29 
 30 
In addition to Ca3Al2Si3O12, we applied this integer programming CSP approach to 31 
investigate the PES of the following compositions: SrTiO3, Y2O3, Y2Ti2O7, MgAl2O4. Their 32 
experimentally determined structures correspond to the perovskite, bixbyite, pyrochlore and 33 
spinel structure types, respectively38. We investigated different supercells of SrTiO3 with up 34 
to 135 atoms in them to assess the scalability of the approach. The other structures highlight 35 
the complexity of multidimensional CSP with 56 –160 atoms in the unit cell (Methods). 36 
Table 1 reports the configuration spaces that result in prediction of the experimentally 37 
determined structures, and the times required to guarantee that the solution, and thus the 38 
experimentally determined structure itself, is optimal given the composition in each of these 39 
archetypal cases. 40 
 41 
For every composition (Table 1), local minimisation of the single global optimum allocation 42 
for a moderate discretisation of 0.6 – 0.7Å led to the correct structure. This indicates that 43 
periodic lattice atom allocations meaningfully capture crystal structures in continuous space 44 
and enable identification of the global minimum on the PES. The guaranteed bound on the 45 
energy difference between the continuous and discrete solutions can be computed and goes to 46 
zero as the discretisation becomes finer (SI). As the ions are not arbitrarily small, unlike 47 
lattice points, it is a physically reasonable hypothesis that a discretization of the order of 30-48 
50% of the shortest interionic distances should allow the correct allocation to be identified. 49 
For all the examples in Table 1, discretisations that correspond to a fraction of a bond length 50 
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lead to globally optimal solutions in the continuous space, reflecting the role of ionic size in 1 
determining structure via repulsive contributions to the energy at short separations, 2 
supporting this hypothesis. Moreover, the allocation outcome was insensitive (Extended Data 3 
Tables 1-5) to the unit cell parameter (e.g., SrTiO3 returns the same allocation over 3-5Å). A 4 
possible explanation is that the change in unit cell size affects the whole pool of low energy 5 
solutions similarly, making the optimal allocation relatively stable and permitting reliable 6 
identification of structures. 7 
 8 
While the solution of an integer program is guaranteed to be optimal in the discrete space of 9 
the lattice, for coarser discretisations we find that the local minimisation of that solution can 10 
be different from the global optimum in the continuous space, consistent with the hypothesis 11 
above. For lattice discretisations of 1.03Å to 1.49Å, identification of the correct structure by 12 
one local minimisation of the global optimum atom allocation was predominantly but not 13 
uniformly possible. For MgAl2O4 with a 1.03Å discretisation (𝑔 = 8) and 𝑃23 space group 14 
symmetry, the configuration space became large enough to contain low-energy lattice 15 
allocations that belong to local, rather than global, minima of the PES (Figure 2). 16 
Nevertheless, minimisation of the four lowest energy arrangements recovered the correct 17 
spinel structure. For higher symmetries, the lowest energy allocation even on this coarser 18 
lattice did afford the correct structure directly (Table 1). 19 
 20 
A heuristic partially searches the PES for preferred configurations that are then locally 21 
minimised – success relies on identifying a configuration that lies on the walls of the global 22 
minimum (Figure 3). By contrast, integer programming considers all periodic lattice atom 23 
allocations simultaneously, identifying the globally optimal configuration. The branch-and-24 
cut algorithm allows us to discard large portions of the configuration space while retaining 25 
optimality, leading to brute force-like energy guarantees without actual brute force. By 26 
locally minimising these exact outcomes from the appropriate discretisation and unit cell 27 
parameters, we can obtain the guaranteed global minimum in CSP. Further development will 28 
integrate this configuration space screening with the space group symmetry and unit cell 29 
metric determination that is common to all CSP. Beyond that, as the solver maintains a valid 30 
solution, it can identify the global optimum much earlier than proving its optimality (Figure 31 
3d). By foregoing optimality guarantees, it would be possible to investigate larger 32 
configuration spaces and use integer programming either as an independent heuristic tool or 33 
to complement allocation decisions in existing heuristic methods. 34 
 35 
The current state of the art in computational complexity6 indicates that there will always be a 36 
combinatorial limit to the implementation of integer programs for CSP on classical 37 
computers, just as heuristics will eventually run out of capacity to explore complex structural 38 
spaces efficiently enough to generate reliable outcomes. Quantum computers have the 39 
potential to solve many problems faster than classical computers39, demonstrating the so-40 
called quantum advantage40–42. While large-scale implementation of quantum computing is 41 
not imminent, more limited forms are increasingly available. One example is the quantum 42 
annealer43, a specialised hardware solver for quadratic unconstrained binary optimisation 43 
(QUBO) problems9 alongside other types of Ising machines10,44. The QUBO problem 44 
involves finding a 0,1-assignment minimising an objective function containing only products 45 
of at most two binary variables. Equation (1) has exactly this form after elimination of 46 
constraints, creating a pathway to overcome the combinatorial explosion in CSP. We have 47 
verified the applicability of this approach to CSP by solving the structures of SrO (𝑔 = 2, 48 
𝑃23), SrTiO3 (𝑔 = 2, 𝑃𝑚3C𝑚), ZrO2 (𝑔 = 4, 𝑃2!3), and ZnS (𝑔 = 4, 𝑃23) on the 2000Q 49 
quantum annealer provided free by D-Wave via Leap45 (Methods). 50 
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 1 
The search routines that find the lowest energy periodic lattice atom allocations can be used 2 
to predict crystal structures with one subsequent local minimisation. Integer programming 3 
formulation of this search affords an algorithm that allows guaranteed identification of the 4 
global optimum in CSP and enables quantum computers to address the arising combinatorial 5 
challenges. The resulting structures are thus demonstrated to afford the lowest energy 6 
possible at a given composition, proving the optimality of the observed structures of 7 
archetypal materials under clear assumptions. This provides both ground truth for heuristic 8 
and data-driven structure prediction methods and essential understanding by guaranteeing the 9 
energetic status of experimentally isolated materials in the laboratory. Development of 10 
encodings and implementations that make best use of emerging software and hardware will 11 
define a distinct CSP based on optimality, certainty and quantum advantage enabling new 12 
workflows for synthetic prioritisation and property prediction. 13 
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Compound 

Space 
group  
of the 

structure 

Number 
of ions 
in the 

unit cell 

Cell 
parameter 

/ Å 

Discretisation 
𝑔 

Space 
group 

symmetry 

Number 
of unique 

lattice 
positions 

Time 
/ sec 

SrTiO3,  
Z=1 

𝑃𝑚3C𝑚 
(221) 5 3.9 4 𝑃1  

(1) 64 3 

SrTiO3,  
Z=8  40 7.8 8 𝑃23  

(195) 56 56 

SrTiO3, 
Z=27  135 11.7 6 𝑃𝑚3C𝑚 

(221) 20 2 

SrTiO3, 
Z=27  135 11.7 6 𝑃𝑚3C 

(200) 24 63 

SrTiO3, 
Z=27  135 11.7 6 𝑃23  

(195) 28 6823 

Y2O3 𝐼𝑎3C 
(206) 80 10.7 8 𝐼𝑎3C  

(206) 17 1 

Y2O3    8 𝐼2!3 
(199) 40 10 

Y2O3    16 𝐼𝑎3C  
(206) 124 18 

Y2Ti2O7† 𝐹𝑑3C𝑚 
(227) 88 10.2 8 𝐹𝑑3C𝑚  

(227) 11 1 

Y2Ti2O7    16 𝐹𝑑3C𝑚  
(227) 51 1 

MgAl2O4 𝐹𝑑3C𝑚  
(227) 56 8.2 8 𝐹𝑑3C𝑚  

(227) 11 1 

MgAl2O4    16 𝐹𝑑3C𝑚  
(227) 51 1 

MgAl2O4    8 𝐹23 (196) 22 1 

MgAl2O4†    8 𝑃23 (195) 56 4085 

Ca3Al2Si3O12 𝐼𝑎3C𝑑 
(230) 160 11.9 8 𝐼𝑎3C  

(230) 17 1 

Ca3Al2Si3O12    16 𝐼𝑎3C𝑑 
(230) 62 1 
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 1 

Table 1. Configuration spaces that lead to prediction of the experimentally determined 2 
cubic crystal structures. The experimentally determined space group symmetry is given in 3 
the second column. The perovskite structure (SrTiO3) was investigated for a varying number 4 
of formula units (Z). Other structure types, namely, bixbyite (Y2O3), pyrochlore (Y2Ti2O7), 5 
spinel (MgAl2O4) and garnet (Ca3Al2Si3O12), were investigated using different configuration 6 
spaces. In all cases, the minima were not only identified, but proved to be optimal. The 7 
corresponding periodic lattice atom allocation problems are defined by the dimension of the 8 
unit cell and the number of lattice positions per side 𝑔. The space group symmetry defines 9 
the number of unique lattice positions that is proportional to the size of the integer program. 10 
The two configuration spaces labelled by † require local minimisation of several low energy 11 
allocations on a lattice before the experimentally determined structure is identified, while in 12 
all other cases the global optimum periodic lattice atom allocation immediately leads to the 13 
correct structure after one local minimisation. The representative time needed to identify 14 
solutions of the corresponding integer programs alongside the proof of their optimality is for 15 
the hardware specified in Methods. 16 
  17 
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Fig. 1. Crystal structure prediction using integer programming. (a) Atoms defining a 2 
specific composition (illustrated here for SrTiO3) are allocated to a suitably dense set of 3 
discrete positions in space under periodic boundary conditions. The resulting configurations 4 
generate candidate crystal structures that lie on the potential energy surface shown in (b), 5 
where they are represented as circles. Structure prediction can be performed by identifying 6 
and then locally minimising low-energy allocations to afford the lowest energy structure with 7 
atomic positions in continuous space. If the space of configurations is well-chosen, this leads 8 
to the correct crystal structure in a single local minimisation of the lowest energy global 9 
optimum allocation (star). Exhaustive evaluation of atomic configurations to identify the 10 
globally optimal allocation is achieved by encoding this task as an integer program. This is an 11 
established mathematical optimisation problem, which can be solved using existing solvers 12 
based on powerful algorithms and emerging quantum computers. 13 
  14 
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Fig. 2. Using integer programming to predict garnet (Ca3Al2Si3O12) and spinel 2 
(MgAl2O4) structures. (a) The unique positions of a lattice with 0.74Å discretisation (𝑔 = 3 
16) in the 𝐼𝑎3C𝑑 space group. The space group46 is the group of symmetry operations that 4 
describe the symmetry of the unit cell. Atomic positions corresponding to the global optimum 5 
solution of the resulting periodic lattice atom allocation problem for Ca3Al2Si3O12 are 6 
coloured: Ca (green), Al (light blue), Si (dark blue), O (red). Local energy minimisation of 7 
this solution, represented in (b), affords the correct garnet structure shown in (c) and (d). (e) 8 
The periodic lattice atom allocation for 1.02Å discretisation (𝑔 = 8) and 𝑃23 space group 9 
symmetry for MgAl2O4 (left) that minimises into the correct spinel structure (right). (f) There 10 
are allocations in this configuration space that are lower in energy than (e), as quantified by 11 
the initial energy shown, but do not minimise into the correct structure, shown by comparison 12 
of the final energies with that in e. The same discretisation with the higher symmetry	𝐹23 13 
space group produces the lowest energy solution that immediately minimises into the correct 14 
structure. 15 
  16 
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Fig. 3. Comparison between heuristic and non-heuristic exploration of a potential 2 
energy surface. (a) A typical CSP scheme partially explores the surface by iteratively 3 
performing local minimisation (solid black arrows) of selected atomic configurations 4 
(diamonds) in a continuous space. These configurations are derived according to some search 5 
strategy (dotted red arrows) defined by a particular heuristic. (b) CSP leveraging integer 6 
programming performs exact global optimisation on the whole discrete configuration space 7 
of crystals generated by periodic atom allocation on a lattice, followed by local structural 8 
minimisation of a single (star), or several (triangles), low energy solution(s) in a continuous 9 
space. (c) Branch-and-cut algorithms designed for integer programs achieve the guaranteed 10 
global optimum periodic lattice atom allocation by separating all atomic configurations into 11 
branches roughly corresponding to the allocation decisions. Some branches (circles, located 12 
on b to represent their position on the potential energy surface) are completely discarded 13 
(dotted line on b), if all allocations are guaranteed to be worse than the best solution found so 14 
far (triangle). More promising branches (triangles) are explored before less promising ones 15 
(squares). The branch-and-cut tree is expanded until all configurations are assessed. (d) An 16 
optimisation run of the integer program solver on the periodic lattice atom allocation problem 17 
for SrTiO3 (Z=27, Table 1). At every moment, a lower bound on the global optimum is 18 
available as well as the lowest energy allocation found so far. The run is completed when 19 
these energies match, providing a guaranteed solution. The global optimum is identified 20 
before the proof of optimality. 21 
  22 
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Methods 1 
 2 
Configuration spaces 3 
Every periodic lattice atom allocation problem, and the resulting configuration space in our 4 
computations, is defined by the following parameters:  5 

(a) the number of atoms to allocate, dimensions of the unit cell, and the chosen force-6 
fields. 7 

(b) the number of potential atomic positions within a unit cell, which is controlled by the 8 
discretisation parameter 𝑔 equal to the number of lattice points per cell side. 9 

(c) proximity constraints specify how close two ionic species can be to each other. 10 
(d) the desired space group of periodic allocations on a lattice. 11 

 12 
To evaluate the applicability of the periodic lattice atom allocation for CSP, we have 13 

restricted ourselves to cubic structures and test the prediction of known cubic materials by 14 
minimising optimal configurations for variable unit cell size, symmetry and lattice 15 
discretisation. Selection of parameters of this kind is an integral part of every CSP code, thus, 16 
to assess integer programming encoding, rather than parameter screening, we limit ourselves 17 
to a range of parameters set around the experimentally determined value. The lattice 18 
parameters reported in Table 1 are the correct values rounded to the first decimal place. 19 
Additional computations (Extended Data Tables 1-5) suggest that any reasonable value close 20 
to the experimentally determined one will lead to the same outcome. The potential positions 21 
are uniformly distributed within the unit cell and their total number is equal to 𝑔3. Symmetry 22 
constraints arise either from the space groups of the experimentally determined structures or 23 
their subgroups. In all reported cases, there was at least one configuration space leading to a 24 
successful prediction. 25 
 26 
Potential energy of a crystal 27 
The Ewald summation36 decomposes electrostatic interaction into three terms 𝑈*245, 𝑈6274 28 
and 𝑈628%(. This split is controlled by a real parameter 𝛼 and the summation is performed 29 
either in real space over the unit cell copies labelled by 𝑛 or over the reciprocal lattice vectors 30 
𝑚. We denote by 𝑉 the volume of the unit cell, 𝑁 the number of ions within it, 𝑞% is the 31 
charge of the 𝑖-th ion, 𝑟%',# is the distance between the 𝑖-th ion in the original cell and the 𝑗-th 32 
ion in the cell labelled by 𝑛, 𝑟% is the position vector of the 𝑖-th ion within the original cell. 33 
The constituent parts are as follows: 34 
 35 

𝑈*245 = − 9
√;
∑ 𝑞%"<
%=! , 𝑈6274 = !

"
∑ 𝑞%𝑞' ∑

>?@AB96#$,&C
6#$,&#

<'
%,'=! , 36 

𝑈628%( = !
";D

∑ 𝑞%𝑞' ∑
2E(FG(;I/9)"L";%IB6#G6$CM

I"INO
<
%,'=! . 37 

 38 
Here, 𝑚" corresponds to the usual scalar product and the summation up to 𝑁Psimply excludes 39 
the case of 𝑖 = 𝑗 for the original unit cell as it leads to division by zero. Since the reciprocal 40 
lattice vectors 𝑚 and the distances 𝑟%',# are well-defined as soon as the unit cell and the set of 41 
positions 𝑃𝑜𝑠 are chosen, these sums can be rearranged and the coefficient in front of 𝑞%𝑞' 42 
can be computed independently of the atom allocation. By substituting the charges of 43 
elements 𝑡𝑦𝑝!,𝑡𝑦𝑝" for 𝑞%,𝑞' and 𝑝𝑜𝑠!, 𝑝𝑜𝑠" for their positions, we derive the electrostatic 44 

contribution part in α()*!,()*"
+,(!,+,(". The repulsive part of the potential energy is obtained via direct 45 

summation, since it has a finite range. 46 
 47 
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The repulsive contributions depend on the composition and are given in Extended Data 1 
Tables 6 (Y2O3, Y2Ti2O7, SrO and SrTiO3)47, 7 (MgAl2O448), 8 (Ca3Al2Si3O1249) and 9 2 
(ZrO250 and ZnS51). 3 
 4 
Local minimisations were performed using GULP52 and Atomic Simulation Environment53. 5 
Structures are visualised using VESTA54. 6 
 7 
Solving integer programs 8 
 9 
On a conceptual level, suppose that we are given a minimisation problem that depends on 10 
binary variables 𝑋()*

+,( with a feasible region defined by the constraints, as is the case for the 11 
periodic lattice atom allocation problem. Such optimisation problems are typically 12 
computationally intractable in the sense of the theory of NP-completeness19. This theory 13 
provides strong evidence for the nonexistence of efficient exact algorithms that always 14 
succeed in solving these problems, as in the case of CSP itself14. However, this intractability 15 
refers to the difficulty of building universal algorithms that would solve all possible 16 
instances. There are though techniques that can efficiently solve most instances. Branch-and-17 
cut is one of these efficient methods that deals with this intractability6,24. 18 
 19 
The first step is a relaxation of the problem to enlarge the set of feasible solutions, most often 20 
by dropping some of the constraints, e.g., by allowing 𝑋()*

+,( to be between 0 and 1. The 21 
minimum value of the objective function E in such a relaxed feasibility region then drops 22 
down, resulting in a lower bound on the original optimal value. Such a lower bound is 23 
maintained and refined during the iterative optimisation process. In addition to the lower 24 
bound, the solvers also compute and maintain an upper bound on the value of the objective E, 25 
which is simply its value at the best currently found feasible solution to the problem. This 26 
optimisation process can gradually tighten the relaxation by adding additional valid 27 
constraints known as cuts that are feasible for the original binary problem but unfeasible for 28 
the relaxed problem. Together with the upper and lower bounds, this allows systematic and 29 
efficient exploration of the search space in pursuit of the optimal solution. Branching relies 30 
on constraints that divide the relaxed problem into separate subproblems, where each such 31 
subproblem’s feasible region is “closer” to a part of the original binary problem region. 32 
Which of those subproblems to explore is decided by the current lower and upper bound – if 33 
the lower bound happens to be larger than the best known upper bound, this implies that this 34 
particular subproblem cannot hold the original optimal binary solution and can thus be 35 
omitted. Finally, the optimality of the ultimate binary solution is certified by the fact that its 36 
objective value E matches the current lower bound. 37 
 38 
The problem set out above is an example of a binary quadratic integer program, where its 39 
variables 𝑋()*

+,( appear in terms that are quadratic. Relaxations of such programs are usually 40 
achieved by powerful linearisation techniques, where one replaces each product of two 41 
variables by a single fresh variable, thus obtaining a linear term in that new variable. This 42 
leads to a relaxed linear or semidefinite program20, which can then be solved efficiently by a 43 
multitude of techniques, such as Dantzig’s simplex method or interior point methods19,55. 44 
Solvers based on optimisation theory thus lead to an exact solution to the integer program for 45 
which Equation (1) is the objective function that considers the entire search space and 46 
guarantees the optimality of that solution. Beyond that, many-body potentials can be 47 
incorporated into Equation (1) by adding products of more than two binary variables. 48 
 49 
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In practice, we were able to solve relatively large integer programs, e.g., Y2O3 at 𝑔 = 16 and 1 
𝐼𝑎3C symmetry contained 248 binary variables and 30,628 quadratic terms. The combinatorics 2 
do influence the speed, as illustrated by the one hundred-fold increase in run time for Z=27 3 
SrTiO3 when the space group symmetry is reduced from 𝑃𝑚3C𝑚 to 𝑃23, reflecting the larger 4 
number of allocations then possible on the same lattice. Moreover, as our encoding is largely 5 
oblivious to different representations of the same crystal, the number of different assignments 6 
of binary variables corresponding to equivalent crystals, including the global optimum, 7 
significantly increases. This generates equivalent solutions to the program, which are known 8 
to slow the branch-and-cut algorithm7. The presented integer program for the periodic lattice 9 
atom allocation problem is only one of many possible encodings, and different encodings for 10 
the same optimisation problem can lead to different run times and theoretical properties6. By 11 
developing specific encodings that address redundancies within periodic allocation problems, 12 
the branch-and-cut identification of the guaranteed minimum can be further accelerated. 13 
 14 
Constraints for integer programs 15 
The following constraints are always present and ensure that the resulting periodic lattice 16 
atom allocations are correct: 17 
 18 

1. A constraint ∑ 𝑋()*
+,(

+,(∈	1,(2* ≤ 1 for every 𝑝𝑜𝑠 ∈ 𝑃𝑜𝑠 to prevent different atoms 19 
from occupying the same position. (exclusivity) 20 

2. A constraint ∑ 𝑋()*
+,(

()*	∈	0)* = 𝐶QRS for every species 𝑡𝑦𝑝 ∈ 𝑇𝑦𝑝𝑒𝑠, where 𝐶+,( is the 21 
desired number of atoms of species 𝑡𝑦𝑝 within the unit cell. (stoichiometry)  22 

 23 
These additional constraints are used to focus the search on desired structure types and 24 
improve the running times: 25 
 26 

1. Crystals have symmetry, so it is natural to constrain our search space by fixing the 27 
desired space group of the resulting allocation. The space group dictates which 28 
positions are symmetrically equivalent and must be occupied by the same chemical 29 
element, namely, these are positions belonging to the same crystallographic orbit. For 30 
every pair of such positions 𝑝𝑜𝑠!and 𝑝𝑜𝑠" we put 𝑋()*!

+,( = 𝑋()*"
+,( 	for all 𝑡𝑦𝑝 ∈ 𝑇𝑦𝑝𝑒𝑠. 31 

Note that we can, in principle, rewrite our encoding right away using these equalities 32 
by introducing new variables – one for every orbit and species, but modern solvers do 33 
this easily during the pre-solve stage while integrating other constraints as well. 34 
(symmetry) 35 

2. The exclusivity constraint can be further strengthened to preclude ions from 36 
occupying positions that are too close to each other. To estimate the size of an ion in a 37 
typical crystal, we rely on Shannon ionic radii, see below for the values used in the 38 
study. For every pair of positions 𝑝𝑜𝑠!and 𝑝𝑜𝑠" that are closer than, e.g., 75% of the 39 
sum of ionic radii of 𝑡𝑦𝑝!	and  𝑡𝑦𝑝"	atoms in our computations, we include the 40 
constraint 𝑋()*!

+,(! + 𝑋()*"
+,(" ≤ 1.	 The selected percentage value is a hyper-parameter 41 

used to accommodate lattice distortion and imprecision of radii estimation. 42 
Practically, we avoid addition of a large number of such constraints and achieve a 43 
similar effect by putting a large positive coefficient in front of the term 𝑋()*!

+,(!𝑋()*"
+,(" in 44 

the objective function. If both variables are non-zero, then the energy of such an 45 
arrangement is very high, and it is excluded from consideration. (proximity) 46 

 47 
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The following values of Shannon ionic radii were used during computations56: O2- 1.35 Å, S2- 1 
1.84 Å, Al3+ 0.39 Å, Y3+ 0.9 Å, Mg2+ 0.57 Å, Ti4+ 0.42 Å, Ca2+ 1.0 Å, Si4+ 0.26 Å, Zr4+ 0.59 2 
Å, Zn2+ 0.6 Å, Sr2+ 1.18 Å. 3 
 4 
Quantum computing 5 
 6 
Equation (1) contains only products of at most two binary variables and thus can be seen as 7 
the objective function of a QUBO problem. Periodic lattice allocation problems have 8 
additional constraints such as exclusivity and stoichiometry which we need to eliminate in 9 
order to use quantum annealers. We mimic the effect of these constraints via modification of 10 
the objective function. By adding additional penalty terms, we can ensure that an optimal 11 
solution of the modified program satisfies the constraints, otherwise, its energy is too high to 12 
be optimal. The term 𝜇 ∑ 𝑋()*

+,(!
+,(!,+,(" 𝑋()*

+,(", which is at least 𝜇 as soon as two different ion 13 
species are placed at 𝑝𝑜𝑠, enforces the exclusivity condition if 𝜇 is a large enough positive 14 

number. By introducing the term 𝛾U𝐶+,( − ∑ 𝑋()*
+,(

()*∈0)* V
"
 with a large enough positive 𝛾, 15 

we ensure that an optimal allocation must have the desired stoichiometry. This results in a 16 
QUBO problem that can be directly submitted to a quantum annealer, other hardware QUBO 17 
solvers10,44 or addressed with quantum approximate optimisation algorithms on gate-based 18 
quantum computers57. In practice, quantum annealers produce a range of allocations 19 
including the ones that violate these conditions, but their energies are high, and they are 20 
excluded during postprocessing. 21 
 22 
We solved a variety of simple structures on the 2000Q quantum annealer provided free by D-23 
Wave via Leap45. There are configuration spaces where the quantum annealer has been able 24 
to identify the global optimum allocation that minimises into the experimental structure, 25 
exactly as achieved with the classical computing approach. Specifically, we have obtained 26 
the rock salt structure of SrO (𝑔 = 2, 𝑃23), where the actual space group 𝐹𝑚3C𝑚 was 27 
replaced with 𝑃23 to increase the complexity of the problem, the perovskite structure of 28 
SrTiO3 (𝑔 = 2, 𝑃𝑚3C𝑚), the fluorite structure of cubic zirconia ZrO2 (𝑔 = 4, 𝑃2!3) and the 29 
wurtzite structure of ZnS (𝑔 = 4, 𝑃23). We used space group symmetry and a small number 30 
of lattice positions to limit the size of the resulting integer programs. Each optimisation run 31 
of the quantum annealer used up to 168 qubits and produced hundreds of allocations in 32 
milliseconds including several allocations corresponding to the global optimum. While the 33 
current generation of quantum annealers is limited in terms of the size of programs they can 34 
run, because of a lack of free qubits and their connectivity, and cannot guarantee optimality 35 
due to their high sensitivity to the noisy environment, the technology is being actively 36 
developed to overcome these drawbacks58. 37 
 38 
We have deliberately used integer programs of the same form as used in classical computing 39 
for clarity and simplicity. The only adjustments were the annealing schedules, which control 40 
the optimisation process on the quantum computer, and the penalty terms used during 41 
constraint elimination of the resulting integer programs (Extended Data Table 10). These 42 
parameters had significant impact on the outcomes of predictions. The QUBO formulation 43 
introduced here can be further adjusted to better suit the quantum annealer. It is likely that by 44 
designing CSP encodings that are well-suited to the noisy intermediate-scale quantum 45 
computers, performance will improve, with the aim of effectively recovering optimality in 46 
almost all cases59. Hybrid quantum-classical computation60 could bring significant 47 
advantages of quantum computing for CSP even before the full potential of this technology is 48 
realised. 49 
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 1 
Equipment 2 
Our computational experiments were done on a 40-core workstation (two 20-core Intel Xeon 3 
E5-2630v4 CPUs) running at 2.2 GHz with 64Gb of RAM. Gurobi 9.5 was the integer 4 
programming solver used. Quantum computations were done on D-Wave 2000Q quantum 5 
annealer via Leap using the associated API (https://docs.ocean.dwavesys.com/en/stable/). 6 
 7 
Data availability 8 
The authors declare that the data supporting the findings of this study are available within the 9 
paper and its supplementary information files. 10 

Code availability  11 

An implementation of the integer programming encoding for periodic lattice allocation 12 
problem and subsequent CSP is available at https://github.com/lrcfmd/ipcsp. 13 
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Extended Data 1 

 2 
Unit cell 

size 
-30% -20% -10% Correct +10% +20% +30% 

eV/atom infeasible -22.989 -30.186 
 

-31.704 
 

-30.907 
 

-29.273 
 

-27.441 
 

 3 
Extended Data Table 1. The change in energy of the optimal solution of the periodic lattice 4 
atom allocation problem for SrTiO3 with 𝑔 = 4 and 𝑃23 (195) space group symmetry 5 
constraint under varying unit cell size. If the unit cell is too small to accommodate all the ions 6 
while satisfying proximity constraints, then no solution is returned. This is the case for the 7 
unit cell that is 30% smaller than the experimentally determined structure (2.7 Å vs 3.9 Å). 8 
All other periodic lattice atom allocations listed above are locally optimised into the same 9 
correct structure despite having very different unit cell sizes (and energies), indicating that 10 
exact knowledge of cell parameters is not necessary for a successful application of this 11 
technique. 12 
 13 
 14 
 15 

Unit cell 
size 

-20% -10% Correct +10% +20% 

eV/atom -23.091 -27.254 -27.905 
 

-27.098 -25.735 

 16 
Extended Data Table 2. The change in energy of the optimal solution of the periodic lattice 17 
atom allocation problem for MgAl2O4 with 𝑔 = 8 and 𝐹𝑑3C𝑚	(227) space group symmetry 18 
constraint under varying unit cell size. All optimal configurations minimise into the correct 19 
spinel structure with the energy -28.944 eV/atom. 20 
 21 
 22 
 23 

Unit cell 
size 

-5% Correct +10% +15% +20% 

eV/atom -25.252 -26.262 -26.128 -26.251 -25.876 
 24 
Extended Data Table 3. The change in energy of the optimal solution of the periodic lattice 25 
atom allocation problem for Y2O3 with 𝑔 = 16 and 𝐼𝑎3C (206) space group symmetry 26 
constraint under varying unit cell size. All optimal configurations minimise into the correct 27 
bixbyite structure with the energy -27.395 meV/atom. Note that the global optimal solution 28 
for the periodic lattice atom allocation problem for Y2O3 with the unit cell size -10% 29 
minimises into a structure with the energy -26.392 eV/atom, which is higher by 1.002 30 
eV/atom than the correct structure, indicating that the optimal configuration has been 31 
changed. 32 
 33 
  34 
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Unit cell 
size 

-15% -10% Correct +5% +10% 

eV/atom -28.680 -32.471 -35.002 -34.919 -34.388 
 1 
Extended Data Table 4. The change in energy of the optimal solution of the periodic lattice 2 
atom allocation problem for Y2Ti2O7 with 𝑔 = 16 and 𝐹𝑑3C𝑚 (227) symmetry constraint 3 
under varying unit cell size. All optimal configurations minimise into the correct pyrochlore 4 
structure with the energy -35.154 eV/atom. 5 
 6 
 7 
 8 

Unit cell 
size 

-3% -2% Correct +5% +10% +15% 

eV/atom -12.109 -12.176 -12.277 -12.327 -12.253 -12.302 
 9 
Extended Data Table 5. The change in the optimal solution of the periodic lattice atom 10 
allocation problem under varying unit cell size for Ca3Al2Si3O12, g=16, 𝐼𝑎3C𝑑 (230). All 11 
optimal configurations relax into the correct garnet structure with the energy -13.750 12 
eV/atom. 13 
 14 
 15 
 16 

Interaction A (eV) ρ (Å) C (eV Å-6) 
Y3+ – O2- 23000 0.24203 0 
Sr2+ – O2- 1952.39 0.33685 19.22 
Ti4+ – O2- 4590.7279 0.261 0 
O2- – O2- 1388.77 0.36262 175 

 17 
Extended Data Table 6. Buckingham potential parameters for Y2O3, Y2Ti2O7, SrO and 18 
SrTiO3 with the cut-off radius of 10Å.47 19 
 20 
 21 
 22 

Interaction A (eV) ρ (Å) C (eV Å-6) 
Mg2+ – O2- 1284.380 0.2997 0 
Al3+ – O2- 1725.000 0.2897 0 
O2- – O2- 9547.960 0.2192 32.00 

 23 
Extended Data Table 7. Buckingham potential parameters for MgAl2O4.48 24 
  25 



 22 

Interaction 𝐷%' (eV) aTU (Å-2) 𝑟O (Å) 𝐶%' (eV Å12) 
Ca1.2+ – O1.2- 0.030211 2.241334 2.923245 5.00 
Si2.4+ – O1.2- 0.340554 2.006700 2.100000 1.00 
Al1.8- – O1.2- 0.361581 1.900442 2.164818 0.90 
O1.2- – O1.2- 0.042395 1.379316 3.618701 22.00 

 1 
Extended Data Table 8. Force-field parameters for Ca3Al2Si3O12.49 The repulsive part is a 2 
combination of Morse and Lennard-Jones potentials as follows: 3 

𝐷%' [\1 − 𝑒𝑥𝑝 \−𝑎%'(𝑟 − 𝑟O)^^
"
− 1_ + V#$

6!"
. This parameter set uses partial charge states on 4 

the ions. 5 
 6 
 7 
 8 

Interaction A (eV) ρ (Å) C (eV Å-6) 
Zr4+ – O2- 7290.347 0.2610 0 
O2- – O2- 25.410 0.6937 32.32 
Zn2+ – S2- 613.356 0.3990 0 
S2- – S2- 1200.000 0.1490 120.0 

 9 
Extended Data Table 9. Buckingham potential parameters for ZrO250 and ZnS51. 10 
 11 
 12 
 13 

Crystal structure 𝜇 𝛾 Annealing time, μs 
SrO 100 100 200 

SrTiO3 100 100 200 
ZrO2 50 50 1000 
ZnS 100 100 200 

 14 
Extended Data Table 10. Parameters of the quantum annealing runs. In every case, the 15 
quantum annealer produced the correct periodic lattice atom allocation. The number of reads 16 
were between 100 and 300. Annealing time is given in microseconds. The presented 17 
coefficients 𝜇 and 𝛾 that were used to offset proximity and stoichiometry constraints to the 18 
objective function are defined in Methods. 19 


