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Abstract

This paper focuses on the simulation of random fields on random domains. This is an important

class of problems in fields such as topology optimization and multiphase material analysis. How-

ever, there is still a lack of effective methods to simulate this kind of random fields. To this end, we

extend the classical Karhunen–Loève expansion (KLE) to this class of problems, and we denote

this extension as stochastic Karhunen–Loève expansion (SKLE). We present three numerical al-

gorithms for solving the stochastic integral equations arising in the SKLE. The first algorithm is an

extension of the classical Monte Carlo simulation (MCS), which is used to solve the stochastic in-

tegral equation on each sampled domain. However, such approach demands remeshing each sam-

pled domain and solving the corresponding integral equation, which can become computationally

very demanding. In the second algorithm, a domain transformation is used to map the random do-

main into a reference domain, and only one mesh for the reference domain is required. In this way,

remeshing different sample realizations of the random domain is avoided and much computational

effort is thus saved. MCS is then adopted to solve the corresponding stochastic integral equation.

Further, to avoid the computational effort of MCS, the third algorithm proposed in this contribu-

tion involves a reduced-order method to solve the stochastic integral equation efficiently. In this

third algorithm, stochastic eigenvectors are represented as a sum of products of unknown random

variables and deterministic vectors, where the deterministic vectors are efficiently computed by

solving deterministic eigenvalue problems. The random variables and stochastic eigenvalues that
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appear in this third algorithm are calculated by a reduced-order stochastic eigenvalue problem

constructed by the obtained deterministic vectors. Based on the obtained stochastic eigenvectors,

the target random field is then simulated and reformulated as a classical KLE-like representation.

Finally, three numerical examples are presented to demonstrate the performance of the proposed

methods.

Keywords: Random fields; Random domains; Stochastic Karhunen–Loève expansion; Domain

transformation; Stochastic eigenvalue equations;

1. Introduction

The considerable influence of uncertainties on system behavior has led to the development

of dedicated numerical methods for its characterization, propagation and quantification [1, 2, 3].

Uncertainties may appear, for example, in material parameters, boundary conditions or loadings

of mechanical systems. Moreover, these uncertainties may affect the physical domain associated

with a given system. For example, uncertainty in manufacturing processes may lead to variability

with respect to the physical dimensions of a component, leading to a random domain problem.

The focus of this work lies precisely on modeling uncertainties associated with random domains

as well as random quantities associated with random domains, which implies dealing with random

fields defined on random domains. Such a class of uncertainty model can be found in many practi-

cal engineering problems, e.g., topology optimization, material properties with spatial variability

in multiphase materials with random interfaces, etc [4, 5, 6]. In this paper, we develop effective

numerical methods for simulating the random fields on random domains, which are termed as

RFRD for brevity in the following. Although problems of uncertainty quantification defined on

random domains have received attention in the past decades, most applications only involve ran-

dom variables [4, 5, 7, 8, 9, 10] and do not capture the spatial variability. In fact, to the authors’

best knowledge, there are no contributions that focus on the simulation of RFRD. The closest

attempt to address this problem is reported in [11], which provides a weak form that integrates
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spatially random material properties into stochastic finite element equations involving random do-

mains. However, that contribution performs neither a detailed feasibility analysis nor any numer-

ical experiments that illustrate its application to RFRD problems. Simulation of random fields on

random domains can be a challenging task. Indeed, geometric uncertainties make the discretiza-

tion of complex domains not easily accessible. Thus, discretization-based numerical techniques

for simulating random fields may not be directly applicable. Hence, dedicated methods need to be

developed for the simulation of RFRD. As an additional challenge, it should be noted that uncer-

tainties associated with such random fields are multi-source, as they may appear as the combined

effect from both the random domain and one (or more) random quantity on the random domain.

The latter implies that, potentially, multiple sources of uncertainties can be coupled in the simula-

tion. Evidently, it is not easy to capture multiple sources of uncertainty accurately and efficiently.

In this paper, we first extend the classical Karhunen–Loève expansion (KLE) [12] to a stochastic

Karhunen–Loève expansion (SKLE) to characterize random fields on random domains, where a

key issue is to solve a homogeneous stochastic Fredholm integral equation of the second kind over

the random domain. For this purpose, we present a direct Monte Carlo simulation (MCS) scheme,

a domain transformation-based MCS procedure and a stochastic eigenequation-based approach to

solve the stochastic integral equation (SIE).

The MCS and its extensions [9] are direct and effective methods to deal with random domains.

Hence, the classical MCS is adopted as the first method to simulate RFRD in this paper. In this

method, the random domain is meshed for each sample realization, and classical numerical tech-

niques are then used to solve the corresponding integral equation associated with each sampled

mesh. The method is straightforward to implement and it can be coupled, for example, with exist-

ing finite element codes without any modification. However, to generate a large number of random

samples of RFRD, we have to remesh each sample realization of the random domain and solve

the corresponding deterministic integral equation, which can become numerically demanding, es-

pecially for large-scale RFRD. Also, given that the random samples of RFRD are generated on

different sampled domains and meshes, it is not a simple matter to perform the postprocessing and

apply the simulated RFRD to subsequent stochastic analyses.

To avoid remeshing the domain for each sample realization, we develop a second approach
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that couples domain transformation with MCS. In fact, domain transformation, as introduced in

[7, 13, 10], allows to map the random domain into a reference domain. In our previous work [10],

similar domain transformation methods are used to solve partial differential equations (PDEs) on

random domains, where the coefficients of PDEs are considered as deterministic values or random

variables, but not random fields. In the domain transformation method, a boundary-conforming

coordinate system between the random domain and the reference domain is produced via a Laplace

equation with random boundary conditions. In this way, the integral equation defined on the ran-

dom domain arising in SKLE is transformed into an SIE defined on the deterministic reference

domain. All SIEs can be solved on the reference domain and the computational effort for remesh-

ing sampled domains is saved. Then, the classical MCS is used to solve the SIE on the reference

domain. Further, postprocessing in this method is easily performed on the reference domain, which

avoids the difficulty encountered in the classical MCS and can be readily applied to subsequent

stochastic analyses. However, the computational cost of solving the SIE on the reference domain

with MCS can be still very expensive, especially for large-scale problems.

To avoid the expensive computational effort of solving the SIE, we further propose a third

approach which is a stochastic eigenequation-based simulation algorithm. The domain transfor-

mation approach presented above is first used to transform the random domain into a reference

domain and generate the corresponding SIE on the reference domain. An efficient reduced-order

stochastic eigenvalue algorithm proposed in our previous work [14] is adopted to solve the SIE. In

this method, stochastic eigenvectors are approximated by a sum of the products of unknown ran-

dom variables and deterministic vectors. The deterministic vectors are solved efficiently by a few

deterministic eigenvalue equations that are obtained by applying the stochastic Galerkin procedure

to the original stochastic problem. Based on the obtained deterministic vectors, a reduced-order

stochastic eigenvalue equation is constructed and used to solve stochastic eigenvalues of the origi-

nal stochastic eigenequation and the random variables in the approximation of stochastic eigenvec-

tors. Furthermore, this method generates sample descriptions for the stochastic eigenvalues and

semi-explicit representations for the stochastic eigenvectors, which thus provides a semi-explicit

representation of RFRD. In this way, two computationally demanding aspects, i.e. remeshing

the random domain and solving the SIE, are avoided successfully and replaced by an approach
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involving very low numerical effort.

The rest of the paper is organized as follows. Section 2 presents the first algorithm of this work,

which comprises an SKLE derived from the classical KLE and a direct MCS is used to solve the

associated SIE arising from the SKLE. In Section 3, a domain transformation is formulated to

map the random domain into a reference domain. Following that, the SIE is solved by using

a domain transformation-based MCS, leading to the second algorithm that is introduced in this

work. Further, a third simulation algorithm combining the domain transformation and a reduced-

order method for solving stochastic eigenequations is presented in Section 4. To demonstrate

the performance of the proposed methods, three numerical examples, including a one-dimensional

beam with random length, two-dimensional multiphase material with a random interface and three-

dimensional femur implant with random prosthesis position, are presented and analyzed in Section

5. Conclusions and discussions follow in Section 6.

2. Simulating RFRD via stochastic Karhunen–Loève expansion

In this paper, we consider the random field ω
(
x (θD) , θq

)
, x (θD) ∈ Rd, θD ∈ ΘD, θq ∈ Θq

defined on a random domain D (θD) ⊂ Rd, where d = 1, 2, 3 is the spatial dimension, ΘD and

Θq denote the spaces of elementary events that are used to describe the geometrical randomness

associated with the random domain and the randomness associated with quantities acting on the

random domain, e.g. material properties and external forces, etc. We assume that θD and θq are

mutually independent random events. Thus, ω
(
x (θD) , θq

)
can be thought of as a composite ran-

dom field or a random parameterized random field, i.e. involving multiple sources of randomness,

which is different from classical random fields that usually involve a single source of random-

ness. The mean function and the covariance function of ω
(
x (θD) , θq

)
are given by ω (x (θD))

and Cωω (x1 (θD) , x2 (θD)), x1 (θD) , x2 (θD) ∈ D (θD), respectively. In this work, we only consider

Gaussian random fields, i.e. the marginal distribution of ω
(
x (θD) , θq

)
is Gaussian. It is noted that

the mean function ω (x (θD)) is still a stochastic function related to θD, which represents the mean

function of the quantities related to θq with respect to a given domain realization D (θD). The

domain mean function, i.e. the mean function with respect to θD, is independent of the random

event θq and will be discussed in detail in the subsequent section.
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To simulate the random field ω
(
x (θD) , θq

)
, we extend the classical KLE to a stochastic case

comprising a random domain. Specifically, we represent the random field ω
(
x (θD) , θq

)
by the

following SKLE

ω
(
x (θD) , θq

)
= ω (x (θD)) +

r∑
i=1

ξi
(
θq

) √
λi (θD) fi (x (θD)), x (θD) ∈ D (θD) , (1)

where r is the number of retained terms in the KLE expansion,
{
ξi

(
θq

)}r

i=1
are independent standard

Gaussian random variables, and {λi (θD) , fi (x (θD))}ri=1 are stochastic eigenvalues and stochastic

eigenvectors of the covariance function Cωω (x1 (θD) , x2 (θD)). They are solved by the following

homogeneous stochastic Fredholm integral equation of the second kind∫
D(θD)

Cωω (x1 (θD) , x2 (θD)) fi (x1 (θD)) dx1 (θD) = λi (θD) fi (x2 (θD)) . (2)

The stochastic solution of Eq. (2) is crucial to the numerical implementation of the SKLE.

However, classical methods may not work well on solving Eq. (2) since both the integral kernel

Cωω (x1 (θD) , x2 (θD)) and the integral domain D (θD) are random. In this paper, we develop three

numerical strategies to solve Eq. (2) and then implement Eq. (1) based on the stochastic solution

of Eq. (2). Without loss of generality, we let the mean function ω (x (θD)) = 0. Otherwise, we

can use existing numerical methods to simulate the nonzero random field ω (x (θD)), such as the

classical KLE and the Polynomial Chaos expansion [12, 15].

2.1. Direct Monte Carlo simulation

A straightforward method to solve Eq. (2) is the classical MCS, which is denoted here as

direct MCS (DMCS). To implement the method, we solve Eq. (2) on the deterministic domain

D
(
θ

( j)
D

)
for each sample realization θ( j)

D
, j = 1, · · · , ns, where ns is the number of sample real-

izations. The discretization of each sampled domain D
(
θ

( j)
D

)
can be performed using classical

numerical techniques, e.g. the finite element method and the finite volume method, which usu-

ally depends on the methods used for subsequent uncertainty propagation. For instance, the finite

element discretization should be adopted if the stochastic finite element method is used to solve

the subsequent stochastic problem. The discretized covariance matrix of the covariance function

Cωω (x1 (θD) , x2 (θD)) is then given as CDMC

(
θ

( j)
D

)
∈ Rn j×n j based on the domain discretization,
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where n j is the number of discretized nodes. Eq. (2) can thus be solved by the following eigen-

value equation

CDMC

(
θ

( j)
D

)
fDMC,i

(
θ

( j)
D

)
= λDMC,i

(
θ

( j)
D

)
fDMC,i

(
θ

( j)
D

)
on D

(
θ

( j)
D

)
, (3)

where λDMC,i

(
θ

( j)
D

)
and fDMC,i

(
θ

( j)
D

)
are the eigenvalues and the eigenvectors of the sampled covari-

ance matrix CDMC

(
θ

( j)
D

)
. Thus, Eq. (1) is implemented as

ωDMC

(
θ

( j)
D
, θq

)
=

r∑
i=1

ξi
(
θq

) √
λDMC,i

(
θ

( j)
D

)
fDMC,i

(
θ

( j)
D

)
on D

(
θ

( j)
D

)
, (4)

which actually corresponds to a classical random field representation of the random event θq

conditional on the sample realization θ( j)
D

. A sample realization of the conditional random field

ωDMC

(
x
(
θ

( j)
D

)
, θq

)
is given by

ωDMC

(
θ

( j)
D
, θ( j)

q

)
=

r∑
i=1

ξi
(
θ( j)

q

) √
λDMC,i

(
θ

( j)
D

)
fDMC,i

(
θ

( j)
D

)
, (5)

where θ( j)
q is the sample realization of θq and the samples θ( j)

D
and θ( j)

q are also independent due to

the independence of θD and θq.

Algorithm 1 DMCS algorithm for simulating RFRD
1: for j = 1, · · · , ns do

2: Generate the sampled domainD
(
θ

( j)
D

)
3: Mesh the domainD

(
θ

( j)
D

)
4: Calculate

{
λDMC,i

(
θ

( j)
D

)
, fDMC,i

(
θ

( j)
D

)}r

i=1
by solving Eq. (3) onD

(
θ

( j)
D

)
5: end

6: Generate random sample vectors ξ̂i
(̂
θq

)
∈ Rns , i = 1, · · · , r

7: Generate sample realizations ωDMC

(
θ

( j)
D
, θ

( j)
q

)
, j = 1, · · · , ns of the random field using Eq. (5)

A step-by-step implementation of the DMCS is detailed in Algorithm 1. A loop from step 1

to step 5 is used to perform MCS on each sampled domain D
(
θ

( j)
D

)
. For each sample realization

θ
( j)
D

, the deterministic domain D
(
θ

( j)
D

)
is generated and meshed in step 2 and step 3, respectively.

In this work, we adopt the finite element method for the mesh discretization, but other discretiza-

tion can also be used for this purpose. The sample realization
{
λDMC,i

(
θ

( j)
D

)
, fDMC,i

(
θ

( j)
D

)}r

i=1
of the
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stochastic eigenvalues and the stochastic eigenvectors are then calculated in step 4. After the loop,

the random sample vector ξ̂i
(̂
θq

)
=

[
ξi

(
θ(1)

q

)
, ·, ξi

(
θ(ns)

q

)]T
∈ Rns of the random variable ξi

(
θq

)
is

generated in step 6. Combining the sample realizations
{
λDMC,i

(
θ

( j)
D

)
, fDMC,i

(
θ

( j)
D

)}
and ξi

(
θ

( j)
q

)
we

can generate the sample realizations ωDMC

(
θ

( j)
D
, θ

( j)
q

)
, j = 1, · · · , ns in step 7.

The above DMCS is straightforward to implement and can take advantage of existing codes.

However, DMCS possesses drawbacks regarding its associated numerical effort. On one hand,

it is necessary to remesh each sampled domain D
(
θ

( j)
D

)
and solve the corresponding eigenvalue

equation (3). The computational burden associated with the latter step may be considerable, par-

ticularly to achieve a highly accurate stochastic solution. On the other hand, it is not a simple

matter to perform postprocessing of the random field due to different meshes generated for differ-

ent sampled domains.

3. Domain transformation-based simulation of RFRD

The computational burden of Algorithm 1 stems from two aspects: domain remeshing in step 3

and solution of stochastic eigenvalue equations in step 4. In this section, we focus on the first issue

and discuss an efficient approach to avoid remeshing the random domain.

3.1. Transformation of random domain into a reference domain

To avoid remeshing the sampled domainD
(
θ

( j)
D

)
for each sample realization θ( j)

D
, we transform

the random domain D (θD) ⊂ Rd into a reference domain D ⊂ Rd. To this end, we map each ran-

dom point x (θD) = (x1 (θD) , · · · , xd (θD)) ∈ D (θD) to a deterministic point x = (x1, · · · , xd) ∈ D

via the transformation x = M −1 (x (θD) , θD) and represent the random coordinate x (θD) using

the deterministic coordinate x via the inverse transformation x (θD) =M
(
x, θD

)
, where M (·, θD)

represents a mapping operator and M −1 (·, θD) is its inverse operator. The finite element mesh

associated with the random domain is thus calculated by applying the aforementioned inverse

transformation with respect to the reference domain. In practice, the mean of the random domain,

i.e. the mean function associated with the random event θD, is chosen as the reference domain.

However, any reference domain that ensures the well-posedness of the transformation can be used.

Note that several different methods can be used to construct the mapping operator M (·, θD) [13].
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In this work, we adopt a transformation based on the Laplace equation [7, 10, 13], which is ex-

pressed as

∆xi (θD) = 0 in D (6)

for i = 1, · · · , d, with the following boundary constraints

xi (θD)|Γ j
=Mi, j

(
x
∣∣∣
Γ j
, θD

)
(7)

for j = 1, · · · , b, where ∆ =
∑d

j=1
∂2

∂x2
j

denotes the Laplace operator, x
∣∣∣
Γ j
=

[
x1|Γ j
, · · · , xd|Γ j

]
∈

Rd and x (θD)|Γ j
=

[
x1 (θD)|Γ j

, · · · , xd (θD)|Γ j

]
∈ Rd represent the reference (deterministic) and

random coordinates on the boundary Γ j, respectively, Mi, j (·, θD) represents the mapping of the

i-th coordinate on the boundary Γ j, and b is the total number of domain boundaries.

To solve Eq. (6), we discretize the reference domain D by the finite element method. Dis-

cretized nodal coordinates corresponding to the i-th spatial dimension xi, i = 1, · · · , d in the ref-

erence domain are denoted as Xi ∈ Rn, where n denotes the number of nodes associated with

the finite element discretization. Similarly, the corresponding discretized nodal coordinates asso-

ciated with the i-th spatial dimension xi (θD), i = 1, · · · , d in the random domain are denoted as

Xi (θD) ∈ Rn, which is also the stochastic solution with respect to the nodal coordinates of the

reference domain. Thus, the discrete counterpart of Eq. (6) is

KD,0,0 KD,0,1 · · · KD,0,b

KD,1,0 KD,1,1 · · · KD,1,b
...

...
. . .

...

KD,b,0 KD,b,1 · · · KD,b,b





Xi (θD)|D(θD)

Mi,1

(
X
∣∣∣
Γ1
, θD

)
...

Mi,b

(
X
∣∣∣
Γb
, θD

)


= 0 (8)

for i = 1, · · · d, where Mi, j

(
X
∣∣∣
Γ j
, θD

)
∈ Rn j , j = 1, · · · , b are calculated using Eq. (7) and represent

the stochastic coordinates of nodes on the boundary Γ j, n j is the number of nodes on the boundary

Γ j, Xi (θD)|D(θD) ∈ Rn0 are the unknown stochastic coordinates of nodes which are not located on

the constraint boundaries, n0 is the number of nodes which are not located on the constraint bound-

aries, KD,i, j ∈ Rni×n j are submatrices obtained by the finite element discretization of the Laplace

operator. The total number n of nodes of the finite element mesh, the number n0 of nodes not lo-

cated on the constraint boundaries and the number n j of nodes located on the constraint boundaries
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fulfill the relationship n = n0+
∑b

j=1 n j. Note that Eq. (8) can be interpreted as a deterministic finite

element equation with stochastic Dirichlet boundary conditions. The explicit form of the stochas-

tic solution Xi (θD)|D(θD) is obtained by solving the first set of equations contained in Eq. (8), that

is

Xi (θD)|D(θD) =

b∑
j=1

K̃D, jMi, j

(
X
∣∣∣
Γ j
, θD

)
(9)

for i = 1, · · · d, where the matrices appearing in the last equation are defined as K̃D, j = −K−1
D,0,0KD,0, j ∈

Rn0×n j .

In this way, the random domain can be described based on the reference domain while tak-

ing into account the random event θD. We only need to mesh the domain once and Eq. (1) and

Eq. (2) are solved on the reference domain only. The validation on the well-posedness of the co-

ordinate transformation as cast in Eq. (6) to Eq. (9) can be found in [5, 13]. Further, if the above

transformation does not work for some cases because, e.g. one or more elements flip because of

large mesh deformations, more advanced methods can be adopted to overcome these difficulties

[16, 17]. In addition, it may be beneficial to consider advanced finite element methods to deal with

large deformations, such as the arbitrary Lagrangian–Eulerian approach [18, 19]. However, these

methods are beyond the scope of this paper and will be analyzed in follow-up studies.

Algorithm 2 Algorithm for generating samples of the random domain
1: Choose a reference domain and generate its finite element mesh

2: Assemble the deterministic matrices KD,0, j, j = 0, 1, · · · , nb in Eq. (8)

3: Initialize the stochastic solutions X̂i

(̂
θD

)∣∣∣∣
D(θD)

= 0 ∈ Rn0×ns , i = 1, · · · , d

4: for The domain boundary j = 1, · · · , b do

5: Calculate the matrices K̃D, j = −K−1
D,0,0KD,0, j ∈ Rn0×n j

6: for The spatial dimension i = 1, · · · , d do

7: Calculate the coordinate transformation Mi, j

(
X
∣∣∣
Γ j
, θ̂D

)
∈ Rn j×ns on the boundary Γ j

8: Update the stochastic solution X̂i

(̂
θD

)∣∣∣∣
D(θD)

= X̂i

(̂
θD

)∣∣∣∣
D(θD)

+ K̃D, jMi, j

(
X
∣∣∣
Γ j
, θ̂D

)
9: end

10: end
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The above domain transformation described in Eq. (6) to Eq. (9) is summarized in Algorithm 2.

A reference domain is chosen and meshed in step 1. The submatrices KD,0, j are assembled in

step 2. It is noted that only b + 1 submatrices need to be assembled, which saves computational

effort and storage memory compared to a full assembly. Following that, we introduce a loop

from step 3 to step 10 to implement Eq. (9). The stochastic solutions X̂i

(̂
θD

)∣∣∣∣
D(θD)

= 0 ∈ Rn0×ns ,

i = 1, · · · , d are initialized in step 3, where X̂i

(̂
θD

)∣∣∣∣
D(θD)

represents the sample realization of the

random vector Xi (θD)|D(θD) ∈ Rn0 , i.e. each column of X̂i

(̂
θD

)∣∣∣∣
D(θD)

represents the sample realiza-

tions of the i-th nodal coordinate. Note that in subsequent sections of this paper, we use □̂
(̂
θD

)
to denote a set of sample realizations of the random quantity □ (θD), where □ (θD) is an abstract

symbol, which can be a random variable, a random vector or a random matrix in practice. In step 5,

the matrices K̃D, j are calculated by solving a set of linear equations KD,0,0K̃D, j = −KD,0, j, which

can be implemented efficiently by use of existing numerical solvers. The boundary transformation

Mi, j

(
X
∣∣∣
Γ j
, θD

)
∈ Rn j×ns is also executed in a non-intrusive way in step 7. Combining the above

steps, the stochastic solutions X̂i

(̂
θD

)∣∣∣∣
D(θD)

are updated in step 8 until all domain boundaries and

spatial dimensions are traversed.

3.2. Random domain transformation-based covariance matrix assembly

Based on the random coordinates X (θD) = [X1 (θD) , · · · ,Xd (θD)] ∈ Rn×d obtained by Algo-

rithm 2, we can assemble the covariance matrix C (θD) without remeshing. To this end, we first

calculate the element at row i and column j of the matrix C (θD)

Ci j (θD) = Cωω
(
X(i) (θD) ,X( j) (θD)

)
, (10)

where X(i) (θD) and X( j) (θD) are the random coordinates of the discretized nodes i and j, respec-

tively. The covariance matrix is then given by C (θD) =
[
Ci j (θD)

]
i, j=1,··· ,n

∈ Rn×n. Eq. (2) is thus

discretized and solved by the following stochastic eigenvalue equation

C (θD) fi (θD) = λi (θD) fi (θD) . (11)

We can reformulate Eq. (1) using {λi (θD) , fi (θD)}ri=1 obtained by Eq. (11). However, it may not be

straightforward to solve Eq. (11) efficiently and accurately. We will propose two methods for this

purpose in sections 3.3 and 4.
11



3.3. Domain transformation-based MCS

In this section, we develop a domain transformation-based MCS (TMCS) to simulate RFRD.

Specifically, we adopt Algorithm 2 to calculate the random domain transformation and assemble

the covariance matrix CTMC (θD). The MCS is then used to solve the stochastic eigenvalue equation

(11), which corresponds to

CTMC

(
θ

( j)
D

)
fTMC,i

(
θ

( j)
D

)
= λTMC,i

(
θ

( j)
D

)
fTMC,i

(
θ

( j)
D

)
(12)

for each random sample realization θ( j)
D

, j = 1, · · · , ns. Thus, the sample realization of the random

field ωTMC

(
x (θD) , θq

)
is given by

ωTMC

(
θ

( j)
D
, θ( j)

q

)
=

r∑
i=1

ξi
(
θ( j)

q

) √
λTMC,i

(
θ

( j)
D

)
fTMC,i

(
θ

( j)
D

)
. (13)

Algorithm 3 TMCS algorithm for simulating random fields on random domains

1: Calculate ns sample realizations of the random coordinates X̂
(̂
θD

)
by Algorithm 2

2: for j = 1, · · · , ns do

3: Assemble the covariance matrix CTMC

(
θ

( j)
D

)
∈ Rn×n

4: Calculate the pairs
{
λTMC,i

(
θ

( j)
D

)
, fTMC,i

(
θ

( j)
D

)}r

i=1
by solving Eq. (12)

5: end

6: Generate the random sample vectors ξ̂i
(̂
θq

)
∈ Rns , i = 1, · · · , r

7: Generate the random samples ωTMC

(
θ

( j)
D
, θ

( j)
q

)
, j = 1, · · · , ns using Eq. (13)

The above domain transformation-based MCS for simulating RFRD is described in Algo-

rithm 3. Algorithm 2 is adopted to calculate the random coordinates X (θD) of the random domain

in step 1. A loop of MCS is implemented from step 2 to step 5. For each sample realization θ( j)
D

, the

covariance matrix CTMC

(
θ

( j)
D

)
is assembled in step 3 and the corresponding eigenequation (12) is

solved in step 4. Finally, the sample realization ωDMC

(
θ

( j)
D
, θ

( j)
q

)
of the random field is generated in

step 7 by combining the random samples
{
λTMC,i

(
θ

( j)
D

)
, fTMC,i

(
θ

( j)
D

)}
obtained in step 4 and ξi

(
θ

( j)
q

)
obtained in step 6.
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4. Stochastic eigenequation-based simulation of RFRD

Algorithm 3 provides an effective method to avoid remeshing random domains. However, it

may be demanding to solve Eq. (11) for all ns random sample realizations, especially for large-

scale stochastic problems. In this section, we present an efficient method to solve Eq. (11) and a

novel algorithm for simulating RFRD is also proposed.

4.1. Solution of stochastic eigenvalue equation

In this section, we adopt an efficient numerical method proposed in [14] to efficiently solve

stochastic eigenvalue equation (11). In this method, the stochastic eigenvector fi (θD) is approxi-

mated as

fi (θD) ≈
q∑

k=1

ϕik (θD) gk = Gϕi (θD) , (14)

where {gk ∈ Rn}
q
k=1 are deterministic vectors, G =

[
g1, · · · , gq

]
∈ Rn×q is a deterministic matrix,

{ϕik (θD) ∈ R}qk=1 are scalar random variables and ϕi (θD) =
[
ϕi1 (θD) , · · · , ϕiq (θD)

]T
∈ Rq is a

random variable vector. All of them are unknown a priori and need to be solved. To this end, we

introduce the following stochastic residual

R j (θD) = C (θD) g j − λ j (θD) g j, (15)

where the random variables {ϕik (θD)}qk=1 given in Eq. (14) are not involved and will be calculated

in the subsequent iterative process. More details of this setting can be found in [14], e.g. con-

vergence and optimal approximation, etc. Applying the stochastic Galerkin procedure (that is,

E
{
λ j (θD)R j (θD)

}
= 0, where E {·} is the expectation operator) and the deterministic Galerkin

procedure (that is, gT
jR j (θD) = 0) to Eq. (15) one after the other, we have the following alternating

iteration

Cd, jg j = λd, jg j, (16)

gT
j C (θD) g j = λ j (θD) gT

j g j, (17)

where the deterministic matrix Cd, j ∈ Rn×n and the scalar quantity λd, j are

13



Cd, j = E
{
λ j (θD) C (θD)

}
, λd, j = E

{
λ2

j (θD)
}
. (18)

For a known random variable λ j (θD) (or given an initial value), Eq. (16) is a deterministic eigen-

value equation that can be efficiently solved by existing numerical techniques. According to the

theory of the classical KLE, only the first few largest eigenvectors need to be solved. In this paper,

the power iteration [20] is adopted for this purpose. In practical numerical implementations, λd, j

is not calculated since its value does not affect the calculation of the vector g j. Further, we enforce

the condition that the vector g j must be orthogonal with respect to the obtained vectors {gi}
j−1
i=1 . The

Gram-Schmidt orthonormalization is adopted here, which corresponds to

g j = g j −

j−1∑
i=1

gT
j gi

gT
i gi

gi, gT
j g j = 1. (19)

where the last equality imposes that the vector g j possesses unit L2 norm. Based on the known

vector g j, the random variable λ j (θD) can be easily solved by Eq. (17). In this paper, we use a

non-intrusive method to solve Eq. (17)

λ̂ j

(̂
θD

)
= gT

j Ĉ
(̂
θD

)
g j ∈ Rns , (20)

where Ĉ
(̂
θD

)
∈ Rn×n×ns is a third-order tensor. In practice, Eq. (20) is implemented via λ j

(
θ(i)
D

)
=

gT
j C

(
θ(i)
D

)
g j for each sample realization θ(i)

D
, i = 1, · · · , ns. In this way, Eq. (20) provides sample

realizations of the random variable λ j (θD). Statistical methods can be used to calculate probability

characteristics of the random variable λ j (θD) from the random samples λ̂ j

(̂
θD

)
. Repeated solution

of Eq. (16) and Eq. (17) is performed until both the deterministic vector g j and the random variable

λ j (θD) converge. Afterwards, the same iteration as described previously is used to calculate the

next pair
{
λ j+1 (θD) , g j+1

}
.

Further, we use the deterministic matrix G =
[
g1, · · · , gq

]
∈ Rn×q to solve the random variable

vector ϕi (θD) =
[
ϕi1 (θD) , · · · , ϕiq (θD)

]T
. It is noted that the calculation of the components g j,

j = 1, · · · , q of the matrix G is carried out only once, thus the proposed method is efficient.

Substituting the matrix G into Eq. (11) we have

C (θD) Gϕi (θD) = λi (θD) Gϕi (θD) , (21)

14



which is transformed into a reduced-order stochastic eigenvalue equation by multiplying the matrix

GT on both sides

cr (θD)ϕi (θD) = λi (θD)ϕi (θD) , (22)

where the reduced-order stochastic matrix cr (θD) is given by

cr (θD) = GTC (θD) G ∈ Rq×q, (23)

which has a small size q ≪ n. Eq. (22) can thus be cheaply solved by existing numerical methods.

In this paper, we adopt the classical MCS due to its dimensionality independence, high accuracy

and easy implementation, which corresponds to solving the following deterministic reduced-order

eigenvalue equation

cr

(
θ

( j)
D

)
ϕi

(
θ

( j)
D

)
= λi

(
θ

( j)
D

)
ϕi

(
θ

( j)
D

)
(24)

for all random sample realizations θ( j)
D

, j = 1, · · · , ns.

4.2. Representation of RFRD

Substituting the expansion Eq. (14) of stochastic eigenvectors into Eq. (1), we can obtain a

new stochastic eigenvalue-based SKLE for the random field ω
(
θD, θq

)
ωSE

(
θD, θq

)
=

r∑
i=1

q∑
k=1

ξi
(
θq

) √
λi (θD)ϕik (θD) gk, (25)

=

q∑
k=1

ηk

(
θD, θq

)
gk = Gη

(
θD, θq

)
, (26)

where the random variable vector η
(
θD, θq

)
=

[
η1

(
θD, θq

)
, · · · , ηq

(
θD, θq

)]T
∈ Rq, and the random

variables ηk

(
θD, θq

)
=

r∑
i=1
ξi

(
θq

) √
λi (θD)ϕik (θD) are related to both θD and θq. Thus, they are

considered as composite random variables. In this way, the proposed method provides a classical

KLE-like representation through Eq. (26), i.e. decomposing random fields into deterministic and

stochastic spaces. All random sources related to θD and θq are embedded into the random variables

ηk

(
θD, θq

)
. We discuss several probabilistic properties of ηk

(
θD, θq

)
in the following.

The mean values of ηk

(
θD, θq

)
with respect to θD and θq are given by
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ηk (θD) = Eθq
{
ηk

(
θD, θq

)}
= 0, (27)

ηk

(
θq

)
= EθD

{
ηk

(
θD, θq

)}
=

r∑
i=1

hikξi
(
θq

)
∼ G

0, r∑
i=1

h2
ik

 , (28)

ηk = EθDθq
{
ηk

(
θD, θq

)}
= EθqθD

{
ηk

(
θD, θq

)}
= 0, (29)

where the expectation operators are defined such that Eθi {·} =
∫
·dP (θi), Eθiθ j {·} =

∫
·dP (θi) dP

(
θ j

)
,

P (θi) denotes the probability measure of θi = θq, θD, and the coefficients hik are constants. G
(
0,

r∑
i=1

h2
ik

)
denotes that the random variable obeys the Gaussian distribution with mean value 0 and variance∑r

i=1 h2
ik. Further, the variances of ηk

(
θD, θq

)
with respect to θD and θq are given by

σ2
η,k (θD) = Eθq

{
η2

k

(
θD, θq

)}
=

r∑
i=1

s2
ik (θD), (30)

σ2
η,k

(
θq

)
= EθD

{[
ηk

(
θD, θq

)
− ηk

(
θq

)]2
}

=

r∑
i, j=1

[
EθD

{
sik (θD) s jk (θD)

}
− hikh jk

]
ξi

(
θq

)
ξ j

(
θq

)
, (31)

σ2
η,k = EθDθq

{
η2

k

(
θD, θq

)}
= EθqθD

{
η2

k

(
θD, θq

)}
=

r∑
i=1

EθD
{
s2

ik (θD)
}
, (32)

where it is considered that sik (θD) =
√
λi (θD)ϕik (θD). The above equations (27) to (32) are proved

as follows.

Proof. For Eq. (27), we have

ηk (θD) = Eθq
{
ηk

(
θD, θq

)}
=

r∑
i=1

Eθq
{
ξi

(
θq

)}︸       ︷︷       ︸
=0

√
λi (θD)ϕik (θD) = 0. (33)

For Eq. (28), we have

ηk

(
θq

)
= EθD

{
ηk

(
θD, θq

)}
=

r∑
i=1

EθD
{ √
λi (θD)ϕik (θD)

}
ξi

(
θq

)
. (34)

Thus, the coefficients hik in Eq. (28) are given by hik = EθD
{√
λi (θD)ϕik (θD)

}
. The mean value of

ηk

(
θq

)
is
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Eθq
{
ηk

(
θq

)}
=

r∑
i=1

EθD
{ √
λi (θD)ϕik (θD)

}
Eθq

{
ξi

(
θq

)}︸       ︷︷       ︸
=0

= 0. (35)

Further, the variance of ηk

(
θq

)
is calculated as

r∑
i=1

h2
ik since

{
ξi

(
θq

)}r

i=1
are Gaussian random vari-

ables with unit variances. Further, for Eq. (29), we have

ηk = EθDθq
{
ηk

(
θD, θq

)}
= EθqθD

{
ηk

(
θD, θq

)}
=

r∑
i=1

EθD
{ √
λi (θD)ϕik (θD)

}
Eθq

{
ξi

(
θq

)}︸       ︷︷       ︸
=0

= 0. (36)

To prove Eqs. (30), (31) and (32), let us consider

η2
k

(
θD, θq

)
=

r∑
i, j=1

ξi
(
θq

)
ξ j

(
θq

)
sik (θD) s jk (θD). (37)

Thus, we have

σ2
η,k (θD) =

r∑
i, j=1

Eθq
{
ξi

(
θq

)
ξ j

(
θq

)}︸                ︷︷                ︸
=δi j

sik (θD) s jk (θD) =
r∑

i=1

s2
ik (θD), (38)

σ2
η,k

(
θq

)
=

r∑
i, j=1

EθD
{
[sik (θD) − hik] [s jk (θD) − h jk]

}
ξi

(
θq

)
ξ j

(
θq

)
=

r∑
i, j=1

[
EθD

{
sik (θD) s jk (θD)

}
− EθD {sik (θD)} h jk − EθD

{
s jk (θD)

}
hik + hikh jk

]
ξi

(
θq

)
ξ j

(
θq

)
=

r∑
i, j=1

[
EθD

{
sik (θD) s jk (θD)

}
− hikh jk

]
ξi

(
θq

)
ξ j

(
θq

)
, (39)

σ2
η,k =

r∑
i, j=1

Eθq
{
ξi

(
θq

)
ξ j

(
θq

)}︸                ︷︷                ︸
=δi j

EθD
{
sik (θD) s jk (θD)

}
=

r∑
i=1

EθD
{
s2

ik (θD)
}
. (40)

where δi j denotes a Kronecker delta, which is equal to 1 in case i = j and zero, otherwise.

4.3. Algorithm implementation

The proposed stochastic eigenequation (SE)-based algorithm for simulating RFRD is sum-

marized in Algorithm 4, which consists of three parts. The first part is to calculate the random

coordinates X (θD) by Algorithm 2 in step 1. Note that the second part involving steps 2 to 12

solves the stochastic eigenvalue equation. The SKLE is then implemented in the third part from
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Algorithm 4 SE-based algorithm for simulating RFRD

1: Calculate ns sample realizations of the random coordinates X̂
(̂
θD

)
by Algorithm 2

2: while j ≤ q do

3: Initialize the random sample vector λ̂(0)
j

(̂
θD

)
∈ Rns

4: while εg,k > εg do

5: Assemble the matrix C(k)
d, j by looping over all elements Ê

{̂
λ(k)

j

(̂
θD

)
Ĉlm

(̂
θD

)}
6: Compute the deterministic eigenvector g(k)

j via the power iteration

7: Update the random sample vector λ̂(k)
j

(̂
θD

)
= g(k)T

j Ĉ
(̂
θD

)
g(k)

j ∈ Rns

8: Calculate the locally iterative error εg,k, k ← k + 1

9: end

10: Update the deterministic matrix G =
[
G, g j

]
∈ Rn× j, j← j + 1

11: end

12: Calculate the sample realizations
{
λi

(̂
θD

)
,ϕi

(̂
θD

)}q

i=1
of reduced-order stochastic eigenpairs

by Eq. (22)

13: Generate random sample vectors ξ̂i
(̂
θq

)
∈ Rns , i = 1, · · · , r

14: Calculate random sample vectors
{̂
ηk

(̂
θD, θ̂q

)
∈ Rns

}q

k=1

15: Simulate the random field ωSE

(
θD, θq

)
by Eq. (26)

step 13 to 15. The second part includes two loops, where the outer loop from step 2 to step 11 is

used to solve all pairs
{
λ j (θD) , g j

}q

j=1
and the inner loop from step 3 to step 9 is used to calculate

each pair
{
λ j (θD) , g j

}
. For the inner loop, the random sample vector λ̂(0)

j

(̂
θD

)
∈ Rns is initialized

in step 3. Numerical experience indicates that the value of the random sample vector λ̂(0)
j

(̂
θD

)
has

little influence on the proposed algorithm. Thus, any nonzero vectors of size ns can be used as

the initial random sample vector. With the initial random sample vector, the deterministic matrix

C(k)
d, j is assembled in step 5. A direct way is to assemble C (θD) by looping all random samples

and store them using a third order tensor Ĉ
(̂
θD

)
∈ Rn×n×ns . The matrix C(k)

d, j is then calculated by

Eq. (18). However, this approach requires considerable memory storage, especially for large-scale

problems. To avoid this problem, we adopt a point-wise strategy to assemble C(k)
d, j. That is, the
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random element in row l and column m of the matrix C (θD) is calculated by

Ĉlm

(̂
θD

)
= Cωω

(
X̂(l)

(̂
θD

)
, X̂(m)

(̂
θD

))
∈ Rns . (41)

The element in row l and column m of the matrix C(k)
d, j in step 5 is thus calculated by

C(k)
d, j,lm = Ê

{̂
λ(k)

j

(̂
θD

)
Ĉlm

(̂
θD

)}
≈

1
ns
λ̂(k)T

j

(̂
θD

)
Ĉlm

(̂
θD

)
∈ R. (42)

Assembling all elements C(k)
d, j,lm, l,m = 1, · · · , n we can obtain the deterministic matrix C(k)

d, j. Fol-

lowing that, the deterministic eigenvector g(k)
j is solved in step 6 by the power iteration [20], which

corresponds to

g(k,s+1)
j = C(k)

d, jg
(k,s)
j , (43)

where s = 1, 2, · · · is the iterative step. The iteration is stopped when
∥∥∥∥g(k,s+1)

j − g(k,s)
j

∥∥∥∥2

2
achieves a

specified precision, where ∥·∥2 is the L2 norm. It is noted that the Gram-Schmidt orthonormaliza-

tion as shown in Eq. (19) is used to keep the vector g(k,s)
j orthogonal to the vectors {gi}

j−1
i=1 along the

whole iterative process. With the obtained vector g(k)
j , the random sample vector λ̂(k)

j

(̂
θD

)
is also

calculated in a point-wise way in step 7

λ̂(k)
j

(̂
θD

)
= g(k)T

j Ĉ
(̂
θD

)
g(k)

j =

n∑
l,m=1

g(k)
j,l g(k)

j,mĈlm

(̂
θD

)
∈ Rns . (44)

Also, the stopping criterion of the inner loop in step 8 is given by εg,k =
∥∥∥∥g(k)

j − g(k−1)
j

∥∥∥∥2

2
, whose

choice can be inherited from the classical power iteration. Based on the reduced-order matrix G

obtained in step 10, the reduced-order stochastic eigenvalue equation is solved in step 12. Com-

bining the random samples from step 12 and step 13, random sample vectors
{̂
ηk

(̂
θD, θ̂q

)}q

k=1
of

the composite random variables
{
ηk

(
θD, θq

)}q

k=1
are calculated in step 14 and the random field

ωSE

(
θD, θq

)
is simulated in step 15. However, in the practical implementation, the preselection of

the number q of retained terms in step 2 is still an open problem and requires further research.

5. Numerical examples

In this section, we test the proposed methods with the aid of three numerical examples. In

Algorithm 4, the convergence errors of the inner loop (i.e. εg in step 4) and the power iteration

are both set as 1 × 10−3. For all algorithms, ns = 1 × 104 random sample realizations are used for
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the simulations. All examples are executed on a desktop computer (sixteen cores, Intel Core i7,

2.50GHz), but only one core is used for the numerical implementation. Whenever using a random

field to describe a quantity that must remain within a certain range due to physical reasons, we

truncate it to obtain meaningful results.

5.1. Example 1: one-dimensional beam with random length

In this example, we consider a one-dimensional beam with random length l (θD), as shown in

Fig. 1. Its Young’s modulus E
(
x (θD) , θq

)
is modeled as a Gaussian random field with the mean

value E0 (x (θD)) = 10 MPa and the covariance function

Cωω (x1 (θD) , x2 (θD)) = min (x1 (θD) , x2 (θD)) , (45)

where x1 (θD) , x2 (θD) ∈ [0, l (θD)] and l (θD) is a uniform random variable on [0.9, 1.1] m.

Figure 1: Model of the beam with random length l (θD).

The analytical stochastic eigenfunctions and stochastic eigenvalues of the stochastic covariance

function Cωω (x1 (θD) , x2 (θD)) are given by

fi (x (θD)) =

√
2

l (θD)
sin

(
2i − 1
2l (θD)

πx (θD)
)
, λi (θD) =

 l (θD)(
i − 1

2

)
π


2

(46)

for i = 1, 2, · · · . More details can be found in Appendix A. The SKLE Eq. (1) of the random field

E
(
x (θD) , θq

)
is thus given by

E
(
x (θD) , θq

)
= 10 +

r∑
i=1

ξi
(
θq

) 2
√

2l (θD)
(2i − 1) π

sin
(

2i − 1
2l (θD)

πx (θD)
)
, (47)

which can be transformed into a random field defined on a deterministic domain by introducing a

normalizing process x = x(θD)
l(θD) ∈ [0, 1],

E
(
x, θD, θq

)
= 10 +

r∑
i=1

ξi
(
θq

) 2
√

2l (θD)
(2i − 1) π

sin
((

i −
1
2

)
πx

)
. (48)
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In this way, the random field E
(
x (θD) , θq

)
can be simulated and postprocessed on the deterministic

domain [0, 1].

We implement the three proposed algorithms for this example. For the DMCS Algorithm 1,

we adopt the linear line element to discretize each sample realization l
(
θ(i)
D

)
of the random length,

and 100 elements are generated for all sample realizations. For the TMCS Algorithm 3 and the

SE-based Algorithm 4, the reference domain [0, 1] is selected in the domain transformation Al-

gorithm 2. It is also meshed into 100 linear line elements. Random coordinates of the original

random domain [0, l (θD)] are thus discretized as X (θD) = [X1 (θD) , · · · , X101 (θD)] and the bound-

ary conditions in Eq. (7) are given by

X1 (θD) = 0, X101 (θD) = l (θD) . (49)

The unknown random coordinates [X2 (θD) , · · · , X100 (θD)] are then solved by Eq. (9). For the

SE-based Algorithm 4, q = 10 approximate terms in Eq. (14) are adopted. For all three algo-

rithms, r = 6 terms are retained for the KLE in Eq. (1). In practice, we choose the number

of retained terms r such that the truncation error E
{
λ2

r (θD)
}/∑r

i=1 E
{
λ2

i (θD)
}
< 1 × 10−3. The

comparison between the first five reduced bases {gk}
5
k=1 solved by the SE-based Algorithm 4 and

the normalized analytical functions
{√

2 sin
((

k − 1
2

)
πx

)}5

k=1
from Eq. (48) is shown in Fig. 2a and
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(a) The first five deterministic eigenvectors.
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(b) Absolute errors.

Figure 2: The first five deterministic eigenvectors obtained by the analytical representation and the proposed SE-based

Algorithm 4 (left) and their absolute errors (right).
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their absolute errors are seen from Fig. 2b, which indicates that the reduced bases {gk}
5
k=1 are very

close to the analytical functions. Thus, the reduced bases can provide a good approximation to

the stochastic eigenvectors. The absolute error of high-order functions is increasing, but it has

small influence since high-order functions only have small contributions to the approximation of

stochastic eigenvectors, which can be verified via the rapidly decreasing variances of the random

variables
{
ηk

(
θD, θq

)}5

k=1
, as shown in Table 1. Probability density functions (PDFs) of the first five

random variables
{
ηk

(
θD, θq

)}5

k=1
in Eq. (26) are calculated by using 1 × 104 random samples, and

they are plotted in the first row of Fig. 3. PDFs of the corresponding standardized random vari-

ables η∗k
(
θD, θq

)
= ηk

(
θD, θq

)/√
EθDθq

{
η2

k

(
θD, θq

)}
are shown in the second row of Fig. 3, which

demonstrates that the first five random variables
{
ηk

(
θD, θq

)}5

k=1
are very close to the Gaussian dis-

tribution. It is also seen from Table 1 that there is less variability of the random variable ηk

(
θD, θq

)
as the index k increases.
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Figure 3: PDFs of the first five random variables
{
ηk

(
θD, θq

)}5

k=1
(the first line) and the PDF comparison between the

standardized random variables
{
η∗k

(
θD, θq

)}5

k=1
and the standard Gaussian random variable.

Table 1: Variances of the first five random variables
{
ηk

(
θD, θq

)}5

k=1
.

Index k 1 2 3 4 5

EθDθq
{
η2

k

(
θD, θq

)}
39.55 4.50 1.58 0.85 0.50
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Table 2: Computational times of the three proposed methods.

Time for Domain Reduced bases SE/Reduced-order SE Total cost (s)

transformation

DMCS – – – 17.66

TMCS 0.26 – 10.17 10.43

SE-based method 0.26 2.33 1.15 3.74

The computational times associated with the execution of each of the three algorithms pro-

posed in this work are listed in Table 2. The times for the domain transformation, the reduced

bases and the SE/reduced-order SE represent the computational times for meshing the reference

domain and solving Eq. (9), calculating the reduced bases gk by step 2 to step 11 of Algorithm 4

and solving the stochastic eigenequation/the reduced-order stochastic eigenequation by the MCS

(i.e. the stochastic eigenequation solved by Algorithm 3 and 4), respectively. The total cost is

the summation of all computational times described above. Both the TMCS method and the SE-

based method are cheaper than the DMCS since the domain transformation is much less compu-

tationally expensive than remeshing the random domain. The computational time of the TMCS

is mainly concentrated on solving the stochastic eigenvalue equation using MCS, while the SE-

0 0.2 0.4 0.6 0.8 1
8.5

9

9.5

10

10.5

11

Figure 4: Five sample realizations E
(
x
(
θ(i)
D

)
, θ(i)q

)
, i = 1, · · · , 5 obtained by the analytical, DMCS, TMCS and SE-

based methods, respectively.
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based method is cheap enough to solve stochastic eigenequations. Thus, the SE-based method has

the lowest total computational cost among the three proposed methods. Five sample realizations

E
(
x
(
θ(i)
D

)
, θ(i)q

)
, i = 1, · · · , 5 of the random field are depicted in Fig. 4. They are generated by using

the analytical representation Eq. (47), the DMCS-based approximation Eq. (5), the TMCS-based

approximation Eq. (13) and the SE-based approximation Eq. (26), respectively. The sample real-

izations generated by all methods are highly consistent, which indicates the high accuracy of the

three proposed methods. It is also easily seen that the randomness of both Young’s modulus and

length are described in the random sample realizations.

5.2. Example 2: two-dimensional multiphase material with random interface

0 1
-0.5

0

0.5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Figure 5: The model with a random interface (left) and the corresponding finite element mesh of the reference domain

of the upper part (right).

In this example, we consider a two-dimensional problem with a random interface, as shown in

Fig. 5 (left), which typically occurs in multiphase materials with random interfaces [4, 10]. The

random interface is modeled as a Gaussian random field Γ (x, θD) with the mean function Γ (x) = 0

and the covariance function

CΓΓ (x1, x2) = σ2
Γ (min (x1, x2) − x1x2) , (50)
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where the standard deviation is σΓ = 0.1. In the numerical implementation, the random field

Γ (x, θD) is approximated by using the classical KLE [12, 15]

Γ (x, θD) = σΓ
5∑

i=1

ζi (θD)
√
κiΓi (x), (51)

where {ζi (θD)}5i=1 are mutually independent standard Gaussian random variables, and {κi,Γi (x)}5i=1

are eigenvalues and eigenfunctions of the covariance function CΓΓ (x1, x2). Their analytical solu-

tions are given by Γi (x) =
√

2 sin (iπx) and κi = (iπ)−2, i = 1, 2, · · · .

The coefficients c1

(
x (θD) , y (θD) , θq

)
and c2

(
x (θD) , y (θD) , θq

)
of the upper and lower parts

are modeled as Gaussian random fields. Here we only focus on simulating the random field

c1

(
x (θD) , y (θD) , θq

)
. The random field c2

(
x (θD) , y (θD) , θq

)
can be simulated using an analo-

gous approach. The random field c1

(
x (θD) , y (θD) , θq

)
has the mean function c1 (x, y) = 5 and the

modified exponential covariance function [21, 22]

Cωω (x1 (θD) , y1 (θD) ; x2 (θD) , y2 (θD)) = σ2
ω exp

(
−
|x1 (θD) − x2 (θD)|

lx
−
|y1 (θD) − y2 (θD)|

ly

)
×

(
1 +
|x1 (θD) − x2 (θD)|

lx

) (
1 +
|y1 (θD) − y2 (θD)|

ly

)
, (52)

where the standard deviation σω = 0.5 and the correlation lengths lx = ly = 1 are considered.

In this example, we only adopt the SE-based Algorithm 4 for the simulation. q = 10 approxi-

mate terms in Eq. (14) are adopted and r = 4 terms are retained in Eq. (1). The reference domain

of the upper part is shown in Fig. 5 (right) and its finite element mesh includes 367 nodes and 672

linear triangular elements. The left, right and upper boundaries of the reference domain are the
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Figure 6: The first six deterministic vectors {gk}
6
k=1 obtained by the proposed SE-based Algorithm 4.
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Figure 7: PDFs of the first five random variables
{
ηk

(
θD, θq

)}5

k=1
(the first line) and the PDF comparison between the

standardized random variables
{
η∗k

(
θD, θq

)}5

k=1
and the standard Gaussian random variable.

same as that of the original random domain. The lower boundary of the reference domain is set

as the mean function Γ (x) = 0. The random coordinates of the points on the random interface are

thus represented as

x (θD) = x, y (θD) = Γ (x, θD) . (53)

In this way, the horizontal coordinate x (θD) is deterministic and its solution at discretized fi-

nite element nodes is given by X (θD) =
[
X1, · · · , X367

]
. Further, substituting Eq. (53) into

Eq. (8) and solving Eq. (9) we can obtain the solution Y (θD) = [Y1 (θD) , · · · ,Y367 (θD)] of the

random coordinate y (θD). The first six reduced bases {gk}
6
k=1 are shown in Fig. 6. Similar to

Fig. 3, PDFs of the first five random variables
{
ηk

(
θD, θq

)}5

k=1
in Eq. (26) are calculated by us-

ing 1 × 104 random samples and the corresponding standardized random variables η∗k
(
θD, θq

)
=

ηk

(
θD, θq

)/√
EθDθq

{
η2

k

(
θD, θq

)}
, k = 1, · · · , 5 are shown in the first and second rows of Fig. 7, re-

spectively. In this example, the first four random variables
{
ηk

(
θD, θq

)}4

k=1
are quite close to the

Table 3: Variances of the first five random variables
{
ηk

(
θD, θq

)}5

k=1
.

Index k 1 2 3 4 5

EθDθq
{
η2

k

(
θD, θq

)}
82.66 4.68 1.56 0.40 6.17 × 10−4
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Gaussian distribution, but the distribution of the fifth random variable η5

(
θD, θq

)
is non-Gaussian.

It is seen from Table 3 that the variances of the random variables
{
ηk

(
θD, θq

)}5

k=1
still rapidly de-

crease as the index k increases.
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Figure 8: Three sample realizations c1

(
x
(
θ(i)
D

)
, y

(
θ(i)
D

)
, θ(i)q

)
, i = 1, 2, 3 obtained by the SE-based method (the first

column) and the DMCS (the second column), and their relative errors (the third column).

The total computational time for the simulation is 13.19s, including 0.45s for executing the

domain transformation, 6.58s for calculating the reduced bases {gk}
10
k=1 and 6.16s for solving the

reduced-order stochastic eigenvalue equation, while the computational time for the DMCS is

94.61s, which indicates that the proposed SE-based method is still efficient in this case. Three

sample realizations c1

(
x
(
θ(i)
D

)
, y

(
θ(i)
D

)
, θ(i)q

)
, i = 1, 2, 3 obtained by the SE-based method and the

DMCS are depicted in the first and second columns of Fig. 8, respectively. Further, their rela-

tive errors
∣∣∣∣∣ c1,SE

(
x
(
θ(i)
D

)
,y
(
θ(i)
D

)
,θ(i)q

)
−c1,DMCS

(
x
(
θ(i)
D

)
,y
(
θ(i)
D

)
,θ(i)q

)
c1,DMCS

(
x
(
θ(i)
D

)
,y
(
θ(i)
D

)
,θ(i)q

) ∣∣∣∣∣ are shown in the third column of Fig. 8. It is seen

that all relative errors are less than 0.2%, which demonstrates the high accuracy of the SE-based

simulation algorithm.

5.3. Example 3: three-dimensional bone implant with random prosthesis position

In this example, we consider a three-dimensional femur implant problem [23, 24] shown in

Fig. 9a, where the prosthesis (i.e. the white part shown in Fig. 9a) has a random position. Our goal
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zzz

(a) Model of the femur and its finite element

mesh.

(b) Instantiations of the random position of

the prosthesis.

Figure 9: The femur model with a prosthesis and its finite element mesh (left) and the sample realizations of the

random position of the prosthesis (right).

is to simulate the random field ρ
(
x (θD) , y (θD) , z (θD) , θq

)
of the bone density that takes into ac-

count spatial variability and the effect of random position of the prosthesis. It is noted that as shown

in Fig. 9b, the femoral head (i.e. the red part shown in Fig. 9a) needs to be removed before im-

planting the prosthesis in practice. Therefore, the simulation of bone density for the femoral head

is of less significance. In this example, we still consider the full geometry since the femoral head

has less influence on the simulation. We consider that the bone density ρ
(
x (θD) , y (θD) , z (θD) , θq

)
has the mean value ρ0 (x, y, z) = 1.5 g/cm3 and the exponential covariance function

Cωω (x1 (θD) , y1 (θD) , z1 (θD) ; x2 (θD) , y2 (θD) , z2 (θD))

= σ2
ω exp

(
−
|x1 (θD) − x2 (θD)|

lx
−
|y1 (θD) − y2 (θD)|

ly
−
|z1 (θD) − z2 (θD)|

lz

)
, (54)

where the standard deviation σω = 0.1 and the correlation lengths lx = max (x) − min (x), ly =

max (y)−min (y) and lz = max (z)−min (z). Nine random parameters
{
dx (θD) , dy (θD) , dz (θD) , sx (θD),
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sy (θD) , sz (θD) , αx (θD) , αy (θD) , αz (θD)
}

are used to position the prosthesis relative to its nominal

position, where dx (θD) , dy (θD) , dz (θD) ∈ [−0.1, 0.1] mm are translation parameters along the x,

y and z axes, sx (θD) , sy (θD) , sz (θD) ∈ [0.95, 1.05] are the scaling parameters in the x, y and z

directions and used to adjust the size of the prosthesis, and αx (θD) , αy (θD) , αz (θD) ∈ [−2◦, 2◦] are

the rotation angles around the x, y and z axes relative to the center point of the prosthesis. Several

realizations of the random position of the prosthesis are depicted in Fig. 9b.

To execute the SE-based Algorithm 4, q = 20 approximate terms in Eq. (14) are adopted and

r = 15 terms are retained in Eq. (1) to achieve the specified precision. The nominal position of the

prosthesis is chosen as the reference domain and its finite element mesh includes 11046 nodes and

56711 linear tetrahedron elements. The outer boundary of the reference domain is the same as that

of the original random domain. The random coordinates of the points on the interface between the

femur and the prosthesis are represented as


x (θD)

y (θD)

z (θD)

 = D (θD) S (θD) Rx (θD) Ry (θD) Rz (θD)



x

y

z

1


, (55)

where the stochastic translation transformation matrix D (θD) and the stochastic scaling transfor-

mation matrix S (θD) are given by

D (θD) =


1 0 0 dx (θD)

0 1 0 dy (θD)

0 0 1 dz (θD)

 ∈ R3×4, S (θD) =



sx (θD) 0 0 0

0 sy (θD) 0 0

0 0 sz (θD) 0

0 0 0 1


∈ R4×4 (56)

and Rx (θD), Ry (θD) and Rz (θD) are the stochastic rotation transformation matrices around the x,

y and z axes, respectively. They are given by

Rx (θD) =



1 0 0 0

0 cosαx (θD) − sinαx (θD) 0

0 sinαx (θD) cosαx (θD) 0

0 0 0 1


∈ R4×4,
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Ry (θD) =



cosαy (θD) 0 sinαy (θD) 0

0 1 0 0

− sinαy (θD) 0 cosαy (θD) 0

0 0 0 1


∈ R4×4,

Rz (θD) =



cosαz (θD) sinαz (θD) 0 0

− sinαz (θD) cosαz (θD) 0 0

0 0 1 0

0 0 0 1


∈ R4×4. (57)

The total computational time for the simulation is 463.26s, including 3.07s for executing the

domain transformation, 413.938s for calculating the reduced bases {gk}
20
k=1 and 46.26s for solving

the reduced-order stochastic eigenvalue equation (22), which is much less than the cost of 1.69 ×

104s to execute the DMCS. Most of the cost of executing the proposed SE-based method is used

to solve the reduced bases, thus more efficient eigenvalue solvers can speed up the proposed SE-
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Figure 10: Two sample realizations ρ
(
x
(
θ(i)
D

)
, y

(
θ(i)
D

)
, z

(
θ(i)
D

)
, θ(i)q

)
, i = 1, 2 obtained by the SE-based method (the first

column) and the DMCS (the second column), and their relative errors (the third column).
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based method. Two sample realizations ρ
(
x
(
θ(i)
D

)
, y

(
θ(i)
D

)
, z

(
θ(i)
D

)
, θ(i)q

)
, i = 1, 2 obtained by the

proposed SE-based method and the DMCS are shown in the first and second columns of Fig. 10,

respectively. Their relative errors are shown in the third column of Fig. 10. It is seen that the

maximum relative error is less than 0.7% and the proposed SE-based simulation algorithm is still

accurate enough for this three-dimensional example.

6. Conclusions

We presented three algorithms for simulating the random fields defined on random domains, in-

cluding the direct MCS, the domain transformation-based MCS and the stochastic eigenequation-

based method. A stochastic KLE is first proposed as an extension of the classical KLE to stochastic

cases. All three numerical methods are used to solve the stochastic integral equations arising in

the stochastic KLE. The direct MCS is computationally expensive since all sampled domains are

remeshed and the corresponding integral equations must be solved. The domain transformation-

based MCS combines the domain transformation for random domains and the classical MCS for

solving stochastic integral equations. This method saves the computational effort for remeshing

the sampled domains, but it is still expensive in solving stochastic integral equations. To overcome

this problem, we propose the stochastic eigenequation-based method, which combines the domain

transformation for random domains and a reduced-order method for cheaply solving stochastic

eigenvalue equations. All three proposed methods have been verified with numerical examples.

They can be readily applied to the stochastic problems defined on random domains. However,

more effective numerical strategies are still needed to simulate the random domains with large

uncertainties, which remains a challenge and will be investigated in follow-up studies. Further,

only Gaussian random fields are studied in this paper. By combining the proposed methods in this

paper and the iterative methods in [25], we can simulate the non-Gaussian random fields defined

on random domains.
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Appendix A. Analytical stochastic eigenvalues and eigenfunctions of Example 5.1

In this section, we give the analytical stochastic eigenvalues and stochastic eigenfunctions of

the covariance function given in Eq. (45) in Section 5.1. To this end, the following stochastic

Fredholm integral equation of the second kind is solved∫ l(θD)

0
min (x1 (θD) , x2 (θD)) f (x1 (θD)) dx1 (θD) = λ (θD) f (x2 (θD)) . (A.1)

Dividing the random domain into x1 (θD) ∈ [0, l (θD)] = [0, x2 (θD)] ⊕ (x2 (θD) , l (θD)] and substi-

tuting it into Eq. (A.1) we have

∫ x2(θD)

0
x1 (θD) f (x1 (θD)) dx1 (θD)+x2 (θD)

∫ l(θD)

x2(θD)
f (x1 (θD)) dx1 (θD) = λ (θD) f (x2 (θD)) . (A.2)

Taking the derivative with respect to x2 (θD) on both sides we get∫ l(θD)

x2(θD)
f (x1 (θD)) dx1 (θD) = λ (θD)

d f (x2 (θD))
dx2 (θD)

. (A.3)

Differentiating x2 (θD) on both sides again we have

− f (x2 (θD)) = λ (θD)
d2 f (x2 (θD))

dx2
2 (θD)

, (A.4)

whose solution has the form (the subscript is omitted)

f (x (θD)) = c1 (θD) sin
(

x (θD)
√
λ (θD)

)
+ c2 (θD) cos

(
x (θD)
√
λ (θD)

)
, (A.5)

where c1 (θD) and c2 (θD) are unknown stochastic coefficients that need to be determined. Further-

more, we have

f (0) = 0,
d f (x (θD))

dx (θD)

∣∣∣∣∣
x(θD)=l(θD)

= 0 (A.6)

by letting x2 (θD) = 0 in Eq. (A.2) and letting x2 (θD) = l (θD) in Eq. (A.3), respectively. Substitut-

ing them into Eq. (A.5) we get

c2 (θD) = 0, cos
(

l (θD)
√
λ (θD)

)
= 0. (A.7)
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Thus, the stochastic eigenvalues are given by

λi (θD) =

 l (θD)(
i − 1

2

)
π


2

, i = 1, 2, · · · (A.8)

and the stochastic eigenfunctions are given by

fi (x (θD)) = c1 (θD) sin
(

2i − 1
2l (θD)

πx (θD)
)
, i = 1, 2, · · · , (A.9)

where the stochastic coefficient c1 (θD) =
√

2
l(θD) is obtained by normalizing the eigenfunctions

fi (x (θD)), ∫ l(θD)

0
f 2
i (x (θD)) dx (θD) = 1. (A.10)

References

[1] R. C. Smith, Uncertainty quantification: theory, implementation, and applications, volume 12, SIAM, 2013.

[2] H. Dai, R. Zhang, M. Beer, A new method for stochastic analysis of structures under limited observations,

Mechanical Systems and Signal Processing 185 (2023) 109730.

[3] Y. Li, J. Xu, A pdf discretization scheme in wavenumber–frequency joint spectrum for simulating multivariate

random fluctuating wind fields, Probabilistic Engineering Mechanics 72 (2023) 103422.

[4] R. Ghanem, W. Brzakala, Stochastic finite-element analysis of soil layers with random interface, Journal of

Engineering Mechanics 122 (1996) 361–369.

[5] P. S. Mohan, P. B. Nair, A. J. Keane, Stochastic projection schemes for deterministic linear elliptic partial

differential equations on random domains, International Journal for Numerical Methods in Engineering 85

(2011) 874–895.

[6] W. Zhang, Z. Kang, Robust shape and topology optimization considering geometric uncertainties with stochastic

level set perturbation, International Journal for Numerical Methods in Engineering 110 (2017) 31–56.

[7] D. Xiu, D. M. Tartakovsky, Numerical methods for differential equations in random domains, SIAM Journal on

Scientific Computing 28 (2006) 1167–1185.

[8] A. Nouy, A. Clement, eXtended Stochastic Finite Element Method for the numerical simulation of heteroge-

neous materials with random material interfaces, International Journal for Numerical Methods in Engineering

83 (2010) 1312–1344.

[9] S. Badia, J. Hampton, J. Principe, Embedded multilevel Monte Carlo for uncertainty quantification in random

domains, International Journal for Uncertainty Quantification 11 (2021).

33



[10] Z. Zheng, M. Valdebenito, M. Beer, U. Nackenhorst, A stochastic finite element scheme for solving partial

differential equations defined on random domains, Computer Methods in Applied Mechanics and Engineering

405 (2023) 115860.

[11] A. Kundu, S. Adhikari, M. Friswell, Stochastic finite elements of discretely parameterized random systems on

domains with boundary uncertainty, International Journal for Numerical Methods in Engineering 100 (2014)

183–221.

[12] R. G. Ghanem, P. D. Spanos, Stochastic finite elements: a spectral approach, Courier Corporation, 2003.

[13] V. D. Liseikin, Grid generation methods, Springer, 2017.

[14] Z. Zheng, M. Beer, U. Nackenhorst, An efficient reduced-order method for stochastic eigenvalue analysis,

International Journal for Numerical Methods in Engineering 123 (2022) 1–23.

[15] Z. Zheng, H. Dai, Simulation of multi-dimensional random fields by Karhunen–Loève expansion, Computer
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