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Resolvent analysis has become ubiquitous in aerodynamic studies to identify strong modal
behaviour through optimal forcing/response pairs and their associated gains. Such dominant
modes can be used, for instance, for the understanding of flow physics and the construction
of reduced order models. When interest is in non-canonical three-dimensional test cases of
practical interest, earlier computational limitations, when solving the underlying truncated
singular value decomposition for a small number of the most dominant modes using matrix
forming methods with direct matrix factorisation, have been overcome with either efficient
time-stepping methods or sparse iterative solver technology within linear harmonic incarnations
of production computational fluid dynamics codes. For the latter iterative methods, besides the
so-called randomised singular value decomposition, either single-vector iterations with deflation
to identify next-in-line optimal modes or subspace methods with random starting vectors have
shown great potential. When using subspace methods, the optimal modes are often computed
by adapting algorithms designed for solving eigenvalue problems, but these algorithms yield
either the forcing or response modes leaving the other to be determined separately incurring
additional computational cost. Herein we will investigate two specialised algorithms for singular
value decomposition that allows computation of both sets of modes simultaneously. One is
a Krylov subspace method referred to as the Krylov–Golub–Kahan algorithm that benefits
from a simpler and more robust deflation procedure compared to the widely used implicitly
restarted Arnoldi method. The other is an inverse subspace iteration method referred to as
the inexact subspace iteration algorithm that uses cheap, low-accuracy linear solutions. The
subspace methods were applied for a two-dimensional circular cylinder and the NASA Common
Research Model. Both subspace methods were able to compute the three most dominant
forcing-gain-response singular triplets for the circular cylinder problem to the desired tolerance
while the single-vector iteration algorithm stalled for the third triplet. The inexact subspace
iteration algorithm was found to be more efficient than the Krylov–Golub–Kahan algorithm. As
for the NASA Common Research Model problem, only the inexact subspace iteration algorithm
was able to achieve the desired convergence for the three most dominant singular triplets.

I. Introduction

The resolvent matrix is a linear operator that maps a harmonic input forcing to a harmonic output response [1]. The
purpose of resolvent analysis in aerodynamic applications is to determine the optimal forcings that result in the most

amplified responses. The extraction of such dominant modes can be useful, for instance, in the understanding of the
leading flow physics and subsequently in the construction of low-rank reduced order models. Due to the non-normality
of the linearised (Reynolds-averaged) Navier–Stokes equations, a resolvent analysis might be more revealing than a
global stability analysis [2] as non-normal systems may exhibit significant pseudo-resonances even when forced at
frequencies that are not necessarily close to the leading eigenvalues. Previously, time-stepping algorithms have been
introduced in [3] and refined in [4] to solve the underlying truncated singular value decomposition (TSVD) for the
optimal solution. Instead of integrating the direct governing equations forward and the adjoint equations backward in
time until periodic states (subject to appropriate harmonic forcing) are reached to extract said optimal forcing/response
modes upon convergence, linear harmonic solvers, now well established in many production computational fluid
dynamics codes [5–7], can solve for the harmonic content immediately, avoiding the time-stepping through multiple
cycles until a periodic state is converged. Key are efficient iterative linear solvers that have been exercised extensively
e.g. when solving the related triglobal eigenvalue problem for stability [8].
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While single-vector iterative methods [9] are often sufficient when interest is in the first optimal solution, there
can be scenarios where sub-optimal solutions are also sought, e.g. competing optimal modes on full-span aircraft
problems, sub-optimal modes related to additional important physics, cases of mode switching, etc. Then, subspace
methods are very attractive. In [10, 11] the TSVD problem was recast into a Hermitian eigenvalue problem and solved
using well-established Krylov subspace methods, often encountered when dealing with eigenvalue problems, to obtain
the optimal forcing mode which is then the leading eigenvector. However, determining the corresponding optimal
response required solving an additional linear system. Another approach is that in [12] that addresses the TSVD
problem directly using a randomised subspace method but, although not strictly necessary, they suggested solving the
additional linear system to obtain the optimal response mode from the optimal forcing mode for improved accuracy. In
this work, we consider two different subspace methods specialised for the character of the TSVD problem in that they do
not require the additional linear solution. The first method is a slight variation of the Krylov–Schur SVD algorithm
that was introduced in [13] and the second method is an inexact (inverse) subspace iteration algorithm inspired by
the inexact inverse iteration algorithm proposed in [14] for generalised eigenvalue problems that has been tailored for
computing the TSVD. Both iterative methods involve the application of matrix inverses on vectors in every iteration.
For problems of moderate size (e.g. those arising from two-dimensional computational fluid dynamics cases), matrices
can be factorised directly, but this becomes inefficient, impractical or outright prohibitive for sparse matrices arising
from spatial discretisations of large scale three-dimensional flow problems. Therefore, one must resort to iterative linear
solvers to effect the application of the matrix inverses. This leads to the concept of inexact inner-outer iterative methods
whereby the inner part pertains to the iterative linear solver and the outer part to the iterative method for computing the
TSVD problem itself. In the context of inner-outer iterative methods [15, 16], the term inexact is used to describe the
approximate nature of the iterative linear solver which only solves the linear problems to a certain (inner) tolerance.
Hence, both subspace methods discussed herein can be classified as inexact inner-outer iterative methods. However, we
reserve the term inexact to refer to a low accuracy linear solution with a large inner tolerance (e.g., 10−1) and distinguish
it from a high accuracy linear solution with a small (or deep) inner tolerance (e.g., 10−8).

We will continue with the pertinent theory in Section II wherein both algorithms will be described in detail, followed
by the specific numerical methods in Section III. Results can be found in Section IV and conclusions in Section V. We
will discuss the ubiquitous circular cylinder in laminar flow as a verification test case and a practical large aircraft case
in high Reynolds number, turbulent and transonic flow to demonstrate the potential of the methods.

II. Theory

A. The Resolvent Problem
To derive the resolvent problem, we begin with the spatially-discretised (Reynolds-averaged) Navier–Stokes equations

d𝒘
d𝑡

+ 𝑹(𝒘) = 𝒇ext, (1)

where 𝒘 represents the vector of conservative variables, specifically fluid density 𝜌, Cartesian momentum components 𝜌𝒖,
total energy 𝜌𝐸 and additional variables resulting from turbulence modelling and similar, and 𝑹(𝒘) represents the
corresponding non-linear residual functions in discretised form. The vector 𝒇ext represents any external forcing that may
be present. Expanding the residual vector in Eq. (1) using a Taylor series about a steady-state (or mean-flow) solution �̄�
results in

d�̃�
d𝑡

= 𝐽�̃� + �̃� , (2)

where �̃� denotes the time-varying perturbations in the fluid state (i.e., 𝒘(𝑡) = �̄� + �̃�(𝑡)) and 𝐽 = −𝜕𝑹/𝜕𝒘 is the
Jacobian operator. The higher order terms and external forcing are collected into a single vector, �̃� = �̃� (𝑡), on the
right-hand side. The higher order terms can be viewed as the forcing due to non-linearities [17].

For the case of harmonic forcing at a single frequency 𝜔 causing the fluid state to respond with harmonic oscillations
at (and only at) the same frequency, we can express the time variation of the forcing and response as �̃� (𝑡) = �̂� 𝑒𝑖𝜔𝑡 and
�̃�(𝑡) = �̂�𝑒𝑖𝜔𝑡 , respectively. Substituting these two expressions into Eq. (2) and simplifying lead to

�̂� = R �̂� , (3)

where R = (𝑖𝜔𝐼 − 𝐽)−1 is the resolvent operator. Equation (3) represents an input-output relationship between the
forcing (input) and the fluid response (output) at frequency 𝜔. The objective now is to determine the optimal forcing(s)
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that results in the most amplified response(s). This is achieved using a TSVD of the resolvent operator R𝐹𝑘 = 𝑊𝑘Σ𝑘

for the 𝑘 most dominant modes with the largest singular values. The 𝑘 column vectors of 𝐹𝑘 and 𝑊𝑘 correspond
to the forcing and response modes, respectively, and elements of the 𝑘-by-𝑘 diagonal matrix Σ𝑘 represent the gains
for the forcing-response pairs. The forcing and response modes are normalised herein with respect to the diagonal
matrix of discrete cell volumes, 𝑄. Defining the inner product (for arbitrary vectors 𝒂 and 𝒃) with respect to the
positive definite matrix 𝑄 as ⟨𝒂, 𝒃⟩ = 𝒂𝐻𝑄𝒃, the normalisation can be written as ⟨𝐹𝑘 , 𝐹𝑘⟩ = ⟨𝑊𝑘 ,𝑊𝑘⟩ = 𝐼𝑘 where 𝐼𝑘
is the 𝑘-by-𝑘 identity matrix. We also introduce here the notation for the 𝑄-norm ∥𝒂∥ =

√︁
⟨𝒂, 𝒂⟩ for later use. The

adjoint of the resolvent operator R† is defined by the relationship ⟨𝒂,R𝒃⟩ = ⟨R†𝒂, 𝒃⟩ and it can be explicitly written as
R† = (−𝑖𝜔𝐼 − 𝐽†)−1 where 𝐽† = 𝑄−1𝐽𝑇𝑄. For convenience, let us denote (−𝑖𝜔𝐼 − 𝐽†) = (𝑖𝜔𝐼 − 𝐽)†. The TSVD with
respect to the adjoint can be written as R†𝑊𝑘 = 𝐹𝑘Σ𝑘 .

B. Proposed Algorithms

Convergence and Locking
Prior to discussing the algorithms, we introduce the outer error norm for the 𝑗 th forcing-gain-response triplet

𝜖 𝑗 = max(∥ 𝒇 𝑗 − 𝜎𝑗 (𝑖𝜔𝐼 − 𝐽)𝒘 𝑗 ∥, ∥𝒘 𝑗 − 𝜎𝑗 (𝑖𝜔𝐼 − 𝐽)† 𝒇 𝑗 ∥), (4)

used to assess convergence. The same error norm definition, although expensive to compute, is used for all algorithms
for a fair comparison. A singular triplet is deemed to have converged sufficiently when its error norm drops below a
certain user-defined (outer) convergence tolerance. This check is performed in the HasConverged() function that will
appear in all the three algorithms to be discussed next. The converged vectors are then locked and further manipulations
are applied only from the next vector onward. The locked vectors participate in the orthogonalisations only.

Single Vector Iteration Algorithm
The single vector iteration (SVI) algorithm introduced in [9, 18] and implemented in the current code, is summarised

in Algorithm 1. It is a simple inverse iteration algorithm with deflation that solves for multiple singular triplets of the
resolvent operator R. The triplets converge sequentially in descending order of the singular values. In other words, the
triplet with the largest singular value converges first, followed by the triplet with the second largest singular value and so
on. The achievable outer accuracy is determined by the inner convergence tolerance 𝜖inner for the linear systems. For
each singular triplet, 𝜖inner is initially set to a large value (e.g., 10−3) to save computational cost. It is then gradually
reduced, synchronised with the outer error norm, until the linear systems are solved deeply close to convergence to
achieve the desired outer accuracy.

Krylov–Golub–Kahan Algorithm
The Krylov–Golub–Kahan (KGK) factorisation [13] for the resolvent problem can be expressed as

R𝐹𝑚 = 𝑊𝑚Σ𝑚,

R†𝑊𝑚 = 𝐹𝑚Σ𝑚 + 𝒇𝑚+1𝜶
𝑇
𝑚,

(5)

where 𝐹𝑚+1 = [𝐹𝑚 𝒇𝑚+1] and 𝑊𝑚 are 𝑄-orthogonal matrices, Σ𝑚 is an 𝑚-by-𝑚 diagonal matrix with its positive and
real elements arranged in descending order, and 𝜶𝑇

𝑚 is a 1-by-𝑚 real row vector. It can be readily seen that when the first
𝑘 elements of 𝜶𝑇

𝑚 vanish, we obtain the sought-after TSVD of the resolvent operator for the 𝑘 most dominant singular
triplets. The presented algorithm, henceforth referred to as the KGK algorithm, is a Krylov subspace method that relies
on the KGK factorisation. It consists of the two main steps of expansion and truncation.

The expansion proceeds as follows. Given the factorisation in Eq. (5), we compute new Krylov vectors 𝒘𝑚+1 and
𝒇𝑚+2 by ortho-normalising the vectorsR 𝒇𝑚+1 andR†𝒘𝑚+1 over the existing Krylov vectors in𝑊𝑚 and 𝐹𝑚+1, respectively.
The operations R 𝒇𝑚+1 and R†𝒘𝑚+1 are performed by solving the large, sparse linear problems (𝑖𝜔𝐼 − 𝐽)𝒚 = 𝒇𝑚+1 and
(𝑖𝜔𝐼 − 𝐽)†𝒚 = 𝒘𝑚+1, respectively. These two operations are the costliest in the entire algorithm, particularly when
dealing with large three-dimensional spatial discretisations, since the linear problems have to be solved deeply to ensure
that the matrix inverses have been applied with sufficient accuracy. The special relationship between 𝑊𝑚 and 𝐹𝑚+1
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Algorithm 1 Single vector iteration algorithm
1: Inputs:

number of desired singular triplets 𝑘 , maximum number of iterations 𝑛
2: Initialise:

𝐹 = [], 𝑊 = [], 𝝈 = []
3: for 𝑗 = 1 to 𝑘 do
4: Initialise 𝒇 𝑗 to a random vector
5: Deflate 𝒇 𝑗 := 𝒇 𝑗 − 𝐹1: 𝑗−1⟨𝐹1: 𝑗−1, 𝒇 𝑗⟩
6: Normalise 𝒇 𝑗 := 𝒇 𝑗/∥ 𝒇 𝑗 ∥
7: for 𝑖 = 1 to 𝑛 do
8: Solve (𝑖𝜔𝐼 − 𝐽)𝒘 𝑗 = 𝒇 𝑗 inexactly based on 𝜖 𝑗
9: Deflate 𝒘 𝑗 := 𝒘 𝑗 −𝑊1: 𝑗−1⟨𝑊1: 𝑗−1, 𝒘 𝑗⟩

10: Normalise 𝒘 𝑗 := 𝒘 𝑗/∥𝒘 𝑗 ∥

11: Solve (𝑖𝜔𝐼 − 𝐽)† 𝒇 𝑗 = 𝒘 𝑗 inexactly based on 𝜖 𝑗
12: Deflate 𝒇 𝑗 := 𝒇 𝑗 − 𝐹1: 𝑗−1⟨𝐹1: 𝑗−1, 𝒇 𝑗⟩
13: Compute singular value 𝜎𝑗 = ∥ 𝒇 𝑗 ∥
14: Normalise 𝒇 𝑗+1 := 𝒇 𝑗+1/𝜎𝑗

15: if HasConverged( 𝒇 𝑗 , 𝒘𝑗 , 𝜎𝑗 ) then
16: Store 𝑊 := [𝑊 𝒘 𝑗 ], 𝐹 := [𝐹 𝒇 𝑗 ], 𝝈 = [𝝈; 𝜎𝑗 ]
17: break for
18: end if
19: end for
20: end for

established in Eq. (5) leads to the following expressions to compute the new Krylov vectors

𝛽𝒘𝑚+1 = R 𝒇𝑚+1 −𝑊𝑚𝜶𝑚,

𝛾 𝒇𝑚+2 = R†𝒘𝑚+1 − 𝛽 𝒇𝑚+1,
(6)

where the constants 𝛽 and 𝛾 are determined from the normalisation conditions, ∥𝒘𝑚+1∥ = ∥ 𝒇𝑚+2∥ = 1. In Eq. 6, the
coefficients 𝜶𝑚 and 𝛽 computed earlier are used to calculate the new Krylov vectors but in finite precision arithmetic
this leads to a loss of orthogonality. Therefore, in practice, the vectors R 𝒇𝑚+1 and R†𝒘𝑚+1 are orthogonalised against
all previous Krylov vectors to eliminate any round-off errors that might have been introduced and the resulting vectord
sre normalised to obtain the constants 𝛽 and 𝛾. At this point, the Krylov vectors are related to each other as follows.

R𝐹𝑚+1 = 𝑊𝑚+1

[
Σ𝑚 𝜶𝑚

𝛽

]
= 𝑊𝑚+1Γ𝑚+1,

R†𝑊𝑚+1 = 𝐹𝑚+1

[
Σ𝑚

𝜶𝑇
𝑚 𝛽

]
+ 𝛾 𝒇𝑚+2𝒆

𝑇
𝑚+1 = 𝐹𝑚+1Γ

𝑇
𝑚+1 + 𝛾 𝒇𝑚+2𝒆

𝑇
𝑚+1.

(7)

The final part of the expansion step involves returning the above relationships to the same form as those in Eq. (5). To
this end, we compute the SVD of the small matrix Γ𝑚+1 as Γ𝑚+1 = Φ𝑚+1Σ𝑚+1Ψ

𝑇
𝑚+1. Substituting this SVD into Eq. (7)

and multiplying (from the right) the first expression with Ψ𝑚+1 and the second expression with Φ𝑚+1 lead to

R(𝐹𝑚+1Ψ𝑚+1) = (𝑊𝑚+1Φ𝑚+1)Σ𝑚,

R† (𝑊𝑚+1Φ𝑚+1) = (𝐹𝑚+1Ψ𝑚+1)Σ𝑚 + 𝒇𝑚+2 (𝛾𝒆𝑇𝑚+1Φ𝑚+1).
(8)

Setting 𝐹𝑚+1 := 𝐹𝑚+1Ψ𝑚+1, 𝑊𝑚+1 := 𝑊𝑚+1Φ𝑚+1 and 𝜶𝑚+1 = 𝛾𝒆𝑇
𝑚+1Φ𝑚+1 in Eq. (8) yields the KGK factorisation and

concludes the expansion step. The starting vector 𝒇 1 is initialised as a random vector such that ∥ 𝒇 1∥ = 1.
Since the Krylov subspaces cannot be extended indefinitely due to memory constraints, we need to suitably truncate

the subspaces and the KGK factorisation naturally lends itself to such truncations. Taking inspiration from the
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Algorithm 2 Krylov–Golub–Kahan algorithm
1: Inputs:

number of desired singular triplets 𝑘 , size to truncate Krylov subspace to for restart 𝑡 ≥ 𝑘 ,
maximum size of Krylov subspace 𝑚

2: Initialise:
random vector 𝒇 1 normalised such that ∥ 𝒇 1∥ = 1
𝐹 = [ 𝒇 1], 𝑊 = [], 𝝈 = [], 𝜶 = [], 𝑗 = 1, 𝑙 = 0

3: while 𝑙 < 𝑘 do
4: Solve (𝑖𝜔𝐼 − 𝐽)𝒘 = 𝒇 𝑗 deeply
5: Orthogonalise 𝒘 := 𝒘 −𝑊1: 𝑗−1⟨𝑊1: 𝑗−1, 𝒘⟩
6: Compute norm 𝛽 = ∥𝒘∥
7: Normalise 𝒘 := 𝒘/𝛽
8: Store 𝑊 := [𝑊 𝒘]

9: Solve (𝑖𝜔𝐼 − 𝐽)† 𝒇 = 𝒘 𝑗 deeply
10: Orthogonalise 𝒇 := 𝒇 − 𝐹1: 𝑗 ⟨𝐹1: 𝑗 , 𝒇 ⟩
11: Compute norm 𝛾 = ∥ 𝒇 ∥
12: Normalise 𝒇 := 𝒇 /𝛾
13: Store 𝐹 := [𝐹 𝒇 ]

14: Set Γ =

[
diag(𝝈𝑙+1: 𝑗−1) 𝜶𝑙+1: 𝑗−1

𝛽

]
and compute its SVD Γ = ΦΣΨ𝑇

15: Update 𝐹𝑙+1: 𝑗 := 𝐹𝑙+1: 𝑗Ψ, 𝑊𝑙+1: 𝑗 := 𝑊𝑙+1: 𝑗Φ, 𝝈𝑙+1: 𝑗 = diag(Σ) and 𝜶𝑙+1: 𝑗 = 𝛾Φ𝑇 𝒆 𝑗−𝑙

16: for 𝑖 = 𝑙 to 𝑘 do
17: if HasConverged( 𝒇 𝑖 , 𝒘𝑖 , 𝜎𝑖) then
18: Increment number of converged singular triplets 𝑙 := 𝑙 + 1
19: end if
20: end for

21: 𝑗 := 𝑗 + 1
22: if 𝑗 > 𝑚 then
23: Copy 𝒇𝑚+1 to 𝒇 𝑡+1
24: Set 𝑗 = 𝑡 + 1
25: end if
26: end while

Krylov–Schur algorithm devised in [19] for solving large eigenvalue problems, it was proposed in [13] to split the KGK
factorisation in Eq. (5) into two parts as

R[𝐹𝑡 𝐹𝑚−𝑡 ] = [𝑊𝑡 𝑊𝑚−𝑡 ]
(
Σ𝑡

Σ𝑚−𝑡

)
,

R† [𝑊𝑡 𝑊𝑚−𝑡 ] = [𝐹𝑡 𝐹𝑚−𝑡 𝒇𝑚+1]
©«
Σ𝑡

Σ𝑚−𝑡
𝜶𝑇
𝑡 𝜶𝑇

𝑚−𝑡

ª®®¬ ,
(9)

and discard the second part (terms with subscript 𝑚 − 𝑡) to obtain a smaller KGK factorisation. Since the entries of
the diagonal matrix Σ𝑚 have been arranged in descending order, discarding the second part eliminates the subspace
vectors corresponding to the smallest 𝑚 − 𝑡 singular values in Σ𝑚 while retaining those corresponding to the largest
𝑡 singular values in Σ𝑚 which we are interested in. This concludes the truncation step and the expansion can now
be restarted with 𝒇 𝑡+1 = 𝒇𝑚+1. The simplicity of the restart procedure is the main advantage of working with
the KGK (and Krylov–Schur) factorisation compared with implicitly restarted methods [20] that use the implicitly
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Algorithm 3 Inexact subspace iteration algorithm
1: Inputs:

number of desired singular triplets 𝑘 , size of subspace 𝑚 ≥ 𝑘

2: Initialise:
random vectors 𝐹𝑚 = [ 𝒇 1 . . . 𝒇𝑚] such that ⟨𝐹𝑚, 𝐹𝑚⟩ = 𝐼𝑚
𝑊𝑚 = 0, 𝝈 = 0, 𝑙 = 0

3: while 𝑙 < 𝑘 do
4: for 𝑗 = 𝑙 + 1 to 𝑚 do
5: Set 𝒘 𝑗 := 𝜎𝑗𝒘 𝑗

6: Solve (𝑖𝜔𝐼 − 𝐽)Δ𝒘 = 𝒇 𝑗 − (𝑖𝜔𝐼 − 𝐽)𝒘 𝑗 inexactly
7: Update 𝒘 𝑗 := 𝒘 𝑗 + Δ𝒘
8: Orthogonalise 𝒘 𝑗 := 𝒘 𝑗 −𝑊1: 𝑗−1⟨𝑊1: 𝑗−1, 𝒘 𝑗⟩
9: Normalise 𝒘 𝑗 := 𝒘 𝑗/∥𝒘 𝑗 ∥

10: end for
11: Compute Ξ = ⟨𝐹𝑙+1:𝑚, (𝑖𝜔𝐼 − 𝐽)𝑊𝑙+1:𝑚⟩
12: Compute SVD of Ξ = ΨΣΞΦ𝐻 with elements of ΣΞ arranged in ascending order
13: Update 𝐹𝑙+1:𝑚 := 𝐹𝑙+1:𝑚Ψ, 𝑊𝑙+1:𝑚 := 𝑊𝑙+1:𝑚Φ, 𝝈𝑙+1:𝑚 = diag((ΣΞ)−1)

14: for 𝑗 = 𝑙 + 1 to 𝑚 do
15: Set 𝒇 𝑗 := 𝜎𝑗 𝒇 𝑗

16: Solve (𝑖𝜔𝐼 − 𝐽)†Δ 𝒇 = 𝒘 𝑗 − (𝑖𝜔𝐼 − 𝐽)† 𝒇 𝑗 inexactly
17: Update 𝒇 𝑗 := 𝒇 𝑗 + Δ 𝒇
18: Orthogonalise 𝒇 𝑗 := 𝒇 𝑗 − 𝐹1: 𝑗−1⟨𝐹1: 𝑗−1, 𝒇 𝑗⟩
19: Normalise 𝒇 𝑗 := 𝒇 𝑗/∥ 𝒇 𝑗 ∥
20: end for
21: Repeat steps 11-13.

22: for 𝑖 = 𝑙 to 𝑘 do
23: if HasConverged( 𝒇 𝑖 , 𝒘𝑖 , 𝜎𝑖) then
24: Increment number of converged singular triplets 𝑙 := 𝑙 + 1
25: end if
26: end for
27: end while

shifted QR algorithm [21] to retain the relevant subspace information. Similar to the SVI algorithm earlier, the
outer convergence accuracy of the KGK algorithm (and in fact, any Krylov subspace method) is limited by the inner
convergence tolerance. While it is possible to use relaxation strategies [22, 23] to reduce the inner tolerance as the
iterations progress, a small inner tolerance is nonetheless required in the initial iterations. The inexact subspace iteration
algorithm, which will be derived in the next section, was developed expressly to avoid this limitation.

The complete algorithm is summarised in Algorithm 2 where we have used MATLAB notation with the indexing
starting at 1. The main difference between the KGK algorithm proposed herein and the Krylov–Schur SVD algorithm
proposed in [13] is that the former does not alternate between the bidiagonal and KGK factorisations during restarts.
The bidiagonal factorisation allows a three-term recurrence relationship for computing the new Krylov vectors but
round-off errors eventually result in loss of orthogonality requiring additional orthogonalisation [24]. Since we are
concerned with rather small subspace sizes, the cost of orthogonalisation is insignificant compared to the cost of the
two deep linear solutions in every iteration. Hence, the bidiagonal factorisation is omitted for simplicity and a full
orthogonalisation is adopted for robustness.

Inexact Subspace Iteration Algorithm
An inexact inverse iteration algorithm for solving for generalised eigenvalue problems was introduced in [14]

whereby corrections to current approximations are sought. The main advantage of this approach is that the inner
tolerance dictates only the rate of convergence and not the final achievable accuracy. Consequently, low accuracy, inexact
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linear solutions were sufficient to achieve any desired outer convergence tolerance. The inexact subspace iteration (ISI)
algorithm to be derived next can be viewed as an extension of their inexact inverse iteration algorithm specialised for the
TSVD problem. Rewriting the TSVD of the resolvent operator as (𝑖𝜔𝐼 − 𝐽)𝑊Σ

𝑚 = 𝐹𝑚 with 𝑊Σ
𝑚 ≡ 𝑊𝑚Σ𝑚, we use the

current approximations to the singular solutions, 𝑊Σ
𝑚 and 𝐹𝑚, to derive the correction equation for 𝑊Σ

𝑚 as

(𝑖𝜔𝐼 − 𝐽)Δ𝑊Σ
𝑚 = 𝐹𝑚 − (𝑖𝜔𝐼 − 𝐽)𝑊Σ

𝑚, (10)

which is a set of 𝑚 independent linear systems to be solved inexactly. As the approximations converge towards the exact
solutions, the residual term on the right-hand-side of Eq. (10) and, consequently, the correction, Δ𝑊Σ

𝑚, both approach
zero. Whereas the KGK algorithm requires two deep linear solutions per iteration, the ISI algorithm requires 2𝑚 inexact
linear solutions per iteration. The size of the subspace 𝑚 must be chosen to be greater than (or equal) to the number of
desired singular triplets 𝑘 . The choice of 𝑚 = 2𝑘 was found to be adequate for the cases considered in this work.

After solving the linear systems in Eq. (10), the current approximation to𝑊Σ
𝑚 is updated as𝑊Σ

𝑚 := 𝑊Σ
𝑚 +Δ𝑊Σ

𝑚. Then,
𝑊Σ

𝑚 is orthogonalised using the QR decomposition [25] to obtain the updated approximation for 𝑊𝑚 as 𝑊Σ
𝑚 = 𝑊𝑚Θ𝑚

where Θ𝑚 is a 𝑚-by-𝑚 upper-triangular matrix that eventually converges to Σ𝑚. The orthogonalisation is performed
such that the normalisation condition ⟨𝑊𝑚,𝑊𝑚⟩ = 𝐼𝑚 is satisfied. With the updated approximation to 𝑊𝑚, we can
accelerate convergence by using the Rayleigh–Ritz procedure to form optimal linear combinations 𝑊𝑚Φ𝑚 and 𝐹𝑚Ψ𝑚

that satisfy the expression
(𝑖𝜔𝐼 − 𝐽) (𝑊𝑚Φ𝑚)Σ𝑚 = (𝐹𝑚Ψ𝑚) + 𝐸𝑚, (11)

with the Galerkin condition imposed on the error matrix 𝐸𝑚 such that ⟨𝐹𝑚, 𝐸𝑚⟩ = 0. Taking the inner product with 𝐹𝑚

on both sides and applying the Galerkin condition, we arrive at

⟨𝐹𝑚, (𝑖𝜔𝐼 − 𝐽)𝑊𝑚⟩ = Ψ𝑚Σ
−1
𝑚 Φ𝐻

𝑚 , (12)

where we have used the normalisation condition ⟨𝐹𝑚, 𝐹𝑚⟩ = 𝐼𝑚. Denoting Ξ𝑚 = ⟨𝐹𝑚, (𝑖𝜔𝐼 − 𝐽)𝑊𝑚⟩, we compute
its SVD as Ξ𝑚 = Ψ𝑚Σ

Ξ
𝑚Φ

𝐻
𝑚 which yields the orthogonal matrices Ψ𝑚 and Φ𝑚 used to compute the optimal linear

combinations. The approximate singular values of the resolvent operator are obtained as Σ𝑚 = (ΣΞ
𝑚)−1. The elements

of Σ𝑚 must be rearranged in descending order and the columns of Ψ𝑚 and Φ𝑚 must be reversed to match the reordering
before updating the current approximations as 𝑊𝑚 := 𝑊𝑚Φ𝑚 and 𝐹𝑚 := 𝐹𝑚Ψ𝑚.

A similar procedure can be derived from the TSVD for the adjoint operator (𝑖𝜔𝐼 − 𝐽)†𝐹Σ
𝑚 = 𝑊𝑚 where 𝐹Σ

𝑚 = 𝐹𝑚Σ𝑚.
First, we solve the set of 𝑚 independent linear systems

(𝑖𝜔𝐼 − 𝐽)†Δ𝐹Σ
𝑚 = 𝑊𝑚 − (𝑖𝜔𝐼 − 𝐽)†𝐹Σ

𝑚, (13)

inexactly to obtain the corrections for 𝐹Σ
𝑚. Next, we update the current approximation to 𝐹Σ

𝑚 as 𝐹Σ
𝑚 := 𝐹Σ

𝑚 + Δ𝐹Σ
𝑚 and

orthogonalise it as 𝐹Σ
𝑚 = 𝐹𝑚Θ𝑚 with ⟨𝐹𝑚, 𝐹𝑚⟩ = 𝐼𝑚. Lastly, we compute optimal linear combinations of the columns

of 𝐹𝑚 and 𝑊𝑚 from the SVD of Ξ𝑚 as before. This also produces an updated approximation Σ𝑚.
The procedure described thus far is performed in every outer iteration of the algorithm. At the beginning of

the algorithm, the initial approximation 𝐹𝑚 is set to random vectors orthogonalised ⟨𝐹𝑚, 𝐹𝑚⟩ = 𝐼𝑚 and the initial
approximation 𝑊𝑚 = 0. The algorithm is summarised in Algorithm 3.

III. Methodology

A. Non-linear Solver
The industrial DLR-TAU code solves the Reynolds-averaged Navier–Stokes equations (plus a suitable turbulence

closure model) using a second-order, finite-volume, vertex-centred discretisation [26]. The turbulence closure is
provided herein through the negative Spalart–Allmaras model using the Boussinesq eddy-viscosity hypothesis. The
inviscid fluxes are computed using a central scheme with matrix artificial dissipation. The gradients of flow variables
for viscous fluxes (and source terms of the turbulence model) are evaluated following the Green–Gauss theorem.
The far-field boundary is described as free-stream flow through a characteristic boundary condition while the no-slip
condition on viscous walls is enforced strongly. A steady-state solution is calculated via the implicit backward Euler
method with lower-upper symmetric Gauss–Seidel iterations and local time-stepping. A geometric multi-grid method,
typically on three multi-grid levels, is also used to improve convergence rates.
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B. Linear Harmonic Solver
The resolvent algorithms require solving linear problems of the general form (𝑖𝜔𝐼 − 𝐽)𝒙 = 𝒃 and (𝑖𝜔𝐼 − 𝐽)†𝒙 = 𝒃.

Even though the Jacobian operator is purely real-valued, we are dealing with complex-valued linear systems of equations.
The generalised conjugate residual solver with inner orthogonalisation and deflated restarting (GCRO-DR) [27] with
preconditioning was used to solve the linear problems. The GCRO-DR solver is a Krylov subspace method that only
needs the matrix-vector products (𝑖𝜔𝐼 − 𝐽)𝒂 and (𝑖𝜔𝐼 − 𝐽)†𝒂 for an arbitrary complex vector 𝒂. The Jacobian matrix 𝐽

and its adjoint 𝐽† are explicitly formed from a hand-derived, analytical formulation, whereas, generally speaking,
matrix-free matrix-vector products, enabled through finite-difference schemes or automatic differentiation, would fulfill
the same purpose. An incomplete lower-upper factorisation of (𝑖𝜔𝐼 − 𝐽) or (𝑖𝜔𝐼 − 𝐽)† is used for preconditioning. In
parallel computations, only the (MPI-) process-local blocks are factorised. Unlike a standard restarted generalised
minimal residual (GMRES) solver, the GCRO-DR solver recycles subspace vectors between restarts and, in principle,
can also recycle when solving varying right-hand-side sequences of linear problems. The recycled vectors (deflation
vectors) are constructed from the existing Krylov subspace to approximate the interior eigenvectors of the underlying
coefficient matrix, i.e. eigenvectors associated with the smallest eigenvalues by magnitude. This enables the GCRO-DR
solver to avoid the stalling often observed when using the GMRES solver for particularly stiff cases [28]. The recycling
usually speeds up convergence, too. A maximum of 100 Krylov vectors and 20 deflation vectors were used throughout
for the cases considered in this paper.

IV. Results
All results are given in non-dimensional form unless explicitly stated otherwise.

A. Circular cylinder
The widely documented case of laminar flow past a circular cylinder is used for verification of the two subspace

algorithms introduced in this work. The flow condition is for a subcritical Reynolds number of 𝑅𝑒 = 40 and a subsonic
Mach number of 𝑀 = 0.2. The case is computed on a relatively coarse grid of about 10 000 control volumes. The
cylinder has a diameter of 𝐷 = 1 and is located at the origin. The computational domain extends 100𝐷 from the origin
in the radial direction. The steady-state computation was first performed with a convergence tolerance of 10−12. Then,
linearised stability analysis was performed with the steady-state solution as base flow to determine a suitable frequency
for resolvent analysis. In the limiting case that the complex frequency 𝑖𝜔 approaches an eigenvalue _ of the Jacobian
matrix 𝐽, the resolvent operator (𝑖𝜔𝐼 − 𝐽)−1 becomes singular and the optimal forcing and response modes, respectively,
approach the adjoint and direct eigenmodes of 𝐽 corresponding to _ with the maximum gain 𝜎1 approaching infinity. At
the chosen flow conditions, 𝐽 is known to have a nearly unstable mode, with eigenvalue close to the imaginary axis, that
would eventually lead to the well-known vortex shedding instability in the cylinder wake at the critical Reynolds number
of 𝑅𝑒 ≈ 47. The direct eigenproblem, 𝐽�̂� = _�̂�, and adjoint eigenproblem, 𝐽†�̂�+ = _∗�̂�+, were solved for the least
stable eigenmode using the triglobal stability tool described previously [8]. The eigenvalue with the largest real part was
computed to be _ = −0.0275 + 𝑖0.7145, from which a frequency of 𝜔 = 0.7 was chosen for resolvent analysis. The
resolvent problem was solved for 𝑘 = 3 dominant singular triplets using both algorithms. For the KGK algorithm, the
maximum size of the Krylov subspace was set to 𝑚 = 4𝑘 = 12 and the truncation size was set to 𝑡 = 2𝑘 = 6. For the ISI
algorithm, the subspace size was set to 𝑚 = 2𝑘 = 6 only as the number of linear systems per iteration doubles with the
subspace size. The singular triplets were deemed to have converged when the error norm (defined in Eq. (4)) dropped
below an outer convergence tolerance of 10−6. The KGK algorithm required an inner convergence tolerance (of the
preconditioned problem) of 𝜖inner = 10−9 for the linear problems to achieve the prescribed outer tolerance, whereas
𝜖inner = 0.1 was sufficient for the ISI algorithm to guarantee outer convergence. For comparison, the resolvent problem
was also solved using the SVI algorithm [9, 18]. The inner convergence tolerance for the SVI algorithm was gradually
reduced, following the relation 𝜖inner = 10−3 min(1, 𝜖 𝑗 ) where 𝜖 𝑗 refers to the outer error norm of the 𝑗 th singular triplet,
as defined in Eq. 4, so that the linear solution converges progressively deeper as each triplet converges.

The steady-state solutions for the streamwise and cross-stream momentum components are shown in Fig. 1(𝑎) and
(𝑏), respectively. The real parts of the streamwise momentum components of the direct and adjoint modes are shown in
Fig. 1(𝑐) and (𝑑), respectively. The streamwise momentum components were scaled so that they reached a maximum
amplitude of unity with zero phase. Similarly scaled real parts of the streamwise momentum components of the optimal
forcing and response modes are given in Fig. 1(𝑒) and ( 𝑓 ), respectively. There is good qualitative agreement between the
mode shapes as expected. The direct eigenmode and optimal response mode both exhibit vortex shedding downstream
of the cylinder. The first three gains were computed to be 𝜎1 = 2158.98, 𝜎2 = 162.66 and 𝜎3 = 153.86.
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Fig. 1 Circular cylinder test case at 𝑹𝒆 = 40 showing (a) streamwise and (b) cross-stream momentum components
of base flow, the scaled real parts of streamwise momentum component of the leading (c) adjoint and (d) direct
eigenmodes, and the optimal (e) forcing and (f ) response modes.

The convergence of (outer) error norms for the SVI, KGK and ISI algorithms are plotted in Fig. 2(𝑎), (𝑏) and (𝑐),
respectively. These computations were performed using four parallel processes on a Intel® Core™ i9-10900K CPU
processor but the results and convergence trends were independent of the number of parallel processes used. The SVI
algorithm converged the fastest for the first singular triplet which is well-separated from the second singular triplet with
𝜎1/𝜎2 ≈ 13. However, its convergence rate suffered for the second singular triplet whose singular value is close to that
of the third with 𝜎2/𝜎3 ≳ 1 and worsened for the third singular triplet. In fact, the SVI algorithm did not converge to
the correct singular value for 𝜎3 even after 200 outer iterations since 𝜎3 and 𝜎4 = 153.73 are very close to each other.
In contrast, both subspace methods were able to achieve convergence for all three singular triplets. The ISI algorithm
required 558 inexact linear solutions while the KGK algorithm required 86 deep linear solutions. Despite needing far
greater linear solutions, the ISI algorithm completed in 60% the time taken by the KGK algorithm.

Increasing the maximum Krylov subspace improves the performance of the KGK algorithm as more subspace
information is retained and the frequency of discarding (potentially relevant) information is reduced. A maximum
Krylov subspace size of 𝑚 = 33 was sufficient for the KGK algorithm to complete without truncations. Under this
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Fig. 2 Convergence of outer error norms for the first three singular triplets for the circular cylinder case
computed using (a) SVI, (b) KGK and (c) ISI algorithms.

Fig. 3 Convergence of the linear residual norms for all preconditioned (a) forward and (b) adjoint systems for
the circular cylinder case computed using the KGK algorithm with a maximum Krylov subspace of 𝒎 = 33 and
the ISI algorithm with 𝝐inner = 0.5.

best possible scenario, it required 2𝑚 = 66 deep linear solutions and completed 20% faster than with a maximum
Krylov subspace of 𝑚 = 12. Surprisingly, increasing the inner convergence tolerance for the ISI algorithm led to
better performance as well. For example, with 𝜖inner = 0.5, the ISI algorithm required 638 inexact linear solutions but
completed 50% than with 𝜖inner = 0.1. Between the KGK algorithm with a maximum Krylov subspace size of 𝑚 = 33
and the ISI algorithm with 𝜖inner = 0.5, the latter computation completed 65% faster. The superior performance of the
ISI algorithm is due to the lower cost of an inexact linear solution which, for 𝜖inner = 0.5, was, on average, 27 times
faster than one deep linear solution with 𝜖inner = 10−9. Figure 3 shows the convergence of the linear residual 2-norms
∥𝑃−1 (𝒃 − 𝐴𝒙)∥2 for all (left-preconditioned) forward and adjoint linear systems in the two computations. Multiplying
from the left with 𝑃−1 denotes application of the preconditioner. Notice for the ISI algorithm that the initial linear
residual norms gradually decrease with the outer convergence of the singular triplets. For an average forward/adjoint
system, a deep linear solution required 429/471 inner iterations, whereas an inexact linear solution required only 27/40
inner iterations. Since an inexact solution almost never required more than 120 Krylov vectors, no restart was triggered
and, therefore, no recycling (enabled through the GCRO-DR linear equation solver and then effectively operating as
standard GMRES) was used for this cylinder test case.
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Fig. 4 NASA CRM test case at 𝑹𝒆 = 5 × 10−6 and 𝜶 = 3.5 deg showing (a) the steady-state surface pressure
coefficient and the ±0.025 iso-surfaces for the scaled real parts of the streamwise momentum components
of (b) first, (c) second and (d) third dominant response modes. The steady-state zero-skin-friction line is shown
on all plots to indicate flow separation.

B. NASA Common Research Model
The NASA Common Research Model (CRM) is a generic commercial transport aircraft with open-source geometry

to serve as a test case for numerical studies and available experimental data from various wind-tunnel campaigns [29].
The configuration has a design lift coefficient of 0.5 for a wing with an aspect ratio of 9, a taper ratio of 0.275 and
a 35 deg quarter-chord sweep angle. The scaled-down wind-tunnel version is discussed herein featuring a mean
aerodynamic chord of 0.189 m with a semi-span of 0.793 m and reference area (for the half model) of 0.140 m2. For the
wing/body/horizontal-tail configuration, the pylons and nacelles were discarded and the horizontal tail-setting angle was
chosen as 0 deg. The computational mesh has approximately 6.2× 106 points including 170 000 points on solid walls. A
viscous wall normal spacing of less than one is ensured to avoid the need for wall functions in the turbulence modelling.
The hemispherical far-field boundary is located at a distance of 100 semi-span lengths. The flow conditions were
defined according to a test point of the experimental campaign in the European Transonic Windtunnel [30], specifically
a Reynolds number (based on mean aerodynamic chord) of 𝑅𝑒 = 5.0 × 106 and a reference free-stream Mach number of
𝑀 = 0.85. A subcritical angle of attack of 𝛼 = 3.5 deg was chosen. To increase physical realism, the static deformation
due to aerodynamic loading was interpolated for the chosen angle of attack from data measured in run 182 of the
campaign [31]. An angular frequency of 𝜔 = 2.317 close to the frequency of the global wing shock-buffet instability [8]
was chosen for the resolvent analysis. Both subspace methods were used to compute the 𝑘 = 3 most dominant singular
triplets on two Intel® Xeon® Gold 6138 (Skylake) CPU processors with 40 parallel processes each. For the KGK
algorithm, the maximum Krylov subspace size was set to a rather large value of 𝑚 = 50 to minimize, and possibly avoid,
truncations and the truncation size was set to 𝑡 = 25. For the ISI algorithm, the subspace size was chosen as 𝑚 = 2𝑘 = 6.
The inner convergence tolerance was 10−8 for the KGK algorithm while inner convergence tolerances of 0.1 and 0.5
were used for the ISI algorithm. The outer convergence tolerance was set to 10−5 for both algorithms.

The steady-state surface pressure coefficient 𝐶𝑝 plotted in Fig. 4(a) shows the characteristic shock-wave pattern
along the wing span for a transonic configuration. The zero-skin-friction 𝐶 𝑓 = 0 line indicates the shock-induced flow
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Fig. 5 Convergence of outer error norms for first three singular triplets for NASA CRM case computed using
(a) KGK and (b) ISI algorithms.

Fig. 6 Convergence of linear residual norms for all preconditioned (a) forward and (b) adjoint systems for
NASA CRM case.

separation between approximately 38% (where the wing-inboard shock fronts merge) and 62% semi-span location. The
first three gains were computed to be 𝜎1 = 1.67 × 106, 𝜎2 = 8.25 × 104 and 𝜎3 = 7.93 × 104 by both KGK and ISI
algorithms. Figures 4(b), (c) and (d) show the ±0.025 iso-surfaces of the scaled real parts of the streamwise momentum
components of the first, second and third dominant response modes, respectively. The results were scaled such that the
streamwise momentum component reached a maximum value of 1 + 0𝑖. The surface plots indicate the absolute value
of perturbation in the surface pressure coefficient �̂�𝑝 scaled to a maximum value of unity. The dominant response in
Fig. 4(b) bears strong resemblance to the unstable shock-buffet mode reported in detail in [8]. Iso-surfaces for the second
and third responses also emanate from the separation region similar to that of the optimal response but, interestingly, the
coherent structures of the second response mode are aligned in the opposite direction to those of the first and third.

The outer convergence of the two resolvent algorithms is plotted in Fig. 5. The KGK algorithm stalled above the
required outer convergence tolerance of 10−5 for all three singular triplets. The ISI algorithm, however, converged to the
desired accuracy for all three singular triplets with both inner convergence tolerances. The computation with 𝜖inner = 0.1
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completed about 10% faster than that with 𝜖inner = 0.5. The outer convergence of the two resolvent algorithms is plotted
in Fig. 5. The KGK algorithm stalled above the required outer convergence tolerance of 10−5 for all three singular
triplets. The ISI algorithm, however, converged to the desired accuracy for all three singular triplets with both inner
convergence tolerances. The computation with 𝜖inner = 0.1 completed about 10% faster than that with 𝜖inner = 0.5.
For the KGK algorithm, one observes the expected convergence trend whereby the first singular triplet converges the
fastest followed by the second and third singular triplets which converge together more slowly. For the ISI algorithm
with 𝜖inner = 0.1, the first singular triplet converges only slightly faster than the second and third whereas all three
singular triplets converge almost simultaneously with 𝜖inner = 0.5. The convergence of the linear residual norms for the
preconditioned linear systems are plotted in Fig. 6. The convergence for the adjoint systems stalls in the initial iterations
before recovering causing the linear solver to take significantly more iterations to converge for the adjoint systems
compared to the forward systems. Consequently, an inexact adjoint linear solution with a convergence tolerance of 0.1
took only about twice as long as with 0.5. However, since the ISI algorithm with 𝜖inner = 0.1 converged in less than half
the number of outer iterations as with 𝜖inner = 0.5, the former computation was slightly faster. The linear solver stalls
altogether a second time before reaching the specified inner convergence tolerance of 𝜖inner = 10−8 for many of the
adjoint problems preventing the KGK algorithm from reaching the desired outer accuracy. The inexact linear solutions
have no trouble with convergence presenting the ISI algorithm with a clear advantage over the KGK algorithm for large
problems where a deep linear solution is challenging.

V. Conclusions
Single-vector iteration algorithms for resolvent analysis are effective only when one needs to determine the optimal

forcing-gain-response triplet that is well-separated from the sub-optimal ones. When there are competing optimal
modes with clustered singular values or when knowledge of sub-optimal modes is required, subspace methods are more
potent compared to single-vector iteration algorithms. In this work, two subspace methods, the Krylov–Golub–Kahan
and inexact subspace iteration algorithms, have been introduced and explored for the resolvent problem to compute
both optimal and sub-optimal singular triplets. The Krylov–Golub–Kahan algorithm is a Krylov subspace method
with a simple restart strategy that requires deep linear solutions to ensure accurate applications of the matrix inverses.
The inexact subspace iteration algorithm relies on inexact linear solutions to obtain only the corrections to the current
approximations and uses Rayleigh–Ritz acceleration. The circular cylinder case at a sub-critical Reynolds number of
𝑅𝑒 = 40 was used to benchmark the subspace algorithms against a single-vector iteration algorithm. When computing
the three most dominant singular triplets, the single-vector iteration algorithm converged the fastest for the first,
well-separated singular triplet but struggled to converge for the second and stalled for the third. In contrast, both
subspace algorithms managed to converge for all three singular triplets with the inexact subspace iteration algorithm
being superior to the Krylov–Golub–Kahan algorithm thanks to the computationally cheap, inexact linear solutions.
The NASA Common Research Model test case at a Reynolds number of 𝑅𝑒 = 5 × 106, a transonic Mach number
of 𝑀 = 0.85 and a sub-critical (related to transonic buffet onset) angle-of-attack of 𝛼 = 3.5 deg served as a large-scale,
industrially relevant configuration for resolvent analysis. The two subspace algorithms were used with their respective
optimal settings to once again compute the three most dominant singular triplets but only the inexact subspace iteration
algorithm achieved the specified level of convergence.
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