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Shock-wave/boundary-layer interaction on wings can result first in self-sustained flow
unsteadiness called shock buffet and eventually in a structural response called buffeting. While
it is an important aspect of wing design and aircraft certification, particularly for modern
transonic air transport, neither are all of the underlying physics thoroughly understood nor
does a typical industrial analysis make use of the latest simulation capability in unsteady
aerodynamics. Previously, resolvent studies have been carried out for shock buffet on aerofoils,
but only recently has this been done for three-dimensional, practical aircraft [1]. Herein, this
study is expanded upon by using the windowed resolvent method to further investigate the origin
of shock buffet. A novel windowed inexact subspace iterative resolvent algorithm, necessary for
cases of this size, is introduced and scrutinised in an industrial computational fluid dynamics
solver. Essentially, the truncated singular value decomposition of the discretised resolvent
operator is returned, giving the optimal energy gain plus forcing and response modes of the
system at chosen forcing frequencies. Additionally, it allows the filtering of selected regions of the
computational domain (and/or chosen equations). The test cases are a two-dimensional cylinder
for verification purposes and the NASA Common Research Model, for which we previously
performed both triglobal stability and resolvent analyses. We aim to contribute to the question
on the origin of shock buffet on aircraft wings and control thereof.

I. Introduction
Within the field of fluid mechanics, the ability to identify modal features in the flow that can be linked to real-life

flow phenomena can be very useful. This helps design, for instance, aeroplanes, by preventing unwanted behaviour such
as flutter, limit cycle oscillations and shock buffet, to name a few. The latter, shock buffet, is described by self-excited
large-scale oscillations over aeroplane wings at transonic conditions, caused by shock-wave/boundary-layer interactions.
Although it has been known since the 1960s, a complete understanding has not yet been accomplished, and it is therefore
an intensively studied topic. One of the earliest explanations was given in [2], who proposed a feedback loop as the
driving mechanism. Additionally, experimental and numerical work has identified outboard-propagating ‘buffet cells’,
which are a characteristic feature of shock buffet on wings. The discovery of an unstable global mode in [3] was a
catalyst for increasing interest in the subject. Similar studies were conducted on infinite wings [4–6] and recently global
instabilities linked to shock buffet have been found on practical finite-wing aircraft [7, 8]. These studies were extended
to investigate the role of fluid-structure interaction [9, 10]. Additionally, and important for the current study, the aerofoil
work in [11] utilised selective frequency damping alongside global stability analysis. Among other findings, it was
concluded that models for shock buffet dynamics that rely on circumventing the supersonic zone do not describe a
mechanism at the core of shock buffet. Instead, they more likely are a consequence of the phenomenon.

Complementary to global stability analysis, resolvent analysis can further aid in investigating interesting modal
behaviour. Resolvent analysis is concerned with the properties of the resolvent operator, which arises from an input-output
formulation, resulting in an (input) forcing and (output) response mode at a specified forcing frequency. The properties
of this operator can reveal pseudo-resonance due to non-normality of the Jacobian operator of the (Reynolds-averaged)
Navier–Stokes equations. Resolvent analysis has been performed on a myriad of fundamental flow configurations,
such as Poiseuille and turbulent shear flows [12–14]. Relevant to our work, such a study was also conducted for a
two-dimensional aerofoil encountering shock buffet in [15]. Besides uncovering the now well-known aerofoil buffet
dynamics, resolvent analysis also identified a second resonance linked to a wake mode. Equivalent observations were
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possible for three-dimensional infinite wings [16], while pointing towards imminent instabilities early on where global
stability analysis is uninformative.

The method used to achieve triglobal resolvent analysis was of an iterative nature and can be considered a modification
of the ideas presented in [17, 18]. Another route, in a fluid flow context, to enable resolvent analysis for more complex
test cases was presented in [19], specifically randomized resolvent analysis. In addition to the conventional approach,
referring to global forcing/response fields, a so-called spatially windowed resolvent analysis can be performed [20].
Specifically, the forcing and/or response modes are restricted to a smaller region of the flow (conveniently called a
window). Such an analysis has been performed for various flow phenomena, such as jet noise and laminar separation
bubble on a two-dimensional aerofoil [21–23]. A windowed resolvent analysis performed on an aerofoil encountering
shock buffet investigated the importance of multiple regions in the buffet mechanism [24]. Among other findings, the
windowed resolvent method was shown to be capable of recovering non-dominant modes.

The present work will continue the development of the resolvent analysis for practical large aircraft configurations [25],
and, in particular, we look into a windowed variant of the method recently implemented in the industry-grade DLR-TAU
code [26]. With this in place, we aim to further elucidate the origin of finite-wing shock buffet. In our previous work,
the resolvent method was already shown to be a powerful predictive tool in the identification of both modal behaviour
well before (in terms of angle of attack) the onset of self-sustained instability and additional modes not accessible
through a global stability approach. We continue with a brief description of the theory and implementation details
in section II. Focus is on the windowed adaptation of the inexact subspace iterative resolvent algorithm. Results are
discussed in section III and conclusions are given in section IV.

II. Theory and Numerical Approach

A. Physical Models
The governing equations, specifically the Reynolds-averaged Navier–Stokes equation, are written in semi-discrete

form as
¤𝒘 = 𝑹(𝒘) (1)

where 𝒘 is the state vector and 𝑹 is the corresponding non-linear residual. Even though the flow model depends on
a large number of parameters, these are not explicitly exposed for ease of notation. For the resolvent analysis, the
equations undergo a Taylor expansion around a reference state with the fluid unknowns decomposed into a turbulent
time-averaged flow and unsteady fluctuation via 𝒘(𝑡) = �̄� + �̃�(𝑡). Algebraic manipulation results in the equations

¤̃𝒘 = 𝐽�̃� + �̃� (2)

where 𝐽 = 𝜕𝑹/𝜕𝒘 is a large sparse matrix representing the fluid Jacobian matrix. The vector �̃� = �̃� (𝑡) is introduced as
a time-dependent forcing, which can be the sum of external forcing and the terms non-linear in �̃�.

Using orthogonality, eq. (2) is written at each separate angular frequency 𝜔 with �̃�(𝑡) = �̂�𝑒𝑖𝜔𝑡 (and similarly for
the forcing vector) such that,

𝑖𝜔�̂� = 𝐽�̂� + �̂� (3)
where �̂� and �̂� are the components of the response and forcing vector, respectively, at frequency 𝜔. Rearranging leads
to an input-output relation formulated by the resolvent operator R as

�̂� = −R �̂� (4)

where R is explicitly given by (𝐽 − 𝑖𝜔𝐼)−1. The resolvent operator can be thought of as transforming an (input) forcing
vector �̂� into the (output) response state vector �̂� and is the focus of resolvent analysis. Resolvent analysis allows
investigation of both the optimal forcing/response dynamics at a given frequency and, upon traversing an appropriate
frequency range, also for which forcing frequency the largest responses are produced overall, thereby identifying
pertinent modal behaviour.

For a given frequency 𝜔, the maximum energy gain of the system, 𝐺 (𝜔) = 𝜎2
1 , is expressed as

𝐺 (𝜔) = max
�̂�

⟨�̂�, �̂�⟩
⟨ �̂� , �̂� ⟩

= max
�̂�

⟨R†R �̂� , �̂� ⟩
⟨ �̂� , �̂� ⟩

(5)

where ⟨𝒂, 𝒃⟩ = 𝒂𝐻𝑄𝒃 defines the weighted inner product of two arbitrary vectors 𝒂 and 𝒃, with the matrix 𝑄 describing
a suitable positive definite matrix. Herein, considering the convenience of the finite-volume spatial discretisation, the
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matrix 𝑄 contains the discrete cell volumes on its diagonal. Other inner products to represent a suitable energy in the
system can be discussed [27, 28]. The adjoint of the resolvent operator is R†, such that ⟨𝒂,R𝒃⟩ = ⟨R†𝒂, 𝒃⟩, explicitly
stated as R† = 𝑄−1R𝐻𝑄 = (𝑄−1𝐽𝑇𝑄 + 𝑖𝜔𝐼)−1. In general, the optimal gain and its corresponding forcing and response
modes are obtained by computing the singular value decomposition (SVD), R = 𝑈Σ𝑉𝐻 , where Σ is a diagonal matrix
containing the singular values 𝜎𝑖 (with 𝜎𝑖 ≥ 𝜎𝑖+1) and 𝑈 and 𝑉 are matrices unitary with respect to 𝑄 (so that, for
instance, 𝑈𝐻𝑄𝑈 = 𝐼) [29, 30]. We are interested in the dominant modes of the SVD, having the largest singular values
and therefore showing the largest amplification, and a truncated SVD is usually sufficient.

To introduce the windowed resolvent formulation [20, 23], eq. 3 can be rewritten with two window matrices, 𝐵 and 𝐶,
augmented by a relation for observable states in the response mode, 𝒚, such that

𝑖𝜔�̂� = 𝐽�̂� + 𝐵 �̂� (6a)
𝒚 = 𝐶�̂�, (6b)

This introduces the windowed resolvent operator H = 𝐶 (𝐽 − 𝑖𝜔𝐼)−1𝐵 = 𝐶R𝐵 such that 𝒚 = 𝐶�̂� = −H �̂� , which is
analogous to eq. 4. The same steps can be followed for H to compute the optimal gain, response and forcing modes via
a truncated SVD. The advantage, when compared to a conventional resolvent analysis, is that 𝐵 and 𝐶 may be set such
that parts of the domain or quantities of interest can be selectively filtered. For instance, when one is interested in a
particular flow feature that is far from dominant at a certain frequency, the response or forcing domain can be windowed
in such a way that all other, more dominant modes are effectively ‘filtered out’, such as is demonstrated below. In
practice, 𝐵 and 𝐶 can be set to be diagonal matrices with unit weights corresponding to locations inside the window (or
for selected equations) and zeros to those outside, and identity matrices recover the conventional method.

B. Numerical Methods

Non-linear Solver
The Reynolds-averaged Navier–Stokes equations (plus turbulence model) are solved using the industrial DLR-TAU

code which uses a second-order, finite-volume, vertex-centred discretisation [31]. The turbulence closure is provided
by the negative Spalart–Allmaras model using the Boussinesq eddy-viscosity assumption. The inviscid fluxes are
computed using a central scheme with matrix artificial dissipation. The Green–Gauss theorem is used to compute the
gradients of flow variables for viscous fluxes and source terms. The far-field boundary is described as free-stream flow
through a characteristic boundary condition while the no-slip adiabatic condition on viscous walls is enforced strongly.
A steady-state flow solution is calculated via the backward Euler method with lower-upper symmetric Gauss–Seidel
iterations and local time-stepping. A geometric multi-grid method is also used to improve convergence rates.

Inexact Subspace Resolvent Method
Instead of directly computing the SVD of the resolvent operator H (or the equivalent eigenvalue problems HH†

and H†H ), a novel iterative method is chosen, named the inexact subspace iterative resolvent method. Conventional
matrix-forming and/or direct methods are unsuitable due to the size of the linear operators that are required for the test
cases of interest. Fortunately, we are interested in computing only a few of the leading modes with the largest energy
gains. Therefore, we opt for this novel iterative method to compute the singular values (and corresponding vectors) of
the resolvent operator. It is explained in further detail and verified and validated in our companion paper [26]. It replaces
the previously used iterative resolvent method for single vectors [25]. The method is summarised in alg. 1. It works by
forming two subspace matrices 𝑌𝑘 and 𝐹𝑘 to approximate the singular vectors of H = 𝐵R𝐶, in a similar manner to the
implicitly restarted Arnoldi method that has previously been used for solving eigenvalue problems [8, 9]. Furthermore,
the linear solutions required in lines 6 and 16 of the algorithm do not need to reach a deep level of convergence, hence
the method is dubbed inexact.

The inexact subspace method involves applying the inverse of a linear operator to a vector, which in practice means
the solution of a large sparse linear system of equations using an iterative solver due to the size of the operator. For
this purpose, in accordance with the implementation of the triglobal stability tool outlined in [8], we rely on the well
established linear harmonic method in the chosen flow solver, adapted for the requirements of the resolvent method. For
solving the arising linear systems, we use a Krylov subspace method, in particular the generalised conjugate residual
solver with inner orthogonalisation and deflated restarting (GCRO-DR) [32–34] with suitable preconditioning. The
GCRO-DR solver aims to improve on the standard restarted generalized minimal residual method by recycling a suitable
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Algorithm 1 Windowed inexact subspace iterative resolvent method for 𝑘 dominant modes

Require: Resolvent operator H = 𝐶 (𝐽− 𝑖𝜔𝐼)−1𝐵, convergence criterion 𝑡𝑜𝑙, required number of modes 𝑘 and subspace
size 𝑚 ≥ 𝑘

1: Initialise 𝐹𝑚 with 𝑚 random vectors orthogonalised such that 𝐹𝐻
𝑚 𝐵𝑇𝑄𝐵𝐹𝑚 = 𝐼𝑚

2: Initialise 𝑊𝑚 = 0, 𝝈𝑚 = 0, 𝑙 = 0
3: while 𝑙 < 𝑘 do
4: for 𝑗 = 𝑙 + 1 to 𝑚 do
5: Set 𝒘 𝑗 := 𝜎𝑗𝒘 𝑗

6: Solve (𝐽 − 𝑖𝜔𝐼)Δ𝒘 = 𝐵 𝒇 𝑗 − (𝐽 − 𝑖𝜔𝐼)𝒘 𝑗 inexactly
7: Update 𝒘 𝑗 := 𝒘 𝑗 + Δ𝒘
8: Orthogonalise 𝒘 𝑗 := 𝒘 𝑗 −𝑊1: 𝑗−1 (𝑊𝐻

1: 𝑗−1𝐶
𝑇𝑄𝐶𝒘 𝑗 )

9: Normalise 𝒘 𝑗 := 𝒘 𝑗/(𝒘𝐻
𝑗
𝐶𝑇𝑄𝐶𝒘)

10: end for
11: Compute Ξ = 𝐹𝐻

𝑙+1:𝑚𝑄(𝐽 − 𝑖𝜔𝐼)𝑊𝑙+1:𝑚
12: Compute SVD of Ξ = ΨΣΞΦ𝐻 with elements of ΣΞ arranged in ascending order
13: Update 𝐹𝑙+1:𝑚 := 𝐹𝑙+1:𝑚Ψ, 𝑊𝑙+1:𝑚 := 𝑊𝑙+1:𝑚Φ, 𝝈𝑙+1:𝑚 = diag((ΣΞ)−1)

14: for 𝑗 = 𝑙 + 1 to 𝑚 do
15: Set 𝒇 𝑗 := 𝜎𝑗 𝒇 𝑗

16: Solve (𝐽† + 𝑖𝜔𝐼)Δ 𝒇 = 𝐶𝒘 𝑗 − (𝐽† + 𝑖𝜔𝐼) 𝒇 𝑗 inexactly
17: Update 𝒇 𝑗 := 𝒇 𝑗 + Δ 𝒇

18: Orthogonalise 𝒇 𝑗 := 𝒇 𝑗 − 𝐹1: 𝑗−1 (𝐹𝐻
1: 𝑗−1𝐵

𝑇𝑄𝐵 𝒇 𝑗 )
19: Normalise 𝒇 𝑗 := 𝒇 𝑗/( 𝒇𝐻𝑗 𝐵𝑇𝑄𝐵 𝒇 )
20: end for
21: Repeat steps 11-13.

22: for 𝑖 = 𝑙 to 𝑘 do
23: Compute error norm 𝜖𝑖 = max(∥𝜎𝑖 (𝐽 − 𝑖𝜔𝐼)𝒘𝑖 − 𝐵 𝒇 𝑖 ∥, ∥𝜎𝑖 (𝐽† + 𝑖𝜔𝐼) 𝒇 𝑖 − 𝐶𝒘𝑖 ∥) where ∥𝒂∥ = 𝒂𝐻𝑄𝒂
24: if 𝜖𝑖 < 𝑡𝑜𝑙 then
25: Increment number of converged singular triplets 𝑙 := 𝑙 + 1
26: end if
27: end for
28: end while
29: 𝑌𝑘 := 𝐶𝑊𝑘 , 𝐹𝑘 := 𝐵𝐹𝑘

Krylov subspace between restarts (and in principle can also be used to recycle when solving for a sequence of linear
systems such as those arising from a changing right-hand side). This helps preventing the algorithm from stalling
in particularly stiff cases and normally speeds up convergence. While only the matrix-vector product of the shifted
Jacobian operator with an arbitrary vector is needed for the chosen Krylov subspace method, hence a matrix-free method
is possible, herein we use an explicitly formed matrix from a hand-derived, analytical formulation. For preconditioning
in parallel computing, we use a block-Jacobi-type preconditioner with block-local incomplete lower-upper (ILU)
factorisation of either the shifted fluid Jacobian matrix, (𝐽 − 𝑖𝜔𝐼), or its adjoint, (𝐽† + 𝑖𝜔𝐼).

III. Results and Discussion
All results are presented in non-dimensional form, using reference length and free-stream reference states

(e.g. velocity), unless explicitly stated otherwise.

Cylinder Case
The ubiquitous test case of a circular cylinder at a subcritical Reynolds number has been considered while

implementing and verifying the methods discussed in this work. Subcritical laminar circular cylinder flow is discussed
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Table 1 Typical parameter settings used for the inexact subspace iterative solver.

Parameter Value

Maximum number of modes per shift 1
Maximum number of outer iterations 100
Size of subspace for outer iterations 3
Convergence criterion on outer iterations 10-5

Size of Krylov space for inner iterations 120
Number of deflation vectors for inner iterations 20
Convergence criterion on inner iterations 10-1

at a Reynolds number of 𝑅𝑒 = 40 (and low Mach number of 𝑀 = 0.2). A rather coarse mesh with just under 10 000
control volumes was used with the domain extending to a far-field boundary of 100 cylinder diameters, while we
observed that the refinement level (despite its coarseness) is sufficient to characterise the pertinent dynamics similar
to much finer meshes. The convergence tolerance was set to 10−12 throughout both for non-linear iterations of the
state-steady computation and the arising linear systems of the efficient unsteady analyses. Stability analysis predicts
the leading mode (least damped) with an eigenvalue of _ = −0.0275 + 𝑖0.7145, which eventually develops into the
well-known vortex shedding instability at the critical Reynolds number just above 𝑅𝑒 = 47. Overall, results are
consistent with published results in the literature [35, 36]. The conventional resolvent analysis was done for an angular
frequency 𝜔 = 0.7, close to the critical frequency of the Hopf bifurcation at onset condition, and the three leading
optimal and sub-optimal modes were computed. The three singular values of those modes without a window present
are 𝜎1 = 2158.98, 𝜎2 = 162.66 and 𝜎3 = 153.86. The corresponding leading response and forcing modes can be seen
in fig. 2 (top row). The so-called wavemaker can be computed from the direct and adjoint eigenvectors. It is defined
at each point 𝑖 by \𝑖 = ∥𝑃𝑖 �̂�∥2 · ∥𝑃𝑖 �̂�∥2/|⟨�̂�, �̂�⟩|, where 𝑃𝑖 is a diagonal matrix to extract the relevant variables of the
direct (�̂�) and adjoint vectors (�̂�) at a given location 𝑖 describing a discrete control volume. The wavemaker can be seen
as the spatial overlap between the two or, alternatively, as the sensitivity of the dynamics to localised feedback [35].
Similarly in the resolvent case (defined with the response and forcing vectors in place of the direct and adjoint vectors),
it can be thought of as giving the spatial distribution of the rate of work done by the forcing onto the response mode.
Hence, it can therefore indicate where the potential for self-excitation in the flow lies. The wavemaker region (based on
stability analysis) is shown in fig. 1 in agreement with literature [35, 37]. This region was shown to be similar to flow
stabilisation regions around a cylinder that were found experimentally [38].

For the cylinder case, three different windows are considered for demonstration purposes. The first restricts the
response mode to the upper-half plane and the second permits harmonic forcing within the region where (arbitrarily) the
wavemaker values are larger than 0.3. The third restricts the forcing to a circle of radius 5, centred on (𝑥, 𝑧) = (40, 0),
with the aim to not force the wake mode. These results are visualised in fig. 2. In all three cases, the subspace resolvent
method was run with the settings summarised in table 1. For the first scenario (response restricted to the upper-half
plane only), the forcing and response modes are shown in the second row of the figure. The forcing mode exhibits a
strong resemblance to the global forcing mode, shown e.g. in [25, 37]. The response mode is likewise similar to the
non-windowed variant, albeit that the lower-half plane gives, of course, exactly zero amplitudes. The gain for this
case is 𝜎1 = 1592.2, which, interestingly, is almost exactly the gain of the non-windowed case, divided by

√
2, and

this can be shown to be true algebraically. For the second scenario (forcing in the wavemaker region), the forcing and
response modes are shown in the third row of the figure. Again, the response mode presents a strong resemblance to
the non-windowed response mode (albeit with a spatial phase shift, which has not been corrected for the visualisation
herein). The forcing mode reveals the pertinent features of the non-windowed forcing mode (noting the spatial phase
shift) within the defined window. The optimal gain is 𝜎1 = 675.4, demonstrating that even a small region of forcing, if
chosen correctly, can still result in significant energy amplification in the system dynamics. Furthermore, it validates the
wavemaker as a region in which a high potential for self-excitation lies. In the last scenario, shown in the bottom row of
fig. 2, the forcing window is placed far enough downstream of the cylinder that the wake mode is not excited. Indeed,
the optimal gain is only 𝜎1 = 35.6.
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Fig. 1 Wavemaker region for the cylinder.

Fig. 2 Real part of the unsteady x-momentum 𝝆𝒖 for (left) forcing and (right) response modes for the cylinder
case at angular frequency 𝝎 = 0.7. The windows used are (top) none i.e. full domain, (middle top) upper-half
plane for the reponse mode, (middle bottom) the region for which the wavemaker is larger than 0.3 and (bottom)
a circle far away from the cylinder for the forcing mode.
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Fig. 3 Buffet mode at angle of attack 𝜶 = 3.5◦ showing real part of 𝒙-momentum component 𝝆𝒖 for (top left)
response as volumetric iso-contours at ±1.5, (top right) momentum-only resolvent wavemaker, and (bottom)
forcing at non-dimensional span 𝜼 = 0.5. Inset of wavemaker plot shows three iso-surfaces at value 𝜽 = 1 × 105,
5 × 105 and 1 × 106. The sonic and zero-skin-friction lines are also shown.

NASA Common Research Model
The NASA Common Research Model (CRM) resembles a modern passenger aeroplane and exists as both a physical

model (for wind tunnel testing) and a computational model. It was designed as an open-source test case for the
community to explore and compare new ideas and results [39]. The test case is identical to our previous work [8, 9, 25].
The wing has a nominal lift coefficient of 0.5, an aspect ratio of 9, a taper ratio of 0.275 and a 35° quarter-chord
sweep angle. Herein, the scaled-down wind tunnel wing/body/horizontal-tail version is discussed featuring a mean
aerodynamic chord of 0.189 m with a full span of 1.586 m and reference area of 0.280 m2. The pylons and nacelles
were discarded and the tail-setting angle was 0◦. The baseline computational mesh was generated for the half-span
configuration with approximately 6.2 × 106 points including approximately 170 000 points on solid walls. A viscous
wall normal spacing of 𝑦+ < 1 is ensured. The hemispherical far-field boundary is located at a distance of 100 semi-span
lengths. Herein, the Reynolds number (based on mean aerodynamic chord) is 𝑅𝑒 = 5.0 × 106 and the free-stream Mach
number is 𝑀 = 0.85, chosen according to the test entry in the European Transonic Windtunnel [40]. The focus is on
angle of attack 𝛼 = 3.5◦ giving subcritical (with respect to the transonic buffet instability) flow conditions. When
discussing pseudo-resonances in the resolvent results, awareness of weakly damped eigenmodes in the system dynamics
is beneficial, as those can give rise to resonances. These were previously presented in [8]. Most importantly, it was
found that there are no weakly damped eigenmodes present at angles of attack 𝛼 ≤ 3.5◦ that are distinguishable from
the majority of spurious fluid modes. Eventually at angle of attack 𝛼 ≈ 3.7◦, an unstable global mode can be identified
at a frequency 𝜔 ≈ 2.5, linked to shock-buffet dynamics on the wing.

Previously, a conventional resolvent analysis study has been performed for this test case around shock buffet
conditions [1, 25]. Specifically, four angles of attack were considered, 𝛼 = 3.0◦, 3.25◦ and 3.5◦ (below onset) and 3.75◦
(just above onset). Therein, the single-vector iterative resolvent method was also scrutinised comprehensively, using
results on a small test case obtained from a Matlab implementation. The leading singular values from the conventional
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resolvent analysis show an angle-of-attack influence. While there is no strong peak to be found in the singular values
at angles well below the critical value, the development of pronounced amplification due to optimal forcing tells
the potential of the resolvent method as a predictive tool. As said earlier, for angles of attack 𝛼 ≤ 3.5◦, no weakly
damped fluid modes can be found with the stability tool. Developing peaks in the energy gain can hence be explained
by an increasing degree of non-normality in the system indicating pseudo-resonance. An increased angle of attack
just above buffet onset at 𝛼 = 3.75◦ results in a significant increase in energy gain, which has also been found in the
two-dimensional aerofoil study in [15]. At this slightly supercritical angle of attack, the peak position in the gain has
shifted from approximately 𝜔 = 5.0 to a lower value of 𝜔 = 2.5, which corresponds to the frequency of the leading fluid
mode seen in the eigenspectrum [8]. Additionally, it was shown that including fluid-structure interaction did not have a
significant impact on the results of the resolvent analysis. (Pseudo-) resonance with respect to modes that originate in
the structural domain was negligible when compared to the non-normality of the fluid Jacobian operator. The optimal
response and forcing modes at 𝜔 = 3.33 are presented in fig. 3. The response mode shows a strong similarity to the global
shock buffet instability mode, with characteristic buffet cells aft of the shock front and outboard-running/downstream
features inclined to the trailing edge. Similarly, the forcing mode reveals a resemblance to the corresponding adjoint
global mode. The most prominent feature is the oblique line impinging on the shock-foot. It has been shown that
this line coincides with a so-called ‘characteristic line’ and therefore is likely important to the buffet dynamics [15].
Additionally, the so-called resolvent wavemaker, calculated for the wing buffet dynamics [1], is included in the figure
(top right). Similar to the wavemaker from an eigenvalue analysis, it gives the ‘overlap’ of response and forcing modes
and shows from where the instability in a system can originate. Specifically, the (resolvent) wavemaker highlights the
shock foot and immediate downstream separation region. It is therefore expected that the core of the buffet instability is
here. Hence, this region was chosen as one of the windows for the forcing field discussed below.

Next, the windowed resolvent method was run with six different windows for the forcing using the settings in table 1
and the angle of attack is 𝛼 = 3.50◦. These regions are visualised in fig. 4. The first was the 𝑀 > 1 supersonic region.
The second window is the region for which the resolvent wavemaker (calculated for 𝛼 = 3.5◦ and 𝜔 = 3.33) was larger
than 106. The third and fourth are box-shaped windows around the wingtip and inboard (near the wing root), respectively.
These windows are chosen so as to not excite the dominant shock buffet mode, but instead less prevalent features with
substantially lower gain. For instance, the wingtip vortex mode would only be found at frequencies that are an order of
magnitude higher than the buffet mode [1]. The fifth window was defined by all points that lie inside a box-shaped
region roughly describing the projection of the wavemaker onto the wing surface. The sixth is a region behind the shock
in the middle of the wing and underneath the supersonic zone in front of the shock, so as to exclude the supersonic zone
within which the optimal non-windowed mode is mostly situated. It is designed to be similar in function to ‘zone 6’
in [11], which defined a region behind the shock and above the aerofoil. Therein, it was shown that, for aerofoil shock
buffet, it was not possible to suppress the unsteadiness using local selective frequency damping in that region.

Figure 5 summarises the calculated gains for these windows at multiple forcing frequencies. Some interesting
observations can be stated. First, for the supersonic-zone region, shown in fig. 4 (top left) and labelled ‘Mach’ in
fig. 5, the gain shows a broad peak and is very close in magnitude to the non-windowed case, peaking at 𝜔 = 5.0 with
approximately 𝜎1 = 7.0 × 106. This can be expected, since the optimal non-windowed forcing mode lies almost entirely
within this supersonic region. The optimal forcing mode is not visualised herein for brevity, as it is near identical to the
non-windowed forcing mode, shown in fig. 3. The optimal response is identical to the naked eye to the non-windowed
response mode, too, and it is therefore not repeated herein either. Next, the ‘wavemaker’ window, shown in fig. 4
(top right), is discussed. The gains show a similar broad peak behaviour to the non-windowed and supersonic-zone
windowed resolvent analysis, indicating the buffet response is excited, as expected. Although this region consists of only
roughly 1700 points, i.e. less than 0.1% of the total number of control volumes and roughly 10−10% of the total volume
of the computational domain, the gain is approximately 𝜎1 = 3.4 × 106 at 𝜔 = 5.0, roughly half of the gain computed
with the supersonic forcing zone. Like with the cylinder case discussed earlier, despite only forcing a small part of the
flow field, the gain is nonetheless a large fraction of the total optimal gain at this frequency. Figure 6 (top left) visualises
the corresponding forcing mode at 𝜔 = 5.0 for the wavemaker forcing window. The forcing mode shows periodic
features along the span, although they are present further upstream than in the response mode. These observations
reinforce that the wavemaker region, encompassing the shock foot and separation region, is indeed likely at the core of
the buffet phenomenon. Similarly, if the flow in this region could somehow be controlled (cf. the small control cylinder
in the cylinder flow case in [38]), shock buffet might be suppressed.

The wingtip and inboard zones, visualised in the middle row of fig. 4, were devised to prevent the dominant buffet
response mode from emerging. While the response and forcing modes for the wingtip zone are not shown herein, the
wingtip vortex mode is indeed successfully recovered, showing a strong resemblance to the wingtip vortex mode found
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Fig. 4 Visualisation of windowing regions showing zones for (top left) sonic surface, (top right) wavemaker,
(middle left) wingtip and (middle right) inboard, (bottom left) surface and (bottom right) behind the shock.

with a conventional resolvent analysis at 𝜔 ≈ 50, albeit with a longer wavelength, due to the lower forcing frequency
herein [1]. The gain is approximately 𝜎1 = 4 × 103 at 𝜔 = 5.0, and no clear peak is present between 𝜔 = 3.0 and 7.0, in
contrast to the other windows. It is also interesting to note that the gain is similar in magnitude to the non-windowed
gain at 𝜔 = 51.8, where it is the dominant mode. Hence, the wingtip mode is likely not sensitive to forcing frequency.
These results show that a windowed resolvent analysis can filter out selected flow physics and highlight other phenomena
besides the most dominant ones, even if those phenomena would usually not be identified by a conventional resolvent
analysis. Hence, a windowed resolvent analysis could be useful in identifying, analysing or preventing flow features that
are otherwise not discernible at certain forcing frequencies. The inboard zone, on the other hand, for which the forcing
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Fig. 5 Leading singular values 𝝈1 for multiple windowing regions at 𝜶 = 3.5◦. The gains for the surface-zone
(fifth) window fall outside (below) the plotting range and are therefore not visualised.

and response modes are visualised in fig. 6 (bottom left and right, respectively), did also not result in a buffet-like
response mode. Instead, the response mode shows two distinct features. The first is a wake-like structure originating in
the inboard zone, in the direction of travel. The second, however, is reminiscent of the inclined shock buffet features aft
of the wing, seen in fig. 3, although seemingly less dominant here with a gain of approximately 𝜎1 = 4.1 × 103. Such a
mode was not found with the conventional resolvent analysis. Indeed, due to the low gain, it is unlikely that such a mode
would be found with a conventional analysis that prioritises dominant energy gains.

The surface-zone window, shown in the bottom-left of fig. 4, is defined to represent a zone that could realistically
influence the flow in a real-life scenario, for instance by actuators on the surface of the wing [22]. The response mode,
not visualised herein, is again the shock buffet mode. The forcing mode (not shown herein either) is similar to that of
the wavemaker-zone, visualised in fig. 6, although only present on the surface. However, the gain is very low compared
to the non-windowed case (approximately 𝜎1 = 230 at 𝜔 = 3.0 and 𝜎1 = 549 at 𝜔 = 5.0, and hence not visible in fig. 5),
indicating that there is likely not much potential to control shock buffet. From a numerical point of view, the no-slip
boundary condition, enforced strongly at the wing surface, might be a contributing factor, as the momentum equations
are effectively not forced for the vertices at the surface.

For the region behind the shock and underneath the supersonic zone, visualised in the bottom right of fig. 4 and
denoted in fig. 5 by ‘Behind’, the optimal gain is an order of magnitude lower when compared to the non-windowed
system, despite recovering the shock buffet response mode. The forcing mode, shown in fig. 6 (top right), is concentrated
near the boundary layer, both forward and aft of the shock, and is notably absent away from the surface. It seems that
this region, especially behind the shock, is not at the core of the shock buffet, but rather contributes to the dynamics,
similar to the discussion for the two-dimensional case in [11].

IV. Conclusion
A practical resolvent analysis has previously been accomplished for an industry-relevant aircraft configuration,

specifically the NASA CRM [25]. This enables the identification of the optimal forcing and response modes in the entire
computational domain together with the energy gain. The windowed, inexact subspace iterative resolvent algorithm,
further scrutinised in our companion paper [26], makes it possible to restrict the forcing and response fields (either
locally or through selected equations) and is presented herein. This method is verified for a two-dimensional cylinder
case, using either the half-plane or wavemaker region as windows for the response and forcing, respectively. For the
NASA Common Research Model, we restrict the forcing to selected localised flow regions, including, amongst others,
the wavemaker encompassing the shock foot and separated boundary layer, the supersonic region and the wingtip. Using
such as a spatially windowed resolvent analysis, we are able to identify the active regions of the shock-buffet dynamics
on the finite wing, similar to the previous aerofoil work in [11, 24]. The wavemaker zone reinforces the wavemaker as
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Fig. 6 Visualisation of dominant forcing modes calculated using (top left) wavemaker window, (top right)
‘behind the shock’ window and (bottom left) inboard window. The dominant response mode for the inboard
forcing window is shown bottom right. The volumetric iso-contours are the real part of the x-momentum
component 𝝆𝒖 at values of ±0.01 and ±1.5 for forcing and response modes, respectively. The base flow zero
skin-friction line is also shown on the surface for orientation.

the core of the instability, whilst selecting a window on the wing surface roughly where the buffet instability emanates
results in little energy amplification suggesting limited capability for flow control (but this requires more investigation).
Furthermore, it was shown that the windowed resolvent method can filter out unwanted flow features and investigate
modes that would otherwise not be found with a conventional global resolvent method. Lastly, windowing the region
behind the shock showed that this region is less important to the three-dimensional shock buffet phenomenon, similar to
what has been shown for aerofoils. Hence, we contribute to the question on the physical mechanism of finite-wing shock
buffet and, through matching a suitable forcing window to practical constraints for flow control on a real wing, on the
ability to guide the active/passive control of the phenomenon for future wing design.
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