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Shock buffet on wings is a phenomenon caused by strong shock-wave/boundary-
layer interaction resulting first in self-sustained flow unsteadiness and eventually in a
detrimental structural response called buffeting. While it is an important aspect of wing
design and aircraft certification, particularly for modern transonic air transport, not all
the underlying multidisciplinary physics are thoroughly understood. Building upon a
single-discipline shock-buffet stability study, this work now investigates the impact of an
elastic structure in these extreme flow conditions. Specifically, a triglobal stability analysis
of a fluid-structure coupled system is presented, utilising the implicitly restarted Arnoldi
method with a sparse iterative Krylov solver and novel preconditioner. Asymmetry
resulting from a static aeroelastic simulation based on a finite-element model of the
underlying geometry in a wind-tunnel modifies the global modes of the earlier fluid-only
symmetric full-span analysis. A flutter stability analysis at wind-tunnel flow conditions
below shock-buffet onset finds no instability in the structural degrees-of-freedom, whereas
in shock-buffet flow with globally unstable fluid modes additional marginally unstable
structural (and fluid) modes emerge. The developed stability tool for coupled analysis is
instrumental in identifying those physically relevant and strongly coupled modes where a
standard pk-type flutter analysis fails. With the complementary computation of adjoint
eigenmodes, the core of the instability is pinpointed to a relatively small wing area which
is insightful to effect the control and delay of this detrimental transonic unsteadiness.
We contribute to the question on how the presence of the elastic wing structure impacts
on the otherwise pure aerodynamic three-dimensional shock-buffet dynamics.
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1. Introduction

For over a century, the study of aeroelasticity has been pivotal in many real-life
engineering quests (Livne 2003; Shubov 2006; Beran et al. 2017). By investigating
the combined effect of aerodynamic, elastic and inertial forces, countless detrimental
phenomena have been identified and system designs rectified. Torsional divergence,
flutter, limit-cycle oscillations, shock buffet and its structural response called buffeting
are well-known examples witnessed on aircraft and all can (and have) lead to undesirable
reduced overall performance, structural fatigue and worse. Questions on flow stability,
specifically in the absence of structural dynamics, have similarly been studied for many
decades (Theofilis 2011). Owing to the invaluable insights gained over the years, the
means of transportation that we use every day have been designed to be safer and more
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efficient with a reduced environmental footprint. Paramount to all these advancements
are reliable, yet fast and accurate methods to discover how and when these phenomena
occur and, crucially, how to limit their impact or prevent them altogether. Numerical
analysis, alongside experiments, has proven a powerful tool in this regard.

Shock buffet is an aerodynamic phenomenon characterised by self-excited flow oscilla-
tions due to shock-wave /boundary-layer interaction on aircraft wings at transonic speeds.
Although it was first identified in the 1960s, a complete multidisciplinary explanation
remains elusive, despite progress made continually by experiments and numerical inves-
tigations (Tijdeman 1977; Jacquin et al. 2009; Dandois 2016). One of the first theoretical
models by Lee (1990) proposed an acoustic feedback loop that sustained the shock
oscillations, which was corroborated in experimental studies, although contradictory
results and theories have also been put forward (Jacquin et al. 2009; Feldhusen-Hoffmann
et al. 2018; Moise et al. 2022). The first global stability study on an aerofoil in turbulent
flow linked shock buffet to an unstable eigenmode (Crouch et al. 2009), soon followed
by similar findings on infinite straight and swept wings (Paladini et al. 2019a; Crouch
et al. 2019; He & Timme 2021). Spanwise-localised pockets of shear-layer pulsation
synchronised with an outboard-propagating shock oscillation, dubbed buffet cells, that
are correlated with the sweep angle, were found to be a defining feature of three-
dimensional shock buffet (Iovnovich & Raveh 2015; Dandois 2016). The first global
stability study on a finite-wing aircraft by Timme & Thormann (2016) and Timme
(2020) corroborated the insight gained from related experimental work (Dandois 2016;
Sugioka et al. 2018; Masini et al. 2020; Sugioka et al. 2021).

The mutual interaction between an elastic wing structure and shock buffet has been
investigated previously, too. Experimental work on a finite wing found that weak shock-
wave/boundary-layer interaction does not affect the structural response strongly, despite
large flow field fluctuations (Steimle et al. 2012). However, with increasing shock strength
due to higher free-stream Mach number, strong fluid-structure coupling was observed,
despite weaker fluctuations in the flow overall, and the aeroelastic system responded to
the unsteady flow excitation. Importantly, it has been shown, for a pitch-plunge (and
variants thereof) typical section aerofoil, that the introduction of an elastic structure has
the ability to destabilise an otherwise stable flow (Nitzsche et al. 2019). Their work also
points out limitations of traditional flutter prediction methods, such as the so-called pk-
type analysis (Hassig 1971), in tracing all relevant modes, prompting the development of
more advanced methods. This observation is congruent with our discussion. Expanding
global stability analysis by incorporating fluid-structure interaction is indeed an active
research area going beyond transonic wings. Novel methods and physics, with unstable
eigenmodes originating both in the fluid and structural degrees-of-freedom, have been
explored for various configurations, such as a cylinder with splitter plate and spring-
mounted plates and aerofoils (Pfister et al. 2019; Pfister & Marquet 2020; Negi et al.
2020; Moulin & Marquet 2021). Another important earlier study to be pointed out is
that in Lesoinne et al. (2001) where the linearised physics were modelled in a similar
approach to ours and applied to finite-wing flutter in inviscid flow.

This contribution builds upon previous work by Timme (2020), that studied the fluid-
only shock-buffet instability on a finite-wing aircraft, and expands the investigation
by Houtman & Timme (2021), which introduced an elastic structure. We developed
the fluid-structure coupled Jacobian operator, and its integration into the stability
framework, to enable the search for dominant fluid modes while at the same time deter-
mining the impact of the elastic wing structure. Previous work used the so-called Schur
complement method to trace aeroelastic modes describing the wing vibration (Bekemeyer
& Timme 2019; Badcock et al. 2011). This formulation, which can be shown to be
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equivalent to legacy tools in conventional flutter analysis, is an efficient way of establishing
the flutter boundary while making use of computational fluid dynamics functionality for
the aerodynamics. However, it is not suitable for finding fluid instabilities due to the
mathematical structure of modelling the coupled physics. The method favoured herein
does not require any rearrangement or decomposition of the matrix eigenvalue problem.
Choosing a coupled solution approach with an inner-outer iterative structure relying
on the shift-invert spectral transformation necessitated the implementation of a novel
preconditioner for the inner sparse iterative linear equation solver, while offering speed-
up compared to discipline-specific block-Jacobi type preconditioning. In previous work,
the aerostructural coupled system has been solved in the context of adjoint gradient
computation for multidisciplinary optimisation. Discipline-specific preconditioners from
the fluid and structural solvers were reused in Kenway et al. (2014) in a block-Jacobi
fashion, noting that discarding the off-diagonal coupling terms allows for easier paral-
lelisation. Block-Jacobi and Gauss—Seidel preconditioners for a three-field formulation
were compared in Zhang & Zingg (2018). While this is an intricate discussion, clear
performance gains were realised overall when including various coupling terms. A similar
strategy of observing the discipline coupling is followed in our work.

This paper continues with a description of the physical models, linearised analyses
and numerical details in section 2. The focus is on the coupled discrete Jacobian matrix
operator and the adaptation of the inner-outer iterative eigenvalue solver, using the
implicitly restarted Arnoldi method from the ARPACK linear algebra library and a
bespoke sparse iterative linear solver, all made available in the industrial DLR-TAU code.
The adoption of the Sherman—Morrison—-Woodbury formula for the parallel inversion of
block-arrowhead matrices in deriving a preconditioner for the coupled fluid-structure
system and its benefits are discussed, too. Results for the NASA Common Research
Model, introduced as test case in section 3, are scrutinised in section 4, where the
impact of the fluid-structure coupling on both the shock-buffet related direct and adjoint
eigenmodes as well as the structural sensitivity of the instability to identify the core of the
global dynamics, colloquially called wavemaker, are elucidated. A verification test case,
together with an assessment of the numerical methods, is outlined in the appendices.

2. Theory and Methods
2.1. Physical Models of Fluid and Structure

The starting point of our work is the set of governing equations in semi-discrete form
w = R(w), (2.1)

where w is the state vector comprising two parts, wy and ws, to represent the fluid
and structural degrees-of-freedom, respectively, and R is the corresponding discretised
residual operator. The expression (-) denotes a temporal derivative. Equation (2.1)
depends on a large number of parameters which are not explicitly stated herein.

The fluid system is assumed to be governed by the Reynolds-averaged Navier—Stokes
(RANS) equations in three-dimensional space coupled with a suitable turbulence model.
The fluid state vector wy of conservative variables is given by wy = [p, puy, pE, o],
where p is the density, us the Cartesian velocity-field vector, E the specific total energy
and 7 the working variable of the turbulence model, when using the negative Spalart—
Allmaras model (Allmaras et al. 2012). The governing equations written in conservative
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integral form in the arbitrary Lagrangian-Eulerian formulation can be stated as

d
wde + J

- (F - FU - wfa'cf) -ndS = J de, (22)
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25 (1)

where (2(t) is a time-dependent (due to structural motion) arbitrary control volume
enclosed by 02 (t), the vectors F' and F, are the inviscid and viscous fluxes, respectively,
n is the normal vector to df% and S describes the source term of the turbulence model
in our case. The term wy (& - n) to account for flux balances in a moving domain as a
result of the fluid-structure interaction, with «; as the Cartesian mesh velocity vector,
has been exposed explicitly in equation (2.2). The RANS equations (plus turbulence
model) provide the fluid part of equation (2.1) and R contains the spatial discretisation
of the last two integrals and an additional term arising from the geometric conservation
law (Thomas & Lombard 1979), when dealing with the time-dependent discrete control
volumes in the temporal derivative. The dimension of the fluid system is given by the
number of mesh points times the number of conservative variables.

The structural system, defined in a suitable domain §2,(¢) and communicating with
the fluid domain through the fluid/structure interface I'(t) (e.g. the wetted surface of the
wing structure) (Lesoinne et al. 2001; Pfister et al. 2019; Negi et al. 2020), is governed
by the second-order ordinary differential equation,

Mz, + Cxs + Kxy = f, (2.3)

where matrices M, C' and K represent the constant mass, damping and stiffness matrices,
respectively. We discard structural damping throughout, only accounting for the aerody-
namic damping. Vectors f and xs are any present forces, specifically the aerodynamic
pressure and friction forces acting on the interface I' in our case, and the structural
coordinates, respectively. The deformation of the structure, x5, can be expressed as
x; = dn, where @ is a matrix consisting of the spatial orthogonal mode shapes of the
structural system and 1 (modal coordinates) provides the time-dependent amplitude
of each mode shape contributing to the deformation. The velocity of the structural
coordinates is defined as us = &, = &1 for ease of notation in the following. At the
interface, I', the velocity of the structural points equals those of the fluid domain to
enforce the no-slip and no-penetration condition, us = ¢ (= uy). Matrix @, together with
the wind-off structural frequencies, is obtained from an undamped free-vibration analysis
of the underlying finite-element model. The structural equation (2.3) of second-order is
projected into the modal space (using a suitable set of m dominant modes with lowest
frequency) and rewritten as a first-order equation by standard linearisation (Tisseur
& Meerbergen 2001), specifically w, = R, using ws = [nT,hT]T and defining the
structural residual R, as

Rs = Dw, + ﬂE@Tf(wf, wy), (2.4)

where D = [0,1; —®T K®,0] and E = [0,I]7, with I being the m x m identity matrix.
The mass ratio ¥ results from writing the equation in dimensionless form, consistent
with the fluid equations, and is a function of reference fluid density and length in our
formulation. If the mode shapes are mass-normalised such that the generalised mass
matrix becomes $TMP = I, the generalised stiffness matrix, @7 K P, is a diagonal matrix
containing the squares of the angular frequencies of each structural mode. Hence, the
modal structural equations are uncoupled when no generalised aerodynamic forces, 7 f,
are applied. Aerodynamic coupling leads to aeroelastic phenomena.

A time-invariant, static aeroelastic solution of equation (2.1), w = [w},7",0]",
satisfying R(w) = 0 and referred to as a coupled base state, is of special interest for global
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stability analysis and shall be detailed explicitly. The elastic restoring force, resulting
from the static deformation, is in equilibrium with the generalised aerodynamic forces,
and the modal structural equation simplifies to T Kdn = @Tf(wf,ﬁ) with the static
deformation in physical coordinates in domain (2, given as &, = $n. Accordingly, the
static deformation will define the equilibrium fluid domain !_Zf within which the inviscid
and viscous fluxes (and source term of turbulence model) in equation (2.2) are evaluated.
Velocities on the interface I" are, of course, zero. Linear dynamic investigations effectively
look at the perturbations around this coupled equilibrium state.

There are a few points to add to complement the preceding description. First, using
RANS-level aerodynamics, the dimension of the fluid problem is much larger than that of
the structural problem, 2m, due to both the requirements on the resolution of the non-
linear fluid flow and the assumed linear nature of the structural model with constant
(e.g. deformation-independent) mass and stiffness matrices. We note, however, that a
non-linear structure will also result in a large number of structural degrees-of-freedom
according to the detail included in the finite-element model. Second, the innocuous
appearing unsteady aerodynamic forces, f, in the context of aircraft aeroelasticity and
loads typically represent motion-induced (resulting from the wing motion itself linked to
e.g. flutter instability) and gust-induced (with the external excitation originating away
from the wing) contributions. As noted by Hall (2022), a third unsteady aerodynamic
force contribution results from the unstable shock-buffet flow field itself (with the excita-
tion originating at the wing but not requiring its motion). This is a nontrivial discussion.
With no attempt to be exhaustive, one aspect here is that the unsteady aerodynamic
force and the excited wing motion will mutually interact and modulate one another, with
e.g. amplitude-dependent (non-linear) synchronisation taking place in certain scenarios.
While a strict distinction between the motion- and buffet-induced contributions becomes
questionable, particularly in an established shock-buffet/buffeting state, buffet loads are
often initially derived from an assumed rigid wing. Herein we will look at this challenge
by extracting dominant global modes from a converged time-invariant solution at globally
stable pre-onset (and mildly unstable) conditions. Finally, the interface between the fluid
and structural systems plays an important role. Normally the structural coordinates do
not conform with the fluid surface mesh coordinates, and hence a suitable mapping at
the interface between the disciplines is needed, typically by splining the mode shapes
to the surface mesh for the coupled analysis to allow the transfer of aerodynamic loads
and structural deformations between the fluid and modal structural governing equations
without the need for additional transformations.

2.2. Global Stability Analysis

With the governing equations of the fluid and structural systems defined, we can
return to equation (2.1). Decomposing the unknown fluid and structural variables into
static/steady base state and perturbation vectors via w(t) = w + ew(t) (with factor
€ « 1) results, after some more manipulation, in the linearised equations of the form

W= Jw (2.5)

where J = 0R/0w is the coupled Jacobian matrix, which is a large sparse matrix
conveniently expressed as consisting of four blocks J = [Jyf, Js; Jof, Jss], with Jg =
VEPTOf /ows and Js = D + IEPTOf /ow,. In addition, the fluid-to-structure coupling
matrix can be expressed as Jg = [Jfy, Jpy] where Jg, = 0Ry/0n and similarly Jg; =
O0Ry/0n. With these definitions, the fluid Jacobian matrix, J¢ = 0Ry/0wy, is obvious.
When the standard exponential ansatz of the form w(t) = we! is taken, equation (2.5)
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is recast as an eigenvalue problem,
2w = Jw, (2.6)

where A = o + iw denotes the eigenvalue, which is a complex number consisting of a
decay/growth rate o and angular frequency w (with i as the complex unit 4/—1), and
w is the corresponding eigenvector containing the complex spatial amplitudes describing
the coherent dynamics. When o is greater than zero, the system is said to be globally
unstable and this is what must be prevented within the aircraft flight envelope. Hence,
the solution of this eigenvalue problem is desired as a first step in the analysis (once a
non-linear equilibrium solution w of equation (2.1) is available).

A complete study of global instability mechanisms requires the solution of the adjoint
equations. These have now become ubiquitous in fluid mechanics, for application in error
estimation, shape optimisation, flow control and many more (Luchini & Bottaro 2014).
Hence, equation (2.6) is also solved in its (discrete) adjoint form such that

N = JTw (2.7)

where the eigenvalue will be complex conjugate to that of the direct global problem
with corresponding adjoint eigenvector w. The adjoint Jacobian operator J' is defined
through a suitable inner product (b, Ja) = {J'b, a), where {a,b) = a Qb describes the
weighted inner product of two arbitrary vectors a and b, with ) expressing a positive-
definite matrix. The adjoint operator can thus be given explicitly as J = Q= 1J7Q. We
combine a norm that was chosen e.g. in rigid-wing shock-buffet investigations by Sartor
et al. (2015) and Paladini et al. (20194a) and in the study of a rotationally flexible cylinder
with splitter plate in Basso et al. (2021). Specifically, the choice of an inner product and
its resulting norm physically represent a measure of energy in the coupled system,

|w]? = (w,w) = _[? w?wde +nH (QSTKé) n+ 7'7H (éTMdi) 7 (2.8)
¥

Hence, the weight matrix ) contains the discrete cell volumes on its diagonal for fluid
degrees-of-freedom as well as generalised stiffness and mass matrices for the structural
degrees-of-freedom. Observe the equivalence between the modal and physical coordinates,
specifically for the structural elastic strain energy, n{(®T K®)n = ¢ Kz, and similarly
for the structural kinetic energy, ' = n(T M®)n = u? Mu,, with 7 = 7 and
@ being mass-normalised. Other inner products to define the energy norm, particularly
for a compressible fluid, have been discussed in the literature and can be explored in
the future (Yeh & Taira 2019; Bugeat et al. 2019). Due to the non-normality of the
Jacobian operator, the set of direct and adjoint global modes form a bi-orthonormal
basis where (w;, w;) = J;; (once appropriately normalised) with the standard definition
of the Kronecker delta d;;. Where applicable, this test of bi-orthonormality was done
for all computed modes. Regions of high spatial amplitudes in the adjoint vector can
be physically interpreted as those where a harmonic forcing (or initial condition) affects
the direct eigensolution most, i.e. the global flow field is most receptive to such imposed
perturbations. Related to this is resolvent analysis to identify the maximum response to
harmonic forcing, optimised over all possible forcings (Houtman et al. 2022; Houtman
et al. 2023).

Another extension of the concepts comes from combining the direct and adjoint global
modes to form what is often called the wavemaker, which shows the sensitivity of the dy-
namics to localised feedback and can reveal the origin (or core) of an instability (Giannetti
& Luchini 2007). To be consistent and comparable with previous related work (Paladini
et al. 2019a,b), the fluid wavemaker can be defined as the normalised pointwise product



of the direct and adjoint eigenvectors, such that
Opi = | Rity 2 | Ritwy 2 (2.9)

where R; is a diagonal matrix to extract the relevant variables of the direct and adjoint
solution vectors at a given location ¢ describing a discrete control volume. The vector
2-norm is indicated through | - |2, and, importantly, the direct and adjoint eigenvectors
of the coupled system observe the earlier-stated bi-orthonormality to normalise the
wavemaker. Similarly, following the work by Basso et al. (2021), the wavemaker of the
modal structural system can be stated as (defining x = 7 for ease of notation)

055 = |Rn||R;n| + |R;X| | R;X| (2.10)

where diagonal matrix R; extracts the modal degrees-of-freedom denoted by subscript j.
The interested reader is also referred to the work by Skene et al. (2022) that includes an
insightful discussion on different definitions of the wavemaker in the literature.

2.3. Numerical Approach
Static Aeroelastic Base State Calculation

The RANS equations (plus turbulence model) are solved herein using the industrial
DLR-TAU code which relies on a second-order, finite-volume, vertex-centred spatial
discretisation (Schwamborn et al. 2006). The inviscid fluxes are computed using a central
scheme with matrix artificial dissipation. The Green—Gauss theorem is used to evaluate
the gradients of flow variables required for viscous fluxes and source terms, where
needed. Turbulence closure is provided by the negative Spalart—Allmaras model using
the Boussinesq eddy-viscosity assumption. The far-field boundary is described as free-
stream flow through a characteristic boundary condition consistent with the discretisation
of the interior fluxes, while the no-slip, no penetration condition on viscous walls is
enforced strongly. Additionally, when a symmetry plane boundary condition is required
(specifically, for our isolated wing test case to verify the implementation, see appendix A),
this is imposed by removing components of the momentum equations normal to the
plane. The steady-state flow solution is converged to low residual levels approaching
machine epsilon using the implicit backward Euler method with lower-upper symmetric
Gauss—Seidel iterations and local time-stepping for convergence acceleration. A geometric
multi-grid method is also used to improve convergence rates.

The coupled aeroelastic problem requires solving the mass-spring modal structural
equations with applied (generalised) aerodynamic forces iteratively in a staggered fashion
updating the structural and fluid degrees-of-freedom in turn. The mode shapes were
mapped one-to-one to the surface mesh for the fluid equations through interpolation using
radial basis functions (see e.g. Michler (2011)). This allows the transfer of aerodynamic
forces and structural deformations between the fluid and structural equations without
the need for additional transformations. While the Newmark-beta scheme can be used to
integrate the second-order structural equations in time, for the static aeroelastic coupling
where the aerodynamic loads are balanced by the wing stiffness, specifically T K@ n =
T f (wy, ), the structural degrees-of-freedom are updated iteratively based on the latest
loads estimate. The coupling between aerodynamics and structure for these non-linear
iterations (either for computing a base state or for unsteady time-marching) is done
using the tools provided through the FlowSimulator framework, see for instance Reimer
et al. (2020). However, the fluid-structure coupling for linearised analyses in identifying
dominant global modes has been integrated entirely in the TAU flow solver as part of
this work with detail provided in the following.
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Aeroelastic Triglobal Stability Calculation

The Jacobian matrix blocks of the linearisation are evaluated on the statically deformed
geometry for subsequent stability analysis. Matrices Jyy and Jg are computed from
a hand-derived, analytical formulation, while Jy is computed using a central finite-
difference residual evaluation of the fluid equations on the deformed volume mesh, with
mesh deformation applied through a radial basis function approach (see e.g. Michler
(2011)). Specifically, a finite-difference step-size of 1075 is used throughout and the sen-
sitivity of the computed global modes was found to be negligible. Also see previous work
(e.g. Timme & Thormann (2016)) where the frequency-domain aerodynamic response to
structural forcing, applied through the columns of matrix Jz, has been assessed with
respect to time-marching pulse excitation. Forming Jg is trivial due to the linear modal
nature of the structural system. Note that the viscous contribution to the aerodynamic
forces f is discarded herein for stability analysis, leaving the pressure components only,
and the impact of this simplification in the analysis of aircraft wing aeroelasticity was
found to be negligible when compared with time-marching simulation that accounted for
the full aerodynamic force vector including viscous terms (Belesiotis-Kataras & Timme
2021). Details on the meaning of the different matrices and simplifications can be found
in Badcock et al. (2011), while a thorough discussion of the underlying linear harmonic
solver in DLR-TAU can be found in Thormann & Widhalm (2013).

In previous work (Badcock et al. 2011; Timme & Badcock 2011; Timme et al. 2011),
the coupled fluid-structure system was solved using the Schur complement eigenvalue
method. This method utilises the Schur complement matrix S to solve for the structural
part of the eigenvalue problem in equation (2.6). Rearranging gives

SN W, = AWy, (2.11)
where S(\) is expressed as

S()\) = Jy — Sf(Jff — )\I)ilst, (2.12)

and A is an eigenvalue originating in the uncoupled structural system. This is an
important condition, as will be seen below. The second part of the right-hand side in
equation (2.12) is dubbed the interaction (or coupling) matrix S¢ = —Jg (Jrr — A) 1T s
and can be formed in both the frequency and time domain (Timme et al. (2011);
Timme & Badcock (2011)). It was noted by the authors that determining the values
of the Schur complement matrix, specifically the aerodynamic coupling matrix 5S¢,
requires considerable computational effort, if not done efficiently. As it depends on the
steady-state solution and the eigenvalue, scanning over a large parameter space quickly
becomes prohibitive, and thus approximations are needed. While multiple approaches
to approximating matrix S¢ were offered, a linear spline interpolation is chosen as a
surrogate herein while iterating to the eigensolution. Depending on using either A or iw
when forming matrix S¢, the Schur complement method can be shown to be equivalent to
either a classical p or pk flutter analysis (Hassig 1971). It is also intuitive that the absence
of aerodynamics leads to the uncoupled, linear eigenvalue problem for the structural
dynamics, Dw, = Aw,. Finally, the fluid part of the coupled system can be computed
from the other equation of the original coupled matrix problem in equation (2.6),

(Jgp = M)wy = —=J W, (2.13)

and these ideas, and equivalent relations for the adjoint eigenvalue problem, have been
exercised in previous work (Bekemeyer & Timme 2019).

There are two requirements for the Schur complement method to work; an appropriate
shift based on the structural (wind-off) frequencies (or a previously converged solution)
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and the matrix decomposition with relevant eigenmodes from the matrix Jg. With
regards to applying the same method for buffet studies, whilst the former requirement can
be obtained through engineering insight even for a fluid mode, it is not possible to obtain
the latter when interest is in modes emerging from the fluid system. Specifically, we are
not aware of a suitable matrix decomposition that would isolate the leading flow physics
linked to the buffet phenomenon to similarly apply the efficient Schur complement solver.
Hence, a coupled eigenvalue solver is needed, incorporating the full Jacobian matrix. This
can be done by using the methods available through the ARPACK library.

The implicitly restarted Arnoldi method, as implemented in the ARPACK library,
is a routine for finding a set of eigenvalues for large sparse matrices (Sorensen 1992).
Starting with a random search direction v, the algorithm computes, in principle, the so-
called Krylov subspace K, = [v, Jv, J?v, ..., JT"tv] of dimension r. After each successive
multiplication with the Jacobian operator J, the resulting vector is orthonormalised and
added as column to a matrix V.. Following projection, a few Ritz eigenvalues A, and
corresponding Ritz approximate eigenvectors w = V,.y, (where eigenvector y,. is associ-
ated with \,.) of the upper Hessenberg matrix H, = V¥ JV, are good approximations
of those largest eigenvalues of J. A major advantage is that the algorithm needs only
to compute the matrix-vector product Jv, so the full matrix J does not need to be
obtained and stored explicitly. The algorithm can also be run in shift-invert mode to
find the largest eigenvalues closest to a user-defined complex-valued shift ¢ by operating
on vector v with A1 = (J — ¢(I)~! instead of J. To achieve this, a linear system of
the size of the coupled problem needs to be solved and a practical way is using an
iterative Krylov subspace solver, which again heavily relies on matrix-vector products
now with the shifted Jacobian matrix A and this can in principle be done matrix free
for low memory footprints (Knoll & Keyes 2004; U S Vevek et al. 2022a). However, the
matrix-forming approach is used herein. An inner-outer iterative eigenvalue method is
thus established, whereby the outer implicitly restarted Arnoldi process is used to find
the eigenvalues while an inner iterative solver enables the shift-invert operation. The
preconditioned generalised conjugate residual method with inner orthogonalisation and
deflated restarting (GCRO-DR) is chosen as the inner iterative solver (Xu et al. 2016).

Preconditioned Sparse Iterative Solver

The GCRO-DR solver is an iterative method for solving systems of linear equa-
tions (Parks et al. 2006; Eiermann et al. 2000). It utilises the restarted Arnoldi method for
solving the system Ax = b by seeking a solution vector & that minimises the norm of the
residual, |b— Axz|. Specifically, compared with the standard generalized minimal residual
method, GCRO-DR recycles the Krylov subspace between restarts, with the potential to
avoid convergence stall and indeed to accelerate convergence while reducing the required
size of the subspace. Whichever Krylov subspace method is used, a preconditioned version
is normally needed in practice to achieve convergence, with the preconditioner P~!
being an approximation of A~!. Ideally, the operator P~' should be as close to A~ as
possible without incurring a large computational cost for both computing and applying
the preconditioner. In doing so, using preconditioning reduces the condition number of
the system and can offer significant speed-up.

As in previous work, when running the linear harmonic solver in the chosen flow
solver in a distributed-memory parallel computing environment, the implementation
approximates the fluid-only matrix, Jyy, used for preconditioning by a block-Jacobi form.
Specifically, when running n parallel processes, the fluid Jacobian matrix (according to
the partitioned mesh) is split into n block-rows (one block-row per process including all
entries needed for global matrix-vector products), and only the block-diagonal part of
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it, local to this process, is used for preconditioning. Note that it was found beneficial
for reasons of rate of convergence and stability to factorise a matrix which combines
Jacobian matrices arising from approximate first-order and exact second-order spatial
schemes (McCracken et al. 2013; U S Vevek et al. 2022b). This matrix is then factorised
by the incomplete lower-upper method with no fill-in, denoted ILU(0). However, such
approach poses a challenge for a fluid-structure coupled system in parallel, as the coupling
matrices, Jg and Jgp, would be discarded, when using an equivalent discipline-level block-
Jacobi formulation extended to the structural degrees-of-freedom. A new preconditioning
approach, henceforth referred to as arrowhead preconditioner, was developed in the
parallel implementation to address this coupling challenge. Initial testing was done with a
simple case, specifically the Goland wing, as the corresponding coupled Jacobian matrix
was small enough to fit into memory of a single core and be factorised using ILU(0),
without discarding the coupling blocks. The results from these sequential tests were then
used as a benchmark to verify the implementation of the various code additions in parallel
and assess the performance. Details of the methods are described in the appendices.

3. NASA Common Research Model

The NASA Common Research Model (CRM) resembles a modern passenger aeroplane
and exists as both a physical model (for wind-tunnel testing) and a computational
model. It was designed as a universal test case for researchers to compare new ideas
and results (Vassberg et al. 2008). The wing has an aspect ratio of 9, a taper ratio
of 0.275 and a 35° quarter-chord sweep angle. Herein, the scaled-down wind tunnel
wing/body /horizontal-tail version is discussed featuring a mean aerodynamic chord of
0.189 m with a full span of 1.586 m and reference area of 0.280 m2. The pylons and
nacelles were discarded and the horizontal tail-setting angle was 0°. All design details
including aerofoil data can be found in the cited reference.

An unstructured computational mesh has previously been generated for the half-span
simulations in Timme (2020) with the SOLAR mesh generator (Martineau et al. 2006)
and, upon mirroring with respect to the symmetry centre plane, the full-span case has
approximately 12.3 x 10® mesh points with 3.3 x 10° points on solid walls. A viscous wall
normal spacing of y* < 1 is ensured, eliminating the need for wall functions in the flow
model. The spherical far-field boundary is located 100 semi-span lengths away.

The Reynolds number based on mean aerodynamic chord is Re = 5.0 x 10% and the
reference free-stream Mach number is M = 0.85, chosen based on runs 153/182 of the
European Transonic Windtunnel (ETW) test campaign (Lutz et al. 2016). In accordance
with our previous work (Timme 2020), and contrary to the experimental configuration
where the transition location is fixed at 10% local chord length, herein a fully turbulent
boundary layer is assumed. Run 182 measured the static deformation of the elastic wing at
several angles of attack. For intermediate angles not measured, but required for our study
around the shock-buffet onset condition, interpolation of the experimentally-measured
deformations was used (Keye & Gammon 2018). In contrast to the same previous work,
herein the impact of both static and dynamic aeroelastic deformation is simulated (with
validation results provided in the following) rather than pre-deforming the wing based
on the given experimental data and running the fluid simulations on the then quasi-rigid
wing. As such, additional information on the wind-tunnel configuration and conditions
is required. The density ratio (that is, solid-to-fluid density) is approximately 5000 and
the loading factor (i.e. dynamic pressure over Young’s modulus) is 0.33 x 1075 for the
case considered herein. The total temperature and total pressure during the runs were
approximately 300 K and 192 kPa, respectively.
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(a) Mode 2, 40.94 Hz (b) Mode 20, 426.74 Hz (c) Mode 25, 526.93 Hz

(d) Mode 26, 568.48 Hz (¢) Mode 28, 641.54 Hz (f) Mode 30, 679.62 Hz

Figure 1: Representative structural mode shapes for NASA CRM test case with
corresponding wind-off frequencies. Surface colours indicate the modal deformation in
z-direction. Peculiar features on the aircraft surface are the various cut-outs on the
wind-tunnel model for experimental sensors and to house the instrumentation.

The finite-element model used for this study represents the NASA CRM wind-tunnel
geometry (excluding the tunnel itself) and is publicly available. Following a modal
structural analysis, the first 30 normal modes with lowest frequency are kept (Tinoco et al.
2018) which is deemed sufficient considering that the model comes without pylon/nacelle,
vertical tail plane or control surfaces. Importantly, the structural frequency range covers
the shock-buffet frequency range previously identified in Timme (2020). Figure 1 shows
some of these modes, conveniently scaled for visualisation purposes. As expected for
such an aircraft model, the first two modes describe wing bending, as seen for the
starboard wing in figure 1(a). Higher-frequency modes describe various combinations
of wing twist and bending and more complex variations. Other modes primarily capture
fuselage (modes 3 to 6) and tail (modes 9 to 11) motions, and these are then not expected
to be dominant in this study.

4. Results and Discussion

We start with validating the fluid-structure coupled simulations with respect to avail-
able experimental data. This is followed by a flutter analysis and a recap of the aero-
dynamic stability analysis, although assessing the impact of model asymmetry herein
not previously considered in Timme (2020). Last but not least, the majority of the
discussion addresses the aeroelastic stability analysis. All results are stated in their
non-dimensional form, based on the mean aerodynamic chord and reference free-stream
values, unless explicitly specified otherwise. Following the insight gained in previous work,
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Parameter Value
Maximum number of eigenmodes per shift 5
Maximum number of outer iterations 1
Size of Krylov space for outer iterations 30
Convergence criterion on outer iterations 108
Size of Krylov space for inner iterations 120
Number of deflation vectors for inner iterations 20
Convergence criterion on inner iterations 107

Table 1: Typical parameter settings used for inner-outer eigenvalue solver.

typical parameter settings for the present eigenvalue computations are summarised in
table 1. The computation of the interaction matrix for the flutter analysis, which relies
on the same linear harmonic solver, uses parameter settings in accordance with the inner
iterations of the eigenvalue solver. Full-span calculations resulting in nearly 74 x 10°
complex-valued degrees-of-freedom are done on four compute nodes, each having twin
Skylake 6138 processors, 40 hardware cores and 384 GB of memory.

4.1. Validation of Simulation Setup

The static aeroelastic solution of the aircraft model was computed at angles of attack
a = 3.0° 3.5°, 3.7° and 3.75° to match the loaded wind-tunnel shape (interpolated
from run 182 in the ETW campaign) and surface pressure data. Figure 2 shows the
wing bending and twist deformations at o = 3.75° on the port and starboard wing
(evaluated at 50% chord) compared with those measured using stereo pattern tracking
via markers distributed over the wing surface. These markers were affixed to the lower
surface of the port wing (Lutz et al. 2016). Overall good agreement can be observed, on
par with other fluid-structure coupled simulations (Tinoco et al. 2018), with a maximum
bending of approximately 18 mm and a wash-out twist of —1.2° at the wing tip. Note
the variability in the experimental data itself, specifically for the twist deformation in
figure 2(b), previously reported in Keye & Rudnik (2015). The figure includes error bars
describing the confidence interval encompassing 90% of all recorded values for a single
data point. The relevant deformation data for our study was available only for angles of
attack o = 3.0° and 4.0° during the pitch-pause polar. Considering that the difference in
the fluctuation range for these two angles of attack was quite small, linear interpolation
was used for the intermediate a@ = 3.75° (similar to obtaining the mean deformation
itself). Importantly, an asymmetry between the port and starboard wing is also clearly
visible in the numerical data. The cause of this asymmetry lies in the high fidelity of
the finite-element model which takes into account the different cut-outs on each wing to
house experimental sensors and related instrumentation as well as the asymmetric inner
structure of the model itself. These features propagate to the normal mode shapes and
their frequencies. For instance, the first two modes are wing bending for port (at wind-off
structural frequency 39.4 Hz) and starboard (40.9 Hz), respectively, with the latter seen
in figure 1(a). The corresponding surface pressure coefficient of the steady base flow can
be found in figure 3 with good agreement to the experimental measurements at most
spanwise stations. Herein the interest is below and around onset conditions of a global
instability which means, in our modelling framework, the time-invariant, static aeroelastic
solution is approximately equal to the time-averaged mean state, which is what is shown
for the experimental data. A discussion on the seemingly missing experimental data
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Figure 3: Comparison of experimental and numerical surface pressure coefficient data
at angle of attack a = 3.75° and eight spanwise locations. Streamwise coordinate z is
normalised by corresponding local chord length c.

points around the mid semi-span was given in Tinoco et al. (2018) and Timme (2020).
Differences in the surface pressure between port and starboard wing are minor and not
noticeable to the naked eye. Similar levels of agreement were found in the comparison
for all other angles of attack used in this study. Overall, the results are re-assuring that
the fluid-structure coupling has been done correctly (such as defining the mass ratio ¢
and various scalings) and the models are of sufficient fidelity.

4.2. Flutter Analysis

Initially, eleven samples of the interaction matrix S¢ were computed using the lin-
earised frequency-domain solver, assuming simple harmonic structural motion at reduced
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Figure 4: Log-magnitude (top row) and phase (bottom row) of complex entries of matrix
G at angles of attack a = 3.5° and 3.75° over sampling frequency w. Indices above the
plots refer to matrix entries GG;;. Symbols indicate sample locations.

frequencies in the range w = 0 to 3 in increments of 0.3. The sampling frequency range
corresponds to the wind-off structural frequencies, once made dimensionless based on the
actual wind-tunnel flow conditions. Specifically, computing a matrix S¢(w) involves first
solving linear systems with the frequency-shifted fluid Jacobian matrix, (J¢ — iwl),
for each of the m columns of (Jg, + iwJy;) and, second, the projection with the
matrix Jg. Combining the 2m columns of the matrix Jg into m columns has been
discussed at length in other work and is not repeated herein (Badcock et al. 2011;
Timme et al. 2013). This was done at three angles of attack a = 3.0°, 3.5° and 3.75°.
Upon inspection of the results at the highest angle of attack, additional samples were
added in regions of significant activity, bringing the total to 23. Figure 4 shows both the
absolute value and phase of some selected entries of matrix S¢, specifically of its submatrix
G = (PT0f Jowy)(J s —iwl) "1 (Jp, +iwJ ), at two angles of attack. Values at angle of
attack a = 3.0° were found to be almost identical to those at & = 3.5° and are not shown
here for clarity. At the lower angle of attack shown in the figure, the matrix elements
describe a smooth trend with respect to the frequency. At the higher angle of attack,
which corresponds to a shock-buffet condition in the fluid-only analysis, the entries have
significant variation in absolute value and phase in the frequency range where the band
of aerodynamic modes with increased decay rate is observed (Timme 2020), concretely
between approximately w = 2 and 3, indicating, first, a strong aerodynamic response to
a structural forcing and, second, a strong coupling between the fluid and structure as
discussed shortly. The cause lies both in the proximity of the sampling frequency to some
eigenvalues of the fluid system and in the non-normality of the governing equations (He &
Timme 2020). For instance, the significant peaks at a forcing frequency of approximately
w = 2.7 coincide with one computed eigenvalue, labelled ¢/, of the band of shock-buffet
modes shown in figures 5 and 7 below. It must be noted though that interpreting a
linearised frequency-domain aerodynamic response to a structural forcing in the globally
unstable flow at angle of attack o = 3.75° should be done carefully. Also observe the
jumps in the phase going from —7 to m which is due to visualisation purposes, whereas
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Figure 5: Eigenvalues originating in structural system based on pk-type flutter analysis
at a = 3.0°, 3.5°, 3.7° and 3.75° at the flow condition encountered in the wind-tunnel
environment. Mode 28 at o = 3.75°, denoted M, failed to converge and the proper value,
computed with the Arnoldi method, is therefore also shown. A close-up view, indicated
by the red box in (a), is shown in (b) for clarity. The fluid modes denoted by b and
¢ correspond to the leading buffet and destabilised modes, respectively, found with the
Arnoldi method and are included to show their proximity to the structural modes.

the actual flutter calculations with the matrix S¢ are done with the equivalent Cartesian
complex numbers instead of modulus and phase shown in the figure.

Once the interaction matrices have been computed and assessed, they feed into the
flutter stability calculation, specifically equation (2.11). Figure 5 shows the predicted
eigenvalues from the flutter analysis at angles of attack a = 3.0°, 3.5°, 3.7° and 3.75° at
the target flow condition encountered in the wind-tunnel environment. Since tracing the
eigenmodes from the uncoupled system state is somewhat arbitrary and would depend
on how the test point is reached in the wind tunnel, we chose to increase the density until
the simulated flow condition matches the experiment, while keeping all other variables,
specifically velocity, temperature and pressure, frozen at the target condition. The target
corresponds to a density of approximately 1.53 kg m™3. It should be emphasised that, while
the chosen approach to tracing the modes is arbitrary and does not necessarily agree with
how the target condition is reached in the wind tunnel, the mode tracing agrees with the
direct calculation using the Arnoldi method, as shown in section 4.4. The figure itself
appears rather busy, hence a moment is taken to explain it step by step. The eigenvalues
are shown in the complex plane. While the focus is on the eigenmodes originating in the
structural system for wind-off conditions, specifically those of the matrix J, the figure
also includes the shock-buffet modes, labelled b and ¢’ hereafter consistent with previous
work (Timme 2020), in faint colour for angles of attack o = 3.7° (mode b) and 3.75°
(mode '), to demonstrate the connection with the results presented in figure 7. Strictly
speaking, denoting the aeroelastic modes as either structural or fluid modes would not be
correct due to the coupled nature of the problem. For ease of writing, however, we will do
so nevertheless, when the origin of the modes in the uncoupled case can be unambiguously
traced to either the structure or the fluid, as is the case in our investigation.

In the figure, the eigenvalues at angles of attack a = 3.0° and 3.5° show no instabilities
and the modes do not migrate significantly with increasing angle of attack. At angles of
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Figure 6: Visualisation of modal assurance criterion correlating the structural part of
the aeroelastic (structural) modes with the amplitudes of the wind-off finite-element
method (FEM) modes at different angles of attack. At angle of attack o = 3.75° the
corresponding values of the leading aeroelastic (fluid) modes, labelled a, b and ¢, are
included (with mode ¢ in final column).

attack a = 3.7° and 3.75°, it is evident that modes with frequencies below approximately
w = 1.7 have changed also very little compared with the lower angles of attack. At the
same time, instabilities are found for different structural modes at these two higher
angles of attack. Mode 29 and 30 are unstable at o = 3.7°, but decrease greatly in
growth/decay rate at a = 3.75°. This strong decrease is also seen for modes 22, 23
and 25. In contrast, modes 19 to 21 are destabilised further to have an increased growth
rate, bringing these modes into the unstable half-plane. However, mode 28 at angle of
attack o = 3.75° (denoted by symbol W), did not trace correctly despite all efforts and the
additional samples in this frequency range to avoid heavy reliance on interpolation of the
matrix S€. Instead it jumped onto an odd state. This was attributed to the fact that the
entries of the interaction matrix S¢, and therefore S(\) in equation (2.12), show extreme
variation due to the shifted fluid Jacobian matrix, (Jy — AI), being close to singular due
to the proximity to the mode labelled ¢ in figure 7. Indeed, mode ¢’ crosses the imaginary
axis when going from a fluid-only to the coupled system, passing in close distance to the
troublesome mode 28 while increasing the value of fluid density. This provides another
reason for the use of the Arnoldi method, besides the ability to compute fluid modes in
the first place. It can distinguish between fluid and structural modes in highly contested
regions. The correct mode 28 coming from the ARPACK calculation is therefore also
included in the figure, denoted by the green square labelled ‘Mode 28’. It has been noted
that the second term of matrix Js = D + 9EPT0f /0wy can often be discarded (Timme
et al. 2011). This was confirmed herein by evaluating the sensitivity of the generalised
forces, ®Tf, with respect to the modal amplitudes 7 (at fixed base flow solution). The
added term had negligible influence on the results. Viscous force contributions were also
discarded for similar reasons, as outlined earlier.

To identify the composition of the structural entries of an eigenmode, we adopted and
adapted the modal assurance criterion (MAC) (Allemang 2003), defined herein as

‘eiTﬁjP

MAC(i, j) = —— tal
G = ey @77

(4.1)

with e; as linearly independent unit basis vectors to represent one free-vibration mode
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shape at a time and ﬁj indicating the structural part of the coupled eigenmodes,
respectively. In general terms, the MAC gives an indication of the consistency between
modes (such as those measured experimentally and computed from a numerical model)
and can take a value between 0 and 1, with 1 indicating fully consistent mode shapes.
Figure 6 shows the MAC of the structural part, 77, of the structural eigenmodes computed
using the Schur complement method compared with the amplitudes of the wind-off
normal modes for angles of attack of o = 3.0°, 3.5° and 3.75°. (Mode 28 at angle of
attack oo = 3.75° uses the solution from the Arnoldi method, as explained earlier.) Recall
that the aircraft deformation results from x5 = &1 with @ as the column matrix of spatial
orthogonal normal mode shapes. The structural part of the six fluid modes, specifically
the pairs a, b and ¢, computed using the Arnoldi method are included as well for the
highest considered angle of attack as it is rather instructive. For the structural modes
at all angles of attack, the MAC is dominated by the diagonal, indicating the largest
contributions to the eigenmodes come from the corresponding normal modes. This also
gives a means of identifying whether a mode originates in the fluid or structural system,
as the MAC for a structural mode is likely to be dominated by a single entry. At angles of
attack a = 3.0° and 3.5°, no discernible difference is present and all off-diagonal entries
are at least an order of magnitude lower, as no significant input from other modes is
present. Noteworthy are the three pairs of modes, specifically modes 1/2, 14/15 and
19/20, which have a comparably high MAC between them. This can be explained by
these pairs having similar mode shapes and/or close wind-off frequencies. For instance,
modes 1 (39.4 Hz) and 2 (40.9 Hz) are both wing bending emphasising either port
or starboard deformation. At angle of attack o = 3.75°, the MAC for modes 1 to 18
shows rather similar features compared to the two lower angles of attack. However, the
structural parts of the aeroelastic eigenvectors 19 to 30 now come with a significant
contribution from a wide range of normal modes. This observation agrees with the
discussion around figure 5. Modes 20 to 25, the frequencies of which lie around the
frequency of the leading fluid modes, seem to have a particularly salient interconnection,
indicating that the aerodynamics related to the shock-buffet phenomenon can cause a
strong coupling between structural degrees-of-freedom. In addition, a clear contribution
gap of normal modes 3 to 6 and 9 to 11 to those active higher-frequency aeroelastic
modes is noticeable. Upon inspection of the free-vibration mode shapes, it can be said
that modes 3 to 6 are dominated by fuselage bending and modes 9 to 11 are dominant
on the horizontal tail. Indeed, the shock-buffet unsteadiness on the wings (and its wake)
does not heavily impact on the horizontal tail in this study. Finally, the structural parts
of the shock-buffet modes (a to ¢), discussed in more detail below, have contributions
from most normal modes (except those aforementioned fuselage and tail modes) and, in
particular, from those in the same frequency range as the shock-buffet dynamics.

4.3. Aerodynamic Global Stability Analysis

The interest now turns to elucidating the impact of the asymmetrically deformed
full-span wing geometry on the aerodynamic stability characteristics at angles of attack
a = 3.7° and 3.75°. For the eigenspectra computed with the shift-invert Arnoldi method,
multiple shifts were used to cover the relevant frequency range. Figure 7(a) shows the
eigenspectra of the fluid-only system, as computed on the perfectly symmetric case
(symmetric with respect to the fuselage centre plane) and the asymmetric case from
our static aeroelastic simulation, cf. the deformation presented in figure 2. The full-
span symmetric data are taken from Timme (2020) and the labelling follows accordingly.
While the symmetric, pre-deformed geometry (corresponding to deformations measured
in run 182 of the experimental campaign) gives two nearly identical unstable eigen-
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Figure 7: Comparison of eigenspectra showing (a) fluid-only results for symmetric versus
asymmetric static deformation at angle of attack o = 3.75° and (b) asymmetric fluid-
only versus coupled aeroelastic results, all computed with the Arnoldi method. Modes are
labelled according to Timme (2020), along with mode ¢’, which migrates into the unstable
half-plane in the coupled system. For reference in (b), all faint-coloured fluid-structure
interaction (FSI) modes are structural modes with the red-dashed box indicating the
relevant region from figure 5.

values at approximately A = 0.16 + 2.37¢, the asymmetric geometry from the static
coupling simulation results in two visibly distinct eigenvalues. In the symmetric case, the
corresponding eigenvectors revealed symmetric/anti-symmetric coherent spatial features
of equal amplitudes on both wings. An interpretation is that unsteadiness on the two
wings is more or less independent (leaving some coupling effects from the global flow
field aside). Interestingly, for the asymmetric, statically deformed geometry, on the other
hand, the coherent spatial structures of the two unstable modes, while appearing similar
to the coherent features on the symmetric geometry, now dominate one wing each, as
presented in figure 8. The figure shows the magnitude of the unsteady surface pressure
coefficient of the two unstable global shock-buffet modes, labelled b in figure 7, and a
visualisation of coherent structures through the volumetric iso-surfaces of the real part of
the z-momentum pu at values of +0.75. Note that the mode with the highest growth rate
(in figure 8(a)) shows activity on the port wing. Recall from Timme (2020) that those
modes are discrete realisations of the continuous band of medium-wavelength modes
reported on infinite swept wings (Crouch et al. 2019; Paladini et al. 2019a; He & Timme
2021). Hence, the fluid modes a to ¢ (and additional modes visualised in Timme (2020)),
linked to shock buffet on a finite swept wing, all come with similar coherent structures
with a spanwise wavelength/wavenumber correlated with the frequency. Note that the
distinct mode labelled ¢’ migrated significantly, approaching the unstable region, due to
the increased physical realism of simulating an asymmetric static aeroelastic deformation
and we will return to discussing this mode shortly.

4.4. Coupled Aeroelastic Global Stability Analysis

The ramifications of including an elastic aircraft structure in the shock-buffet stability
analysis are now addressed. Figure 7(b) gives the eigenspectra as computed by ARPACK
for the fluid-only system and for the coupled system (and should be examined in unison
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Figure 8: Magnitude of unsteady surface pressure coefficient |CA‘p| and volumetric
iso-surfaces of real part of z-momentum pu at values of +0.75 of (a) leading and
(b) second unstable global modes from fluid-only stability analysis on statically deformed,
asymmetric geometry at angle of attack a = 3.75°. Underlying eigenvectors are scaled to
unit length with respect to the inner product, specifically (@, wy) = 1. The base-flow
zero-skin-friction line is also shown on the surface.

with figure 5). Although this figure also shows results for angle of attack o = 3.7° for
completeness to demonstrate the impact a fluid-structure coupled approach can have
in the vicinity of instability onset, the focus here is on angle of attack o = 3.75°.
Emphasising it again, all structural modes found with the earlier pk-type flutter method
(bar the aforementioned difficulties with mode 28) discussed in section 4.2 were also
identified by the Arnoldi method applied to the coupled system, further confirming
that the implementation is correct. Multiple interesting features can be observed. The
discussion focuses on three regions of the eigenspectrum, specifically the leading shock-
buffet modes b, the unstable structural modes near the angular frequency w = 1.8, and
the unstable modes 27, 28 and ¢’ at approximately w = 2.7.

First, the two unstable shock-buffet modes, denoted b, are also observed in the coupled
system, albeit at slightly decreased frequencies and increased growth rates. This suggests
that including an elastic structure could destabilise an otherwise stable fluid-only mode
at a reduced angle of attack (Nitzsche et al. 2019). The results indicate that this change
in onset angle of attack is small (particularly when compared with other typical factors
having an impact on this type of simulation, such as turbulence modelling). However, it
is important to point out that the migration of the leading buffet-related modes for the
current test case is rather rapid (cf. figure 6 in Timme (2020)). Specifically, the leading
modes b only emerge from the dense cloud of spurious nondescript modes, to become
identifiable from a global stability analysis, at an angle of attack of approximately o =
3.6°. Also observe, as exemplified for the near-onset angle of attack o = 3.7° in our test
case, that the leading shock-buffet modes b are influenced in their migration by structural
mode 26. These shock-buffet modes again emphasise a separate wing each, as pictured
in figure 9(a) and (b), and the surface flow characteristics (not included in the plot for
reasons of clarity) and the volumetric iso-surfaces are very similar to their fluid-only
counterparts in figure 8. An interpretation could be that the shock-buffet unsteadiness
remains the dominant physics even when including the elastic wing structure. Having said
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Figure 9: Visualisation of (a) leading and (b) second shock-buffet modes of fluid-structure
coupled system (labelled b in figure 7) at angle of attack o = 3.75°. Surface contours
show real part of deformation in z-direction derived from structural part 7} of coupled
eigenvector, while volumetric iso-surfaces illustrate real part of z-momentum pu at
values of +0.75. Underlying direct eigenvectors are unit length with respect to the inner
product, specifically {(w,w) = 1, whereas the adjoint eigenvector additionally satisfies
bi-orthonormality, specifically (w,w) = 1. Slices of (¢) direct mode at dimensionless
span 17 = 0.66, (d) adjoint mode at n = 0.55 and (e) momentum-only wavemaker at
1 = 0.576 are also shown. The inset of (e) shows iso-surfaces of the wavemaker at values
of 6y = 5x10%, 1 x 10% and 1 x 10*. All slices include the base-flow sonic line (solid
black). The base-flow zero-skin-friction line is also shown in (a), (b) and inset of (e).

this, the structural part of the eigenvectors shows highest activity (i.e. deformation) on
the same wing as the coherent spatial flow features, possibly revealing a coupling effect.
To be clear, the unsteady wing deformation is visualised through the relation £, = &7
and the real part of the dominant z-component (predominantly normal to the wing
surface) is shown in the figure. To aid reproducibility of the results, when plotting the
structural part of eigenvectors in physical space herein, the underlying vector 77 was scaled
so that the phase of its modal degree-of-freedom with the highest magnitude was forced
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Figure 10: Visualisation of structural part of leading shock-buffet mode b showing
imaginary part of deformation in z-direction for (a) direct (cf. the real part in figure 9(a))
and (b) adjoint mode. Corresponding structural wavemaker is given in (¢). The base-flow
zero-skin-friction line is also included for orientation.

to be zero. In addition, the plot of the MAC (cf. figure 6) describing the composition of
the structural part of these fluid modes indicates a strong contribution from, and hence
coupling with, most of the wind-off structural mode shapes (bar the aforementioned
fuselage and empennage modes). The largest contributions come from modes 19 to 24,
having wind-off frequencies close to the lower shock-buffet frequency range. Consequently,
the structural motion described by these coupled fluid modes is a mix of several wind-off
structural mode shapes that combine in a non-trivial manner. When visualised over a
period of oscillation via Z4(t) = @7 e* + c.c. (with c.c. denoting the complex conjugate
eigensolution, cf. figures 9(a) and 10(a)), the wing deformation resembles a stationary
oscillation predominantly along the trailing edge towards the outboard region of the large
scale coherent flow structures. The differences in deformation magnitude between port
and starboard wings must be interpreted together with the static deformation in figure 2.
Likewise, the adjoint modes (shown as a representative slice at constant span for the
leading eigenmode in figure 9(d)) are again very similar to their fluid-only counterpart. As
is often found with adjoint modes in external aerodynamics, coherent features reveal both
a strong upstream support compared with their corresponding direct mode (in figure 9(c))
and little spatial overlap. A triangular structure is visible, resembling the observations
for the span-periodic modes on infinite wings (Paladini et al. 2019a; He & Timme
2020). Similarly, for the two-dimensional adjoint aerofoil mode (and accordingly the
span-uniform mode on the infinite wing) it was argued that the oblique lines, impinging
near the shock foot and therefore likely to be important in the global dynamics, coincide
with so-called characteristic lines (Sartor et al. 2015).

Figure 9(e) visualises the fluid wavemaker (computed with only the momentum com-
ponents of the direct and adjoint solution vectors) for the leading shock-buffet mode as
a slice at constant span alongside three volumetric iso-surfaces over the wing surface.
Discernible sensitivity to localised feedback can be pinpointed in (and above) the sep-
aration region behind the shock foot, having relatively little activity around the shock
wave itself, with quite a narrow span extent overall. Close inspection of the inset plot
shows the highest value of the wavemaker, 0 = 1 x 104, right at the shock foot where
shock-induced boundary-layer separation initiates. This is an important result of our
study, showing the wavemaker related to shock buffet on a finite wing for the first time
and extends the insight gained from previous aerofoil and infinite-wing studies (Paladini
et al. 2019a). This also reinforces recent arguments trying to establish the active localities
involved in the instability. Paladini et al. (2019b) identified the shock foot as the core
of the instability and the separated boundary layer and the shock front as essential in
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the dynamics. Moise et al. (2022) bring arguments that feedback loops involving wave
propagation mechanisms, as suggested by Lee’s model (Lee 1990), are not at the heart of
aerofoil shock buffet and question the role of the shock wave as either passive or active in
combination with the separated boundary layer. The structural wavemaker is shown in
figure 10(c) with the direct and adjoint structural deformations given in figure 10(a, b).
To be precise, for visualisation purposes, what is shown in figure 10(c) is a modification
of the structural wavemaker, defined earlier for modal coordinates in equation (2.10),
using physical Cartesian coordinates & = (x5, ys, 25) instead, specifically,

Osi = |Ris|2 | Ris|2 + | Ritas |2 | Ritis]l2 (4.2)

where the diagonal matrix R; extracts the direct and adjoint structural solution at a
given spatial location ¢, and the vector 2-norm is indicated by | - |2. Considering the
values of the respective wavemakers, this would suggest that the buffet phenomenon
can be most effectively influenced by providing feedback through the fluid degrees-of-
freedom. This would agree with the observation that the shock-buffet unsteadiness does
not require structural vibration to initiate or self-sustain. Having said this, the spatial
distribution of the structural wavemaker is interesting in that it emphasises the trailing
edge region of the wing approximately where the large scale coherent flow perturbations
are located. However, trying to relate the wavemaker to the stiffness and mass properties
of the underlying wing structure is a rather intricate discussion. Nevertheless, our
identification of the fluid and structural wakemakers could also be useful for realising
effective control strategies for the buffet phenomenon, and the interested reader is referred
to e.g. D’Aguanno et al. (2019) and Sartor et al. (2020).

Second, in figures 5 and 7(b), for the group of modes near angular frequency w = 1.8,
the Arnoldi method does indeed identify three unstable structural modes, specifically
modes 19, 20 and 21, also found by the earlier flutter analysis. The coherent flow features
of these modes’ eigenfunctions (not explicitly shown herein for reasons of brevity) closely
resemble those of the shock-buffet modes. Having said this, as noted earlier, a correlation
between the frequencies of shock-buffet modes and their spatial amplitudes (specifically
the spanwise wavelength of coherent flow features) was reported in Timme (2020), which
is also seen in the flow features of the structural modes. For instance, the spanwise
wavelengths are larger than those of the shock-buffet modes b, in accordance with their
lower frequencies. In figure 6, the entries of the MAC for these modes are largest in their
respective underlying wind-off structural modes, as is expected, while also revealing a
strong coupling activity with neighbouring modes.

Third, in figure 7(b), for the group of eigenmodes near angular frequency w = 2.7,
one must first be able to identify and distinguish the different modes unambiguously,
considering that the pk-type Schur complement method was unable to trace mode 28
(cf. the discussion surrounding figure 5). The coherent flow features of eigenmodes 27
and 28 are similar to the shock-buffet modes b (and indeed modes ¢ and ¢’), specifically
the one emphasising the port wing, but have smaller spanwise wavelengths, as is expected
according to their respective higher frequencies (Timme 2020). The entries of the MAC
in figure 6 are dominated by the corresponding wind-off modes. This strong diagonal
dominance in the MAC for the structural eigenmodes no matter the angle of attack has
been observed throughout, e.g. it is also the case for the second group of interesting
(unstable) modes near angular frequency w = 1.8. Hence, even though the Schur
complement method failed for one mode, when traced from wind-off conditions, the
success using the Arnoldi method clearly identifies it as the missing mode 28, originating
in the structural system. Mode 28 is visualised in figure 11(a). Besides the now familiar
coherent flow features, the structural contribution in the eigenvector mainly describes,



Figure 11: Visualisation of (a) structural mode 28 and (b) unstable mode ¢’ of the coupled
system. Variables and plotting styles are identical to those in figure 9.

in agreement with the discussion on the MAC, the wind-off structural mode seen in
figure 1(e) that accounts for wing twist in the outer span stations. Mode 27 (not shown in
figure 1) comes with a strong deformation on the horizontal tail plane. For complementary
insight into these unstable structural modes such as a frequency syncing, the reader is
referred to the unsteady time-marching fluid-structure coupled simulations on the same
test case, while focusing both on the initial growth of disturbances and the non-linear
saturation, in Belesiotis-Kataras & Timme (2021). Turning the attention to the last
unstable mode in the third group of interesting modes, the entries of the MAC for mode ¢/
(last column in figure 6) are largest for wind-off structural modes 28 and 29, suggesting it
is indeed a fluid mode. However, its proximity to the structural modes gives it a notably
different behaviour in the MAC than the other fluid modes, with a larger emphasis on
the nearby structural modes. Compared with the other fluid modes, which all show a
non-trivial combination of wind-off modes to isolate the structural activity where the flow
unsteadiness sits (cf. figure 9(a, b)), mode ¢ reveals dominant deformation from mode 28
on the starboard wing and a somewhat stronger deformation from mode 29 on the port
side, as seen in figure 11(b). Note that wind-off structural mode 29 appears anti-symmetric
to mode 30 shown in figure 1(f). The fluid mode ¢/, which has now migrated into the
unstable half-plane due to strong fluid-structure interaction, has coherent flow features
around the port wing and these are very similar to those of its fluid-only counterpart
(not shown herein). Besides our earlier statement that the coupling of aerodynamics with
an elastic wing structure could destabilise the global flow field earlier, a second finding
in this regard is the ability to destabilise additional, otherwise stable, fluid modes.

To further quantify the strength of fluid-structure coupling in the different direct
eigenmodes, we took inspiration from a visualisation idea presented in Negi et al.
(2021). In figure 12, the coupling ratio defined as {w,, ws)/{w,w) (with (W, ws) =
27Kz, + a M, cf. section 2.2) is plotted for a selection of eigenmodes in the
shock-buffet frequency range. The ratio defines the weight of the structural and fluid
components in the eigenvector and can also be used to identify whether a mode originates
in the structural or fluid system. Generally, if its value is low, it is a fluid-dominated
mode. Vice versa, if it is high, the structural components dominate suggesting an origin
in the structural system. Importantly, considering the variety of possible vector norms
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Figure 12: Coupling ratio for coupled modes at various angles of attack. Fluid and
structural modes are denoted with half- and fully-filled markers, respectively.

that can be used, the coupling ratio is best interpreted for a chosen norm while looking
at the trend for a changing significant parameter, such as angle of attack in our study.
The figure reveals interesting features for the different angles of attack presented. Note,
results for angle of attack o = 3.7° are similar to those at a = 3.75° and therefore
not shown here. First, at angles of attack a = 3.0° and 3.5°, both below buffet onset,
all relevant modes in the spectrum have relatively high values in the coupling ratio,
confirming that they are indeed structural modes and no strong coupling is present.
Second, near buffet onset, all structural modes have approximately two to three orders
of magnitude lower values in the coupling ratio due to more weight in the fluid entries.
The physically-relevant fluid modes a to ¢ (only discernible for angle of attack o = 3.75°)
have the lowest coupling ratio, indicating they are indeed fluid modes with relatively
lower weight in the structural entries. Since the projection of the unstable shock-buffet
(fluid) eigenmodes onto the structural degrees-of-freedom is nevertheless non-trivial, one
can expect an aeroelastic response. Third, fluid mode ¢’ at angle of attack o = 3.75°
appears in the ratio similar to its neighbouring structural modes, distinguishing it from
the other fluid modes. The strong coupling of fluid and structure, which eventually causes
the destabilisation of this mode, further shows itself in this visualisation. Also, while
the applied vector norm must be assumed, comparing with the incompressible pitching
aerofoil results at transitional Reynolds numbers presented in Negi et al. (2021) that
indicate several orders of magnitude separation in the ratio between high-frequency fluid
and low-frequency aeroelastic modes, our results would suggest stronger fluid-structure
coupled interactions with fluid and structural modes in close frequency proximity.

5. Conclusion

The interaction between an elastic wing structure and the shock-buffet phenomenon
that is a self-sustained flow unsteadiness even in the absence of wing vibration was
investigated herein. For this purpose the necessary modifications to the linear harmonic
incarnation of the industrial DLR-TAU solver were outlined that implemented a fluid-
structure coupled formulation enabling its global mode computation using the shift-invert
implicitly restarted Arnoldi method as outer iteration together with an inner sparse
iterative linear equation solver. The critical component of the inner Krylov method
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is effective preconditioning that accounts for the discipline coupling and for that a
novel approach based on the manipulation of a so-called block-arrowhead matrix was
selected that offers speed-up gains in parallel computation needed for a stiff aircraft
case in turbulent transonic flow. These code extensions permitted the first computation
of dominant fluid modes related to shock buffet alongside modes originating in the
structural system, even in close frequency proximity, when a conventional pk-type flutter
analysis can fail. The chosen academic test case was the well-known high-speed NASA
Common Research Model with available pressure and deformation data from a previous
experimental wind-tunnel test campaign.

Validating the simulation setup for a free-stream Mach number of 0.85, a chord
Reynolds number of 5x 108 and several angles of attack below and in the vicinity of shock-
buffet onset, static aeroelastic deformations together with the steady base-flow pressure
distributions showed good agreement with measured wind-tunnel data, and those results
were used as base state for all subsequent linearised analyses. Importantly, an asymmetric
wing deformation (with respect to the fuselage centre plane), as a consequence of using a
finite-element structural model of the actual wind-tunnel geometry, was observed, which
effectively resulted in breaking up the symmetric/anti-symmetric pairs of full-span modes
found in a previous study using almost perfect symmetric wing deformation. For routine
flutter analysis, generalised aerodynamic influence coefficient matrices were computed
with the linear harmonic solver with respect to modal structural excitation at distinct
frequencies. It was shown how a conventional pk-type flutter method can fail tracing
all structural modes unambiguously, owing to a strong interaction of the structural
degrees-of-freedom with a passing fluid mode. The importance of having access to a
coupled eigenmode solver, such as the one presented herein, was hence demonstrated.
Consequently, the coupled approach succeeded in identifying all modes, both fluid and
structure, no matter the flow condition. Near shock-buffet onset the overall dynamics
become very active with several unstable structural modes appearing in the characteristic
frequency range of the flow phenomenon. With the calculation of direct/adjoint pairs of
eigenmodes, the core of the instability, colloquially called (fluid) wavemaker, was located
right at the shock foot and its downstream separated boundary layer. This observation
supported recent conclusions from the literature for buffeting aerofoils and infinite wings
while at the same time extending those ideas to a finite wing. Similarly, the best region
to introduce local feedback in the structural system points, somewhat intuitively, to the
wing trailing edge at the span location of the buffet unsteadiness.

Overall it can be said that including the elastic structure adds physical realism
to a high-fidelity aerodynamic analysis with the leading order effects of the resulting
aeroelastic study being asymmetric wing deformation, the potential for earlier shock-
buffet onset and richer fluid-structure coupled dynamics. Otherwise pure fluid modes
show a non-trivial projection onto the structural degrees-of-freedom in their coupled
counterpart, hence giving an explanation for structural response, such as buffeting,
resulting from unsteady flow. The work underpins the interest of the technical community
towards more discipline coupling in this edge-of-the-flight-envelope regime.
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Appendix A. Verification of Coupled Eigenmode Solver

For debugging and verification purposes, the Goland wing test case was introduced.
This wing is cantilevered with a constant 4%-thick, symmetric, parabolic-arc aerofoil and
a (semi-) span of 20 ft and chord of 6 ft. The structure is modelled by a finite-element
method, with details to be found in Beran et al. (2004), and, through a free-vibration
analysis, the four lowest-frequency wind-off modes are kept for the study. Those mode
shapes mapped to the aerodynamic surface mesh and structural frequencies are provided
in figure 13(a) for the sake of completeness. Two hexahedral fluid meshes are considered;
one coarse mesh with approximately 20 000 points and one finer mesh with 400 000 points.
Inviscid Euler flow at a reference free-stream Mach number of M = 0.845 and zero degree
angle of attack is assumed. The target altitude (to establish air density and velocity
according to the standard atmosphere) for the aeroelastic analysis is 30000 ft. A slip
boundary condition is imposed at the solid wing surface, while that at the wing-root
plane is symmetry and the far-field boundary is described as free-stream flow through a
characteristic boundary condition.

Solely for debugging purposes, the relevant aeroelastic eigenmodes were first computed
on the coarse mesh using three different methods, specifically the herein introduced
coupled eigenmode solver (running both in sequential and parallel executions), the Schur
complement approach and, after exporting the coupled matrix, MATLAB functions for
sparse matrices (which also make use of the implicitly restarted Arnoldi method with
shift-invert transformation, but with direct methods for matrix inversion), and the agree-
ment was excellent throughout. The same modes were computed on the finer mesh, using
the Schur complement approach as both a pk- and p-type method, with details discussed
in Bekemeyer & Timme (2019), as well as our fluid-structure coupled inner-outer iterative
method. Results are shown in figure 13(b). Note that direct matrix inversion is ruled out
for the bigger mesh for obvious reasons. For the ARPACK calculation, 25 outer iterations
and 1 restart were set with a convergence criterion of 10~°. The Krylov space for the inner
iterations was 150 with 20 deflation vectors and a convergence criterion of 1070, This
was done twice at shifts ¢ = 0.05 + 0.15¢ and 0.05 + 0.454, corresponding to the vicinity
of the wind-off structural frequencies. For the Schur complement approach, the p-type
analysis was performed to check the pk-type results. To offer some explanation, a p-type
analysis differs from a pk-type analysis in that it does not simplify the aerodynamic
response to be simple harmonic but instead allows the aerodynamics to be included for
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Figure 13: Goland wing test case showing (a) free-vibration mode shapes and (b) part of
the eigenspectrum. The eigenspectrum is computed by a pk-type method, showing the
trace with respect to altitude and the eigenvalues at target altitude of 30 000 ft, compared
with implicitly restarted Arnoldi method (IRAM) as implemented in DLR-TAU through
coupling with ARPACK library. An exact p-type analysis, without approximations on
the linearised aerodynamic response, is also shown.

the correct damping value (i.e. growth/decay rate). Essentially, the interaction matrix is
evaluated as S¢(\) instead of S¢(w). This ensures more accurate tracing as the method
can properly represent the aerodynamics when departing from the imaginary axis. Indeed,
the agreement between the different methods in the figure, specifically for modes 2 and 4
(having a larger distance to the imaginary axis) when comparing the new coupled solver
and the p-type analysis, supports the notion that the coupled eigenmode solver was
implemented correctly, opening up the tool to larger, more practical cases.

Appendix B. Details of Arrowhead Preconditioner

When using the fully coupled Jacobian matrix in parallel, block-Jacobi preconditioning
discards the coupling matrices, Jg and Jg. Therefore, incorporating these matrices in
the formulation grants a better approximation of the inverse. This is possible by utilising
an identity presented by Stanimirovié¢ et al. (2019), which gives the inverse of a block-
arrowhead matrix based on the Sherman—Morrison-Woodbury formula.

Block-arrowhead matrices have the sparsity pattern of an arrow (hence the name)

A0 0 ... B
0 Ay 0 ... B

P=(o0 o . : (5.1)
c, C, ... C, D

resembling our specific problem, where we define A; = (J¢; — (1) (i.e. the local diagonal
blocks of the shifted fluid Jacobian matrix Jys) and accordingly B; = Jysi, C; = Jgfs
and D = (Jg — (). Subscripts ¢ = 1,...,n denote the process number. Here, although
all off-diagonal blocks of (Jgy — (I) are discarded like before for the fluid-only problem,
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Algorithm 1 Preprocessing stage of arrowhead preconditioner

Require: ILU decomposition of (J¢r; — (I) ~ (LU);, coupling matrices Jgs; and Jg;
(all local to process i) and (Jg — CI)
1: Compute Y; = (LU); ' Jys
2: Compute G; = Jg; Y; and sum globally G = >, G;
3: Compute F' on each process by inverting ((Js — ¢I) — G)

Algorithm 2 Application stage of arrowhead preconditioner

Require: ILU decomposition of (Jyr; — (I) ~ (LU);, Vi, F, coupling matrix Jg;, fluid
vector vy, (all local to process i) and structural vector v

Compute wy; = (LU); vy,

Compute z; = Jg,; wy; and sum globally z = ZZ Z;

Compute ws = —F - (z — v;)

Compute wy; = wyr; — Y; ws

all elements of the other matrices are kept. The exact analytical inverse of P can then
be derived as

A0 0 ...00

0 A;' 0 ... 0

Pl= 0 o0 :
: : At 0

0 0 ... 0 0

AT By

A1 By

+ : CF(CLATY CAyY Lo CuAZY 1) (5.2)
ASIB,
I

where matrix F' is defined as

n —1
F = (D — Z C; A7t Bi> (5.3)
=1

and I is the identity matrix, both with the same (small) dimensions as matrix D.
Computing the factors A;'B; in equation (5.2) essentially requires applying the ILU
factorisation of the shifted fluid Jacobian matrix, (Jyz; — ¢I), to the 2m columns of
matrix Jys; (for each process locally). However, this needs to be done only once and
for all, so computing Y; = A; !B, and F can be done as a preprocessing step, described
in algorithm 1. The additional memory requirements are for matrix Y of size Jy, and
matrix F' of size Jg. Preconditioning an arbitrary vector v is explained in algorithm 2.
Compared to applying the block-Jacobi variant, besides operations on the negligible
size of the structural system, only two additional matrix-vector products (one with
matrix Jg; and one with matrix Y;), a vector-vector addition of the size of the fluid
domain and one global sum of size of the structural problem are needed, which makes
the computational overhead acceptable, with details provided below. Note, since the
structure-to-fluid coupling matrix Jg is very sparse with the only non-zero entries
coming from the surface points where the generalised forces are integrated, matrix-vector
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Figure 14: Typical convergence behaviour of preconditioned GCRO-DR iterative solver
(with 120 Krylov and 20 deflation vectors) showing 20 linear solution histories for NASA
CRM eigenvalue problem at angle of attack a = 3.7° with shifts (a) ¢ = 0.05 + 2.63i and
(b) ¢ = 2.63i, contrasting arrowhead and block-Jacobi preconditioners.

products with this matrix are relatively cheap. Similarly, the fluid-to-structure coupling
matrix Jy, is not a dense matrix as it results from residual evaluations on the deformed
mesh using a radial basis function tool which linearly reduces the applied deformation
to zero within a specified distance from the wall. Hence, disturbed volume mesh points
(and consequently non-zero residuals) are confined to the vicinity of the wall.

The performance of different preconditioning approaches is now discussed. The speed-
up gained by using the block-arrowhead preconditioner compared to the block-Jacobi
preconditioner (easily implemented by setting all elements of the coupling blocks, J¢; and
Jgf, in the preconditioner to zero) was insignificant for the inviscid Goland case without
strong shock waves (see appendix A). However, for the larger aircraft case with turbulent
shock-wave/boundary-layer interaction, the inclusion of the arrowhead preconditioner
gave significant speed-up when compared to the block-Jacobi preconditioner. Figure 14
shows such a comparison of performance using the preconditioned GCRO-DR iterative
solver algorithm for 20 successive inner linear solutions required by the shift-invert
Arnoldi method. The convergence criterion was set to 10~7 with 120/20 Krylov/deflation
vectors. Two shifts, ¢ = 0.05 + 2.63¢ and 2.63¢, were chosen with the latter deliberately
defining a challenging problem due to its proximity to an eigenmode for angle of attack
a = 3.7°, but nonetheless represents a typical setup encountered in many simulation
scenarios and exemplifies the benefits of the arrowhead preconditioner.

Figure 14(a) presents a benign scenario for shift ¢ = 0.05 + 2.63i. Although the block-
Jacobi method does converge, the arrowhead preconditioner shows consistent superior
performance on average in terms of iteration count. This behaviour is also reflected
when comparing computation times. A single application of the arrowhead preconditioner
takes approximately 50% longer when compared to block Jacobi due to the additional
operations involved. However, a complete linear solution to the specified tolerance is
roughly 25% faster, due to preconditioning only accounting for a small part of the
total computation time in each Krylov iteration with most of the cost coming from
the orthogonalisation of the Arnoldi vectors, increasing with the size of the subspace.
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Inner tolerance A % Error (Re(A),Im(}))  |Jw — \w|
1073 0.02273046 + 2.709709i (2.3,0.05) 5.0 x 1073
0.00208733 + 2.731635i (64.0,0.02) 9.3 x 1073

107° 0.02221602 + 2.708473i (0.01,0.0002) 3.5 x107°
0.00127437 + 2.731229i (0.05,0.0001) 9.7 x 107°

1077 0.02221461 + 2.708468i (0.000, 0.0) 6.3 x 1077
0.00127379 + 2.7312274 (0.001,0.0) 1.8 x 107°

107° 0.02221461 + 2.708468: / 6.3 x 107°
0.00127378 + 2.731227i / 2.0 x 1078

Table 2: Impact of inner solution tolerance on outer convergence at angle of attack
a = 3.75° using shift ¢ = 2.7i. The eigenvalues correspond to fluid mode ¢’ and hard-
to-converge structural mode 28 (cf. figures 5 and 7). The relative error is shown for
the growth rate and frequency separately and calculated, e.g. for the real part, as |1 —
Re()\)/Re(Aig-9)|, with Ajg—s denoting the solution with tolerance 10~°.

This speed-up in computation time therefore matches the reduction in the average
number of iterations needed to reach convergence. Figure 14(b) for shift ¢ = 2.63i not
only demonstrates clear performance gains of the arrowhead preconditioner, but more
importantly its robustness. Down to a convergence level of 3x 1076, the discipline-coupled
preconditioner takes roughly half the number of iterations needed by block Jacobi, largely
due to the superior rate of convergence in the initial iterations. Beyond that, the block-
Jacobi preconditioner is entirely inadequate, as illustrated through the stalled iterations.
Additionally, in our investigation, the block-Jacobi preconditioner never outperformed
the arrowhead preconditioner, even when performance gains were low. While we show
next that an inner convergence level in the range 10~ to 107° is often sufficient to
achieve reasonably converged results in the outer Arnoldi iteration, the robustness of the
arrowhead method is preferred and was hence the default choice in our study.

Appendix C. Assessment of Inner-Outer Iterative Krylov Method

An assessment of convergence properties of the inner-outer iterative Krylov method
follows next. Table 2 summarises the impact of the specified convergence level for the
iterative Krylov linear solver on both the relative error of the eigenmode, |1 — A/A;g-9],
and the resulting outer residual norm, || J@w — Aw|, to ensure the accuracy of the results,
subject to the inherent iterative error of the methods exercised herein. The remaining
settings are identical to those in section 4. The two chosen eigenmodes are the fluid mode
labelled ¢’ and hard-to-converge structural mode 28, shown in figures 5 and 7. It is found
that the residual norm is roughly an order of magnitude higher than the tolerance of
the linear solver. Also, as usual, the frequency converges quicker than the growth rate.
A tolerance of 1073 is clearly insufficient, as the precision required on the eigenvalues,
especially the growth rate, is greater than what can be reached. A tolerance of 107
to 107 is sufficiently precise for an engineering accuracy. The ultimate decision would
depend on the scope of a specific study. For instance, choosing a tolerance of 10~ could
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be useful to demonstrate consistency between different methods but would add little
added insight into the physics that warrants the greatly increased computational cost.
From these observations, a tolerance of 10~7 was selected as the best option.
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