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Abstract: Musculoskeletal disorders represent one of the main causes of disability worldwide, and
their prevalence is predicted to increase in the coming decades. Stem cell therapy may be a promising
option for the treatment of some of the musculoskeletal diseases. Although significant progress has
been made in musculoskeletal stem cell research, osteoarthritis, the most-common musculoskeletal
disorder, still lacks curative treatment. To fine-tune stem-cell-based therapy, it is necessary to focus
on the underlying biological mechanisms. Ion channels and the bioelectric signals they generate
control the proliferation, differentiation, and migration of musculoskeletal progenitor cells. Calcium-
and voltage-activated potassium (KCa) channels are key players in cell physiology in cells of the
musculoskeletal system. This review article focused on the big conductance (BK) KCa channels.
The regulatory function of BK channels requires interactions with diverse sets of proteins that have
different functions in tissue-resident stem cells. In this narrative review article, we discuss the
main ion channels of musculoskeletal stem cells, with a focus on calcium-dependent potassium
channels, especially on the large conductance BK channel. We review their expression and function in
progenitor cell proliferation, differentiation, and migration and highlight gaps in current knowledge
on their involvement in musculoskeletal diseases.

Keywords: chondrogenesis; osteogenesis; muscle differentiation; progenitor cell; osteoarthritis; ion
channel; channelome; BK channel; musculoskeletal diseases

1. Introduction

The musculoskeletal system consists of bones, muscles, tendons, ligaments, and joints—a
network that functions together to provide support, movement, and protection for the body.

A healthy musculoskeletal system is essential for maintaining mobility and overall
quality of life. Bones provide support for the body and protect vital organs, while muscles
allow for movement and help maintain posture. Tendons connect muscles to bones, and
ligaments connect bones to other bones, providing stability and preventing excessive
movement at the joints [1]. Synovial joints are the most-common type of joint in the human
body and are characterised by the presence of a synovial membrane that produces synovial
fluid. This fluid helps to reduce friction and wear between the joint surfaces during
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movement, while also providing nutrients to support the health of the joint structures.
Synovial joints allow for a wide range of movements. Examples of synovial joints include
the knee, hip, shoulder, and elbow joints [2].

Cartilage, muscle, bone, synovium, tendons, and ligaments are important components
of the musculoskeletal system, each with unique features, origins, and functions. Under-
standing the roles of the progenitor cells that make up these tissues can help promote
optimal musculoskeletal health and prevent injuries.

Cartilage is a connective tissue that provides cushioning and support at joints, reduc-
ing friction and preventing damage to the underlying bones. Cartilage is composed of
chondrocytes, which are derived from mesenchymal stem cells (MSCs). MSCs are multipo-
tent cells that can differentiate into several cell types, including chondrocytes, osteoblasts,
and adipocytes [2]. Bone tissue is an essential component of the musculoskeletal system. It
is composed of cells called osteoblasts, osteocytes, and osteoclasts, which work together
to build and maintain bone tissue. Bones are constantly remodelling, with old bone being
broken down by osteoclasts and new bone being formed by osteoblasts [1].

Muscle tissues in the musculoskeletal system are composed of specialised cells called
muscle fibres, which contract, thereby generating force. Skeletal muscle tissue is derived
from myogenic precursor cells that can differentiate into the skeletal muscle fibres attaching
to bone, allowing for movement [3].

The synovium is a specialised tissue that lines the inner surface of joints and produces
synovial fluid. It is composed of different cell types, including fibroblast-like synoviocytes
(FLS), macrophages, and T cells. FLSs are derived from MSCs and are responsible for
producing the synovial fluid, as well as maintaining the health and function of the joints [4].

Tendons and ligaments are composed of collagen fibres and are important for main-
taining joint stability and allowing for controlled movement. Tenocytes, the cells that
produce collagen in tendons and ligaments, are elongated fibroblastic cells, derived from
MSCs [3].

1.1. Progenitor Cells in Musculoskeletal Tissues

Stem cells are characterised by self-renewal through mitotic cell division and differ-
entiation into tissue-specific cell types. Adult stem cells are an important source for the
repair of damaged tissues. MSCs have the potential to form cells of the musculoskeletal
system, including osteoblasts, adipocytes, chondrocytes, and myocytes [5]. In the adult
musculoskeletal system, tissue-resident MSCs have been described in bone marrow and
periosteum, articular cartilage, synovium, muscle, ligament, and tendon [6]. Regenerative
medicine aims to exploit the differentiation potential of MSCs to restore damaged mus-
culoskeletal tissues. MSCs have been historically believed to migrate to the sites of tissue
injury, where they would engraft, differentiate, and reconstitute the tissue architecture.
However, recent data have clearly shown that this is not entirely the case. There is an
array of reparative actions of MSCs including enhancing cell viability and proliferation,
reducing apoptosis, and local immunomodulation via paracrine mechanisms such as secre-
tion of growth factors and cytokines, cell-to-cell interactions through tunnelling nanotubes
mediating the transfer of mitochondria and lysosomal vesicles, and through releasing
extracellular vesicles [6]. Induced pluripotent stem cells (iPSCs), derived from a patient’s
somatic cells through genetic reprogramming, can generate all tissues in the body. The
application of iPSCs also holds the promise in the field of regenerative medicine for clinical
orthopaedics [7].

1.2. Musculoskeletal Diseases

Maintaining a healthy musculoskeletal system involves a combination of physical
activity, proper nutrition, and medical management of any underlying conditions. Exercise,
physical activity, and nutrition are essential for building and maintaining healthy bones
and muscles, as well as improving flexibility and range of motion [1].
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Any discomfort or irreversible or disabling injuries affecting the motor organs in-
cluding muscles, tendons, bones, cartilage, ligaments, and nerves are classified as mus-
culoskeletal disorders [8]. The five most-common musculoskeletal conditions comprise
rheumatoid arthritis (RA), osteoarthritis (OA), low back pain (LBP), neck pain (NP), and
gout [8]. Musculoskeletal disorders are common causes of disability; in fact, such disorders
are ranked fifth in disability-adjusted life years (DALYs) [9]. While heavy physical work,
awkward posture, and high body mass index (BMI) increase the risk of certain muscu-
loskeletal conditions, some of the risk factors of OA are still unknown. The global burden
of musculoskeletal disorders is steadily increasing, which highlights a yet unmet need to
develop strategies to reverse these trends.

OA is one of the most-common musculoskeletal disorders [10]. One of the hallmarks of
OA is the loss of articular cartilage at the joint, and there is currently no cure for this painful
condition, only symptomatic treatment. The most-common therapy involves replacement
of the degraded tissue, and potentially the surrounding area, with an implant. This has
resulted in a substantial improvement in the quality of life of those affected; however,
it is only a temporary solution. Prosthetic implants have a relatively short lifespan as
implant loosening is inevitable within 10–15 years, despite the significant advances in
recent years [11].

Other therapies include encouraging the healing of articular cartilage by removing the
damaged tissue, introducing fresh blood supply to the area (microfracture), or injecting
chondrocytes into the site (autologous chondrocyte injection) [12]. Osteochondral grafts
can also be implanted to replace the damaged cartilage; these can be donated from the
patient (autograft) or by a donor (allograft). Although well established, these treatments
carry significant risk of complications including pain, joint swelling, and excessive bleeding,
depending on the graft location and transplantation method [13,14]. Further solutions
include the incorporation of stem cells into the joint, either via articular injection or tissue
engineering, whereby stem cells are combined with biodegradable materials [15]. Research
aimed at understanding the biological characteristics of MSCs and identifying method-
ologies by which they potentially contribute to hyaline articular cartilage repair has been
going on for decades. MSCs have also been tested in clinical trials for a range of muscu-
loskeletal conditions such as OA, RA, fracture repair, regeneration of articular cartilage,
tendon repair, and for the treatment of degenerative disc disease [16]. Despite these efforts,
the use of MSCs as a treatment option for these conditions is still uncertain. More details
need to be understood concerning the molecular regulation of the differentiation path-
ways before MSCs can become an effective treatment option for musculoskeletal disorders,
including OA.

2. Ion Channels Involved in Progenitor Cell Differentiation

Plasma membrane ion channels and transporters are known to play a central role
in the proliferation, differentiation, and apoptosis of a wide range of cells, including
stem cells. Functional ionic currents have been reported to be heterogeneously present in
different types of stem cells [17]. In this narrative review article, after briefly describing
the channelome of the progenitor cells of the musculoskeletal system, we summarise
current knowledge on the expression and function of a specific class of ion channels, the
calcium-dependent potassium (KCa) channels, in health and disease. We highlight gaps
in current knowledge regarding KCa channels in musculoskeletal progenitor cells, which
could be exploited and developed into novel therapeutic strategies. We also discuss their
pathological implications and their potential as molecular targets for the development of
innovative and promising therapeutic strategies in musculoskeletal disorders.

2.1. Ion Channels That Mediate Chondrogenesis

While mature chondrocytes have been extensively studied in terms of the functional
expression of channels and transporters including (but not limited to) aquaporin water
channels, calcium-activated potassium channels, chloride channels, sodium channels,
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potassium channels, N-methyl D-aspartate (NMDA) channels, transient receptor potential
(TRP) channels, and calcium channels [18–20], current knowledge is much more limited
regarding the channelome of chondroprogenitor cells (CPCs).

During chondrogenic differentiation, undifferentiated progenitor cells undergo a series
of events to give rise to cartilage-ECM-producing chondroblasts and chondrocytes [21,22].
Chondrogenic differentiation involves gradual changes in the transcriptome, the proteome,
and the electrome (i.e., the totality of all ionic currents) of the cells as they progress to
more mature phenotypes [23]. Nearly all channels and transporters that mediate ionic
currents across the plasma membrane of mature chondrocytes have been observed in CPCs
as well, some of which exhibit interesting expression patterns and unique roles. There have
been very few attempts to look at the global channelome expression in CPCs. This is not
surprising, given the low abundance of these proteins to mediate ionic fluxes across the
plasma membrane of CPCs, which are non-excitable cells. Using a combined approach of
aminooxy biotinylation, glycocapture, and quantitative mass spectrometry, we described
the surfaceome of migratory CPCs isolated from end-stage human knee OA cartilage [24].
We detected the protein level expression of K+ channel subunits (KCMA1, KCNJ2, KCNQ2);
Ca2+ channel subunits (CA2D1, CA2D2, CA2D4, CAC1C, CAC1E, CAC1H); volume-
regulated anion channel subunits (LRC8A, LRC8C, LRC8D); the mechanosensitive cation
channel Piezo1; the TRPM2 and TRPM4 cation channels; and the VDAC1, VDAC2, and
VDAC3 voltage-dependent anion-selective channels. We also carried out a transcript-
level screening of ion channels and transporters in the same CPC cell line and established
the composition of its channelome at the mRNA level [23]. Such global approaches are
important for understanding the complexity of ionic currents in CPCs.

2.1.1. Calcium Signalling Pathways

Calcium-dependent signalling pathways play a central role in regulating chondrogenic
differentiation [25]. Ca2+ influx through ion channels in the plasma membrane (voltage-
gated Ca2+ channels; TRPs; Orai; P2XRs; and other nonselective Ca2+ permeable channels)
controls many physiological processes, including cell adhesion, cell growth, differentiation
and proliferation, and cell death [26].

TRP vanilloid 4 (TRPV4) is a Ca2+-permeable nonselective cation channel that appears
to be a key modulator in chondrogenic cells [27,28]. In mature chondrocytes, TRPV4 exhibits
mechanosensory or osmosensory functions and controls responses to mechanical stimuli or
osmotic stress, but it also has a critical role in skeletal development [29]. TRPV4 activation
promotes chondrogenesis by inducing SOX9 transcription [27], and it is also involved in
the chondrogenic differentiation of iPSCs [30]. TRPV4 channels also mediate the thermo-
mechanotransduction process in human CPCs [31]. In addition to TRPs, the mechanically
activated cation channel Piezo1 also regulates chondrocyte differentiation [32].

NMDA receptors expressed by mature healthy and OA chondrocytes are likely in-
volved in mechanotransduction pathways [33,34] and/or in maintaining tissue homeostasis
through regulating the chondrocyte circadian clock [35,36]. NMDAR expression and func-
tion are also required for chondrogenic differentiation [37].

Voltage-gated Ca2+ channels (VGCC) are expressed and are found functional in chon-
drocytes and chondrogenic cells alike [38,39]. VGCCs are critically important in the chon-
drogenic differentiation of micromass cultures [38]. The activity of the L-type CaV1.2
is essential for chondrogenesis in situ in the developing limb [40]. Ca2+ signalling via
verapamil-sensitive VGCCs plays a critical role in the chondrogenic response of MSCs
exposed to hydrostatic pressure [41].

Extracellular nucleotides modulate cellular responses by activating ionotropic P2X or
metabotropic P2Y purinergic receptors. Migratory CPCs have been reported to express
various P2 receptor subtypes, which are required for an autocrine/paracrine purinergic
mechanism that drives Ca2+ oscillations [42]. Primary limb bud-derived CPCs are also
characterised by a wide array of P2 receptors; P2X4 was implicated to be a key mediator of
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chondrogenesis [43] and ATP oscillations essential for prechondrogenic condensation [42].
In contrast, P2Y1 has a chondro-inhibitory role in micromass cultures [44].

The internal Ca2+ stores of the endoplasmic reticulum in chondrogenic cells are also
important for repetitive Ca2+ transients and cartilage formation. Replenishment of depleted
stores (store-operated Ca2+ entry (SOCE)) is mediated by Orai channels in the plasma
membrane [38]. SOCE is essential for the repetitive Ca2+ transients in CPCs [38,42].

2.1.2. Potassium Channels

Potassium, the main intracellular ion, maintains the resting membrane potential (RMP),
participates in the regulation of the cell volume, and links the physiological properties of the
plasma membrane to the activity of intracellular metabolic pathways through intracellular-
ligand (such as Ca2+ or ATP)-gated potassium channels [26]. Potassium currents mediated
by potassium channels have been extensively documented in mature chondrocytes [19].
These include heteromultimeric voltage-gated potassium channels with a subunit composi-
tion of KV1.4 and KV1.6 [45,46], inwardly rectifying ATP-dependent potassium channels
(KATP) [47], as well as large and small calcium-activated potassium channels (SK and
BK) [48,49].

However, much less is known regarding the potassium channelome of chondrogenic
cells. In primary chondrifying micromass cell cultures, the protein level expression of KV1.1,
KV1.3, and KV4.1 channel subunits has been documented, and the K+ channel blocker
tetraethylammonium (TEA) reduced KV currents, cell proliferation, cartilage-specific gene
expression, and cartilage formation. Spontaneous Ca2+ transients were also suppressed by
TEA [50], indicating a role of fluctuations of RMP in bringing about Ca2+ events [51]. Loss
of the inwardly rectifying K+ channel Kir2.1 function impairs chondrogenic differentiation
of iPSCs via the downregulation of master gene expression, by an impaired bone mor-
phogenetic protein signalling pathway [52]. In another study, CPCs derived from normal
and OA knee joint cartilage were shown to express BK, KV1.1, KV1.4, KV4.2, and EAG1
(ether-à-go-go or KCNH1) channels [53].

2.1.3. Sodium Channels

While the transcript- or protein-level expression of voltage-gated sodium channels has
been documented in both mature [54] and differentiating chondrocytes [50], the current
understanding regarding their role in CPCs is generally lacking. This is not entirely sur-
prising given that, at the rather depolarised RMP of developing and mature chondrocytes
(in the realm of −20 to −40 mV), these channels would be permanently inactivated [19].
Epithelial sodium channels (ENaC) have been recognised in chondrocytes [19], but not yet
in CPCs.

2.1.4. Chloride Channels

The available literature on chloride channel expression and function in chondrocytes
and CPCs is sparse [19]. Voltage-gated chloride channels (ClCs), besides being involved in
the regulation of intracellular pH and cell volume homeostasis, are implicated to have a role
in chondrogenesis as mutations of these genes result in abnormal skeletal development [55].
The transcript level expression of ClCs has been documented in chondrifying chicken
mandibular mesenchymal cells, and important roles of ClCs in regulating chondrocyte
proliferation and differentiation have been confirmed [55].

2.1.5. Aquaporin Water Channels

Aquaporin water channels are expressed in chondrocytes, and they mediate the
movement of water into and out of the cell during volume regulation [19]. Upregulation of
AQP1 and AQP3 was observed during chondrogenic differentiation of MSCs, implicating a
physiological adaptation to the mature chondrocyte phenotype [56].
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2.2. Altered Ionic Homeostasis in Chondrocytes of OA-Afflicted Cartilage

Chondrocytes are routinely subjected to changes in water content of the articular
cartilage, as the joint moves and is compressed over the course of a normal day. They
therefore need robust mechanisms to cope with the changes in volume that occur due to
these changes in extracellular osmolarity. Healthy chondrocytes are able to respond to these
changes by reducing their volume and, thus, remain protected from mechanical stress [57].
As OA develops, the water content of cartilage increases with the early stages of the disease,
increasing the volume of chondrocytes and potentially increasing the susceptibility of cells
to damage [58,59]. This increase in water content corresponds to a deterioration of the
collagen structure and proteoglycan loss from the cartilage, ultimately altering the ionic
status of the tissue [60].

Many ion channels have been reported to mediate the chondrocyte cell response to
the pro-inflammatory micro-environment in OA. For example, Piezo1, Piezo2, and TRPV4
are targets of potential mechanotherapeutic strategies to prevent OA-associated cartilage
degeneration [61]. Altered NMDAR subunit expression is also involved in changing the
chondrocyte phenotype in OA, at least partially via modulating the chondrocyte circa-
dian clock [36]. The acid-sensing potassium channel (TASK-2), epithelial sodium channel
(ENaC), Ca2+-activated chloride channel (anoctamin-1, TMEM16), Ca2+-activated potas-
sium channels (KCa3.1 and KCa1.1), and aquaporin 1 (AQP1) are differentially expressed
in OA vs. healthy chondrocytes [62]. When we specifically looked at the surfaceome of
chondrocytes exposed to a pro-inflammatory environment, we found a differential expres-
sion of transporters including amino acid transporters (S38A2, S38A5), sodium/hydrogen
exchanger 6 (SL9A6), and zinc transporter 1 (ZNT1) [63]. In line with altered ion channel
expression and function, the global electrophysiological parameters (such as current density
and cell capacitance) were different in chondrocytes isolated from OA knee joints compared
to normal chondrocytes [53].

2.3. Ion Channels That Mediate Osteogenesis

There is ample literature available regarding ion channels with osteogenic roles. A
recent review gave a highly detailed account of K+- and Ca2+-permeable channels in various
osteogenic lineages and provided an excellent model explaining how their cooperation
may drive forward the osteogenic differentiation process [64]. Herein, we list only the ones
that have a particular importance and are in line with the latest trends.

Piezo mechanosensitive ion channels maintain muscle and bone mass, sense tendon
stretch, and regulate senescence and apoptosis in response to mechanical stimuli. An
excellent review article discussing Piezo functions in the musculoskeletal system has
recently been published [65]. Along with Piezo1, TRPV4 also quite commonly arises in
the context of Ca2+ response to mechanical stimulation. In MC3T3-E1 cells, both receptors
appear to be functional in the osteoblastic mechano-transduction that results in reduced
proliferation [66]. TRPM7 is also a common target for mechanical loading to stimulate
bone formation, as results obtained in various models suggest [67–69]. TRPM7 is critically
important in bone formation [70].

VDCCs are key regulators of intracellular Ca2+ homeostasis and control plasma mem-
brane Ca2+ permeability in osteoblasts [71]. Both L-type CaV1.2 and T-type CaV3.2 appear
to be involved in early long bone development in mice. The fact that osteocytes selectively
lose L-type, and maintain T-type, VDCC expression suggests that the calcium homeostasis
of post-proliferative cells of the osteoblast lineage is sustainable with low-voltage-activated
channels [72].

Purinergic signalling is also a broadly accepted mediator of osteogenesis. The P2X4
receptor influences the differentiation of rat primary osteoblasts favouring the osteogenic
lineage over the adipogenic lineage [73]. Similarly, P2X7 is expressed and functional in
human primary osteoblasts; furthermore, NFATc1 was shown to be recruited to the P2X7
promoter to enhance its expression level in SaOS2 osteoblastic-like cells [74].
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An extensive review summarised the recent literature on P2Y receptors in bone physi-
ology and pathology [75]. Since P2Y1-2-4-6-11 are all Gq/11-coupled, activation of calcium
signalling via the IP3R can be expected. These receptors are all expressed and play a
significant role in various cell types of bone tissue. The available literature suggests that the
outcome of intracellular signalling initiated via Gq/11 is strongly context dependent. P2Y1
receptor activity promotes osteoblast proliferation following low-intensity ultrasound stim-
ulation [76], but in another setting, it also increases osteoclast formation and resorption [77].
P2Y2 and P2Y4 both play an inhibitory role in the differentiation and mineralisation of
osteoblasts [78,79], while P2Y2 has also been shown to induce osteoclast activity [80]. P2Y6
enhances osteoclast activity [81] and survival [82], but also has an osteogenic effect in
BM-MSCs of postmenopausal women [83]. While P2Y11 is not widely documented for
its function in bone formation, it is a known inhibitor of breast cancer bone metastasis
formation [84]. Other P2Y receptors (P2Y12-13-14) also have connections to osteoblast
and/or osteoclast activity [85–88]; however, their intracellular signalling is not mediated
by IP3R, at least not in a direct manner. IP3Rs are known players of osteoblast [89] and
Gli1+ cell [90] intracellular Ca2+ homeostasis. There is also indirect evidence pointing at the
importance of Ca2+ release from the ER store via IP3R during bone formation. TMEM38B
encodes TRIC-B, a ubiquitous component of TRIC, a monovalent cation-specific channel
involved in IP3R function. A deletion mutation in TMEM38B is associated with autosomal
recessive osteogenesis imperfecta [91]. Correspondingly, a mouse model lacking TRIC-B
displayed a highly similar phenotype [92]. The P2Y2 and P2X7 receptors are involved in
mechano-transduction of osteoblastic C2C12-BMP cells [93]. Interestingly, the nucleotides
that confer mechanical signals may be released via small repairable membrane injuries in
bone-forming osteoblasts [94]. Another possible player in ATP release from osteoblasts is
PANX3. It has been shown to determine the balance between proliferation and differentia-
tion in several cell types of the musculoskeletal system [95]. In osteoblasts, PANX3 has been
shown to facilitate ATP release, which can then act on P2 receptors to form an autocrine
and paracrine loop [96]. The subsequent cytoplasmic Ca2+ increase drives calmodulin and
Smad1/5 signalling and boosts osteogenic differentiation [96,97]. The P2Y and P2X recep-
tors have also been implicated in the osteogenic differentiation of human MSCs. Adenosine
may also promote osteogenesis via A2B receptors in the same cell type [98]. The P2X7
receptor is also known for its regulatory role in osteoclastogenesis. The suggested pathway
includes Ca2+/calcineurin/NFATc1 [99].

Anion channels are also notable for their role in bone tissue formation and homeosta-
sis. Anoctamin 1 is expressed in osteoclasts, and its expression demonstrates a positive
correlation with osteoclast activity. Protein levels of this channel substantially increase
in osteoporosis patients, demonstrating an interesting correlation and making it a highly
interesting drug target candidate [100]. ClC-3 chloride channels are positive regulators of
osteogenic differentiation in osteoblasts [101].

2.4. Ion Channels That Mediate Muscle Differentiation

During prenatal and postnatal development, committed myogenic precursors (my-
oblasts) align and fuse to generate multinucleated myofibres. Cells exit the cell cycle, and
differentiation is induced, controlled by key transcription and specific regulatory factors.
The high-level expression of myosin and actin proteins results in hypertrophy, ensuring the
growth of myofibres. Myogenesis occurs during embryonic and postnatal growth phases
and in adulthood during regeneration after injury [102].

The RMP in myoblasts becomes hyperpolarised as a prerequisite for myoblast fusion
via the sequential expression of two different potassium channels. Initial events during
myogenic differentiation are the activation of ether-à-go-go (EAG) K+ channels and Kir2.1
inward-rectifier K+ channels [103].

Myoblast fusion is strictly Ca2+-dependent. EAG and Kir2.1 have been shown to serve
as a trigger for a small, but sustained Ca2+ influx through T-type VGCCs. These channels
are expressed just before fusion and have intrinsic properties to produce a permanent
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Ca2+ current. EAG K+ channels are responsible for a rapid hyperpolarisation, which is
followed by a further decrease in the RMP due to the opening of Kir2.1 channels. Besides
the contributors of hyperpolarisation, several types of other ion channels, including ERG
channels, SOCE channels, and volume-regulated anion channels (VRACs), proved to
influence the RMP of fusion-competent myoblasts. The most-recent results suggest that
the fusion-related hyperpolarisation is to set the RMP of myoblasts in a range that allows
Ca2+ to enter through 1H T-type Ca2+ channels, causing a significant increase in the resting
intracellular Ca2+ concentration, which activates numerous signalling cascades [103,104].

When TRPC1 was overexpressed in C2C12 myoblasts, the main parameters of SOCE
significantly increased, while decreased STIM1 expression together with SERCA down-
regulation was observed. TRPC1 overexpression also resulted in morphological changes.
Delayed differentiation and less-developed myotubes were observed, likely due to the
decreased translocation of NFAT1 into the nucleus [105].

ATP-sensitive K+ channels (KATP channels) are nucleotide-gated ion channels that
couple metabolism to excitability. They consist of Kir6.x pore-forming subunits encoded
by KCNJ8 and KCNJ11 and regulatory SUR subunits encoded by ABCC8 and ABCC9. Ze-
brafish cardiac myocytes (CM) and vascular smooth muscle (VSM) cells express functional
KATP channels with similar subunit composition, structure, and metabolic sensitivity to
their mammalian counterparts [106]. KCNJ8/ABCC9 containing ATP-sensitive potassium
channels are involved in VSM progenitor cell differentiation in the blood vessels of the
brain, which fine-tune cerebral blood flow [107]. KATP channel modulators seem to be
promising against certain types of muscle disorders such as hypokalemic periodic paralysis
with vacuolar myopathies [108] or Cantú syndrome, a multiorgan condition caused by
mutations in the ABCC9 and KCNJ8 genes, resulting in neuromuscular symptoms and
skeletal malformations [109].

3. Calcium-Dependent Potassium Channels

The calcium-activated potassium (KCa) ion channel family of proteins is closely related
to the much larger 6 transmembrane (6TM) potassium channel superfamily that also
includes the voltage-gated potassium channels [110]. The defining physiological property
of the whole KCa family is that the channel open probability is increased by elevated
intracellular calcium ions.

Within the KCa family, there are a number of distinct members, which can be sepa-
rated on the basis of genetic identity, physiological properties, or pharmacological pro-
file. Early work defined three types of KCa channels [111]: BK (Maxi KCa or the “Big”,
large, or high-conductance KCa, also known as KCa1.1), SK (the small KCa, also known as
KCa2.1/2/3 channels), and IK (an intermediate conductance KCa, also known as KCa3.1),
although most studies were initially on BK. The distinction between BK and SK was
non-trivial since the BK channel had a reported single-channel conductance of approxi-
mately 150 pS [112], whereas SK was a mere 14 pS [113]. Pharmacological separation of
BK, SK, and IK is, and remains, partially successful; BK is sensitive to iberiotoxin and
some other rather specific proteins, which spare both IK and SK. Newer synthetic chem-
icals distinguished SK and IK with only moderate selectivity. In genetic terms, now the
gold standard in KCa research, the distinction is quite clear: BK is the product of the
KCNMA1 gene; SK derives from KCNN1/2/3; IK is the product of the KCNN4 gene.
Note there are also other closely related, but less well-studied members of this family
(https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=69 ac-
cessed on 10 March 2023).

Due to its high conductance, and thus amenability to patch-clamp electrophysiology,
the KCa1.1 channel is perhaps the best-studied. In terms of physiology, it is highly sensitive
to voltage and Ca2+ [114]. For example, even in the virtual absence of Ca2+, it can still
be driven to a high open probability state by sufficient depolarisation [114]. KCa1.1 is
sensitive to a range of pharmacological (relatively) selective inhibitors such as paxilline,
charybdotoxin, and iberiotoxin and activators such as NS004 or NS1619 [115]. The primary
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KCa1.1 gene (KCNMA1) is a true “alpha” subunit in the sense that it appears to form a
functional channel on its own, but its properties will be modified in native tissue by the
co-expression with one of a range of “beta” subunits such as KCNMB1. These accessory
subunits can change voltage, Ca2+, and sometimes, pharmacological properties [116].

The structure of the KCNMA1 product (KCa1.1) has been extensively studied; its 6TM
structure forms a central conductive pore, and Ca2+ sensitivity is conveyed by the presence
of an intracellular loop with a constitutive Ca2+ binding “bowl” [117], although SK can be
activated with a Ca2+-/calmodulin-dependent mechanism [118,119].

All members of the KCa family are widely expressed in musculoskeletal [19,48,120] and
other systems [121], including the brain [122]. Importantly, in the context of chondrocyte
function, we found significant changes in both KCNMA1/B1 in OA [123]. In our own work
with chicken CPCs, we found detectable expressions of KCNMA1, KCNMB1, KCNMB2,
KCNMB4, KCNN1, KCNN2, and KCNN3 [124], and in a recent study of (mouse) adult
skeletal muscle, for example, we detected all these, plus KCNMB43 and KCNN4 [125].

The functional role of KCa is a fascinating question and still requires some speculation;
firstly, KCa1.1 has such a high conductance that any activity from this channel is likely to
directly impact the RMP of a cell, which can, in turn, be important for a wide range of
cellular functions [126]. Secondly, there has been the suggestion that KCa1.1 may play a
role in apoptosis, which is critical to development [127]. Thirdly, we ourselves showed that
KCa1.1 was involved in cell volume regulation in adult chondrocytes [59,128], supporting
the earlier proposal of an “osmolyte channel” in these cells. Finally, and more generally,
KCa seems to have a role in coupling Ca2+ entry to RMP [129]. Intuitively, this idea seemed
unlikely, because the global Ca2+ concentration may not rise sufficiently during normal
physiology to open the KCa. However, we and others have shown by experiment and
calculation that, whilst global [Ca2+] may not rise sufficiently to activate KCa, local [Ca2+]
can rise sufficiently in an appropriate microdomain [120,129,130]. This may be a widespread
biological principle and would suggest that the evolutionary advantage of the broad range
of subtly different KCa channels is to allow a high degree of flexibility in potential Ca2+

entry—RMP coupling mechanisms.

3.1. Calcium-Dependent Potassium Channels in MSCs, CPCs, and Chondrocytes: Expression
and Function
3.1.1. KCa Channels in MSCs

The expression of all the main subtypes of KCa channels was detectable in MSCs
with different origins of species and tissues. BK channel expression was observed in
mouse bone-marrow-derived (BM) MSCs [131], in rat BM- and adipose-derived (AD)
MSCs [132,133], in human BM- and AD-MSCs, and iPSCs [134–136]. IK channels were
detected in mouse BM-MSCs [131], in rat MSCs [132], in dog BM-MSCs [137], and in human
BM- and AD-MSCs [134,138]. However, SK channels were mainly detected in human AD-
and endometrium-derived MSCs [134,139].

Various roles were associated with ionic currents mediated by KCa channels in MSCs.
Gene silencing of BK channels significantly downregulated PPARγ and osteocalcin (biomark-
ers of adipogenesis and osteogenesis, respectively) in human MSCs [135]. Knock-down of
BK channels downregulated osteocalcin, osteopontin, and RUNX2 in a rat MSC-derived
osteoblast cell line [140]. Blocking BK channel activity with paxilline or shRNA signifi-
cantly inhibited proliferation in human MSCs [135]. Intriguingly, paxilline had an opposite
effect on iPSC-derived human MSCs [136]. Although the presence of BK channels in the
plasma membrane of endometrium-derived MSCs was reported to be cell-cycle-dependent,
with significantly lower levels in the G2M phase, the BK channel inhibitors iberiotoxin or
charybdotoxin did not influence cell cycle progression [141]. In contrast, the role of the
intermediate conductance IK channels in MSC proliferation seems to be less controversial.
Blocking IK channels either with a pharmacological approach (using CLT) or siRNA de-
creased cell cycle progression in rat BM-MSCs [132]. Attenuated IK channel function by
TRAM-34 or siRNA strongly suppressed mechanical stretch-induced proliferation of rat
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BM-MSCs [142]. Similar results were observed in murine MSCs, where the inhibition or
knock-down of IK channels resulted in the downregulation of cyclin D1 and E, attenuating
proliferation [143]. A synergy between BK channel function and platelet lysate has been
shown to improve the migration of rat AD-MSCs [133].

As an attempt to better understand how external mechanical cues are coupled with
calcium signalling in stem cells, a study was conducted on human-endometrium-derived
MSCs [139]. Using a combination of cell-attached and inside-out patch-clamp, highly
localised Ca2+ entry via stretch-activated channels was observed, which triggered BK
channel activity. BK channels were clustered together with stretch-activated channels in
functional mechanosensitive domains in the plasma membrane of the stem cells.

3.1.2. KCa Channels in CPCs

In a transcriptome-based screening, we observed the mRNA expression profiles for
BK, IK, and SK channel subunits in CPCs [23]. According to the Affymetrix microarray
transcriptome analysis, KCNMA1 (BK) and KCNN4 (IK) were upregulated in CPCs com-
pared to MSCs, whereas KCNN3 (SK) was unchanged. Interestingly, the beta subunit of BK
channels (KCNMB4) was downregulated significantly in CPCs. A higher level of KCNMA1
protein expression in CPCs was confirmed by quantitative mass spectrometry, western
blotting, and immunocytochemistry [24]. In the presence of selective BK channel inhibitors
(100 nM IBTX and 1 µM paxilline), the CPC proliferation rate was significantly reduced,
but had no significant effect in MSCs. Paxilline treatment upregulated osteogenic marker
gene expression, while the chondrogenic marker SOX9 remained unchanged. Paxilline
treatment significantly increased the fibronectin-guided and random migration parameters
of CPCs. These data indicated that BK channels may play an inhibitory role in migratory
CPCs [23].

3.1.3. KCa Channels in Chondrocytes

Ca2+-dependent K+ channels have been widely documented in chondrocytes [19].
BK and IK channel expression was observed in murine [45], canine [144], and human
chondrocytes [145]. The K+ currents mediated by these channels not only modulate,
but also dominate the chondrocyte RMP [51]. A primary effect is hyperpolarisation of
RMP, and a secondary consequence is voltage-independent Ca2+ transport via TRP and
CRAC channels.

The BK and SK channels are involved in mechano-transduction, cell volume reg-
ulation, chondrogenesis, and apoptosis [146]. SK channels were activated after cyclic
pressure-induced strain in human articular chondrocytes [147]. Cyclic stretching signifi-
cantly increased the expression of BK channels in equine articular chondrocytes [148]. BK
channels have a central role in the membrane-stretch-activated current in equine articular
chondrocytes [48]. BK channel response to external mechanical stimuli was significantly
reduced in chondrocytes isolated from OA patients [149], and they have a differential
expression in pathological cartilage [59].

C-type natriuretic peptide (CNP) stimulates growth plate chondrocytes through natri-
uretic peptide receptor 2 (NPR2), which involves cGMP-dependent protein kinase (PKG).
PKG stimulates BK channels, leading to hyperpolarisation of the membrane, which facili-
tates TRPM7-mediated Ca2+ influx and increases the phosphorylation of Ca2+-/calmodulin-
dependent protein kinase II (CaMKII) [150]. In turn, Ca2+-/calmodulin-dependent sig-
nalling enhances ACAN mRNA expression under compression forces in bovine articular
chondrocytes [151].

BK channels are regulated not only by intracellular Ca2+ or the RMP, but also by
reactive oxygen species (ROSs) [152]. In the context of chondrocytes, BK channel activation
by ROSs is an exciting, novel approach to better understand the pathomechanism of OA,
as an age-related imbalance in ROSs’ production is involved in the disease [153].

There is evidence that changing the osmolarity of the chondrocyte microenvironment
alters BK channel activity. Both hypotonic and hypertonic solutions activate BK chan-
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nels [154], resulting in K+ efflux and membrane hyperpolarisation in human chondrocytes.
While a hypo-osmotic condition upregulated BK channel expression in equine articular
chondrocytes, hyperosmotic stress had the opposite effect [148]. The effects of osmotic
changes were modulated by the ERK1/2 and p38 MAPK pathways.

3.2. Calcium-Dependent Potassium Channels in CPCs and Osteocytes: Expression and Function

BK channels are now widely accepted as a necessary element for bone formation and
osteoblast function. There is already a body of evidence available from in vivo and in vitro
studies that underlines the importance of these channels. Expression data from human
osteoblasts are available from as early as 2008 [155], but recent years have seen a definite
shift up in this area.

BK knockout mice are characterised by impaired bone formation and osteoblast activity.
Notably, BK appears to regulate bone formation at least partly via the integrin pathway; the
binding of the BK α subunit with the integrin β1 protein has been confirmed in osteoblasts,
and FAK-ERK1/2 signalling is also shown to be involved in conveying the effects of BK
knockout [156]. The connection between BK channels and FAK has aroused interest in BK
channels as a possible trigger for the signalling cascade induced by mechanical strains in
osteoblasts [157]. Rat ROS17/2.8 osteoblast cells following BK knockout demonstrated
a significantly decreased ability for proliferation and mineralisation [140]. BK channel
modulators also affect the number of MG63 cells [158]. Evidence from KCNMA1 knockout
mice suggests the Wnt/β-catenin signalling pathway to be among the main mechanisms
of how BK channels influence bone homeostasis [159]. Er-xian Decoction (EXD) is a well-
known prescription drug widely used to prevent and treat climacteric syndrome and
osteoporosis in China. It is now suggested that its osteogenesis-promoting effects are
attributable to upregulating BKα expression [160].

BK channels are also actively researched in vascular smooth muscle cells (VSMCs),
whereas the BK channel opener NS1619 significantly alleviated vascular calcification
and decreased the mRNA expression of the osteogenic genes OCN and OPN, as well
as RUNX2 [161]. The lncRNA “Antisense RNA 1 of KCNMA1” (KCNMA1-AS1) appears to
be an important regulator in bone homeostasis. This RNA gene has an elevated expression
level in osteoporosis patient samples, while its silencing in human BM-MSCs resulted in
elevated osteogenic differentiation via the cochlin-miR-1303 axis [162].

The functional expression of IK channels was first demonstrated in human osteoblasts
by Hirukawa et al. in 2008 [155]. These findings suggest that IK channels regulate os-
teoblast RMP, which is an important contributor to their physiological Ca2+ homeostasis. IK
channels also positively regulate the cell proliferation of MC3T3-E1 mouse pre-osteoblasts
via intracellular Ca2+ signalling, which is an important early step of osteogenesis [163]. The
osteogenic role of IK channels is notable enough, and this has also recently emerged as a
possible target to prevent vascular calcification [164]. The specific KCa3.1 inhibitor TRAM-
34 turned out to be an excellent target in a model of vascular smooth muscle cell calcification
as it interfered with the calcification-related signalling of NF-κB and TGF-β and reduced
the mRNA expressions of osterix, osteocalcin, and matrix-metalloproteinases (MMPs)-
2/-9 [164]. On the other hand, receptor activator of NF-κB-ligand (RANKL)-activated
murine bone marrow macrophage (BMM) cultures demonstrated a marked upregulation
of KCa3.1 during osteoclastogenesis. Treatment with TRAM-34 significantly reduced the
expression of osteoclast-specific genes alongside decreased osteoclast formation under
both inflammatory and non-inflammatory conditions [165]. There is emerging evidence
that IK channels may participate in conveying the effects of mechanical stimuli. In rat
bone-marrow-derived MSCs, the stretch-induced increase in cell proliferation and cell cycle
progression largely depends on KCa3.1 function as proven by pharmacological or genetic
inhibition experiments [142].

Data regarding the role of SK channels in bone-related cell types is very scarce. In 2000,
Gu et al. measured three different types of K+ currents in MLO-Y4 (murine-osteocyte-like)
cells. In a relatively low percentage (22%) of cells, a slowly activating, voltage-activated
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TEA-insensitive current was observed, which was strongly inhibited by apamin, a selective
inhibitor of SK channels [166]. In human articular chondrocytes, SK channels have been
shown to participate in the mechanotransduction pathway, which also involves α5β1-
integrin, the actin cytoskeleton, and tyrosine protein kinases [147]. A similar role could
be anticipated in bone tissue, where mechanical forces also play a significant role in the
homeostasis and bone mass maintenance [167]. Additionally, the KCa2.1 SK channel is
discussed in the context of Ewing sarcoma (EwS), a rare and highly malignant bone tumour
occurring mainly in childhood and adolescence [168]. The same team has unveiled that the
expression of this channel is directly regulated by EWSR1-FL1, which is the disease-driving
oncoprotein. Interestingly, KCa2.1 appears non-conductive in EwS cells by patch-clamp
electrophysiology, meaning that KCNN1 mRNA could instead be applied as a prognostic
marker in EwS and also meaning that these cells might be more vulnerable to hypo-osmotic
stress [168].

3.3. Calcium-Dependent Potassium Channels in Muscle Progenitor Cells and Myogenesis:
Expression and Function

The activation of potassium channels and the resulting membrane hyperpolarisation
in myoblasts is essential for myogenesis. BK channels are widely expressed in skele-
tal muscle, myocardium, and smooth muscle. In KCNMA1 knockout (BK−/−) rats, de-
creased muscle fibre area and lower grip strength were detected. Furthermore, BK−/− rats
showed muscle atrophy, decreased muscle strength, slowness, and tremor compared to
wild-type animals [169]. Cardiac muscle physiology was also adversely affected: cardiac
systolic/diastolic function and heart rate were reduced in BK−/− rats, and the wall of the
left ventricle became significantly thinner.

BK channels are also involved in TGF-β1-induced differentiation of human AD-MSCs
into vascular smooth muscle cells [170]. TGF-β1-induced differentiation of hASCs signif-
icantly increased the expression of the α-subunit of the BK channel, but not the SK and
IK channels.

IK channels are also expressed in skeletal myoblasts and are involved in the regula-
tion of muscle differentiation [171,172]. Administration of the Ca2+-activated K+ channel
opener DCEBIO facilitates muscle differentiation and causes hypertrophy in differentiating
C2C12 myoblast cells. These effects were mediated by mitochondrial IK channels, and the
increased phosphorylation level of Akt, a known skeletal muscle hypertrophy factor [173].

3.4. Calcium-Dependent Potassium Channels in Cells of the Synovium: Expression and Function

In synovial tissues, the role of BK channels has primarily been investigated in the
context of RA. KCa1.1 channels have recently emerged as a broadly investigated therapeutic
target for RA [174]. Besides immune cells, resident FLSs play a pivotal role in RA patho-
genesis [175]. FLSs are non-immune cells and are considered key effector cells of RA by
producing cytokines that maintain inflammation and various proteases that contribute to
the destruction of articular cartilage [176].

There is accumulating evidence from various RA models that many of the pathological
functions of FLSs can be attributed to BK channels. Tanner et al. [177] showed that the
interactions between FLSs and effector memory T (TEM) cells in rats with collagen-induced
arthritis are regulated by KCa1.1 and KV1.3. KCa1.1 is required for FLSs to stimulate TEM
cell proliferation and migration. Conversely, KV1.3 on TEM cells contributes to enhancing
KCa1.1 expression on FLSs. Haidar et al. [120] documented that the increased BK activity
in FLSs in an inflammatory arthritis model correlates with FLS activation following pro-
inflammatory cytokine (TNFα and IL1β) treatment. KCNMA1 mRNA was significantly
upregulated, while BK channel β-subunit expression levels were also altered (KCNMB1/2
were downregulated, whereas KCNMB3 was upregulated). There is a correlation between
KCa1.1 channel density and FLS invasiveness [178]. Treatment with a BK channel blocker
when the clinical signs of arthritis started to manifest inhibited the progression of the disease
in a rat model of pristane-induced arthritis (PIA); joint and bone damage were reduced, and
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the invasiveness and proliferation of FLS were constrained [179]. Disturbances in calcium
homeostasis, the sustained phosphorylation of Akt, and talin recruitment to β1-integrins
appear to be key signalling events, by which KCa1.1 regulates β1-integrin function and,
therefore, the invasiveness of FLSs [180]. BK channels have also been identified in human
RA patient samples as the major potassium channel expressed at the plasma membrane
of FLSs [181]. In the same human RA samples, blockade of KCa1.1 in FLS disrupts the
calcium homeostasis and inhibits a number of clinically unfavourable traits (proliferation,
production of VEGF, IL-8, and pro-MMP-2 and migration and invasion) of these cells [181].

After studying synovial fluid mesenchymal progenitor cells from normal and early OA
samples, Bertram et al. concluded that a number of ion channels had an altered expression
at the mRNA level. Interestingly, KCNMA1 expression remained unchanged [182]. Remark-
ably, the differences among the above findings may indicate that a strong inflammatory
context might be obligatory for the synovial expression of BK channels to change.

4. BK Channels in Calcium Oscillations in CPCs

Both MSC and CPC cells exhibit Ca2+ oscillations, which are periodic elevations
of the intracellular Ca2+ concentration ([Ca2+]i) [183–186]. Early steps of chondrogenic
differentiation are driven by these repetitive intracellular Ca2+ signals, which rely on Ca2+

influx from the extracellular environment [183]. Thus, it is reasonable to assume that Ca2+

oscillations are associated with a similar temporal fluctuation of the RMP. In this study, we
propose a model in which the intrinsic pacemaker function of chondrogenic cells is based
on a membrane clock mechanism operated by a coordinated interplay between various
voltage-gated ion channels of the plasma membrane (Figure 1).
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Figure 1. A model describing ion conductance fluctuations accounting for the oscillation of the
membrane potential and intracellular Ca2+ concentration in chondrogenic cells. An original record
of a transient elevation of the intracellular Ca2+ concentration ([Ca2+]) in a single chondrogenic cell
(as reported previously in [42]) is shown in black. Simultaneous temporal change of the membrane
potential (MP) and the relative magnitude of depolarising and hyperpolarising ionic conductances
were estimated and are illustrated in blue, red, and green, respectively.
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This model involves BK channels, L-type, voltage-gated Ca2+ channels (Cav1.2), the
non-voltage dependent epithelial Na+ channel, and the Na+/Ca2+ exchanger (NCX), which
have all been shown to be essential for Ca2+ oscillations [23,39,40,146,184,186,187]. In addi-
tion, the role of the “leak” K+ channel TASK-2 and some voltage-gated delayed rectifier
K+ channels (KV1.1, 4.1, and 1.3) is also considered [4,50,145]. The baseline MP of chon-
drogenic cells is quite depolarised (~−21 mV), suggesting that the TASK-2 background
K+ conductance and the delayed rectifier channel conductance are balanced by the con-
stitutively active Na+ conductance of the ENaC. At this membrane potential, the Cav1.2
channels are open, which also contributes to the depolarised MP and mediates Ca2+ influx.
As the Cav and BK channels are often clustered together, the local [Ca2+] in the proximity
of BK channels reaches values high enough to open them [188–191]. BK represents the
predominant K+ conductance in chondrogenic cells and is known to link Ca2+ signalling
to MP [23,192]. In doing so, the BK current will hyperpolarise the MP, which in turn
deactivates the Ca2+ current. Elevated [Ca2+]i is also the key to reverse the MP from
its most-hyperpolarised point, as it enhances NCX activity, which creates a depolarising
current owing to its 3Na+/1Ca2+ stoichiometry. While the NCX (in cooperation with the
plasma membrane Ca2+ pump (PMCA)) restores the [Ca2+]I, the BK channel deactivates,
and the inward cationic currents will prevail. This will cause the MP to spontaneously
depolarise back to baseline, which will initiate the next membrane clock cycle again by
activating the Ca2+ current. Pharmacological inhibition of any component of this chain
clamps the MP in a hyperpolarised or depolarised state and interrupts the cycle [23,40,184].
Additional inward Ca2+ currents, mediated by ionotropic purinergic receptors or transient
receptor potential channels of the vanilloid family (TRPV4), may also regulate the [Ca2+]i
depending on the stage of development [30,43,183,193].

5. KCa Channels in Musculoskeletal Pathologies

BK channels have been well documented to play a pivotal role in regulating several
physiological processes including musculoskeletal homeostasis, neuronal excitability, and
pain signalling. Thus, their therapeutic potential may be of particular interest for clinical
practice [174,194].

Channel disorders, also known as channelopathies, are implicated in various human
diseases related to striated and smooth muscle. In skeletal muscle, BK channels with
different functional and pharmacological properties have been described [195], and they
are involved in a great variety of functions. Collected data support that slow-twitch rat
fibres display a rather increased BK expression associated with low Ca2+ sensitivity and
insensitivity to channel activator acetazolamide, whereas drug-sensitive BK channels of
fast-twitch rat fibres with high Ca2+ permeability show lower activity [195,196]. It has
been proposed that ageing potentiates BK channel currents of fast-twitch fibres, promot-
ing abnormal fast–slow fibre remodelling, which occurs with muscle disuse [197]. BK
channels appear to actively participate in fibre transition in a cell-line-based and in a
rat ischemia–reperfusion model of hyperkalaemia [198,199]. In hypokalaemia periodic
paralysis (hypoPP) patients, BK channel expression in the membrane fraction of muscle
cells was detected in significantly lower amounts compared to the cytosolic compartment,
emphasising the role of channel redistribution in pathological states [200]. BK channel
activators (e.g., acetazolamide, dichlorphenamide) administered together with Na+ channel
inhibitors may alleviate the weakness and myotonia in patients [201]. BK channel agonists
can also appropriately depolarise skeletal muscle fibres in paralysis and hypoPP [202,203].
In agreement with this, recent findings obtained using BK−/− rats demonstrated reduced
skeletal muscle fibre area, speed, and movement compared with wild-type littermates. The
cardiac muscle of BK−/− rats also displayed the shrinkage of the muscle fibre area, lower
cardiac systolic/diastolic function, and heart rate [169].

BK channels may also be one of the key determinants of vascular tone regulation [201],
since polymorphisms of α and β1 channel subunits are correlated with the prevalence of
asthma and hypertension. Gain-of-function polymorphism within KCNMB1 encoding the
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β1-subunit may lead to severe diastolic hypertension [204] and alteration of baroreflex
function [205]. Specific Glu65Lys polymorphism of β1 may decrease systolic and diastolic
blood pressure [206]. Mutations of the α-subunit are also associated with increased risk of
hypertension and myocardial infarction [207].

BK channels have been identified as the major potassium channels in FLSs derived
from patients with RA. Unsurprisingly, blockade of the BK channel with paxilline dis-
rupts Ca2+ homeostasis and prevents RA-FLS proliferation and invasion by inhibiting
cytokine and MMP production. Therefore, it provides a potential target candidate for RA
therapy [181].

The often debilitating chronic pain prevailing in degenerative joint diseases such as
RA and OA is the result of autoimmune and local inflammatory processes, in which both
peripheral and central sensitisation may be implicated [208]. Accumulating data suggest
the role of BK channels in pain modulation [194,209,210]. BK channels may contribute to
the inhibition of neurotransmitter release by preventing overexcitation, since iberiotoxin
was shown to enhance the activation of spinal glycinergic neurons [211]. Peripheral nerve
injury robustly alters the plasticity of both primary afferents and spinal dorsal horn neurons,
resulting in central sensitisation and, eventually, neuropathic pain. BK channel expression
was substantially decreased following L5-L6 spinal nerve ligation, and pharmacological
blockade with iberiotoxin significantly reduced the mechanical paw withdrawal threshold
of animals [212].

Intriguingly, BK channel activation also principally negatively affects pain signalling
at supraspinal levels such as the anterior cingulate cortex, the motivational–affective centre
and a key hub for anxiety and pain perception, although overexpression of the synaptic and
non-synaptic BK channel β4 subunit evoked mechanical allodynia along with anxiety-like
behaviour [213].

6. Conclusions and Perspectives

KCa channels, especially BK channels, play fundamental roles in cells of the differ-
entiating and mature tissues of the musculoskeletal system, including cartilage, bone,
synovium, tendon, and muscle. Unsurprisingly, these ion channels are increasingly recog-
nised to be involved in pathophysiological conditions including pathologies of the central
nervous system (seizures, epilepsy, autism, and intellectual disability, cerebral ischemia
and hypoxia, hypertension, obesity, and diabetes mellitus) [214]. The versatility of BK
channels is also attributable to the fact that the β-subunits, which are characterised by
a specific tissue distribution, modify channel kinetics, pharmacological properties, and
the apparent Ca2+ sensitivity of the α-subunit. Additionally, alternative splicing isoforms
confer different tissue expression and function to the channel [201], representing one of
the main mechanisms of BK channel diversity. In fact, the splicing variants may help the
design of molecules selectively targeting the subtypes expressed in different tissues of the
musculoskeletal system. The use of drugs selectively targeting tissue-specific BK channel
isoforms is a promising strategy in the treatment of various disorders, including hyper-
kalaemia and hypokalaemia periodic paralysis in the case of the muscular system [201].
Unfortunately, the tissue- and cell-specific distribution of BK channel subunit isoforms has
not been mapped in detail in relation to the progenitor cells of the musculoskeletal system.
Therefore, this is an important area to be addressed by future research.

BK channel subunits are also subject to posttranslational modifications including
protein phosphorylation, lipidation, glycosylation, and ubiquitination [215]. These post-
translational modifications control the number, properties, and regulation of BK channels
in specific cell types. Posttranslational regulation is important for the temporal control of
channel function from the millisecond to hours timescale. However, the spatial localisa-
tion is also important for BK channel function. Although posttranslational modifications
are important determinants of the temporal or spatial control of BK channels [215], we
know relatively little about the spatiotemporal dynamics of BK channels in cells of the
musculoskeletal system. This subject also warrants further studies.
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Another important point regarding KCa channels in various settings is that they are
unlikely to act independently. The way KCa channel subunits link to intracellular proteins,
metabolites, and pathways, as well as their modulation by extracellular natural agents,
is highly relevant in many physiological processes [216]. A high number of proteins
are known to interact with BK channels (Figure 2). The interactants may be involved in
trafficking/targeting of BK channels to specific plasma membrane compartments (such
as actin (ACTA2), caveolins (CAV1, CAV2, CAV3), cereblon (CRBN), catenin (CTNNAL1),
or microtubule-associated protein 1A (MAP1A)); removal or degradation of BK channels
such as cullin-1 (CUL1) or F-box only protein (FBXO7); and modulation of BK channel
properties, including regulators subunits such as KCNMB1, B2, B3, B4, LRRC26, as well
as cAMP-dependent protein kinase subunit alpha (PRKACA). Given that BK channels are
linked to many diseases, including musculoskeletal disorders, understanding cell-specific
BK channel interactomes will help us to expand our knowledge on how altered BK channel
functions contribute to these conditions. This knowledge could be then exploited to design
pharmaceutical therapies that block or activate specific regulatory mechanisms by targeting
the interaction between BK channels and their interacting partners.
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