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Abstract—Multi-energy virtual power plant (MEVPP) can aggregate flexible resources such as energy 

storage and flexible loads that decentralized in the region to meet the access conditions in the peak-regulation 

ancillary service market. However, the uncertainties in energy sources and loads bring adverse impact on the 

operation of MEVPP. Therefore, this paper proposes a day-ahead robust bidding strategy for MEVPP to 

participate in the peak-regulation market. Firstly, this paper analyzes the impact of uncertainties for MEVPP 

on the peak-regulation market. On this basis, the operation mechanism for MEVPP in the peak-regulation 

market is proposed by considering the integrated demand response (IDR). Additionally, the day-ahead two-

stage robust bidding model is established to minimize the operation cost of MEVPP. Finally, the case studies 

show that the day-ahead robust bidding strategy can effectively reduce the peak-regulation deviation penalty 

compared with traditional deterministic optimization. Specifically, with the proposed robust bidding strategy, 

the total revenue in the actual operation stage is increased by 5.16% and 8.45% on sunny day and raised by 

8.28% and 15.35% on cloudy day when the predicted deviations are respectively 20% and 30%, comparing 

with traditional deterministic optimization. 

Index Terms-- Uncertainty, multi-energy virtual power plant, robust bidding strategy, peak-regulation 

market 

NOMENCLATURE 

Abbreviations  

VPP Virtual power plant 

DERs Distributed energy resources 

ESSs Energy storage systems 
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CVaR Conditional value at risk 

PV Photovoltaic units 

IES Integrated energy system 

MEVPP Multi-energy virtual power plant 

IDR Integrated demand responds 

MEVPPO Multi-energy virtual power plant operator 

CCHP 
Combined cooling, heat and power 

cogeneration unit 

C&CG 
Column-and-constraint generation 

algorithm 

  

Indices and sets  

t  Index of time interval (h) 

l  Set of energy storage devices 

p v/T T  Set of peak and valley periods (h) 

  

Parameters  

max
trP  

Upper limit of power of transferred 

electrical load (kW) 

min max 0
hw hw hw/ /T T T  

Minimum/maximum/initial water 

temperature (°C) 

wc  
Specific heat capacity of water 

(kWh/(kg·°C)) 

wρ  Density of water (kg/m3) 

max min
in in/T T  

Maximum/minimum indoor temperature 

(°C) 

R  Thermal resistance of the house (°C/kW) 

N
GTP  

Rated capacity of natural gas to electricity 

by gas turbine (kW) 

e
GTη  

Conversion efficiency of natural gas to 

electricity by gas turbine  

h c
LB LB/η η  

Conversion efficiency of the waste heat of 

flue gas to thermal/cooling energy by 

lithium bromide unit 

h
GTη  

Conversion efficiency of natural gas to the 

waste heat of flue gas by gas turbine 

N N
LB LB/H C  

Rated thermal/cooling output by lithium 

bromide unit (kW) 

HPCOP  Coefficient of performance of heat pump 

N
HPH  Rated output of heat pump (kW) 

cenCOP  
Coefficient of performance of centrifugal 

chiller 

N
cenC  Rated output of centrifugal chiller (kW) 

lα  Energy loss of energy storage devices 

c d/l lη η  Charging/discharging efficiencies 

min max/l lSoC SoC  Minimum/maximum state of charge 

N
lS  Rated energy storage capacity (kWh) 

max
lP  

Maximum charging and discharging power 

(kW) 

roomn  Number of rooms 

base
tP  

Baseline power purchased from the grid 

(kW) 

f,min
tP  Lower bound of the bidding power (kW) 

max max
p v/P P  Upper bounds of the bidding power (kW) 

gasς  Calorific value of natural gas (kJ/m3) 

gas
tc  Price of natural gas (RMB/m3) 

grid
tc  

Price of electricity from the grid 

(RMB/kWh) 

lc  
Operation cost coefficient of the energy 

storage (RMB/kWh) 

tr
tc  

Compensation price to regulate electrical 

loads (RMB/kWh) 

sc sh se/ /t t tc c c  
Price of cooling/thermal/electrical energy 

(RMB/kWh) 

p v/t tc c  
Prices for peak shaving and valley filling 

in the peak-regulation market (RMB/kWh) 

  

Variables  

eload
tP  

Power of the electrical load after 

optimization (kW) 

tr
tP  

Power of the transferred electrical load 

(kW) 

hload
tH  Power of the thermal load (kW) 

cload
tC  Power of the cooling load (kW) 

GT
tP  

Electrical energy generated by gas turbine 

(kW) 

LB LB/t tH C  
Thermal and cooling energy generated by 

lithium bromide unit (kW) 

HP
tH  

The thermal energy generated by heat 

pump (kW) 

cen
tC  

Cooling energy generated by centrifugal 

chiller (kW) 

cen
tP  

Electricity consumed by centrifugal chiller 

(kW) 

t
lS  Energy storage level (kWh) 

,c ,d/t t
l lP P  Charging/discharging power (kW) 

p v/t tP P  
Bidding power of peak shaving and valley 

filling (kW) 

grid
tP  

Electrical power purchased from the grid 

(kW) 

ed
tu / cw

tu / 

out
tu / pv

tu  

Uncertainty values of the initial electrical 

load (kW), the volume of cold water (L), 

the outdoor temperature (°C) and the 

power output of PV (kW) 
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LB p v/ /t t tx x x  Binary variables 
edu cwu

outu pvu

/ /

/

t t

t t

P V

T P
 

The initial electrical load (kW), the 

volume of cold water (L), the outdoor 

temperature (°C) and the power output of 

PV (kW) 

1. Introduction 

Generally, the capacity of decentralized distributed energy resources (DERs) is too small to meet the access 

conditions of energy market. Virtual power plant (VPP) is an effective way to integrate flexible resources such as 

various DERs, energy storage systems (ESSs), and flexible loads together by using information and communication 

technology to participate in the energy market [1][2][3]. With the development of integrated energy system (IES), 

multi-energy virtual power plant (MEVPP) is emerged as a new concept [4][5][6]. Compared with traditional VPP, 

MEVPP integrates multiple types of energy, such as electricity, thermal energy, cooling energy, natural gas, etc., 

which makes it suitable to participate in the energy market [5]. Moreover, to coordinate multiple energy sources and 

improve energy efficiency, it is an irresistible trend that traditional demand response transforms to integrated demand 

response (IDR). 

In recent years, there are some documents dedicated to optimal dispatching of VPP. Reference [7] classifies different 

users and formulates different incentive prices by data mining, aiming to maximize the interests of users and minimize 

the operation cost of VPP. A multi-objective optimization model of power-to-gas based VPP is proposed in [8], 

maximizing profit and minimizing risk. However, the study considers the interaction between electrical energy and 

gas but does not consider cooling energy and thermal energy. In order to aggregate massive decentralized DERs and 

protect the privacy of the asset owners, literature [9] proposes a decentralized economic dispatch method and a 

decentralized VPP architecture, but the architecture only investigates pure electrical VPP. Some scholars turn their 

attention to MEVPP with multiple types of energies. Considering day-ahead profit maximization and emissions 

minimization, a multi-objective scheduling method of DERs in the MEVPP is proposed in literature [10]. Study [11] 

proposes a day-ahead optimal scheduling method for MEVPP, considering the multi-flexible performance of electric 

vehicle and the uncertainties of renewable energy resources at the generation side. However, works [10]-[11] only 

focus on optimal operations of MEVPP under the energy market, but do not take into account the bidding strategies 

of MEVPP in the peak-regulation ancillary service market. Thus, to further improve the economy of MEVPP, this 
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paper establishes a day-ahead bidding strategy for MEVPP to participate in peak-regulation market. 

In China, with the increasing power demand of users, the power system peak load appears in winter and summer, 

and the peak-valley difference is constantly expanding. Thus, the pressure of peak-regulation of the grid increases 

continuously. MEVPP is a novel and flexible mode of peak-regulation, which can aggregate massive decentralized 

flexible resources. At present, the Chinese government has release relevant policies to encourage third party with 

energy storage devices and demand-side resources to participate in the provision of auxiliary power services [12]. In 

the future, the Chinese government will carry out demonstration projects on VPP, including industrial adjustable load, 

building air conditioning load, big data center load, energy storage, vehicle-to-grid (V2G) and other resources [13]. 

China aims to achieve a demand-side response capacity of 3%-5% of maximum load by 2025. Therefore, it is 

significant to design the bidding strategy for MEVPP in the peak-regulation market. 

There are some researches about MEVPP participating in the peak-regulation market. For instance, based on 

reinforcement learning algorithm, a scheduling method for MEVPP participating in the peak-regulation market is 

proposed, and the response characteristics of DERs are analyzed [14]. Reference [15] combines traditional thermal 

power units with new VPPs and proposes a distributed double-layer clearing model under the peak-regulation market 

to improve the robustness against cyber-attacks. At the same time, the upper-level clearing model is proposed to ensure 

the fairness of power distribution among DER. Literature [16] designs the market mechanism for VPPs to participate 

in the deep peak regulation and establishes the day-ahead clearing model and the real-time clearing model for the 

thermal power units and VPPs. Finally, the case study is conducted to verify the effectiveness of the proposed 

mechanism. It also can effectively cope with the changes of real-time deep peak regulation demands. The above 

literatures discuss the market clearing model of MEVPP and the response characteristics of various equipment. 

However, they still have some limitations. Firstly, they do not consider the impact of the uncertainties within MEVPP 

on its participation in the peak-regulation market. In addition, the operation mechanism for a single MEVPP to 

participating in the peak-regulation market is not established. 

To combat climate change, the Chinese government aims to peak carbon dioxide emissions by 2030 and become 

carbon neutral by 2060. To achieve this goal, the installed capacity of renewable energy resources in China is 

increasing. But renewable energy is volatile. It is a critical task for MEVPP to handle the uncertainties of renewable 

energy when participating in peak-regulation market. In addition, compared with pure electrical VPPs, MEVPP 

consists of different types of energy. Thus, MEVPP must deal with multiple uncertainties from sources such as PV, 
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electrical load, the volume of cold water, and the outdoor temperature. To solve this problem, stochastic optimization 

methods are widely used. To describe the uncertainty of VPP, literature [17] introduces the conditional value at risk 

(CVaR) and confidence method. For the joint market of energy and spinning reserve service, a two-stage stochastic 

programming method is used to establish a risk aversion model of VPP in [18]. The research in [19] establishes a 

double-layer scenario-based stochastic optimization model by using CVaR. Based on scenarios, the uncertainty of 

output of wind turbines and photovoltaic (PV) units is described, and a risk-constrained stochastic model of VPP is 

presented in [20]. The stochastic optimization method is relatively simple in calculation, which describes the 

uncertainty by scenario-based approaches. But it requires a lot of historical data to construct typical scenarios. 

Moreover, the computational burden will grow greatly with the increase of the number of scenarios, which makes it 

difficult to apply in practical engineering [21][22]. 

Compared with stochastic optimization, robust optimization does not require the specific probability distribution of 

uncertainty parameters, but only need obtain their bounded range, which is more suitable for MEVPP to formulate 

day-ahead bidding strategy in the peak-regulation market [23]. To solve the problem of uncertainties in renewable 

resource and imbalance penalty prices, a VPP robust bidding approach is proposed to maximize its profits in [22]. The 

research in [24] establishes a VPP robust optimization model to maximize benefits, in which the uncertainties of 

renewable energy sources and the demand response are incorporated. Authors of [25] use confidence bounds to present 

uncertainties in wind power and market prices and then put forward a two-stage optimization method based on robust 

optimization. 

A day-ahead robust bidding strategy for MEVPP in the peak-regulation market is proposed in this paper, considering 

IDR and the uncertainties in source and load. The main highlights of this paper are as follows: 

(1) The operation mechanism for MEVPP participating in the peak regulating market is established, which integrates 

various decentralized flexible resources in the region. (2) In view of the challenges brought by multiple uncertainties 

of renewable energy and various loads within MEVPP, a day-ahead robust bidding model is established to minimize 

the cost of MEVPP and improve the robustness of the system. (3) Apart from electricity, multiple forms of energy 

such as cooling energy, thermal energy, and natural gas are also involved in the peak-regulation market. 

The rest of this article is organized as follows. Section 2 describes the operation mechanism for MEVPP. In Section 

3, the mathematical model of MEVPP is presented. Section 4 gives the day-ahead robust bidding model. Validation 

and analysis are provided in Section 5. Finally, Section 6 concludes the article. 
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2. Operation mechanism for MEVPP 

In the peak-regulation market, MEVPP coordinates IDR and ESSs to reduce electricity purchased from grid during 

peak periods and increase electricity input during valley periods. Thus, MEVPP obtains peak-regulation compensation 

through peak shaving and valley filling. Note that electricity is not considered to be sold to the grid in this paper. 

The operation mechanism for MEVPP to participate in the peak-regulation market is shown in Fig. 1. To meet the 

access conditions of peak-regulation market, MEVPP integrates decentralized flexible resources in different energy 

forms, such as various DERs, ESSs, energy supply equipment, flexible electrical loads, flexible thermal loads, flexible 

cooling loads. In MEVPP, multi-energy virtual power plant operator (MEVPPO), as a manager, not only trades and 

bids with the external market, but also coordinates various internal resources to maintain the stability of the system. 

The process for MEVPP to participate in the peak-regulation market is as follows: 

Step 1
Peak-regulation 

information

Step 2
Report

 baseline power

Step 3
Day-ahead 

bidding

Step 4
Peak-regulation 

settlement

Dispatch 

Center

MEVPPO

Supply Side

Report predicted 
power

Send scheduling 

instructions

Report actual peak-

regulation power

Cooling

Thermal

Electricity

Storage
Energy supply 

equipment

PV

Residential
load

Commercial 
load

Charging load

Demand Side

 

Fig. 1.  Operation mechanism for MEVPP. 

Step 1: Announce peak-regulation information. Before the operation day, the dispatch center announces peak-

regulation information, such as prices, periods and access conditions. 

Step 2: Report baseline power. Each aggregation unit in MEVPP reports information to MEVPPO according to day-

ahead prediction results, including equipment capacity, load demands, periods, etc. Then, MEVPPO reports the 

baseline power of electricity purchased from the grid to the dispatch center. The baseline power is the net load of the 
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system based on the day-ahead prediction results. Notably, the uncertainties in source and load, and the effect of IDR 

and ESSs are not considered in this step. 

Step 3: Day-ahead bidding. MEVPPO formulates a day-ahead bidding strategy based on the information sent by the 

internal participants and announced by the external peak-regulation market. Then, MEVPPO reports the peak-

regulation bidding capacity and periods to the dispatch center. 

Step 4: Peak-regulation settlement. After the operation day, the peak-regulation fee and penalty are settled. When 

the actual peak-regulation capacity is greater than the bidding capacity, the settlement is according to the bidding 

capacity. However, when it is less than 80% of the bidding capacity, MEVPP will be penalized. The penalty is 

calculated based on the unfinished part. In other cases, settlements are based on the actual peak-regulation capacity. 

According to Fig. 1, the settlement is calculated based on the actual operation results. However, the actual power of 

renewable source and load is stochastic, which may cause the actual peak-regulation capacity to be lower than the day-

ahead bidding capacity, i.e., MEVPP may be penalized. Hence, when MEVPP formulates the day-ahead bidding 

strategy to participate in the peak-regulation market, it is significant to consider the uncertainties in source and load. 

3. Mathematical model of MEVPP 

The system structure of MEVPP is shown in Fig.2, which is based on a multi-energy station in China. The system 

includes ESSs, flexible loads, combined cooling, heat and power cogeneration unit (CCHP), etc., which can be 

integrated as a MEVPP. 

Natural gas Electricity Cooling energy Thermal energy

MEVPP

PV

Gas
 turbine

Heat pump

CCHP

Lithium 
bromide unit

Centrifugal
chiller

Supply SideInput

Natural gas 
system

Grid

Electrical
storage

Ice
 storage

Thermal
 storage

Thermal load

Demand Side

Cooling load

Electrical load

 

Fig. 2.  System structure of MEVPP. 
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3.1 Demand side 

IDR includes the demand response of electricity, cooling and thermal energy. The flexible electrical load is mainly 

transferable load. 

eload edu tr
t t tP P P= −                                                                                        (1) 

T

tr

1

0
N

t

t

P
=

=                                                                                            (2) 

max max
tr tr tr

tP P P−                                                                                        (3) 

where eload
tP  is the electrical load after optimization; edu

tP  is the initial electrical load; tr
tP  is the transferred electrical 

load. 

The flexible thermal load is mainly hot water load. Users have a desired range for the water temperature [26]. 

min 0 max 0
cwu hw hw hload w w cwu hw hw( ) / ( ) ( )t t tV T T H c ρ V T T−   −                                                     (4) 

where wc  and wρ  are the specific heat capacity and density of water, respectively; cwu
tV  is the volume of cold water; 

0
hwT  is the initial water temperature; min

hwT  and max
hwT  are the minimum and maximum water temperature expected by 

users, respectively; hload
tH  is the thermal load, which is the required thermal energy to set the water temperature. 

The flexible cooling load is similar to thermal load. Users have an acceptable range for the indoor temperature [26]. 

max min
outu in cload outu in( ) / ( ) /t t tT T R C T T R−   −                                                              (5) 

where min
inT  and max

inT  are the minimum and maximum indoor temperature expected by users, respectively; outu
tT  is 

the outdoor temperature; R  is the thermal resistance of the house; cload
tC  is the cooling load, which is the required 

cooling energy to set the indoor temperature. 

3.2 Supply side 

CCHP consists of a gas turbine and a lithium bromide unit. The electrical energy generated by the gas turbine is: 

e
GT GT GT
t tP η Q=                                                                                      (6) 

N
GT GT0 tP P                                                                                        (7) 

where N
GTP  and 

e
GTη  are the rated capacity and the conversion efficiency of natural gas to electricity by the gas turbine; 

GT
tQ  is the natural gas consumed by the gas turbine. 
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The lithium bromide unit model is obtained by (8)-(11). 

h h
LB LB GT GT
t tH η η Q                                                                                  (8) 

c h
LB LB GT GT
t tC η η Q                                                                                   (9) 

N
LB LB LB0 t tH x H                                                                                 (10) 

( ) N
LB LB LB0 1t tC x C  −                                                                            (11) 

where LB
tH  and LB

tC  are the thermal and cooling energy generated by the lithium bromide unit, respectively; 
h
LBη  and 

c
LBη  are the conversion efficiency of the waste heat of flue gas to thermal and cooling energy; 

h
GTη  is the conversion 

efficiency of natural gas to the waste heat of flue gas; N
LBH  and N

LBC  are the rated thermal and cooling output; LB
tx  is 

the binary variable. 

The thermal energy generated by heat pump is expressed as: 

HP HP HP
t tH COP Q=                                                                               (12) 

N
HP HP0 tH H                                                                                   (13) 

where HPCOP  and N
HPH  are the coefficient of performance and the rated output of the heat pump, respectively. 

The cooling energy generated by the centrifugal chiller is shown in (14). 

cen cen cen
t tC COP P=                                                                               (14) 

N
cen cen0 tC C                                                                                   (15) 

where cenCOP  and 
N
cenC  are the coefficient of performance and the rated output of the centrifugal chiller; cen

tP  is the 

electricity consumed by the centrifugal chiller. 

The model of the energy storage is as follows: 

1 c d
,c ,d(1 ) /t t t t

l l l l l l lS α S η P P η−= −  +  −                                                             (16) 

min N max Nt
l l l l lSoC S S SoC S                                                                      (17) 

max
,c ,d0 ,t t

l l lP P P                                                                              (18) 

where {e, h, c}l  is the type of energy storage devices, representing electrical, thermal, and ice storage, respectively; 

t
lS  is the energy storage level; lα  is the energy loss; ,c

t
lP , ,d

t
lP , 

c
lη , and 

d
lη  stand for charging and discharging power 
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and efficiencies; min
lSoC  and max

lSoC  are minimum and maximum state of charge, respectively; N
lS  is the rated 

energy storage capacity; max
lP  is maximum charging and discharging power. 

The demand-supply balance constraints of electricity, thermal energy and cooling energy are formulated in (19)-

(21). 

eload cen e,c pvu GT grid e,d
t t t t t t tP P P P P P P+ + = + + +                                                        (19) 

hload h,c LB HP h,d
t t t t tH P H H P+ = + +                                                                 (20) 

room cload c,c cen LB c,d
t t t t tn C P C C P+ = + +                                                              (21) 

where pvu
tP  is the power output of PV; grid

tP  is the electrical power purchased from the power grid; roomn  is the number 

of rooms. 

3.3 Peak-regulation constraints 

( )

max
p f,min p p p p

p base grid p

,

,

t t t t

t t t

x P P x P t T

P P P t T

   


 − 

                                                                 (22) 

( )

max
v f,min v v v v

v grid base v

,

,

t t t t

t t t

x P P x P t T

P P P t T

   


 − 

                                                                (23) 

where base
tP  is baseline power purchased from the grid; f,min

tP  is lower bound of the bidding power; p
tx  and v

tx  are 

binary variables; p
tP  and v

tP  are the bidding power of peak shaving and valley filling; pT  and vT  are the peak and 

valley periods; 
max

pP  and max
vP  are the upper bounds of the bidding power. 

3.4 Objective function 

The objective function of MEVPP is calculated by: 

( )
T

mvpp buy DR m sell f

1

N
t t t t t

t

C C C C C C
=

= + + − −                                                        (24) 

GT HP

e
HP

GT

buy gas gas grid grid( ) /
t tP Ht t t t

ηη
C c ς c P= + +                                                           (25) 

( )
 

m ,c ,d

e, h, c

t t t
l l l

l

C c P P


= +                                                                     (26) 
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where buy
tC  is the energy cost; DR

tC  is the compensation cost for users to regulate loads; m
tC  is the operation cost of 

energy storage; sell
tC  is the income from selling energy; f

tC  is the peak-regulation income; gasς  and gas
tc  are the 

calorific value and price of natural gas; grid
tc  is the price of electricity from the grid; lc  is the operation cost coefficient 

of the energy storage. 

The cooling and thermal supplies can meet the needs of users for adjusting indoor temperature and hot water 

temperature. Therefore, the compensation cost of cooling and thermal loads is not considered. 

DR tr tr tr trs
t t t t tC c P c P= =                                                                          (27) 

trs tr trs
t t tP P P−                                                                                 (28) 

where tr
tc  is the compensation price to regulate electrical loads; trs

tP  is the auxiliary variable. 

Energy income from selling energy includes three parts, as in (29). It is worth noting that the energy cost of users 

should not increase. 

sell sc cds sh hds se ed
t t t t t t tC c C c H c P= + +                                                                  (29) 

cds cdbase cds room cload

hds hdbase hds hload

;  

;  

t t t t

t t t t

C C C n C

H H H H

  


 

                                                                (30) 

The income of participating in the peak-regulation market includes the income for peak shaving and valley filling. 

p v

f p p v v
t t t t t

t T t T

C c P c P
 

= +                                                                          (31) 

where p
tc  and v

tc  are the prices for peak shaving and valley filling in the peak-regulation market, respectively. 

4. Day-ahead robust bidding model 

The uncertainty set of PV generation, and the uncertainty sets of electrical, thermal, and cooling loads are given as: 

ed cw out pv

0, , max, , max,

, , , ,

1

{ , , , }

1;  ( )

t t t t

t t t t t t
i i i i i i

T
t t t t

ii i i i

t

u u u u

u u b u b u

b b b b

+ −

+ − + −

=


=


= = + −

 +  + 




u

U Δ Δ

Γ

                                                            (32) 
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where uncertainty variables ed
tu , cw

tu , out
tu  and pv

tu  are the actual values of the initial electrical load, the volume of 

cold water, the outdoor temperature and the power output of PV. 
0,t
iu  and 

max,t
iuΔ  are the predicted nominal value and 

predicted maximum deviation, respectively. 
,t

ib+
 and 

,t
ib−

 are the binary variables. Uncertainty budget parameter iΓ  

is used to regulate the conservative degree of the robust bidding model. 

The uncertainty variables are introduced to the day-ahead bidding model of MEVPP. 

edu ed 0t tP u− =                                                                                     (33) 

cwu cw 0t tV u− =                                                                                    (34) 

outu out 0t tT u− =                                                                                    (35) 

pvu pv 0t tP u− =                                                                                    (36) 

Therefore, the two-stage robust optimization model established in this paper is as follows [27]: 

mvppmin   max      min

        s.t. (32)   

                   s.t. (1)-(23),(28),(30),(33)-(36)

C
 







x y Φu U

                                                       (37) 

LB p v

GT LB LB HP cen cen eload tr

hload cload grid p v trs cds hds

,c ,d edu cwu outu pvu

{ , , };

{ , , , , , , , ,

         , , , , , , , ,

         , , , , , , }

t t t

t t t t t t t t

t t t t t t t t

t t t t t t t
l l l

x x x

P H C H C P P P

H C P P P P C H

S P P P V T P

=


=





Φ
                                                    (38) 

To solve this problem, the inner min-problem is transformed into the dual problem by the duality theory. Then, it is 

merged with the middle max-problem. However, after substituting (32), the forms (
,t t

iib π+
 and 

,t t
iib π−
) of multiplying 

a binary variable by a continuous variable appear, which are not convex. They are replaced by the new variables 
,t

iz+  

and 
,t

iz−  with the following additional linear constraints [28]: 

, , , , , ,

, , ,

, , ,

M M; M M

(1 )M (1 )M

(1 )M (1 )M

t t t t t t
i i i i i i

t t t t t
i ii i i

t t t t t
i ii i i

b z b b z b

π b z π b

π b z π b

+ + + − − −

+ + +

− − −

−   −  


− −   + −


− −   + −

                                                  (39) 

where 
t
iπ  are the dual variables of (33)-(36), respectively; M  is a given big value. 
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After that, a slave problem is obtained, which is a mixed integer linear problem. Finally, the column-and-constraint 

generation (C&CG) algorithm is used to solve this robust problem [27]. The detailed solving process is given in 

Appendix A. 

5. Validation and analysis 

5.1 Parameters and data 

Table 1 

Parameters of flexible loads. 

Parameter Value Parameter Value Parameter Value 
base

hwT  70°C min max
hw hw[ , ]T T  [65°C,75°C] max

trP  800kW 

0
hwT  15°C min max

in in[ , ]T T  [22°C,26°C] tr
tc  0.1RMB/kWh 

R  18°C/kW base
inT  24°C roomn  3000 

The uncertainty budget parameter and maximum deviation for PV are 6 and 15%, and that for electrical, cooling 

and thermal energy data are 12 and 10%, respectively. The natural gas price is 2.92RMB/m3. The lower bound of 

bidding capacity is 0.5MW. Other parameters are given in Table 1 to Table 3. The prediction curves of PV and loads 

are given in Fig. 3. 
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Fig. 3.  Prediction curves of PV and loads. 

Table 2 

Prices of energy and peak-regulation. 

Period 
Parameter (RMB/kWh) 

grid
tc  p

tc  v
tc  sc

tc  sh
tc  se

tc  

1:00-8:00 0.3249 0 0.35 

0.3 0.32 0.7 

13:00-17:00; 

22:00-24:00 
0.6226 0 0 

9:00-12:00; 
18:00-21:00 

0.9203 0.5 0 
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Table 3 

Parameters of equipment. 

Parameter Value Parameter Value Parameter Value Parameter Value 

h
LBη ; 

c
LBη  0.8; 1.2 N

LBC  2326kW ec  0.02RMB/kWh 
c
cη ; 

d
cη  0.95 

e
GTη ; 

h
GTη  0.35; 0.45 N

LBH  2164kW hc ; cc  0.01RMB/kWh 
c
eη ; 

d
eη  0.98 

HPCOP ; cenCOP  1.2; 3 N
cenC  3000kW N

GTP  2000kW 
c
hη ; 

d
hη  0.95 

min
lSoC ;

max
lSoC  0.1; 0.9 N

HPH  2500kW N
eS  2000kWh N

hS ; 
N
cS  1680kWh 

max
cP ;

max
hP  504kW lα  0.01 max

eP  600kW   

5.2 Results and Validation 

1) Day-ahead bidding 

The robust bidding strategy is used by the MEVPPO to integrate various resources, and the bidding curve is shown 

in Fig. 4. The valley periods are 1:00-8:00, and peak periods are 9:00-12:00 and 18:00-21:00. The bidding capacity 

around 11:00 on sunny day is lower than 0.5MW, which does not meet the access condition of the market. 
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(b)  Cloudy day 

Fig. 4.  Day-ahead bidding curve. 

2) Day-ahead optimization 
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(b)  Cloudy day 

Fig. 5.  Load curves without and with IDR. 
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The load curves without and with IDR are shown in Fig. 5. The shaded areas represent the adjustable range of 

cooling and thermal loads. Obviously, there are parts of the electrical loads are transferred from peak periods to valley 

periods, which can reduce electricity cost and increase peak-regulation income. In addition, the cooling demand 

increases during valley period (1:00-8:00 on sunny and cloudy day) and decreases during peak periods (9:00-10:00 on 

sunny and cloudy day), which indicates that the variation of cooling load is similar to that of electrical load. The reason 

is that parts of the cooling energy are generated by the centrifugal chiller consuming electricity. Observe that the 

thermal demand roughly increases. The thermal load is mainly supplied by the heat pump consuming natural gas, and 

the price of natural gas is fixed. Thus, to get more income, MEVPP needs to sell more thermal energy. 
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(b)  Cloudy day 

Fig. 6.  Output of equipment in supply side. 

The day-ahead operation results of equipment in energy supply side are shown in Fig. 6. During valley periods, the 

electrical storage is charged, and more electricity is purchased from the grid. On the contrary, during peak periods, 

electrical storage is discharged, and the gas turbine is used to generate electricity, thereby reducing power purchases 

from the grid. Due to the waste heat generated by the gas turbine during peak hours (9:00-10:00 on sunny and cloudy 

day; 21:00-22:00 on sunny day and 19-21h on cloudy day), the lithium bromide unit generates thermal energy to 
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reduce cost. After the thermal demand is met, the remaining thermal energy is stored in the thermal storage (such as 

10:00 on sunny and cloudy day) and released at the peak thermal load hours (18:00-20:00 on sunny day and around 

18:00 on cloudy day). Cooling supply is similar to thermal supply. It is not discussed because of the limited space. 

The optimization results of uncertainties are presented in Fig. 7. The electrical load reduces during valley periods 

(1:00-3:00 and 5:00-8:00 on sunny day; around 1:00 and 5:00-7:00 on cloudy day) and increases during peak periods 

(9:00 and 18:00-21:00 on sunny day; 9:00-12:00 and 18:00-21:00 on cloudy day). PV output reduce during peak 

periods. The cooling load is corresponding to the outdoor temperature, which reduces during valley periods (1:00-3:00 

and 6:00-8:00 on sunny day; around1:00, 3:00 and 7:00-8:00 on cloudy day) and increases during peak periods (9:00-

10:00 and around 21:00 on sunny day; 9:00-10:00 and 19:00-21:00 on cloudy day). The thermal load is corresponding 

to the volume of cold water, which decreases during valley periods. In other words, load demand decreases during 

valley periods and increases during peak periods, but PV output reduces during peak periods. It shows that the peak-

regulation capacity gets less. It corresponds to the basic philosophy of robust optimization, which aims to find the 

worst case within the uncertainty set. 
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(b)  Cloudy day 

Fig. 7.  Uncertainty optimization results. 

3) Demand-side resources 

Day-ahead economic analysis of demand-side resource without considering uncertainties is given in Table 4. In 

Case 1, without IDR and ESSs, MEVPP failed to participate in the peak-regulation market, and the total revenue is 

the least. Compared with Case 2 and 3, although more load compensation and energy storage costs are spent, the 
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highest peak-regulation income is obtained in Case 4 with both IDR and ESSs. Moreover, by coordinating IDR and 

ESSs, the energy cost can be reduced, and ultimately the day-ahead total revenue can be increased. 

Table 4 

Day-ahead economic analysis of demand-side resource (RMB/day). 

Weather Case 
Description Natural  

Gas Cost 
Electricity 

Cost 
Load 

Compensation 
Storage 

Cost 
Energy 

Sales Income 
Peak-regulation 

Income 
Day-ahead 

Total Revenue IDR ESSs 

Sunny 

1   30567 30876 0 0 90566 0 29123 

2   30626 26873 1270 0 90302 5892 37425 

3   31179 28360 0 202 90566 3208 34034 
4   29810 26117 1277 177 90466 7507 40592 

Cloudy 

1   30560 37732 0 0 90762 0 22470 

2   30895 33353 1280 0 90262 6162 30896 

3   30941 35587 0 200 90762 2852 26885 

4   31514 30871 1280 208 90350 8568 35046 

4) Trading results 

Table 5 

Robust optimization performance analysis. 

Predicted 
Deviation 

Robust Optimization (RMB/day) Deterministic Optimization (RMB/day) 

Day-ahead bidding Actual operation Day-ahead bidding Actual operation 

Total 

revenue 

Peak-

regulation 
income 

Other 

income 

Peak-

regulation 
income 

Penalty 
Total 

revenue 

Total 

revenue 

Peak-

regulation 
income 

Other 

income 

Peak-

regulation 
income 

Penalty 
Total 

revenue 

Sunny 

0% 

35398 5465 

33288 5465 0 38753 

40592 7507 

33288 7507 0 40795 

5% 33190 5465 0 38655 33190 7250 0 40440 

10% 32343 5465 0 37809 32343 5993 759 37577 

20% 31030 4541 372 35199 31030 4265 1825 33471 

30% 28447 4363 882 31928 28447 3881 2888 29441 

Cloudy 

0% 

29567 5744 

26684 5744 0 32428 

35046 8568 

26684 8568 0 35252 

5% 26440 5744 0 32185 26440 7846 216 34070 

10% 26362 5744 0 32106 26362 5982 1313 31031 

20% 25894 5239 272 30861 25894 5123 2516 28502 

30% 22230 3979 1318 24891 22230 4018 4670 21578 

The actual transaction results are shown in Table 5. Assume that the goal of the actual operation stage is the same 

as that of the day-ahead operation stage. However, the peak-regulation income and penalty should be calculated based 

on the actual operation results. Within the predicted deviation range, a group of data is randomly selected as the actual 

values of uncertainty variables. The peak-regulation penalty price is twice the peak-regulation compensation price. 

Sunny day is similar to cloudy day. When the predicted deviation is very small (0% and 5%), the actual total revenue 

of robust optimization is less than deterministic optimization. The reason is that robust optimization has the 

conservative degree. Its day-ahead bidding capacity is smaller than deterministic optimization, and its peak-regulation 

income reduces. But when deviation increases, its peak-regulation penalty is less than deterministic optimization so 

that its actual total revenue is more than deterministic optimization. To conclude, because of the conservative degree 

of the robust optimization, its day-ahead bidding capacity is smaller, and its day-ahead total revenue reduces. However, 

in actual operation stage, there is the predicted deviation in PV and loads. Compared with deterministic optimization, 

the robust optimization can get more revenue in the actual operation stage. 
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5) Model convergence  

The C&CG algorithm is applied to solve day-ahead robust bidding model, and the model convergence result is 

shown in Fig. 8. It takes 5 iterations on sunny day and 4 iterations on cloudy day to meet the convergence requirements. 

As the number of iterations increases, the lower bound rises at first and then remains unchanged, which is the 

characteristics of C&CG algorithm. 
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Fig. 8.  Model convergence curve based on C&CG algorithm. 

6) Conservative degree 

The revenue of MEVPP with different uncertainty budget parameters Γ  are shown in Fig. 9. In the day-ahead 

bidding stage, with the increase of Γ , the revenue decreases. In addition, in the actual operation stage, when the 

predicted deviation is very small (0% and 5%), the revenue decreases. When the deviation increases to 10% and 20%, 

the revenue increases at beginning, then decreases, and finally flattens out. When the deviation increases to 30%, the 

revenue increases at first, and finally flattens out. Clearly, MEVPPO can choose benefit and risk by adjusting Γ . 
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Fig. 9.  Revenue with different uncertainty budget parameters. 

6. Conclusion 

This paper formulates the operation mechanism and a day-ahead robust bidding model for MEVPP in peak-

regulation market. Case studies reveal that the mechanism can integrate various resources of electricity, cooling energy, 

thermal energy, and natural gas in energy demand and supply sides to participate in the peak-regulation market and 

improve the economy of the system. Compared with Case 1 (without IDR and ESSs), the day-ahead total revenue 

respectively increased by 39% on sunny day and 56% on cloudy day in Case 4 by utilizing IDR and ESSs at the same 

time. In addition, compared with deterministic optimization method, the proposed robust optimization method 

considering multiple uncertainties can resist the risk of PV output and load power fluctuations and reduce the peak-

regulation penalty in the actual operation stage. 

To further improve the proposed methodology, the investigation on the refined modelling of the devices and loads 

will be considered in in the future. 
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Appendix A 

Algorithm A1 

1: Set 0v =  and initialize (0)
x . 

2: Set UBv →+  and LBv →− . 
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3: while UB LBv v ε−   do 

4:        Update 1v v= + . 

5:        Solve the slave problem (A4) for given (v-1)
x . 

6:         Get ( )v
u  and update UBv  using (A5). 

7:        Solve the master problem (A6) for given 
( ) ( 1, , )k k v=u . 

8:         Obtain ( )v
x  and update LBv  using (A7). 

9: end while 

10: Output ( )v
x ,

( )v
y  and ( )v

u . 

The day-ahead two-stage robust bidding model is re-written in the following matrix form: 

Tmin  max    min                   

                    s.t. :  

                                 :  

                                 :  u





 + 


=


=

x yu U
c y

Ey Fx d λ

Ky 0 ν

I y u π

                                                                (A1) 

where x  is the binary variable in the first stage; u  and y  are the uncertainty variable and the continuous variable in 

the second stage, respectively; c  is the coefficient column vector corresponding to the objective function; E , F , K , 

uI  and d  are the coefficient matrix and constant column vector of the corresponding constraints, respectively; λ , ν  

and π  are the dual variables. 

The uncertainty set is as following: 

0, , max, , max,

, , , ,

1

1; ( )

t t t t t t
i i i i i i

T
t t t t

ii i i i

t

u u b u b u

b b b b

+ −

+ − + −

=

 = + −


= 
+  + 




Δ Δ

U
Γ

                                                          (A2) 

The C&CG algorithm is used to solve the robust problem by transforming the initial two-stage robust problem into 

a master problem and a slave problem. Firstly, the inner min-problem is transformed into the dual problem by the 

duality theory. Then, it is merged with the middle max-problem. 

T T

, , ,

T T T

max  ( )

s.t.  

       ;  , :

       

u

free

 − +

 + + =

 




u λ ν π
d Fx λ u π

E λ K ν I π c

λ 0 ν π

u U

                                                                 (A3) 
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However, after substituting Equation (A2) to (A3), the forms of multiplying the binary variable by the continuous 

variable appear, which are not convex. In this paper, they are linearized. And then the slave problem is formed. 

( 1) T 0 T max T max T

, , , , , ,

T T T

1

max  ( ) ( ) ( ) ( )

;  , :

M M; M M

s.t. ( )M ( )M

( )M ( )M

; ( )

v

u

T

t

free

+ − + −

− + −

+ + + − − −

+ + +

− − −

+ − + −

=

− + + −

 + + =



−   −  

 − −   + −


− −   + −

 +  + 




z z b b λ ν π
d Fx λ u π Δu z Δu z

E λ K ν I π c

λ 0 ν π

b z b b z b

π 1 b z π 1 b

π 1 b z π 1 b

b b 1 b b Γ

                                 (A4) 

where ( 1)v−
x  is the known value, which is optimized in the master problem; +

z  and −
z  are the auxiliary variables; M  

is a given big value. 

Thus, 
( )v

u  and the upper bound can be obtained: 

( 1) T ( ) 0 T ( ) max T ( ) max T ( )UB ( ) ( ) ( ) ( ) ( ) ( )v v v v v
v

− + −= − + + −d Fx λ u π Δu z Δu z                                      (A5) 

In addition, the master problem is obtained by decomposing (A1): 

( ), , , 1, ,

T ( ) ( )

( ) ( ) ( )

min  

s.t.  ; ,

      ;   

kη k v

k k

k k k
u

η

η

=




 + 


= =

x y

c y Ey Fx d

Ky 0 I y u

                                                                        (A6) 

where 
( ) ( 1, , )k k v=u  is the known value, which is optimized in the slave problem. 

Thus, ( )v
x  and the lower bound can be obtained: 

( )LB v
v η=                                                                                            (A7) 

Finally, the C&CG method is used to solve the master problem and slave problem, respectively. The process of 

C&CG algorithm is shown in Algorithm A1. 

References 

[1] D. Yang, S. He, Q. Chen, D. Li, and H. Pandžić, "Bidding strategy of a virtual power plant considering carbon-electricity 

trading," CSEE Journal of Power and Energy Systems, vol. 5, no. 3, pp. 306-314, Sep. 2019. 

[2] S. Zhang, X. Kong, Y. Shen, W. Hu and T. Ma, " Optimal Economic Dispatch of Virtual Power Plant based on Bidding," in 

2020 23rd International Conference on Electrical Machines and Systems (ICEMS), Hamamatsu, Japan, 2020, pp. 467-471. 



 22 

[3] S. Yin, Q. Ai, J. Li, Z. Li, and S. Fan, "Energy Pricing and Sharing Strategy Based on Hybrid Stochastic Robust Game 

Approach for a Virtual Energy Station With Energy Cells," IEEE Transactions on Sustainable Energy, vol. 12, no. 2, pp. 

772-784, Apr. 2021. 

[4] H. Zhao, J. Chen, B. Wang, X. Shang, J. Zhuang, and H. Sun, "A Robust Aggregate Model for Multi-Energy Virtual Power 

Plant in Grid Dispatch," in 2019 IEEE Sustainable Power and Energy Conference (iSPEC), Beijing, China, 2019, pp. 1631-

1636. 

[5] X. Jin, J. Wang, X. Shen, H. Wang, and R. Liu, "An Overview of Virtual Power Plant Development from the Perspective of 

Market Participation," in 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 

2018, pp. 1-6. 

[6] J. Wang, X. Shen, Y. Xu, Q. Guo, H. Sun, and Y. Chen, "Ancillary service for frequency regulation based on multi-energy 

virtual power plant aggregating factory load," in The 11th IET International Conference on Advances in Power System 

Control, Operation and Management (APSCOM 2018), Hong Kong, China, 2018, pp. 1-7. 

[7] Z. Luo, S. Hong, and Y. Ding, "A data mining-driven incentive-based demand response scheme for a virtual power plant," 

Applied Energy, vol. 239, pp. 549-559, Apr. 2019. 

[8] L. Ju, R. Zhao, Q. Tan, Y. Lu, Q. Tan, and W. Wang, "A multi-objective robust scheduling model and solution algorithm for 

a novel virtual power plant connected with power-to-gas and gas storage tank considering uncertainty and demand response," 

Applied Energy, vol. 250, pp. 1336-1355, Sep. 2019. 

[9] L. Dong, S. Fan, Z. Wang, J. Xiao, H. Zhou, Z. Li, and G. He, "An adaptive decentralized economic dispatch method for 

virtual power plant," Applied Energy, vol. 300, p. 117347, Oct. 2021. 

[10] S. Hadayeghparast, A. SoltaniNejad Farsangi, and H. Shayanfar, "Day-ahead stochastic multi-objective economic/emission 

operational scheduling of a large scale virtual power plant," Energy, vol. 172, pp. 630-646, Apr. 2019. 

[11] T. M. Alabi, L. Lu, and Z. Yang, "Improved hybrid inexact optimal scheduling of virtual powerplant (VPP) for zero-carbon 

multi-energy system (ZCMES) incorporating Electric Vehicle (EV) multi-flexible approach," Journal of Cleaner Production, 

vol. 326, p. 129294, Dec. 2021. 

[12] National Energy Administration, Work Plan for Improving the Compensation (Market) Mechanism for Auxiliary Power 

Services, Beijing, China, 2017. 

[13] National Energy Administration, 14th Five-Year Plan for Modern Energy System, Beijing, China, 2022. 

[14] L. Ya, Z. Deliang, and W. Xuanyuan, "A Peak Regulation Ancillary Service Optimal Dispatch Method of Virtual Power 

Plant Based on Reinforcement Learning," in 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), Chengdu, 

China, 2019, pp. 4356-4361. 

[15] P. Li, J. Yang, and J. Liu, "Distributed Cooperative Clearing Model of Peak Regulation Ancillary Service Market Under 

Ubiquitous Power Internet of Things," in 2021 International Conference on Power System Technology (POWERCON), 

Haikou, China, 2021, pp. 690-695. 

[16] J. Zhao, B. Cong, Y. Yang, H. Ye, X. Ling, and X. Wang, "Two Stage Deep Peak Regulation Ancillary Service Market 

Clearing Model Considering Virtual Power Plant," in 2021 IEEE 5th Conference on Energy Internet and Energy System 

Integration (EI2), Taiyuan, China, 2021, pp. 3534-3538. 

[17] Y. Wang, Z. Shi, Z. Wang, J. Wang, X. Li, Y. Zheng, P. Wang, Y. Hu, and J. Deng, "Dynamic scheduling optimization 

model for virtual power plant connecting with wind-photovoltaic-energy storage system," in 2017 IEEE Conference on 

Energy Internet and Energy System Integration (EI2), Beijing, China, 2017, pp. 1-6. 



 23 

[18] S. R. Dabbagh and M. K. Sheikh-El-Eslami, "Risk Assessment of Virtual Power Plants Offering in Energy and Reserve 

Markets," IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 3572-3582, Sep. 2016. 

[19] J. Shen, C. Jiang, Y. Liu, and X. Wang, "A Microgrid Energy Management System and Risk Management Under an 

Electricity Market Environment," IEEE Access, vol. 4, pp. 2349-2356, Apr. 2016. 

[20] D. Zhang, Z. Hu, and X. Wang, "A Risk-Constrained Model for Virtual Power Plants Including DGs and Coupled Electricity-

Heat Supply," in 2019 IEEE 8th International Conference on Advanced Power System Automation and Protection (APAP), 

Xi'an, China, 2019, pp. 830-834. 

[21] C. Wang, Y. Zhou, J. Wu, J. Wang, Y. Zhang, and D. Wang, "Robust-Index Method for Household Load Scheduling 

Considering Uncertainties of Customer Behavior," IEEE Transactions on Smart Grid, vol. 6, no. 4, pp. 1806-1818, Jul. 2015. 

[22] C. J. M. Sampang, P. I. S. D. Ibarbia, C. T. Laxamana, and A. C. Nerves, "Optimal Scheduling Strategy for Virtual Power 

Plants with Interruptible Loads," in 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), 

Kota Kinabalu, Malaysia, 2018, pp. 616-620. 

[23] X. Guo, C. Cai, H. Shi, Y. Xie, and Y. Zhang, "Robust based optimal operation model of virtual power plant in electricity 

market," in 2021 China International Conference on Electricity Distribution (CICED), Shanghai, China, 2021, pp. 1015-

1019. 

[24] W. Tang and H. Yang, "Optimal Operation and Bidding Strategy of a Virtual Power Plant Integrated With Energy Storage 

Systems and Elasticity Demand Response," IEEE Access, vol. 7, pp. 79798-79809, Jun. 2019. 

[25] M. Rahimiyan and L. Baringo, "Strategic Bidding for a Virtual Power Plant in the Day-Ahead and Real-Time Markets: A 

Price-Taker Robust Optimization Approach," IEEE Transactions on Power Systems, vol. 31, no. 4, pp. 2676-2687, Jul. 2016. 

[26] F. Brahman, M. Honarmand, and S. Jadid, "Optimal electrical and thermal energy management of a residential energy hub, 

integrating demand response and energy storage system," Energy and Buildings, vol. 90, pp. 65-75, Mar. 2015. 

[27] B. Zeng and L. Zhao, "Solving two-stage robust optimization problems using a column-and-constraint generation method," 

Operations Research Letters, vol. 41, no. 5, pp. 457-461, Sep. 2013. 

[28] Y. Tan, Y. Li, Y. Cao, and M. Shahidehpour, "Integrated Optimization of Network Topology and DG Outputs for MVDC 

Distribution Systems," IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 1121-1123, Jan. 2018. 

 


	Nomenclature
	1. Introduction
	2. Operation mechanism for MEVPP
	3. Mathematical model of MEVPP
	3.1 Demand side
	3.2 Supply side
	3.3 Peak-regulation constraints
	3.4 Objective function

	4. Day-ahead robust bidding model
	5. Validation and analysis
	5.1 Parameters and data
	5.2 Results and Validation
	1) Day-ahead bidding
	2) Day-ahead optimization
	3) Demand-side resources
	4) Trading results
	5) Model convergence
	6) Conservative degree


	6. Conclusion
	Acknowledgement
	Appendix A
	References

