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Abstract29

Interannual variability of seed production, known asmasting, has far-reaching ecological impacts30

including effects on forest regeneration and the population dynamics of seed consumers. Because31

the relative timing of management and conservation efforts in ecosystems dominated by masting32

species often determines their success, there is a need to study masting mechanisms and develop33

forecasting tools for seed production. Here, we aim to establish seed production forecasting34

as a new branch of the discipline. We evaluate the predictive capabilities of three models -35

foreMast, ΔT, and a sequential model - designed to predict seed production in trees using a pan-36

European dataset of Fagus sylvatica seed production. The models are moderately successful37

in recreating seed production dynamics. The availability of high-quality data on prior seed38

production improved the sequential model’s predictive power, suggesting that effective seed39

production monitoring methods are crucial for creating forecasting tools. In terms of extreme40

events, the models are better at predicting crop failures than bumper crops, likely because the41

factors preventing seed production are better understood than the processes leading to large42

reproductive events. We summarize the current challenges and provide a roadmap to help43

advance the discipline and encourage the further development of mast forecasting.44

Introduction45

Mast seeding or masting, highly variable and synchronized annual reproduction, is common in46

perennial plants (Kelly & Sork, 2002). Central to plant population dynamics, masting provides47

foundational but unstable resources for seed consumers, creating cycles of feast and famine in48

foodwebs (Schmidt &Ostfeld, 2008; Clark et al., 2019). The pulsed nature ofmasting influences49

the success of management and conservation actions, thus making short-term predictions of seed50

production a powerful potential tool for practitioners (Pearse et al., 2021). For instance, planning51

of forest regeneration actions, such as soil scarification or prescribed fires, must be timed with52

seed crops (Girona et al., 2018), and the timing of masting in relation to disturbance may53

influence forest recovery, shaping management responses (Rammig et al., 2007). Masting may54

also lead to multiyear seed scarcity that may challenge the timeframe of funded restoration55

projects (Woolsey et al., 2018). In some species, bumper crops of seeds are extremely rare (e.g.56

once in several years), and seeds cannot be stored, resulting in a mismatch of planned activities57

and seed availability (Kettle et al., 2010, 2011). Anticipatory forecasting of seed production58

with several-months notice, "mast cast", would therefore prepare forest agencies, managers, and59

other stakeholders to utilize the rare and short windows of opportunities for restoration (Kettle60

et al., 2010, 2011). Similarly, to manage animal populations that rely on masting plants, the61

timing of reintroduction efforts and other interventions needs to be timed in relation to annual62

variation in plant reproduction (Fidler et al., 2008). This includes the removal of pest species63

that are part of the trophic chain anchored by seeds, so that the efficacy of eradication efforts can64

be maximized (Köhnke et al., 2020). Finally, masting affects public health near forests, as it can65

determine the annual pollen load for tree species, and, through indirect effects on trophic chains,66

the transmission of zoonotic diseases to humans (Tseng et al., 2020; Bregnard et al., 2021). The67

development of forecasts of plant reproduction and subsequent trophic cascades would thus give68

conservationists, land managers, and public health officials advance notice of upcoming bumper69

crops or crop failures. While ecological forecasting is slowly starting to enter the mainstream of70

the discipline (Lewis et al., 2022), surprisingly sparse information exists on the current state of71

the art in forecasting plant reproduction (Holland & James, 2015a; Chiavetta & Marzini, 2021;72

Pesendorfer et al., 2021; Pearse et al., 2021).73
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Accurate modeling of reproduction in perennial plants has long been challenging due to the74

large interannual and inter-individual variability inherent to masting (Vacchiano et al., 2018;75

Clark et al., 2021; Journé et al., 2022). This problem was further compounded by limited76

data availability (Koenig, 2021; Clark et al., 2021). However, with the recent advancement of77

global coordination in monitoring and data synthesis, we now have access to broad taxonomic78

data sets for plant reproduction time series (Pearse et al., 2020; Clark et al., 2021; Hacket-Pain79

et al., 2022). With this opportunity, we aim to develop mast forecasting ("mast cast") as a new80

branch of the discipline. Masting may offer high potential for ecological forecasting, as the data81

consists of extended time series with well-established abiotic drivers, potentially providing high82

intrinsic predictability (Pennekamp et al., 2019; Pearse et al., 2016, 2021). Additionally, the83

efforts to develop mast forecasting will lead to wider benefits for the discipline, as it will require84

the formulation of quantitative predictions and challenge researchers to compare the explanatory85

power of empirical and process-based models across different geographic regions and ecological86

contexts (Lewis et al., 2022). To take the first steps in mast forecasting, we use European beech87

(Fagus sylvatica) masting across Europe as a case study to discuss the current state of the art88

and outline a roadmap for future development. European beech is a suitable model species due89

to its broad distribution, forest-forming nature, well-studied seed production mechanisms, and90

exceptional data availability (Hacket-Pain et al., 2022). Although our focus is on this particular91

species, the sources of uncertainty and ways to improve masting prediction discussed in this92

study are generalizable. Our goal is to motivate new efforts that will enhance our understanding93

of seed production ecology and provide the tools that land managers urgently need.94

What determines masting and how predictable is it? Currently, we understand masting as95

a result of the interplay between weather and the internal resource dynamics of plants, and96

their combined impact on flower and seed development (Pearse et al., 2016; Pesendorfer et al.,97

2021; Bogdziewicz et al., 2020a; Roncé et al., 2023). Weather, as an external factor, has been98

demonstrated to impact various stages of the reproductive process, including flower initiation,99

pollination, and seed abortion (Kon&Noda, 2007; Koenig et al., 2015; Nussbaumer et al., 2020;100

Satake & Kelly, 2021). On the other hand, the endogenous effects of resource depletion (e.g.101

carbon or nitrogen) limit seed production after large seed crops (Crone et al., 2009; Sala et al.,102

2012; Han & Kabeya, 2017). Thus, predictions of masting mainly rely on our understanding103

of the links between weather and seed production, the sensitivity of masting to weather and104

resource depletion, and the uncertainty of these drivers.105

To understand the current state of seed production models for F. sylvatica, we compare two106

published tools for predicting masting based on empirical relationships between seed production107

and weather, the ΔT model and foreMast, with a mechanism-based model (hereafter "sequential108

model") that includes additive weather effects along a sequence of phenological steps involved109

in seed production. The ΔT model predicts seed production based on the difference in summer110

weather between the two years leading up to seed fall (Kelly et al., 2013). It does not include111

the impact of resource availability, instead relying on the idea of an epigenetic weather memory112

that results in elevated flower production if hot summers follow cold ones (large ΔT values)113

(Samarth et al., 2020, 2021). The ΔT forecast is utilized by New Zealand’s National Predator114

Control Program, for example in forecasting Southern beechmasting at sites where native species115

are vulnerable to the effects of mast-induced increases in the abundance of invasive predators116

(Holland et al., 2018), but it can also be applied to F. sylvatica (Vacchiano et al., 2017). The117

second tool, foreMast (Chiavetta & Marzini, 2021), is an R package developed specifically for118

F. sylvatica, using data from a global time series database (Ascoli et al., 2017) to forecast mast119

events based on summer temperatures of the two years leading up to seed fall. Previous work120

has shown that when a cold summer is followed by a hot one, beech is likely to produce a121
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bumper crop (Vacchiano et al., 2017). Additionally, foreMast indirectly accounts for the effects122

of resource depletion on seed production through a parameter that decreases the probability of123

consecutive mast years.124

In addition to the two existing models, we constructed the sequential model, which takes125

into account the previous year’s seed production as well as a series of weather drivers of seed126

production in F. sylvatica. Unlike ΔT and foreMast, the sequential model explicitly includes the127

direct relationship between sequential years of seed production, a crucial factor in mast seeding128

(Knops et al., 2007; Crone & Rapp, 2014; Miyazaki et al., 2014). Additionally, F. sylvatica seed129

production is not only correlated with temperatures in the past two summers (Vacchiano et al.,130

2017), but also with the weather during pollination in spring (Mund et al., 2020), late spring131

frosts (Allevato et al., 2019; Journé et al., 2021), and summer drought (Nussbaumer et al., 2020)132

(see Table 1 for a model summary). By including predictors from various time periods before133

the seed fall event, we hope to gain an initial understanding of the potential forecast horizon for134

F. sylvatica seed production. This approach should provide insights into which data to collect,135

how future models should be structured, and what experiments should be prioritized to enhance136

the forecasting ability of masting in this species and beyond (Dietze, 2017).137

Table 1: Overview of the three models used to hindcast seed production in Fagus sylvatica. †
𝑇0 is the seed fall year, 𝑇1 is the year preceding the seed fall, 𝑇2 two years preceding the seed
fall.

Model Coefficient type List of predictors used
foreMast Inherited from foreMast package Summer precipitation (𝑇1,𝑇2), summer temper-

ature (𝑇1, 𝑇2), auto-correlation term that helps
to avoid two consecutive high-seed production
years.

ΔT Site specific estimation Summer temperature difference 𝑇1-𝑇2.
Sequential Site specific estimation Summer temperature (𝑇1, 𝑇2), seed production

𝑇1, late spring frost (𝑇0), spring temperature
(𝑇0) and summer moisture deficit (𝑇0).

Where are we?138

How good are current models at predicting seed production? Which parameters have the139

strongest impact on predictions? How does data quality matter? To start addressing these140

questions, we compared the foreMast, ΔT, and sequential models by performing a hindcast141

analysis to assess their ability to recreate past seed production (Petchey et al., 2015; Holland142

& James, 2015a). In addition to traditional metrics of model fit such as 𝑅2, the proportion143

of the explained variance, and 𝑅𝑀𝑆𝐸 , the root-mean-square error, we evaluated how well the144

predicted values alignwith observed values across the range ofmast production andwhether they145

accurately capture the interannual variability (CV - coefficient of variation) of mast production146

in beech populations. Finally, to investigate the effect of data quality on forecasting ability,147

we explored the relationship between prediction errors and site-specific covariates, such as the148

seed production monitoring method. With this analysis, we aim to lay the foundation for mast149

forecasting by exploring the potential of current models to recreate past seed production in150

European beech (Dietze, 2017).151
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Figure 1: Goodness-of fit metrics for ΔT, foreMast, and the sequential model. a) Predicted vs. observed values
in the three models for each site-year observation and predictions. Black dotted lines indicate a 1:1 relationship,
while blue lines are regressions between predicted and observed values. b) Models 𝑅2, and c) Root-mean-square
error (𝑅𝑀𝑆𝐸). We computed 𝑅2, i.e. the proportion of variance in the dependent variable that can be explained
by the independent variables, and 𝑅𝑀𝑆𝐸 , i.e. the average difference between values predicted by a model and the
actual values, for each site and combined them for each model to determine boxplot size. The asterisks show the
statistical difference between each group tested with a t-test and adjusted P (**** for P < 0.0001, *** for P < 0.001,
** P < for 0.01, * P < for 0.05, and n.s. for P > 0.05). Further metrics comparisons between the three models are
presented in Figure S2 and S3.

To assess our ability to predict seed production in beech populations, we used 94 time series152

of seed production data with at least 8 years of observations from the MASTREE+ database (see153

Supporting Information Methods S1 ) (Hacket-Pain et al., 2022). These data were combined154

with weather data for each location, starting in 1980. The foreMast algorithm provides masting155

forecasts for any given set of coordinates, while the coefficients for the ΔT and sequential156

models were estimated by fitting each model to each time series, yielding site-specific values157

for coefficients (Fig. S1). We then compared observed and predicted values for seed production158

in each time series. To accommodate among-site variation in methods of seed production159

monitoring, we scaled seed production for each site between 0 and 1 by dividing all values by160

the highest recorded value in the time series.161

Models tend to over-predict seed production in years of poor seed production, and also162

under-predict seed production in large seeding years (Fig. 1 a). The sequential model showed163

higher accuracy in recreating seed production compared to the simpler foreMast and ΔT models164

(Fig. 1). The median 𝑅2 for the sequential model was 0.65 [95% CI = 0.47, 0.82]. The median165
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𝑅2 for the other two models were lower, with ΔT equal to 0.26 [0.12; 0.36] and foreMast =166

0.25 [0.13; 0.35]. The 𝑅𝑀𝑆𝐸 values further indicate the sequential model performed best, and167

indicate that the ΔT model performed better than foreMast (Fig. 1c). The median 𝑅𝑀𝑆𝐸 for168

the sequential model was 0.18 [95% CI = 0.12, 0.22]. The median 𝑅𝑀𝑆𝐸 for the other two169

models were higher, with ΔT equal to 0.27 [0.24; 0.30] and foreMast = 0.39 [0.35; 0.44]. The170

lower performance of the foreMast model was expected, as the other models were fitted locally171

to individual time series. Meanwhile, the higher 𝑅2 for the sequential model is associated with172

its higher complexity, as it includes six parameters compared to only one in the ΔT model.173

However, our goal here is not necessarily to find the most parsimonious model, but one that174

will provide the most useful prediction of masting given the data available and the requirements175

of the user. The weather parameters used in the sequential model are easily accessible, so the176

increase in accuracy may come at a low cost. Still, monitoring seed production is logistically177

challenging and some predictors in the sequential model occur during seed maturation, which178

could reduce the potential forecast horizon (Petchey et al., 2015; Pearse et al., 2021). Thus, we179

next evaluated the impact of each predictor on the performance of the sequential model.180

To determine the impact of each parameter on the predictive power and potential forecast181

horizon of the sequential model, we employed two approaches. First, we dropped individual182

variables, re-fit the model, and evaluated its performance to assess the relative importance of183

each variable. Second, we added the parameters to the model in the phenological order of their184

occurrence, which provides information on the time frame when meaningful predictions of seed185

production may be possible (i.e. the potential forecast horizon). Our analysis showed that the186

previous year’s summer temperature and seed production are the most significant predictors187

of model performance (Fig. 2a,b, Fig. S4). This implies that beech seed production can be188

predicted with good accuracy with one year’s lead time, but it requires monitoring of seed189

production (Fig. 2b). Including information on weather conditions during flowering and seed190

maturation (spring temperature, summer drought, frost) can further improve model predictive191

power (Fig. 2b), but it comes at the cost of a reduced forecast horizon, which may limit its192

usefulness for certain management activities.193

Given limited research time and resources, it is crucial to focus on factors that bring the great-194

est improvement in predictive power. Generally, the most impactful factors on the predictability195

of ecological processes are those that the process is highly sensitive to and those characterized by196

high uncertainty (Dietze, 2017). As past studies and our analysis indicate, masting is impacted197

by weather (low input uncertainty and high sensitivity) and past seed production (high input198

uncertainty and high sensitivity). This combination implies that reliable forecasts depend on the199

availability of high-quality seed production monitoring. To test this, we analyzed the effect of200

different seed crop monitoring methods which vary in their accuracy on the 𝑅2 of the models.201

In the MASTREE+ dataset, annual seed production is estimated at the population level202

using various methods, including seed counts - ground-counting within a certain time frame203

(Bogdziewicz et al., 2020b) -, seed traps (Bajocco et al., 2021), and visual crop assessment - a204

population-level estimate of the year’s crop, such as the proportion of reproducing individuals.205

Visual assessments are often used over large areas by foresters, e.g. by Polish State Forests206

(Pesendorfer et al., 2020). Of these methods, seed traps are expected to provide the lowest input207

uncertainty in terms of past seed production, which leads to higher model predictive power,208

as demonstrated by our model (Fig. S5). The median 𝑅2 for the sequential model trained on209

time series based on seed traps (0.74 [95% CI = 0.45, 0.87]) was much higher than those of210

visual crop assessment (0.51, 95% CI = 0.44, 0.60) and the seed count method (0.58, 95% CI211

= 0.49, 0.65). It is worth noting that all "seed count" time series in our data come from trees212

in the UK beech monitoring program (Fig. S5), which was severely affected by climate change213
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Figure 2: Effects of focal predictors on the sequential model performance (𝑅2). a) Each boxplot shows the
sequential model 𝑅2 with one predictor removed, b) predictors added in phenological order. We determined 𝑅2 for
each site and computed them together to determine boxplot size. An analogous figure with 𝑅𝑀𝑆𝐸 is in Fig. S4

(Bogdziewicz et al., 2020b). It is therefore uncertain whether the low 𝑅2 values are due to214

the method’s accuracy (Koenig et al., 1994; Touzot et al., 2018; Tattoni et al., 2021) or due to215

changes in the climate that altered the masting processes at these sites, which merits further216

investigation (Bogdziewicz, 2022).217

Forecasting large mast years and crop failures is crucial due to their extensive impact on218

ecosystem functioning (Pearse et al., 2021). Therefore, we examined whether the models predict219

the data well at the extreme ends (mast and failure years). To this end, we evaluated whether the220

predicted values are low enough (in failure years) or high enough (in mast years). We defined221
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Figure 3: Effects of seed production estimation method on the sequential model 𝑅2. The methods are seed
count (ground counting within a given time frame), monitoring with seed traps, and visual crop assessment. The
asterisks represent significant differences between each group tested with a t-test (**** for P < 0.0001, *** for P <
0.001, ** P < for 0.01, * P < for 0.05, and n.s. for P > 0.05). An analogous figure with 𝑅𝑀𝑆𝐸 is in Fig. S6.

mast years as years when seed production was higher than the site-specific 80th centile (9.64%±222

5.19 SD site-years), and failure years as below the 20th centile (62.8%±17.5 SD site-years).223

Importantly, that categorization was done only once the predictions of the models were obtained,224

not for fitting the models. We note that dividing seed production into mast and non-mast is an225

ecologically false dichotomy in the sense that the distribution of seed production is not binomial,226

and the "mast year" definition is subjective. Nonetheless, such categorization can be useful from227

the forecasting/management perspective and is often used in forestry (Pearse et al., 2021).228

Our evaluation revealed that the three models had limited success in accurately predicting229

extreme seeding events. In our dataset, large mast years occurred in 9.64% of the years. The ΔT230

model correctly predicted these years in only 0.19% of cases, but got false negative in 9.45%231

of the observed mast years. Equivalent performance for foreMast was 4.68% true positive and232

4.97% false negative, and for the sequential model it was 3.63% true positive and 6.01% false233

negative. On the other hand, the models performed better in predicting crop failures (defined234

as seed production below 0.2), although still far from satisfactory (Fig. 4a). In our dataset,235

crop failures occurred in 62.8% of the years. The ΔT model correctly predicted these failures236

in 19.9% of the years and predicted 42.9% of false negatives. Similar results were observed237

for the foreMast model, with correct predictions of 17.4% and failed predictions with 45.4% of238

false negative. The sequential model performed the best in this aspect, with correct predictions239

of 42.8% and failed predictions with false negatives in 20.0% (Table 2).240

Interannual variation of seed production is the defining feature of masting. Thus, we further241

examined how the interannual variation of predicted values recreates the observed variation.242

Despite the better performance in predicting low seed production years, the overall poor ability243

of the models to predict large seed crops leads to low estimates of the variability of masting time244

series (Fig. 4b). A similar finding was reported in a study of seed production in valley oaks245

(Quercus lobata), where historical crop failures were accurately modeled, but the extent of seed246

production in mast years was not well captured (Pesendorfer et al., 2016).247

Assessing the ability of the models to predict extreme seeding events (large mast and failure248

years) in addition to their performance based on 𝑅2 provides valuable insights into models’249

effectiveness. Both mast and failure years are underpredicted, with especially poor performance250
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Table 2: Prediction of mast and failure years by the three evaluated models. For each time
series, we scaled seed production to a range of 0 - 1, and defined mast years as years when seed
production was above 0.8, whereas failures as below 0.2. Based on this arbitrary threshold, mast
years occurred in ∼ 9.64%, and failure years occurred in ∼ 62.8% of years. We reported average
values with standard deviation (SD) in percent.

Mast years Failure years
True positive (hit)
ΔT 0.19% ± 1.33 19.9% ± 17.9
𝑓 𝑜𝑟𝑒𝑀𝑎𝑠𝑡 4.68% ± 4.42 17.4% ± 5.55
Sequential 3.63% ± 5.78 42.8% ± 21.6
False positive (type one error)
ΔT 0% ± 0 1.18% ± 3.05
𝑓 𝑜𝑟𝑒𝑀𝑎𝑠𝑡 14.0% ± 6.1 1.92% ± 3.97
Sequential 0.42% ± 1.52 1.94% ± 3.71
False negative (type two error)
ΔT 9.45% ± 5.17 42.9% ± 16.6
𝑓 𝑜𝑟𝑒𝑀𝑎𝑠𝑡 4.97% ± 4.74 45.4% ± 15.7
Sequential 6.01% ± 5.10 20.0% ± 15.0

Figure 4: Distribution and variation of observed and predicted seed production. a) Histograms with density
curves of all observed and predicted annual seed production. b) Coefficient of variation (CV) calculated based
on observed and predicted values of annual seed production at each site. We computed CV by dividing standard
deviation (SD) by the mean value of seed production of the time series for each site. Predictions are based on
the three evaluated models, i.e. ΔT, 𝑓 𝑜𝑟𝑒𝑀𝑎𝑠𝑡, and sequential model. We computed CV based on annual seed
predictions, and from scaled observations, for each sites (Sequential, 𝑅2 = 0.29; 𝑓 𝑜𝑟𝑒𝑀𝑎𝑠𝑡, 𝑅2 = 0.02; ΔT, 𝑅2 =
0.05). For the three models in b) we fitted a loess regression to visualize trends.

in the prediction of mast years. The sequential model predicts failure years better, partially due to251

its inclusion of the previous year’s seed production. That model accuracy in predicting failures252

decreases when the previous year’s seed production is removed (correctly predicted true positive253

failure years: 37.2%). The sequential model also performs better in predicting failure years254

when trained solely on seed trap data, which is associated with lower uncertainty (correctly255
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predicted true positive failure years: 47.2%). These findings support the idea that resource256

depletion plays an important role in seed production, making seed failure after high-seed years257

predictable (Crone et al., 2009; Abe et al., 2016), while the mechanisms driving high-seed years258

are less clear or more stochastic (Schermer et al., 2020), highlighting this as a priority for future259

research (Bogdziewicz, 2022).260
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Box 1 :
Hindcasting vs forecasting.
Analysis in our study is based on hindcast analysis that assessed models’ ability to recreate
past seed production. Actual forecasting will require models to be trained on existing data and
predict unobserved future seed production, which will likely result in reduced performance.
To illustrate that, we used a cross-validation procedure with the sequential model, based on
a random data-split (Yates et al., 2023). For each site, we trained the model with 70% of
randomly selected observations, and repeated this process five times. The 𝑅2 was evaluated
with the remaining 30% of observations across the 10-fold block selection for a model trained
on 70% of the observations. With cross-validation, observations can be used for training
or validation only, whereas a model trained with the full dataset would include these 30%
of observations for both model training and validation. Training data on a subset reduces
the sequential model accuracy in predicting both failure and mast years (Fig. 5). On
average, the models trained with split data achieved a lower mean 𝑅2 at 0.41 [CI 97.5%
= 0.12, 0.65] compared to a model trained with all observations (𝑅2 = 0.65 [0.42, 0.94],
Fig. 5b). The take-home message is that forecasting masting shows great early promise, but
substantial efforts will be required before we can predict masting with satisfying accuracy.

Figure 5: Comparison between cross-validation (data-split) and full data for model training.
Predicted vs observed values for a model with (a) data-split and (b) a model trained on full
data. Black dotted lines indicate a 1:1 relationship, while blue lines are regressions between
predicted and observed values, each dot is a site-year. c) The 𝑅2 from the model trained on
70% of the dataset or trained on the full dataset; an analogous figure with 𝑅𝑀𝑆𝐸 is given
in Fig S7. d) Histogram and density of observed values, values predicted in cross-validation
(70% of the data used for calibration, 30% for the validation), and values predicted by the
model trained on the full data. Note that we used 30% of the observations for each site
randomly sampled ten times, which resulted in a different sample compared to Fig. 1.
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What is next?261

Our results, based on one of the best-studied systems in the field, suggest that much work is262

needed to develop reliable tools for forecasting seed production in masting plants. The abilities263

of models to recreate past seeding were limited, even in predicting the data on which they were264

trained (Box 1). However, the path forward has become clearer. The sequential model, which265

considers a broader range of factors affecting seed production compared to the other two models,266

shows promising accuracy. Despite this, the models’ inability to accurately predict bumper crops267

remains a crucial limitation. One potential solution could be to transition the sequential model268

from an additive to an interactive configuration (Kelly et al., 2013; Vacchiano et al., 2017). On269

the other hand, the ability to predict crop failures is much improved compared to other models,270

likely due to the deterministic impact of seed production on future reproductive investment.271

Forecasting in ecology depends on our ability to identify key parameters that drive the system272

and how accurately we can measure these parameters (uncertainty) (Dietze, 2017). To achieve273

accurate forecasts, it is crucial to identify the right parameters and fine-tune them effectively. For274

instance, enhancing our understanding of how weather variability influences seed production275

can lead to substantial improvement in the quality of masting forecasts. Currently, correlations276

between masting and weather are often based on fixed time frames, such as mean maximum277

temperatures in June-July (Vacchiano et al., 2017). However, the timing of these effects can278

vary depending on local climates and current year conditions, similar to other phenological279

events like bud burst or flowering (Fu et al., 2015; Zohner et al., 2018; Nussbaumer et al., 2018).280

Using a site-specific moving window analysis can help pinpoint the right weather correlate and281

its timing (Bogdziewicz et al., 2023). While in European beech the cues change little among282

populations (Vacchiano et al., 2017; Bogdziewicz et al., 2023), in other species the weather283

correlates and underlying mechanisms can vary much more among populations (Bogdziewicz284

et al., 2020c; Fleurot et al., 2023). The challenge ahead lies in developing general rules that can285

connect local variation to a global model.286

A related problem are the unknown mechanisms that connect masting and weather variation,287

as these links are often only assumed after the correlations are established (Crone & Rapp,288

2014; Bogdziewicz et al., 2020a). The phenological synchrony hypothesis stands out compared289

to other weather cues with a developed theory and experiments on how weather affects seed290

crops through pollination efficiency (Koenig et al., 2015). However, even in this case, the291

exact mechanism behind flowering synchrony, a key factor in pollination efficiency, remains292

unclear. Different theories propose different temperature sensitivities, with the photoperiod-293

sensitivity hypothesis suggesting temperature affects flowering months before it occurs (Chuine,294

2010; Bogdziewicz et al., 2020c), while the micro-climatic hypothesis posits that temperature295

during flowering is crucial (Koenig et al., 2015). The effects of warm spring weather on seed296

production can be also explained by higher pollen dispersal in such conditions (Schermer et al.,297

2019). This disagreement on the relevant period makes it difficult to identify the timing of298

maximum sensitivity, adding complexity to the task of constructing reliable masting forecasting299

tools.300

Improving the accuracy of forecasts can also be achieved by reducing uncertainty in param-301

eters. The uncertainty of weather parameters is generally low as past measurements are mainly302

used. However, for parameters with high sensitivity, which increases the cost of uncertainty,303

weather can be measured directly at the focal site instead of relying on data from nearby me-304

teorological stations. To assess the benefits of local measurements, case studies are needed.305

Another important source of uncertainty is the impact of past seed production on current-year306

reproductive investment. Therefore, determining the most effective method of seed monitoring307
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at relevant spatial scales is a priority. The method chosen can vary based on factors such as plant308

species (e.g. the spatial scale of seed production synchrony, the importance of post-seeding309

resource depletion on next year’s seed production) (Touzot et al., 2018; Tattoni et al., 2021), and310

the objective of the forecast. Further research into the physiology of resource depletion following311

seed production holds promise for improvement, including examining how stand age/mean size312

or local factors (soil type, competition) affect the limiting role of post-mast resource depletion313

on subsequent year’s seed production (Pesendorfer et al., 2020; Wion et al., 2023), or whether314

extreme mast years can result in two consecutive mast failures.315

Conclusions316

The vast array of masting strategies across species, and potentially even within species (Fleurot317

et al., 2023), may make it difficult to develop a universal model of masting. To address this318

challenge, stakeholders, including experts on masting and those who use such information,319

should collaborate to design research projects that focus on specific goals, rather than relying320

solely on lessons learned from other systems (Dietze, 2017). However, a general understanding321

of masting is crucial in providing a framework to work toward specific applications. To facilitate322

this, we summarize the key points in Box 2 .323

It is worth mentioning that although the sequential model outperformed in our analysis, this324

does not necessarily render other models ineffective. For instance, our analysis was focused on325

European beech, but the ΔT model has already proven successful in forecasting seed production326

in Southern beech (Holland & James, 2015a). Our intention is not to suggest that certain models327

are superior or inferior, but rather to emphasize that existing models show potential, require328

enhancements in key areas, and their effectiveness will depend on specific applications.329

A crucial priority is to determine the intrinsic predictability of seed production time series.330

In other words, how predictable is masting, and what is the achievable level of accuracy for331

the models? It is important to understand if the system is inherently predictable to evaluate the332

quality of the chosenmodel (Pennekamp et al., 2019). The impact of chaotic dynamics, the effect333

of changing initial conditions on model results, should also be considered when assessing the334

models (Rogers et al., 2022). Improving our understanding of what can be predicted and how to335

improve those predictions is essential for making ecology more relevant to policy, management,336

and decision-making (Clark et al., 2001; Dietze, 2017).337
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Box 2 :
The Next Steps: A Roadmap for Masting Forecasting. To advance masting forecasting
the following research areas are identified as essential or promising. This roadmap aims
to provide guidance for future efforts in this field and to help advance our understanding
of masting dynamics and its predictability.

• Predicting mast years and failures. Classifying seed production into mast and non-
mast years is subjective and does not accurately represent the complex ecological
processes involved. However, extreme events play a significant role in management
decisions. The limitations of current models in accurately forecasting these stochastic
large events highlight the need for further research into the mechanisms that drive mast
years.

• Physiology of seed production. Promising results have been achieved using sequential
models, which are based on established correlative mechanisms. This suggests that a
deeper understanding of the mechanisms behind seed production and weather correla-
tions, as well as the factors that limit post-mast seed production (such as the resource
allocation to flowering and identification of resources that actually limit reproduction),
could further improve the effectiveness of these models.

• Model types. The development of models for masting forecasting should follow an
iterative process, in which model performance is constantly evaluated, refined, and re-
evaluated (Dietze et al., 2018). The selection and validation of models are crucial steps
in this process and can be improved by identifying and separating sources of uncertainty
in the forecast. For example, Heilman et al. (2022) separately evaluated the uncertainty
from initial conditions, parameters, drivers, and processes. Within the iterative cy-
cle, comparing the explanatory power and predictive ability of both mechanism-based
and empirical models (Lewis et al., 2022), as well as artificial intelligence approaches
such as deep learning (Christin et al., 2019), can be a promising approach. Our se-
quential model showcases the advantage of a mechanism-informed empirical approach,
which adds complexity but significantly improves hindcasting accuracy. Alternative
routes include other mechanism-based models, such as the resource budget model of
masting (Satake & Iwasa, 2000; Holland & James, 2015b; Schermer et al., 2020), or
phenomenological models (Lebourgeois et al., 2018).

• Identifying and incorporating rare veto factors. Incorporating rare and difficult-to-
quantify veto events presents a challenge in masting forecasting. Such events, such as
late spring frosts or extreme droughts, can have significant localized impacts by killing
flowers or causing fruit abortion (i.e. high sensitivity). However, these events are
rare and only have significance if the masting process has already been initiated (i.e.
previous processes in the phenological sequence that leads to large mast years have
happened). Measuring their effects on masting is challenging due to the limited data
available and their non-linear, threshold-based nature. Despite these difficulties, the
predicted increase in the frequency of such events in the future suggests they may play
an increasingly important role in driving masting.

• Intrinsic vs. extrinsic drivers of masting Certain species show bimodal seed produc-
tion patterns, which are only altered due to vetoes. For example, silver fir Abies alba
shows strong biannual reproduction unless a late frost acts as a veto (Owens & Morris,
1998). Thus, by investigating the cyclicity and autocorrelation of reproduction across
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species in different ecological contexts, we may learn more about the role of intrinsic
and extrinsic drivers of reproductive variation.

• Informed model selection by users. Different models have varying strengths when it
comes to forecasting masting, and the ideal model may depend on the specific needs
and requirements of the user. For instance, the relative significance of incorrectly
predicted mast events (false positives) compared to missed mast years (false negatives)
can influence the choice of a model. To facilitate informed decision-making, it is
crucial to establish a stakeholder-driven framework for evaluating models, which will
allow users to choose the best model for their specific needs.

• Non-stationarity and predictability of seed production. To determine the realistic
level of forecast accuracy of the models, it is important to assess the intrinsic pre-
dictability of the seed production time series. This includes determining the extent to
which the masting system is inherently predictable, and evaluating the chosen model
quality in relation to the system’s intrinsic predictability (Pennekamp et al., 2019).
Comparing the intrinsic predictability across different masting species would provide
valuable insights and be a fascinating research endeavor.

• Climate change. The changing climate is having a significant impact on seed produc-
tion patterns (Bogdziewicz, 2022) and therefore on masting forecasting. For instance,
the sensitivity of seed production in European beech to summer weather temperatures
is declining, educing the sensitivity of masting to a key predictor (Bogdziewicz et al.,
2021). It is crucial to understand the consequences of these changes in climate on other
parameters and how they translate into the predictability of masting. This will help to
improve the forecasting of production patterns in the face of ongoing climate change.

• Data quality, parameters uncertainty, seed production monitoring. Determining
the measurement of seed production is crucial for future masting forecasting efforts.
The question arises as to what spatial scale seed production should be measured and
how many individuals should be included in the measurement. With the presence of
spatial synchrony in seed production (LaMontagne et al., 2020; Wion et al., 2020),
forecasts may not necessarily rely on direct observations from the targeted population.
It is imperative to conduct studies that will establish a cost-effective seed production
monitoring program, one that will strike a balance between the logistical challenges of
monitoring and the management objectives.

• Temporal vs spatial prediction. The analysis presented here is largely focused on tem-
poral predictions, i.e. forecasting future seed production. Another potentially relevant
approach is spatial prediction, i.e. predicting seed production at sites where observa-
tions are missing. The efficacy of such prediction will hinge on the degree of spatial
synchrony in seed production exhibited by the species under scrutiny (Bogdziewicz
et al., 2023), but perhaps also on stand characteristics such as soils or topography.

• Rapid data access. To develop accurate forecasts, timely and accessible seed pro-
duction data is essential. Platforms such as the Ecological Forecasting Initiative
(https://ecoforecast.org/), which focuses on fine-tuning ecological forecast-
ing through rapid data sharing, can serve as a model for seed production research. The
establishment of similar platforms will greatly benefit the development and evaluation
of masting forecasting.
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580

Methods S1581

Seed production data582

We used data from MASTREE+ database (Hacket-Pain et al., 2022) and extracted seed produc-583

tion data for European beech Fagus sylvatica. We only used records measured on a continuous584

scale that covered more than 8 years of observations after 1980, and excluded records of annual585

flowering, pollen production, and tree-ring-based mast year reconstructions (Fig. A1a) (n = 94586

MASTREE+ sites; 1,929 site-years). We scaled seed production for each site to between 0 and587

1 by dividing all values by the highest recorded value in the time series (Fig. A1b). This was588

done to accommodate among-site variation in methods of seed production monitoring among589

various datasets included in MASTREE+.590

Figure A1: a) Map of sites used in the analysis (n=94). b) Seed production patterns for each site are shown in
grey with an average value from all sites in black.

Models : ΔT, foreMast, and sequential model591

We used three different models to predict masting in beech: ΔT (Kelly et al., 2013), foreMast592

(Chiavetta &Marzini, 2021), and the sequential model. The ΔTmodel is based on the difference593

in temperature between two past consecutive summers (𝑇1 and 𝑇2) (Kelly et al., 2013). The594
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foreMast model is based on an R package that predicts the probability of seed production in a595

given year (Chiavetta &Marzini, 2021). This model includes both previous (𝑇1 and𝑇2) summer596

temperature and summer precipitation but also an auto-correlation term that helps to avoid two597

consecutive high-seed production years. The sequentialmodel includes severalweather variables598

known to affect seed production in beech, from pollination to fruit maturation, and the previous599

year’s seed production: past summer temperature (𝑇1 and 𝑇2), spring temperature of the year of600

seed fall (𝑇0), late frost and summer moisture deficit of the year of seed fall; all defined below.601

The foreMast algorithm provides masting forecasts for any given set of coordinates, while602

the coefficients for the ΔT and sequential models were estimated by fitting separate models to603

each time series (i.e. each unique site). We have fitted site-specific models, instead of for604

example a hierarchical model, as we were interested in site-specific coefficients for predictions.605

We used beta regression to fit the ΔT and sequential model (Grün et al., 2012; Brooks et al.,606

2017). As the beta distribution allows only values above zero and below one, and re-scaled our607

data for each site using the equation (Smithson & Verkuilen, 2006; Grün et al., 2012):608

𝑌𝑠 =
(𝑦𝑠 ∗ (𝑛𝑠 − 1) + 0.5)

𝑛𝑠
(1)

the 𝑦𝑠 is the observation value of seed production for the site 𝑠 (previously scaled to 0 ≤ 𝑦𝑠609

≤1) and 𝑛𝑠 is the number of observation per site. This method involves the addition of minute610

values to observations that possess a value of 0, while simultaneously subtracting negligible611

values from observations that possess a value of 1.612

For ΔT and the sequential model, we extracted daily minimal, maximal, and average tem-613

perature, and precipitation used for the moisture deficit, for each site using EOS-obs (v22.0e,614

Cornes et al. 2018, 0.1° x 0.1°). Summer temperature was defined as the average of June-July-615

August max temperature. Spring temperature was April-May mean average temperature. We616

defined late spring frost based on cumulative growing degree days calculated for each year and617

MASTREE+ site as the sum of daily mean air temperature above 5°C from the 1st of January to618

the date of the last frost day (<-2°C) (Vitasse et al., 2018). A high value of cumulative degree619

days indicates a high risk of frost injury (Vitasse et al., 2018). The summer moisture deficit620

was defined as 𝑃− 𝑃𝐸𝑇 , with P for precipitation and PET for evapotranspiration, summed from621

June 1st to August 31st. Evapotranspiration (PET) was calculated with the Thornthwhaite equa-622

tion (Thornthwaite, 1948), by using the R package SPEI (Beguería & Vicente-Serrano, 2017).623

Distribution and correlation between climate variables are reported in Figure S8. Covariates624

included in the sequential model were standardized and centered before being included in the625

model.626

The foreMast package includes a function to extract climate from each location starting627

from 1981 based on ERA5-Land (Chiavetta & Marzini, 2021). Both monthly-year average628

temperature and precipitation, coming from EOS-obs and foreMast climate extraction present629

robust correlation (Figure S9).630

To evaluate the effects of focal predictors on the sequential model predictive power, we631

fitted several sub-models. This included two approaches: in one, we excluded one variable at632

a time (e.g. spring temperature in year 𝑇0), refitted the model, and evaluated its performance.633

In the second, we added variables in their phenological order of occurrence, starting with a634

model with only summer 𝑇2 (i.e. only one predictor), next added model summer 𝑇1 (two635

predictors), previous year seed production (tree predictors), late spring frost (four predictors),636

spring temperature (five predictors), and lastly summer moisture deficit (six predictors).637

We assessed the ability of models to re-create past seed production by using two main638

metrics: the R-squared (𝑅2) and the Root Mean Squared Error (𝑅𝑀𝑆𝐸). The objective is to639
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compare predictions of yearly seed production to the observed yearly seed production. The 𝑅2640

is the square of the correlation, which gives the proportion of the variation in the dependent641

variable that is predictable from the independent variables. An 𝑅2 of 1 means that predictions642

perfectly match the observations. The 𝑅𝑀𝑆𝐸 provides the standard deviation of the prediction;643

smaller values indicate better model performance. Models were fitted on the site level, site-644

specific parameter coefficients were used to back-cast seed production, and 𝑅2 and 𝑅𝑀𝑆𝐸 were645

computed for each site.646

We also conducted cross-validation on the sequential model by using a cross-validation647

procedure (Arlot & Celisse, 2010). We randomly sampled 70% of the data in each time series648

to train the model and validate it based on the remaining 30% (by computing 𝑅2 and 𝑅𝑀𝑆𝐸 for649

each site). We repeated this random sampling 10 times for each site and then computed the 𝑅2650

for each site.651
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Figure S1: Standardized coefficients from the sequential model coming from MASTREE+ sites. Coefficient
values have been extracted for each covariate and from each site where the beta regression models have been run.
Grey dots represent the coefficient values of the site. The dot size above the boxplots is scaled to the number of
observations that have been used to run beta regression models at the focal site.
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Figure S2: 𝑅2 comparisons among the three models: scatter plots of 𝑅2, 𝑅2 distributions, and their correlation.
For correlations, we used Pearson correlation with *** for P-values <0.001, ** for 0.001, * for 0.01. The range of
x-axis (𝑅2) differs between the three models. The lower panel presents kernel density estimation of 𝑅2, from dark
to yellow for higher density, and each dots represent 𝑅2 of each sites.
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Figure S3: 𝑅𝑀𝑆𝐸 comparisons among the three models: scatter plots, 𝑅𝑀𝑆𝐸 distributions, and their cor-
relation. For correlations, we used Pearson correlation with *** for P-values <0.001, ** for 0.001, * for 0.01.
The range of x-axis metric (𝑅𝑀𝑆𝐸) differs between the three models. The lower panel presents kernel density
estimation of 𝑅𝑀𝑆𝐸 , from dark to yellow for higher density, and where each dots represent 𝑅𝑀𝑆𝐸 of each site.
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Figure S4: Effects of focal predictors on the sequential model performance evaluated with 𝑅𝑀𝑆𝐸 . a) Each
boxplot shows sequential model 𝑅𝑀𝑆𝐸 with one predictor removed, b) predictors added in phenological order.29



Figure S5: Goodness-of-fit of the sequential model presented with a) 𝑅2 and b) 𝑅𝑀𝑆𝐸 . The yellow background
represents the species distribution of Fagus sylvatica extracted from EUFORGEN (https://www.euforgen.
org/species/). The dots represent each site, color-coded by the collection method. The size of the dots varies
according to goodness-of-fit. The "other" category follows MASTREE+ and gathers collection methods that did
not fit any other categories presented.
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Figure S6: Effects of seed production estimation method on the sequential model 𝑅𝑀𝑆𝐸 . The methods are
seed count (ground counting within a given time frame), monitoring with seed traps, and visual crop assessment.
The asterisks represent significant differences between each group tested with a t-test (**** for P < 0.0001, *** for
P < 0.001, ** P < for 0.01, * P < for 0.05, and n.s. for P > 0.05)
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Figure S7: Boxplot of the 𝑅𝑀𝑆𝐸 from the model trained on 70% of the dataset or trained on
the full dataset.
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Figure S8: Bivariate relationships and distribution of climatic variables. The upper panels show correlations,
and the lower panels bivariate relationships using the loess function. Dots represent each site-yearly observations.
For correlation between scaled climate variables, we used Pearson correlation with *** for P-values <0.001, ** for
<0.001, * for <0.01
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Figure S9: Correlation between climate obtained from EOS-obs and foreMast package (based on ERA5-Land).
a) Correlation between average monthly temperature and b) Correlation between average monthly precipitation.
Each dot represents a value for a month-year from our sites. Linear model summary is reported with slope, intercept
and P-values at the bottom right.
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