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Abstract  

Effective conservation strategies are required to increase biodiversity. More information about a 

species increases the chances of choosing policies that enhance survival. Many historical population 

monitoring methods, such as live trapping, were invasive or difficult to implement for particular 

species or locations. This has led to the development of molecular analysis of non-invasive samples, 

including faeces. Faecal samples are easy to collect and store; they are a potentially rich source of 

information and do not require direct observation of the animal. Faecal samples can be used to obtain 

genetic information, but techniques are labour-intensive and time-consuming, and the abundance of 

hormones in faecal samples degrades with time.  

The potential of a new ambient mass spectrometry technique to analyse faecal samples was 

investigated in this study. Rapid Evaporative Ionisation Mass spectrometry (REIMS) was developed for 

medicine to distinguish between cancerous and healthy tissue. It was used in food security to 

determine if the origin of a food source is as advertised. We have shown that REIMS can discriminate 

different species of rodents. This study aimed to determine the scope of REIMS to differentiate faecal 

samples of laboratory animals by analysing the sex, maturity and strain of different lab mice. The 

discrimination ability of REIMS was also explored in captive zoo animals to determine whether REIMS 

could be used to detect pregnancy. The practicality of REIMS in field studies was tested, and the ability 

to use REIMS as a method for population monitoring was determined by establishing the species 

distribution of rodents in multiple field sites. The power of REIMS to distinguish between more subtle 

differences; sex, maturity, strain and pregnancy; was limited compared to species.  The composition 

of faecal samples did change with storage time, but REIMS could still distinguish between species of 

samples that had been in the freezer for over two years. REIMS established the species distribution of 

three rodent species across four field sites. Therefore, REIMS can be used as an additional non-invasive 

method to aid conservation and ecology studies.     
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Chapter 1: Introduction  
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1.1 Population Monitoring Methods for Conservation and Ecology Studies 

Various methods can be used to obtain information about multiple species living in different 

environments. The data collected can aid optimal conservation management (Eggert et al., 

2003); be used for pest control (Campbell et al., 2002); estimate population numbers 

(Bellemain et al., 2005); detect endangered animals (Ernest et al., 2000) and track particular 

individuals (Walton et al., 2018). Efficient methods for population monitoring are increasingly 

important due to the rapid decline of biodiversity. The IUCN lists 25% of all its assessed 

mammals as threatened and 14% of its birds. “Threatened” also includes those ranked as 

vulnerable, endangered or critically endangered (IUCN 2017).  The biodiversity decline is so 

rapid that the earth is considered to be in its sixth mass extinction, with an average of two 

vertebrate species going extinct each year for the last 100 years. It would take 10,000 years 

for the same number of vertebrates to become extinct under normal background extinction 

rates  (Ceballos et al., 2017).  The causes of the population decline of vertebrates can be linked 

to the rapid expansion of the human population which has led to deforestation, habitat loss, 

climate change, and the introduction of invasive species (Ceballos et al. 2017).  

There are multiple methods used to obtain information about a species’ behaviour, 

distribution and condition, including capture-mark-recapture methods (Morin et al., 2016, 

Bellemain et al., 2005), camera trapping (Rowcliffe et al., 2014), acoustic detectors (Lucas et 

al., 2015), tagging (Laplanche et al., 2015) and observation (Tena et al., 2017). Ideally, 

monitoring should be conducted without affecting the animal’s behaviour and be cost-

effective and easy to implement. Every method used for monitoring has its advantages and 

disadvantages; disadvantages include being invasive, costly or impractical for certain species. 

Genetic and hormone analysis can provide non-invasive alternatives to traditional trapping 

and observational methods. However, these methods can be very time-consuming, require 

large amounts of sample preparation, and the methods used vary between species. They also 

may work for some species in specific locations and not others. Mass spectrometry is a 

potential type of analysis of biological samples that could address these issues.    

1.1.1 Observational Monitoring  

Historically monitoring species distribution was accomplished by having observers count 

animals; this could be achieved by walking transects or from a fixed position record all 
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observed animals. A more recent development, unmanned aircraft systems (UAS or drones), 

can be combined with Global Positioning System (GPS) technology and automatic detection 

to determine what species are present in an area and far they are distributed. Drones could 

detect koalas in the canopy using thermal signatures; the accuracy of detection by drones at 

lower heights (<60 m) was as accurate as conducting ground surveys (Gonzalez et al., 2016). 

The drone’s height is critical; when they are too low, they disturb the animals, but increasing 

the height increases the rate of counting errors. Guanacos (a relative of llamas) were found 

to react to drones at heights greater than could be used for monitoring purposes (Schroeder 

et al., 2020). Other factors affecting the use of drones are location, amount of vegetation, the 

choice of camera and the time of day. Laws may restrict the use of drones, including flying 

beyond the operator’s sight and flying at night, near people or infrastructure (Gonzalez and 

Johnson, 2017).     

Counting could be achieved indirectly by observing and counting for signs of animals 

such as nests, faeces, tracks, partially eaten food and disturbance of plants. A study 

performed in South Africa compared an observational count to dung counts to estimate the 

species diversity of large mammals. The observational method required more sampling effort 

(more walking) than counting dung; dung was observed 45 times for every direct observation. 

The dung count results had a higher herbivore species richness compared to observational 

counts when surveying areas less than 25 km2. Dung counts were more reliable for rare 

animals than direct observation (Cromsigt et al., 2009). One advantage of large mammals is 

the ease of identification of their faeces which are potentially still identifiable up to two 

months after defecation (if unaffected by other animals and climate). This is less true for 

smaller mammals whose faeces can be indistinguishable from each other and more 

challenging to find. The consequence of which is that dung counts cannot be used for all 

species (Figure 1.1). Finally, observational counts are labour intensive and underestimate rare 

or elusive species; they can be impractical under challenging terrains; dense rainforest and 

mountain areas are particularly difficult for observational methods (Witmer, 2005).   

1.1.2 Tagging and Live-Trapping Methods 

Mark-recapture methods are used to estimate population sizes without counting all 

individuals. A small number of wild animals are captured, marked, and released. Capture is 

repeated, and the number of marked animals is recorded. In small populations, animals with 
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marks are more likely to be caught again; the opposite is true with large populations. There 

are multiple ways of marking an animal, and this will vary by species. For small mammals 

marking methods include ear-clippings, fur-clippings, toe-clipping and passive integrated 

transponder tagging (PIT-tagging). These marking methods are invasive, and retention of the 

marks can be problematic; small mammals may lose toes and physical tags in the wild (Jung 

et al., 2019). Tags can also be used to monitor and track animals through GPS and 

accelerometers, but tagging can harm the animal and may change their behaviour (Ropert-

Coudert and Wilson, 2005). Tags have damaged the fins of sharks (Hammerschlag et al., 2014), 

lowered breeding opportunities and chick production of tagged penguins  (Gauthier-Clerc et 

al., 2004) and lowered the pup growth rate of tagged Antarctic fur seal mothers 

African Elephant  Rhinoceros 

Giraffe 

Bank Vole, Field Vole, House Mouse, 

Wood Mouse  

Figure 1.1. The faeces produced by a) an Africa elephant © Africa 

Geographic, b) a rhinoceros ©Shutterstock, c) a giraffe 

©Shutterstock and d) four species of rodents © Nicola Davidson. The 

variation observed with the rodent faeces occur across species and 

vary from pellet to pellet. The large African herbivores produce 

faeces with distinguishable features that can be used for 

identification. The faeces of rodents are indistinguishable between 

the four species.  
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(Hammerschlag et al., 2014). There is the added risk of anaesthesia for larger mammals as the 

animal must be sedated to be tagged (Fahlman et al., 2005). Tagging can be expensive and 

labour-intensive, and electronic tags are expensive, particularly when considering the number 

of tags that fail to transmit data for the entire length of the study (Hammerschlag et al., 2014, 

Ropert-Coudert and Wilson, 2005). 

Live trapping can be an effective method of monitoring small mammals. Live trapping 

of harvest mice was compared to nest counts to establish if harvest mice were present in 

different sites in Nottingham. Harvest mice nests were only observed in two of the four study 

sites, but harvest mice were caught in live traps in all sites. The observational method of nest 

counting underestimated the harvest mice population (Kettel et al., 2016). For population 

estimates, it is assumed that each individual has the same chance of being captured when 

using live traps. Some animals, however, may be considered ‘trap-happy’. These animals may 

have been trapped before and will purposely go into traps for food and security. The 

probability of small mammals entering traps may increase if there is an increased predation 

risk leading to an overestimate of population numbers (Brehm and Mortelliti, 2018). Other 

studies suggest that live trapping is biased towards age, social status, or sex, as small 

mammals will avoid traps unless they have a strong need for the resources (bedding and food) 

found in the traps (Stryjek et al., 2019).  Live trapping may be stressful for the animals; stress 

hormone (cortisol) concentrations of red squirrels increased with prolonged trapping. Stress 

levels varied with the type of trap used, but the traps that caused the least stress had the 

lowest capture rate (Bosson et al., 2012).   

1.2 Non-Invasive Techniques to Investigate Mammalian Population  

The impact of animal research and their stress and welfare is more of a priority than it once 

was. The Animals (Scientific Procedures) Act, implemented in the UK in 1986, regulates the 

use of protected animals (vertebrates and cephalopods) in research. It states that animals 

must be cared for in accordance with the best standards of modern animal husbandry. This 

was updated in 2006 to state reasonable steps should be taken to ensure the animal’s welfare 

and needs (Animals (Scientific Procedures) Act 1986, 2012).  Invasive methods have also been 

shown to impact animal welfare by increasing stress and influencing behaviour negatively 

(Gouveia and Hurst, 2019, Wolfensohn et al., 2018). Researchers must consider method 
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choices carefully before starting any project leading to an increasing interest in the analyses 

of non-invasive samples such as faeces and urine.  

1.2.1 Camera Traps  

Camera traps are a non-invasive population monitoring method used to monitor rare, elusive 

and nocturnal animals that usually evade direct observation (Trolliet et al., 2014, Wearn and 

Glover-Kapfer, 2019). For example, snow leopards were observed for the first time in 

Gaurishankar Conservation Area, which may be an important bridge between East and West 

Nepal. Such evidence can be used to prevent habitat destruction and increase the 

conservation of this endangered species (Koju et al., 2020). Camera traps can also be used to 

record animal behaviour, reducing the effect of human presence on behaviour and allowing 

multiple observers to review captured footage, reducing observer bias (Caravaggi et al., 

2017). Camera traps can monitor individuals through natural markings, replacing traditional 

mark-capture methods (Macaulay et al., 2019). Camera traps were used to estimate the home 

range of brocket deer in Brazil and compared to home range estimates from GPS data. Deer 

were captured and anaesthetised using a dart gun. The captured deer were marked with an 

ear tag and given an individually marked radio-transmitter collar with a very-high-frequency 

transmitter and GPS. The collars recorded geographic point locations every 13 hours for one 

year. The sampling areas were divided into 20, 25-ha plots and camera traps were placed in 

each plot over one year, the location of the camera within the plot was changed every 30 

days. Natural markings such as cuts and scars were used to identify deer captured on camera 

that did not have a radio collar. The GPS locations were used to estimate the home range of 

the deer, this was compared to the camera trap footage. The camera traps, however greatly 

underestimated the home ranges when compared to GPS data. The home ranges estimates 

of the camera traps were 80% of the estimates using GPS data. The results also differed for 

habitat use, GPS suggested that grasslands were the most utilised, but the camera traps 

suggested grasslands were the least used. The cameras in open areas such as grasslands are 

more exposed to environmental influences that may interrupt the camera’s operation, thus 

reducing capture events. Four individuals were identified from 21 camera trap records; this 

was only 5.3% of the total records of non-collared deer (Grotta-Netto et al., 2021). The results 

from this study suggest that camera traps are unsuitable for tracking individual deer through 

natural markings or establishing a home range. Natural markings can be a non-invasive 
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method of identifying individuals, but it requires the animals to have distinctive markings that 

remain stable with time. Yet cuts on ears can change with time, and small mammals can be 

almost identical when observed on cameras with limited resolution.   

1.2.2 Acoustic Monitoring  

Acoustic monitoring was developed to monitor cetaceans but has since been used for 

terrestrial studies (Enari et al., 2019). The advantage of acoustics is that sound can be 

collected over a relatively long distance, several sound-producing species can be monitored 

at once, and sounds can be identified using recognition algorithms (Hill et al., 2018).  An 

investigation into acoustic monitoring of three call types of sika deer and five call types of 

macaques found that sounds were recorded faster than images caught using camera traps. 

However, recognition algorithms used to identify the calls produced many false positives.  

Some of the calls produced by the deer were only produced by dominant males in the 

presence of females; therefore, these calls could not be used to estimate population numbers 

(Enari et al., 2019).   

1.3 DNA Analysis of Non-Invasive Biological Samples  

Five non-invasive methods were compared for their ability to survey carnivores in North 

America. These were camera traps, track plates (collect footprints on paper using soot), scent 

stations, snow-tracking (track surveying after a fresh snowfall) and scat surveys. The 

carnivores surveyed included bears, coyotes, dogs, raccoons, opossums, skunks, weasels, 

martens, and foxes. The optimal method varied for the different species; camera traps 

worked best for most species except coyotes and smaller mammals. Scat surveys showed the 

highest abundance of coyotes, and the track plates showed the highest abundance of the 

smaller carnivores (weasels and martin). Track plates cannot be used for larger animals; snow 

tracking is biased towards animals active during winter and unsuitable for all environments 

(Gompper et al., 2006). Traditional methods may not be the best option for all studies 

involving the monitoring of animals; DNA analysis may offer an alternative to population 

monitoring.   

Technological advancements have allowed individuals and species to be identified 

using genetic techniques to analyse biological samples. This has many advantages, including 

tracking and monitoring an individual animal and through genotyping, can inform efforts to 
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maintain genetic diversity. A genetic bottleneck is when a population declines significantly, 

which affects gene diversity. Inbreeding increases, causing a reduction in population fitness, 

and the ability of the species to adapt to change decreases (Lande, 1988). Genetics methods 

can be used to monitor populations at risk of a genetic bottleneck, and direct resources to 

those most at risk. 

DNA can be extracted and analysed from various non-invasive samples. Identifying 

genetic diversity at the genome level will allow genetic threats to populations to be identified 

and the effect of humans on genetic variation (Hunter et al., 2018). Genetic analysis of 

biological samples is commonly achieved either by selective amplification of specific regions 

of the genome by the polymerase chain reaction (PCR) or by exhaustive genomic sequencing 

using massively parallel next-generation sequencing (NGS) approaches. PCR amplifies the 

DNA in a sample, primers are used to target the locus for amplification, and different primers 

are required depending on the genes and species being investigated. The amplified DNA is 

then analysed using gel electrophoresis or sequenced. NGS describes various sequencing 

technologies that can directly determine the nucleic acid sequence of DNA and RNA. The first 

step of NGS is to create a sequence library from the DNA sample; the isolated DNA sample is 

fragmented and then ligated with specific adaptor sequences on each end. The DNA 

fragments are attached to a solid surface (flow cell) and are amplified, usually by PCR. 

Different sequencing instruments read the DNA using fluorescently labelled nucleotides; each 

nucleotide will have a different label, and the fluorescent labels indicate the order of 

nucleotides in the DNA fragment. Millions or billions of strands are read and combined using 

assembly algorithms to produce the whole genome sequence. The challenge in using NGS is 

the amount of data that needs to be handled and analysed, which requires proficiency in 

bioinformatics (Tan et al., 2019). The technique can help build a species’ life history and 

determine genetic defects and disease resistance. This information can help direct resources 

and influence decisions to obtain optimum conservation management.  For example, a 

genome study found the golden jackal of Africa was more closely related to the grey wolf than 

the Eurasian golden jackal. This data led to the proposal that the African jackal should be 

considered a separate species from the Eurasian golden jackal, assigned its own conservation 

status, and considered separately when making conservation decisions (Koepfli et al., 2015).  
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1.3.1 Hair  

Hair traps can be placed on the ground or attached to trees to collect hair samples from 

mammals, the traps will vary depending on the investigated species. Barbed wire and 

especially designed mats baited with scents and placed on the ground or tress have collected 

hair samples from bears (Berezowska-Cnota et al., 2017).  The morphology of the hair may 

identify the species of the hair sample, or DNA analysis of the hair could be used to determine 

the species of origin (McKelvey et al., 2006), sex (Taberlet et al., 1993) and even individual 

identification (Weaver et al., 2005).  For example, there have been increased efforts recently 

to reintroduce beavers to Europe. It is vital to monitor these reintroductions to determine the 

effect on habitat and how the beaver population will change with time. Beavers can be 

challenging to count using traditional methods as they are nocturnal and live in dens. A study 

by the University of Wrocław assessed the efficiency of passive hair traps. The hair traps were 

set up to monitor European beavers over 27 days, 12 hair samples were collected for a 

trapping rate of 0.7 per day. Using hair samples to monitor beavers is much more efficient 

than live-trapping or direct observation (Sobkowiak et al., 2021). Hair traps were used in the 

UK to determine the population and average group size of the European badger; it found that 

the population had nearly doubled since the 1980s.  Hair traps (n=72) were randomly placed 

near a badger set; this was less than desired due to a lack of permission from landowners 

(Abu-Rabie et al., 2021).  Hair traps are not always successful at collecting samples from all 

species. Hair traps were placed in forests in Malaysia with scent baits to encourage carnivores 

to interact with them and leave behind hair samples. Thirty traps were placed over one year 

but only two animals over the year rubbed the hair traps enough to leave a sample (Hedges 

et al., 2015). Even though hair samples can provide useful information beyond species 

identification hair is not a suitable sample choice for all mammal species and cannot be used 

for non-mammals. 

1.3.2 Faeces  

Faecal samples for biological monitoring have several benefits. It requires no handling or 

contact with the animal, making it easier for the researcher to collect. It is less stressful for 

the animal as sampling does not interfere with natural behaviours. For example, the 

population of brown bears (Ursus arctos) was estimated in Sweden using DNA from faeces to 

establish individual identification of samples. Volunteers collected 1904 faecal samples over 
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two years from brown bears. DNA was extracted from the faeces using a specifically designed 

commercial kit, Qiamp DNA Stool Kit. The DNA was initially amplified using PCR with one 

microsatellite. The faecal samples that showed a DNA band on an agarose gel were reanalysed 

using six microsatellite primer pairs. Microsatellites are small repeating DNA sequences 

subject to higher mutation rates and can be used to measure relatedness between species 

and individuals.  Different primers were used for sex identification which required several pre-

amplification steps. After amplification, PCR was used for genotyping individuals and each 

sample with four replicates. The methods used could analyse the DNA of 75% of the collected 

samples. This study compared the results from the DNA analysis to other methods, including 

radio collars. It determined that identifying individuals from the DNA analysis of faeces was 

reliable.  The DNA analysis of all samples took 13 months to complete (20 hours of laboratory 

work a week) and did not include preliminary studies to establish suitable primers (Bellemain 

et al., 2005). Although this method can identify individuals, it would not be suitable if time 

was a limiting factor.  

The species of carnivores historically have been identified through faeces using 

features such as size, shape, scent and dietary content. However, relying on gross appearance 

and features alone can be inadequate for some species. DNA barcoding can be used to 

identify a species from faecal samples; barcoding uses a standardised method that can be 

used for all mammals worldwide, giving it an advantage over other DNA analysis techniques. 

A short DNA sequence unique to a species can be compared to a reference database to 

identify the species. This technique can be used to detect the species of animals eaten by 

predators. This technique is still subject to the usual PCR errors; the benefit is it only relies on 

small sections of DNA, so degradation of the sample is less of an issue (Zeale et al., 2011).  

1.3.3 Other types of non-invasive samples.  

Many mammals produce scent marks for olfactory communication, including marking 

territories; DNA from the secretions produced from scent marking can be used for analysis 

(Malherbe et al., 2009).  Up to four scent mark samples were collected from three captive 

tigers by swabbing the marked area. DNA was extracted from the swab using the QIAGEN 

DNeasy Blood and Tissue Kit protocol. Five microsatellite loci were used to identify individuals 

of all but one sample (Caragiulo et al., 2015).  DNA was successfully extracted from the solid 
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scent marks produced from the anal pouch of Hyaenas (Malherbe et al., 2009) and the scent 

secretions produced by the scent glands of giant pandas (Ding et al., 1998).  

DNA has also been extracted from wolf urine; wolves urinate more often than 

defecate, so urine samples are easier to collect. The urinary DNA was successfully amplified 

and analysed using PCR for 80% of the collected samples. Urine with DNA concentrations over 

32.6 pg/µL could be used to determine the sex and individual identification of the sample. 

Urine could only be collected from males as males urinate more to mark territories, and it 

was only possible to collect urine samples when there was snow. (Hausknecht et al., 2007). 

Urine was only observed when a fresh sheet of snow was collected along with the urine; the 

snow-urine mixture was analysed. Without the snow, the urine would not have been 

observed in the ground before it could be collected. Although this method could be used with 

wolves’ urine, it could not be used for other species that inhabit regions with no snow or 

produce small volumes of urine.  

1.3.4 Disadvantages of DNA analysis  

A problem with genetic analysis of non-invasive samples is the DNA extracted from these 

samples can be of low quality and quantity. DNA will degrade in samples that are left exposed, 

and the degradation rate will be higher in tropical countries (Caragiulo et al., 2015, Smith and 

Wang, 2014). DNA degradation can make many samples unsuitable for analysis as primers 

find it harder to bind to the DNA. This can lead to smaller sample sizes, which is particularly 

problematic for rare and elusive species with small population sizes. Lower-quality DNA 

increases the chance of genotyping errors, which occur at a higher rate in faecal samples due 

to PCR inhibitors. PCR inhibitors are any substance that affects the PCR; they may be derived 

from the sample or introduced during the PCR process (Schrader et al., 2012).  Samples that 

have been stored for longer increase the chance of primers targeting the wrong loci. Allelic 

dropout is also typical for non-invasive samples when only part of the targeted gene is 

amplified (Shestak et al., 2021). An investigation of the effect of sample size and genotyping 

error on estimates of genetic variation found that sample sizes needed at least ten individuals 

(Smith and Wang, 2014). A study that collected genetic information from hair and faecal 

samples from bears in Italy had to exclude 36% of hair samples caught in hair traps, 85% of 

the hair samples found opportunistically, and 73% of the faecal samples as the DNA was not 

of a high enough quality (De Barba et al., 2010). The DNA analyses from several sample types 
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(tissue, blood, hair and faeces) of carnivores could differentiate different sub-species of foxes 

but could not differentiate between species within the canine family (De Barba et al., 2014).  

In summary, genetic analysis of biological samples is a valuable tool to compare the genetics 

of species and determine relatedness. Not all methods are reliable for all applications, and no 

universal method is currently available (Arif et al., 2011).  Genetic analysis is very labour-

intensive and time-consuming and may not be appropriate for observing specific phenotypes. 

An alternative to genetic analysis could be mass spectrometry.  

1.4 Mass Spectrometry 

Mass spectrometry is an analytic technique that measures the mass-to-charge ratio of ions. 

For mass spectrometry analysis to occur, the ions must be in the gas phase, as virtually all 

mass spectrometers operate in a vacuum. When the ions enter the mass spectrometer, they 

are resolved according to their mass-to-charge ratio and their intensity is detected. When 

abundance is plotted against the mass-to-charge ratio, the result is a mass spectrum. The 

highest peak is referred to as the ‘base peak’ and is often assigned a relative abundance of 

100%. In the gas phase, the energies can be manipulated such that the ion fragments into 

smaller ions. The mass spectrum can be unique as each ion can fragment differently, allowing 

the mass spectrum to be used to identify different molecules or elements.   

All mass spectrometers contain a sample inlet, an ionisation source, a mass analyser, 

and a detector. The inlet introduces the ions into the mass spectrometer and may be 

combined with the ionisation source. An ionisation source is where the ionisation of the 

sample occurs as particles must carry an electric charge to be analysed. Once the ions are 

formed, they pass through the mass analyser; the motion of ions through the analyser will 

depend on many parameters, including their mass-to-charge ratio. The ions will therefore be 

ejected from the analyser at different time points to be measured. Ions will then encounter 

the detector, producing a signal (usually electrical) that can be measured. Ion analyses must 

occur under a vacuum so sample ions reach the detector without colliding with gas molecules, 

except for ion mobility mass spectrometry.  (Figure 1.2).  In ion mobility, ions move through 

a region with inert gas, and various ions will behave differently after colliding with the 

background gas affecting the ion’s transit time. For more complicated samples, 

chromatography techniques can resolve analysts before being introduced to the mass 
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spectrometer. Gas chromatography (GC-MS), liquid chromatography (LC-MS) and capillary 

electrophoresis (CE-MS) can all be coupled with a mass spectrometer (de Hoffmann and 

Stroobant, 2007).   

1.4.1 Ion Sources    

There are multiple ion sources; the first developed was Electron Ionisation (EI), originally 

known as Electron Impact ionisation. High-energy electrons produce ions from a sample in 

the gas phase. Electrons are emitted by a cathode and are accelerated through an ionisation 

chamber towards an anode. The sample enters the ionisation chamber and is bombarded by 

electrons which cause the molecules within the sample to fragment, producing ions (Nier, 

Figure 1.2. The elements are found in all mass spectrometers, 

although the inlet and source can be combined. The analyses and 

detector must be in a vacuum to prevent the sample ions colliding with 

gas molecules. The data system can also be used to change settings of 

the mass spectrometer such as voltages 
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1947). EI is a hard ionisation technique that produces significant fragmentation; soft 

ionisation uses less excess energy, so less fragmentation occurs.  

Fast Atom Bombardment (FAB) is a soft ionisation technique that can analyse non-

volatile analytes. The analyte is dissolved into a matrix solution (usually glycerol) and placed 

on a target plate. A beam of neutral atoms is directed toward the analyte, energy is 

transferred to the analyte causing desorption and ionisation, and the ions are accelerated into 

the mass spectrometer (de Hoffmann and Stroobant, 2007).  

Electrospray Ionisation (ESI) is particualty valuable for fragile volatile bio-molecules. 

The sample is dissolved in a solvent and ejected through a narrow metal or glass capillary 

when using an EI source. A high voltage is applied to the tip; the emerging sample is broken 

down into an aerosol of highly charged droplets, the ‘electrospray’. Applying a high 

temperature and a gas (usually nitrogen) directs the electrospray towards the mass 

spectrometer down a pressure and potential gradient.  The charged droplets decrease in size 

as the solvent evaporates and increases surface charge density. This continues until a critical 

point is reached and the ions at the droplet’s surfaces are ejected into the gaseous phase. (Ho 

et al., 2003). The ions are directed into the mass spectrometer through a skimmer (ion funnel) 

which focus the ions then an electric field accelerates the ions towards the mass analyser 

(Kelly et al., 2010).  

Matrix-Assisted Laser Desorption Ionisation can ionise large, thermally liable, non-

volatile compounds. A UV laser is directed to a sample mixed into a highly absorbing 

crystalline matrix.  The matrix absorbs the UV light and converts it to heat energy; the outer 

surface of the matrix heats rapidly and vaporises with the sample, during which the sample 

molecules are ionised (de Hoffmann and Stroobant, 2007). MALDI is a similar technique to 

FAB, but MALDI can ionise analytes with much higher molecular masses  

1.4.2 Mass Analysers  

Time-of-Flight analysers separate ions by their mass-to-charge ratio (m/z). An electric 

field accelerates ions through a field-free region (flight tube) of a mass spectrometer. Ions of 

the same charge will have the same kinetic energy, but velocity depends on mass to charge 

ratio. Ions with smaller masses move faster through the mass spectrometer. Reflectors can 

be added to the flight tube to increase the flight path; the ions spend more time in flight, so 
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more separation and higher mass resolution can occur (Figure 1.3) (Mamyrin, 2001, 

Chernushevich et al., 2001).  

Using oscillating DC and RF electric fields, quadrupole analysers separate ions by mass-

to-charge ratios.  A quadrupole consists of four rods, and direct and alternate currents are 

applied so opposite rods have the same voltage and perpendicular rods have opposite 

polarities. An oscillating electric field is produced between the rods; how an ion moves 

through a quadrupole depends on the m/z. The voltages of the rods can be changed so ions 

of a particular m/z ratio will move through the whole quadrupole while other ions will be 
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deflected and will not hit the detector. Quadrupoles can analyse a single m/z value and be 

combined with Time-of-flight mass spectrometer analysers (Chernushevich et al., 2001, de 

Hoffmann and Stroobant, 2007).   

Ion traps are regions that can hold ions for an extended time, there are various types 

of ion traps, and they work similarly to quadrupoles. Ions become trapped in a voltage field 

by applying an alternate current to a ring electrode and a direct current to end caps above 

and below the ring. The ions will remain in the space between the rods until the voltage 

changes; depending on the applied charge, ions of a particular mass-to-charge ratio will be 

pushed out through holes in the end caps and hit the detector (March, 1997). These 

techniques can be combined into one instrument known as tandem mass spectrometry 

(MS/MS). MS/MS is any method with more than one mass analysis stage; it usually involves 

the analyses of the productions of a particular precursor ion (de Hoffmann and Stroobant, 

2007). 

1.5 Mass Spectrometry in Biology  

Since its invention in the early 1900s, mass spectrometry was first used to measure the mass 

of the atom and was mainly only used by industrial chemists until the 1950s. Over time, 

however, its importance in researching organic material grew, especially when it was 

discovered that a mass spectrometer could be used to determine the structure of molecules. 

The identification of biological samples by mass spectrometry began in earnest in the early 

1970s. Before this, analyses were only possible for volatile substances as electron and 

chemical ionisation required the molecules to already be in the gas phase. Ions from liquid 

and solids states could be analysed by developing desorption ionisation methods, including 

fast atom bombardment (FAB) (de Hoffmann and Stroobant, 2007). These developments 

allowed biomolecular analysis by mass spectrometry and detecting compounds in much 

smaller quantities of tissue samples. A study of gout and its treatment was one of the first to 

use mass spectrometry on biological tissue. It detected the presence of five molecules 

(hypoxanthine, xanthine, uric acid, allopurinol and oxipurinol) in skeletal muscle tissue 

(Snedden and Parker, 1971).  The subsequent development of mass spectrometry in biological 

research came in the 1980s. Advancements including Ion traps and MALDI, allowed for the 

analyses of macromolecules, including proteins (Griffiths, 2008). 
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The biological samples from animals already used in mass spectrometry analysis vary 

greatly, including tissue from mice (Hsu et al., 2015), milk from ungulates (Yang et al., 2014), 

hair from carnivores (Hollemeyer et al., 2007) and deer antler velvet (Arzmi et al., 2021). 

MALDI-TOF-MS was used to identify the presence of peptides in hair samples. The identified 

peptides of type 1 and 11 keratin proteins were used to create a flowchart for identification 

at the genus level of the hair sample. Hair samples were collected from museum skin samples 

of mammals from North America. This method could separate goats from sheep and a lynx 

from a puma. However, a lynx couldn’t be separated from a closer relative, the bobcat, and 

wolves and coyotes could not be differentiated (Solazzo, 2017).   

LC-MS is widely used for the detection of hormones in animals (Weltering et al., 2012) 

from urine, including detecting steroids (doping) in horse racing (Wong et al., 2012) and illegal 

growth hormones in livestock (Regal et al., 2009). The advantage of using LC-MS over other 

methods such as assays, is its ability to simultaneously measure many hormones and 

metabolites. The disadvantages are the overall capital cost (instrument cost) and the required 

sample preparation steps (Murtagh et al., 2013). LC-MS can be used with faecal samples; 

several types of hormones, including cortisol, testosterone and progesterone, were measured 

from the faecal samples of capuchin monkeys (Weltring et al., 2012). Cortisol was also shown 

via LC-MS to increase in cows that experienced stress due to transport and novel housing 

conditions (Mostl et al., 2002). Mass spectrometry may offer a new technique to analyse 

faecal and urine samples; this would have seemed impossible years ago as these samples 

would have been considered “too dirty” to enter a mass spectrometer. The same sentiment 

was made about macromolecules in the 1950s (Griffiths, 2008), and once again, new 

ionisation techniques have extended the capacity of analysis of non-invasive samples.    

 

1.6 Rapid Evaporative Ionisation Mass Spectrometry   

Zoltan Takáts and his team developed a new type of technology that uses mass spectrometry 

with surgical instruments. The new method, termed “Rapid Evaporative Ionisation Mass 

Spectrometry (REIMS)”, was able to evaporate biological tissue quickly (Schafer et al., 2009). 

The technique was based on electrosurgical cutting, whereby an electric current was applied 

to a tissue sample using a surgical electrode. The burning caused the sample’s water content 
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to evaporate and ionise; as a result, the tissue was broken down and a ‘smoke-like’ aerosol 

was produced. The aerosol was transported to a mass spectrometer using a Venturi pump to 

be analysed. In the first REIMS study, porcine liver and kidney samples were used, and the 

mass spectra produced ions in both polarities between m/z 600 to 900. Further, tandem mass 

spectrometry work showed the predominant ions were glycerophospholipids. The spectra 

changed between tissue types, and principal component analysis could be used for tissue 

identification (Figure 1.4) (Schafer et al., 2009).  

Another early REIMS study found the spectra produced from burning various tissue 

samples from canine organs, including lung, liver, pancreas and muscle tissue, could be 

separated using PCA. Similar results were found for samples from cancerous tissue from the 

same organs. The differences between the spectra were due to differences in the abundance 

of ions from lipid components rather than unique molecules specific to one type of tissue. 

The identity of the ions was confirmed using MS/MS experiments and included sulfatides, 

phosphatidic acids, eicosanoids, lysophospholipids and cardiolipins.  The study was repeated 

to identify tissue origin from rats, including kidney, liver, lung, spleen and testicle tissue. The 

Figure 1.4. The PCA plot from Schafer et al., 2009 shows the first two 

principal components could separate tissue samples from different 

parts of a kidney that had been analysed using REIMS. The arrow 

indicates the direction of the transect by the electrosurgical electrode 
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rats were fed on three different diets with increasing levels of fatty acids since phospholipids 

are thought to be responsible for the differences in spectra. The change in diet, however did 

not affect the ability to classify the different tissue types. Some separation was observed 

between the three diets in myocardial tissue, but this did not affect the ability to identify the 

tissue. Spectral changes were also observed with the rats’ age but did not affect tissue origin 

classification (Balog et al., 2010). REIMS was initially envisioned to be used with cancer in situ; 

the advantage of REIMS is that the speed and lack of sample preparation steps meant tissue 

samples could be identified in real-time during surgery using standard surgical tools (Edward 

et al., 2017). 

  REIMS was able to identify the species origin of meat which demonstrated the 

potential of REIMS to be used for species identification. REIMS could distinguish beef from 

horse meat; a leave-one-out cross-validation of the data produced 100% classification 

accuracy of horse and beef. A leave-20%-out cross-validation produced a 97.5% classification 

for types of beef (Balog et al., 2016). REIMS can identify the species of five types of white fish 

(cod, coley, haddock, pollock and whiting). A monopolar electrosurgical knife was used to cut 

the tissue samples (n=478) 8-12 times, and each cut lasted 3-5 s. The knife was connected to 

the REIMS ionisation source and a Xevo G2-XS quadrupole time-of-flight (QTof) mass 

spectrometer. The raw data was uploaded to a prototype recognition software from Waters 

(OMB) and were lockmass corrected using LeuENk and normalised. LDA analysis was 

performed on the top 25 PCA components of 80% of the samples that were correctly 

identified, a leave-20%-out cross-validation of the same data produced a classification 

accuracy of 98.99%. The training model was able to correctly identify 98 of 99 test samples, 

one cod sample was not identified. The catch method of haddock, line-caught (n=35) or trawl 

caught (n=65) could be identified, and a leave-20%-out cross-validation of the PCA-LDA 

models resulted in a 95% correct classification of the catch method. It is unknown what 

caused the differences between the methods; the two methods caught fish from different 

depths, so that the fish may have had different diets, or the two methods caused different 

stress markers (Black et al., 2017).  
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REIMS has been used to identify the species and sex of five Drosophila species. A total 

of 800 adult Drosophila were killed by freezing and stored for up to 6 days at -20oC. Samples 

were then defrosted before being burned with a monopolar diathermy electrode. A TOF-MS 

analysed the aerosol produced from burning an entire specimen with the REIMS ionisation 

source. The mass spectra were binned and analysed by PCA-LDA, emphasising the resolution 

of the five species. The separation correlated with phylogeny, and the most related species 

(D. melanogaster and D. simulans) had the most similar linear discriminant values (Figure 1.5). 

The samples could also be separated by sex even when all species were combined in the same 

PCA-LDA model (Wagner et al., 2020) 

These studies showed that to a high degree of accuracy, REIMS could be used for species 

identification when using tissue samples. However, a non-invasive sample such as faeces 

would be required for ecological purposes. REIMS can be used to identify the species of 

insects and mammals, but these methods have used either tissue samples or whole organisms 

Figure 1.5. Adapter from (Wagner et al., 2020), the species 

discrimination of five Drosophila species (800 samples in total) 

by REIMS. PCA-LDA separation show that the data points 

correlate with the phylogenetic relatedness of the five species. 
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and are, therefore, invasive. There are many advantages of using faecal samples to investigate 

the phenotypic features of an individual.  

1.8 Aims 

Traditional methods for conservation and ecology studies are not always suitable for all 

species and conditions. Many genetic analyses method are suitable for obtaining the 

information needed from animals to help with their conservation. However, these methods 

can be time-consuming and expensive, limiting their usefulness. REIMS analyses of faeces 

may provide an additional method to help with conservation and ecology studies.    

This study aimed to determine how valuable REIMS analysis of faecal samples could 

be for conservation and ecological studies. Deciding resource distribution and conservation 

management is simpler if more information about target species is known. REIMS could also 

offer a more accessible and non-invasive method to obtain the required information. A 

previous investigation showed that it was possible to identify the species of rodent a faecal 

pellet originated from using REIMS.  

The first aim of this study addressed in chapter 2 was to investigate differences within 

a species, including sex, age and strain of lab mice. This would test the capability of REIMS to 

detect features that are arguably more similar than species. The study would aim to obtain 

the highest classification possible for the three factors by changing various parameters of the 

REIMS method.  By determing what parameters produced the highest classification accuracy 

would help establish a step-by-step approach for all REIMS analyses of faecal samples.  

Since breeding programmes play a significant role in conservation, chapter 3 aimed to 

determine if REIMS could distinguish hormonal differences such as pregnancy. The aim was 

achieved by investigating the faecal pellets of two captive okapis. Random forests were used 

to classify faecal samples collected when the animal was pregnant or not. This project would 

also help determine if faeces from ruminants could be analysed with REIMS and if it could 

distinguish between individuals. The results from this project suggested that long-term 

storage of the faecal pellets may have impacted classification accuracy.  

Many conservation projects take part over many years, so it is vital to know the effect 

storing samples in a freezer could have. The REIMS instrument may drift over time, so keeping 
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pellets and burning them all in one sitting would be more beneficial than when they are 

collected. Th study in chapter four aimed to determine how much storage influences REIMS 

analysis. Faecal pellets were collected from bank and field voles over four years, kept in a 

freezer, and then analysed with REIMS simultaneously. Random forests were used to classify 

the samples by species and sex to determine if classification accuracy decreased the longer 

samples were stored.   

For REIMS analysis to benefit conservationists and ecologists, it must be able to 

contribute to fieldwork studies. The final project (chapter 5) aimed to determine the species 

distribution of rodents from various field sites using REIMS. The results were compared to 

two other methods, camera traps and live trapping. If the results using REIMS were 

comparable to the other methods, it would confirm the suitability of the REIMS method for 

conservation and ecology projects.  

  



  
 

32 
 

Chapter 2: A REIMS Analysis of Faecal Pellets to 

Distinguish Sex, Maturity, and Strain of Lab Mice  
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2.1 Introduction  

REIMS was first used with faecal samples to classify the species of different rodents. Faecal 

pellets were collected from five species of lab rodents, including bank voles, field voles, wood 

mice, house mice and a randomly segregating cross of Wistar × Brown Norway laboratory 

rats. Faecal signals produced spectra that were ion rich in the 600 to 900 m/z range that rarely 

differed between individuals of the same species. The pattern of ions rather than ion 

identification was used to analyse the faecal pellets. REIMS could differentiate between the 

five species using random forest models with an accuracy of 83%. Rats had the highest 

identification accuracy at 95%. Samples were also stored under different conditions, including 

being left for up to 28 days at ambient temperature, at -21oC, 4oC and 21oC. Changing the 

storage of the faecal pellets did not affect the ability to classify species. House mice were 

placed on four different diets over four weeks; there was a slight decline in house mouse 

classification but not enough to suggest that diet had an effect. Faecal samples were also 

collected from wild animals, except house mice which were exceptionally difficult to catch. 

Lab house mice on varied diets were used with the other four wild-caught species. 

Identification accuracy of at least 91% was obtained for each wild animal species; the highest 

of 97% was for rats and field voles, while bank voles had the lowest accuracy. This random 

forest model could predict 25 unknown mice samples and 11 bank voles with an accuracy of 

94%. This preliminary study shows the potential of REIMS to differentiate between faecal 

pellets (Davidson et al., 2019).  

For most animal species, the ratio of males to females in a population is 1:1; sex ratios 

can be influenced by environmental factors, genetic disorders, behaviour differences or 

human influence (hunters may choose one sex over the other). In the wild, if the difference 

in sex ratio becomes too extreme, it could have detrimental effects; it can slow down 

population growth or increase the rate of adverse genetic effects (Wedekind, 2012). The 

Kakapo became extinct in certain regions due to the sex ratio becoming weighted towards 

males because of high levels of predation of females (Tella, 2001). Conservationists may 

require the sex ratio of a population when making decisions about what animals to release 

back into the wild. Many animals do not display sexual di-morphism at any stage of 

development or only show characteristic differences after maturation making it difficult to 

determine sex on observation alone. Due to deforestation, the maned sloth (Bradypus 



  
 

34 
 

torquatus) is listed as vulnerable to extinction (IUCN, 2017) and is difficult to sex. Some 

differences exist, such as females having larger bodies and smaller, lighter-coloured manes. 

These differences are only observed in reproductively active individuals; sloths reach sexual 

maturity after two to three years (Lara-Ruiz and Chiarello, 2005). Sloths can be challenging to 

find in the wild as they are arboreal, but they come down to the ground once a week to 

defecate (Pauli et al., 2014). Being able to determine if these faecal samples belong to males 

or females could be beneficial to conservationists.   

A species generation length is one of the parameters that can be used by the IUCN red 

list to determine the risk of a species becoming extinct. Generation length is the average age 

of parents of the current brood; to be calculated, it requires the age of a female’s first 

reproduction (Luba et al., 2020). A study that examined population trends from two large 

databases aimed to determine if certain risks could predispose mammals to population 

decline. Biological data were collected from the Living Planet database, including body mass, 

litter size, home range and age at first birth. Information about a species population decline 

was collected from the IUCN mammal species database. A multivariate model was created to 

find traits more likely to cause a population decline. It found that animals with a higher age 

when giving birth and under the threat of habitat loss were significantly declining (Collen et 

al., 2011). It was found that changes to the age structure due to human influence on groups 

of Asian elephants had affected the population dynamics. Data was collected from Myanmar 

elephants between 1970 and 2014. Early in the study, the population was weighted towards 

younger individuals, then became balanced by the year 2000. Elephants could become 

reproductive from age 12, reaching a peak between 18 and 24 and then declining from 55 

years old. The population increased until 1980, decreased until 2000 and increased again. This 

pattern correlated with age structure; the population declined when the age balance was 

more varied, and there was a lower number of older individuals than young juveniles. The 

study also found that the decline was higher than expected due to environmental factors, 

which may have caused the decline in birth rates (Jackson et al., 2020). Knowing the age 

dynamics would be helpful for conservationists as they can redirect sources to the 

populations with more significant differences.  

Conservationists would benefit from obtaining more than the species from faecal 

samples. This study aimed to determine if REIMS could be used to classify differences within 
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a species, such as age and sex and between different strains. Using REIMS to distinguish 

between different strains of lab mice would suggest its potential to separate sub-species. 

Faecal samples were collected from four strains of lab mice to investigate if REIMS could 

identify if a faecal pellet was produced from a male or female, a juvenile or adult, or what 

strain of lab mouse. The classification was achieved using random forests, a learning model 

that can be used for classification or regression; the model consists of multiple decision trees 

that vote on a class type. The model must be trained using data where the classification is 

known; this model can be used to predict samples of unknown classification. When creating 

a decision tree, the random forests use bootstrapped data and only a subset of all variables. 

The bootstrapped method is a resampling technique, samples are selected randomly from the 

dataset, and the same sample could be selected more than once in the bootstrapped dataset. 

The random forest model prevents overfitting by using only bootstrapped data and a random 

subset of variables. Over-fitting is when a model uses random differences to establish a 

relationship between variables; a pattern may be found in a specific dataset but would not be 

in a very similar dataset.  

Principal component and linear discriminant analysis were also utilised. These 

dimension-reducing techniques allow for better visualisation of the data; they were not used 

for classification due to the higher probability of over-fitting. Principal component analysis is 

an unsupervised learning algorithm it creates a new set of variables to separate the data while 

disregarding class labels. These new components are known as principal components, 

principal component one finds the maximum variance within the data. The algorithm may 

produce as many components as samples, but not all components are informative; the top 

ten components may be responsible for 90% of the variance. These informative components 

are then used to build the linear discriminant algorithm, which includes class labels. An LDA 

will create new components to maximise the separation between classes. PCA and LDA are 

more sensitive to overfitting, and the chance of overfitting increases with a larger dataset. 

Such as in these studies that potentially had 174 samples and 14000 variables. Therefore, 

these dimension-reducing techniques were used along with random forests.  

The second aim of this investigation was to determine if the random forest 

classification accuracy could be increased by changing different parameters of the method 

and data analysis to determine the best protocol to burn faecal pellets using REIMS. The test 
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to determine the classification of sex, age and strain was repeated several times but changing 

different settings. Parameters used in the original proof of concept of species separation were 

altered to determine what variables give the highest classification accuracy for sex, age and 

strain of lab mice. When it was established what parameters affected classification accuracy, 

a method for REIMS analysis was developed to help obtain the highest classification 

accuracies in future studies. A small number of samples were constantly classified as the 

wrong sex or age by the random forest models. The anogenital distance of a small group of 

individuals was measured to determine if females had become more male-like due to having 

more male siblings in utero. It was also investigated if siblings born in groups with a higher 

sex imbalance were more likely to be misclassified. It would be helpful to know the longevity 

of a random forest model. Therefore, a random forest model was built to predict the sex of 

samples collected and analysed with REIMS a year after the samples were used to build the 

model.  

2.2 Method and Materials 

2.2.1 Collection of faecal pellets from lab animals 

Faecal pellets were collected from laboratory strains of house mice originally from Envigo UK.; 

three inbred strains C57BL/6JOLaHsd (C57BL/6), BALB/cOLaHsd (BALB/c), C.C3-H2k/LilMcdJ 

(BALB.k) and one random-bred laboratory strain Hsd:ICR (ICR(CD-1)). All strains of mice were 

housed in same-sex sibling groups of two to four in 48 x 28 x 13 cm cages (MB1, North Kent 

Plastics, UK), except older males, which were housed individually in 48 x 15 x 13 cm cages 

(M3, North Kent Plastics, UK). All animals had access to food, 5FL2 EURodent Diet (IPS Product 

Supplies Limited, London, UK) and water ad libitum. All mice cages contained Corn Cob Absorb 

10/14 substrate (IPS Product Supplies Limited, London, UK) to line the base. Cardboard tubes 

and paper wool nest material for enrichment were provided to all animals. During sample 

collection, mice were moved to individual clean cages for a maximum of two hours or once 

the individual had produced at least five pellets. Pellets produced by an individual were 

removed from the cage using metal tweezers, placed in a 1.5 ml Eppendorf tube, and stored 

at -18oC. After the two hours, mice were returned to their home cage regardless of 

defaecation.  
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2.2.3 Establishing a preliminary method for burning faecal pellets and a model to classify sex, 

maturity, and strain   

A total of 51 individual lab mice of four strains were chosen randomly (Table 2.1). Sampling 

took place in a Ductless Fume box (Air Science Liverpool, UK), and three faecal pellets from 

each individual were analysed. The pellets were placed onto glass microfiber paper (GFP, GE 

Healthcare Whatman) and up to 100 µl of MilliQ water was pipetted over each pellet to help 

conduction. A monopolar electrosurgical pencil powered by a VIO 50 C electrosurgical 

generator was used in cut mode at 35 volts to heat the samples for 2 to 5 seconds, producing 

an aerosol. The aerosol was suctioned through the pencil by a Venturi gas jet pump powered 

by nitrogen into a 3 m evacuation tube attached to the end of the pencil. The aerosol was 

drawn into the mass spectrometer (Synapt G2-Si, Waters, Wilmslow, UK) using the 

instrument’s vacuum through the REIMS ionisation source, which contained a specifically 



  
 

38 
 

designed whistle that filters out larger particles within the aerosol (Figure 2.1). The order the 

samples were burned was randomised, and it was unknown at the time of burning which 

individual the samples had come from. Leu-enkephalin (LeuENK) (1.72pmol/µL dissolved in 

propan-2-ol) (Fisher Scientific) was continuously ejected at 50 µL/min into the inlet capillary 

of the REIMS ionisation source so LeuENK was constantly flowing through the instrument. 

Leu-Enk provided a lock mass (544.26 m/z) for an accurate mass measurement during 

analyses. The sample cone and the heater bias were set to 60 V. The spectra were recorded 

in full-scan resolution, negative ion mode, at a scan rate of 1 scan per second. Full scan mode 

specifies that the instrument will detect ions from the full mass range of 50 to 1200 m/z.  

Table 2.1. The number of individuals of each sex, age and strain that were used to build 

the random forest models. Three faecal pellets were burned for each individual using 

REIMS, the spectra produced were binned and normalised in LiveID, before being 

uploaded to RStudio.  

Sex Age  Strain Number of 

Samples 

Female Adult (>36 Days) C57BL/6 6 

  BALB/c 3 

  BALB.k 0 

  ICR(CD-1) 8 

 Juvenile (<36 Days) C57BL/6 0 

  BALB/c 6 

  BALB.k 0 

  ICR(CD-1) 0 

Male Adult (>52 Days) C57BL/6 5 

  BALB/c 8 

  BALB.k 4 

  ICR(CD-1) 6 

 Juvenile (<52 Days) C57BL/6 1 

  BALB/c 4 

  BALB.k 0 

  ICR(CD-1) 0 

  Total  51 
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Heated Impactor StepWaveTM 

Unwanted ions and 

uncharged material 

removed  

To ToF MS 
Path of aerosol  

Path of the aerosol, from 

the monopolar electrode 

and through tubing into 

the REIMS source 

b) 

Figure 2.1. a) The REIMS set up attached to a Q-TOF mass 

spectrometer, the monopolar electrosurgical pencil was used to burn 

three faecal pellets from a lab mouse. The aerosol created from the 

burning was suctioned through the evacuation tube into the REIMS 

source via the Venturi where larger particles were filtered out.  b) 

Particles entered the mass spectrometer and hit the impactor where 

further ionisation takes place, they continue through the StepWaveTM 

which filters neutral particles and positive ions. A video demonstrating 

the burning of faecal pellets of lab mice.     

a) 

Faecal Pellets were burned 

using a diathermy electrode 

which produced an aerosol. 

The aerosol was drawn in 

through the electrode to 

the Q-TOF mass 

spectrometer. 

The aerosol passed through 

the REIMS ionisation 

source, neutral and positive 

ions are filtered out. 

REIMS demonstration 

video  

c) 
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An acquisition file is created to contain all the data produced from burning one sample, which 

may contain burn signals from multiple faecal pellets of the same individual. The mass 

spectrum is the ion abundance against the mass-to-charge ratio of all the burn signals within 

one acquisition file (Figure 2.2).   
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Figure 2.2 a) An example of a chromatogram (sample 51235) from 

MassLynx software used with REIMS and Q-TOF mass spectrometer 

which shows the number of negative ions that pass through the mass 

spectrometer when a pellet is burned. b) An example from the same 

individual of the mass spectrum from MassLynx of one faecal pellet 

with background subtraction. This data is stored in an acquisition file 

that is uploaded to LiveID to be processed before analysis in R. Each 

sample has one acquisition file which many contain the burn signals of 

several faecal pellets.  
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The mass spectra (acquisition files) were imported into LiveID version 1.1.872.736 (Waters). 

Within LiveID, the mass range was reduced to 400 to 1100 m/z; the data were binned to 0.1 

m/z; lock-mass corrected using the LeuENK peak, and LiveID automatically set the intensity 

threshold. The intensity threshold is the limit that separates the burn signal from the 

background signal. The binned data were then exported as a .csv file and uploaded to R 

version 3.4.2 for further analysis (Figure 2.3).  
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Figure 2.3 The processing steps required between burning the faecal 

pellets and analysing the data in R. Some of the settings within LiveID 

such as the intensity threshold for establishing burn signal from 

background noise are built into the software and cannot be changed. 

The binning resolution and the mass range are features within LiveID 

that can be changed.    

A mass spectral fingerprint was 

produced for each sample 
A faecal sample was burned 

and analysed with REIMS 

The spectra were uploaded to 

LiveID 

The data was uploaded to R for 

further analysis 

The relative intensities of the 

binned data were exported   

In LiveID the data is binned and 

normalised 

The spectra could be analysed 

by PCA-LDA in LiveID 
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2.2.4 Random Forest Analysis  

A detailed explanation of random forests is in Box 1. When building a random forest model, 

only two parameters can be changed, including the number of individual decision trees to be 

used (ntree) and the number of variables to be selected for each tree’s subset data (mtry). 

Random Forest models were created using the ‘randomForest’ package (Liaw and Weiner, 

2002), 70% of the spectra were used to build the training model, and the model was then 

used to predict the classification of the remaining 30% of the data. For each model built, the 

optimal ‘mtry’ was selected using the tuneRF function (Liaw and Weiner, 2002). The plot 

function determined the optimum number of trees (ntrees) to use, which plots the class error 

against the number of trees. Increasing the number of trees reduces the error, but running 

the model takes longer. The optimal number of trees to use in the model is the minimum 

number required, which will significantly lower the class error. Each factor had two results; 

the random forest accuracy (rf value) was the percentage of correctly assigned individuals 

from the random forest model using the training data. This model was then used to assign a 

class to several unknown samples (the test data); the percentage of these individuals correctly 

assigned was the prediction accuracy (pa value). 

A random forest model was created to classify the samples as male or female (sex), as 

juvenile or adult (age) or as C57BL/6, BALB/c, BALB.K or ICR(CD-1) (strain). A random forest 

model was built for each factor using the training data, and these models were used to predict 

the classification of samples in the test data. Classification accuracy is produced based on the 

number of individuals the model correctly assigned with the suitable class. Since random 

forest models use a random subset of values to create each model, the accuracy can change 

slightly for each run. The random forest model was re-created ten times for the same data 

set, and the average was calculated. The data set was split into training and test data before 

each model so both sets had different samples each run. Multiple R packages were used for 

generating statistics and creating figures; a description of all packages used is summarised in 

Table 2.2. Waters offers two pieces of software available for analysis of the REIMS data, 

LiveIDTM version 1.1.872.736 and Offline Model Builder version 1.1.28.0 (OMB). OMB offers 

the same processing abilities as LiveID plus additional options but is less user-friendly than 

LiveID. Both software provides the option to create a PCA-LDA model and to carry out a 

“leave-20%-out” cross-validation. The data was also randomised; each sample was assigned 
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as either ‘Random One’ or ‘Random Two’ to compare how much greater the classification 

accuracy for a particular trait is compared to a randomly assigned classification. Samples were 

randomised using an online random number generator (Haahr, 1998). 
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A decision tree is created from a bootstrapped dataset and only a random subset of the variables (mass 

bins) are used. 

The first node of the decision tree is the mass bin that best splits the data into the selected classes, for 

this example the classes are male (M) and female (F).   

It is unlikely that the first node completely separates all samples as males and females. A second node 

is required to split the data further it is established using the same two steps, independent from the 

first node. 

These steps continue, building one node at a time until all samples are divided, and the tree is 

complete. The model repeats this for as many trees as chosen by the user (ntrees).  
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Each of the unbagged samples are run through the decision trees that they were not involved in 

building.   

Sample 51234  

Sample 51234 
MALE  

Sample 51234  

Sample 51234  
MALE  

Sample 51234  

Sample 51234 
Female 

Each tree votes on what classification the sample is, the sample is classified as the class that had the 

most votes.  

The out-of-bag error is the percentage of samples that were assigned the wrong classification, the 

random forest accuracy is 100 – out-of-bag error.  

The random forest model is created with 70% of the total number of samples (unless otherwise stated) 

this is known as the training set.  

The remaining 30% of the samples are the test set and are used to confirm how accurate the model is 

at predicting unknown samples.  

• Each sample of the test set is run through all the decisions trees within the training model  

• Each tree votes on a classification for the samples  

• The samples are assigned with the modal classification.  

• The predicated classification is compared to the actual classification.  

The percentage of samples that were assigned with the correct class is the prediction accuracy. 

Box 1 Continued – Random Forests  

Random Forest accuracy (Rf) = 100 – out-of-bag error 
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  Box 1 Continued – Random Forests  

For each model there is an overall classification accuracy but there is also an accuracy for each 

classification  

Using a random forest model of 10 males and 10 females as an example. 
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10 of the 20 samples are correctly identified therefore 

the overall accuracy is 50%   
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15 of the 20 samples are correctly identified therefore 

the overall accuracy is 75%   

 

 

Female 

n=10 

Male 

n=10 

Female 

Male 

90% 

10% 60% 

40% 

Actual Classification  

P
re

d
ic

te
d

 C
la

ss
if

ic
at

io
n

  

100% 

 

0% 

 

50% 

 

100% 

 

0% 

 

50% 

 

100% 

 

0% 

 

50% 

 

   Female     Male 

Female        10         0 

Male            0             10    

Actual 

Classification  

Accuracy 

 100% 

 100% 

   Female     Male 

Female        5         5 

Male            5             5    

Actual 

Classification  

Accuracy 

  50% 

  50% 

   Female     Male 

Female        9         1 

Male            4              6  

Actual 

Classification  

Accuracy 

  90% 

  60% 



  
 

49 
 

2.2.5 Changing the REIMS method to increase classification accuracy (Coagulate Method)  

The burning of samples was inconsistent, with some pellets producing better burn signals 

than others. Changes to the protocol were made to decrease the number of burns per pellet. 

Nine new methods labelled A through to I were created; changes included the voltage of the 

pencil and whether it was used with cut or coagulate mode (Table 2.3). Cut mode produces a 

constant radio frequency; this waveform produces heat rapidly. Coagulate mode produces a 

pulsed radiofrequency and produces less heat than cut mode. The amount of water added to 

the pellets was increased to help with conductivity. To increase the difference between the 

background signal and the burn event, a wait time of 30 seconds was introduced before 

burning the first pellet and after burning the last pellet. Between burning pellets of the same 

individual, the burn signal decreased to background intensity before the next pellet was 

burned. Each of the nine different methods was used with pellets from seven individuals 

(Figure 2.4). Each pellet should have produced one burn event when uploaded to LiveID; when 

the pellets did not burn easily, they produced multiple burn events. The method that 

produced the least number of burns was the most successful at burning faecal pellets. 

Method H (from now on referred to as the coagulate method) produced the least number of 

Table 2.2 All packages used within RStudio 

Name of Package Function  Reference  

ggplot2 Used to create graphics 

including barplots, boxplots, 

histograms and piecharts 

(Wickham, 2016) 

dplyr Functions for data 

manipulation including 

filtering datasets and 

grouping data to calculate 

means 

(Wickham et al., 2021) 

RandomForest Required to build a forest of 

trees using random inputs 
(Liaw and Weiner, 2002) 

RandomForestExplainer A set of function to help explain 

which variables are most 

important in a random forest. 

(Paluszynska and Biecek, 

2017) 

ROSE Functions to deal with binary 

classification with imbalanced 

classes. 

(Lunardon et al., 2013) 

rstatix Contains functions for 

performing basic statistical tests 

including ANOVA and Kruskal-

Wallis 

(Kassambara, 2021) 
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burns per pellet; this method was repeated using 41 individuals to determine the best LiveID 

parameters to use, including binning resolution and mass range. The coagulate method used 

coagulate mode at 40 V and 200 µl of water added to each pellet.  

The coagulate method was repeated using 154 new individuals (Table 2.4). The faecal 

samples were collected using the same protocol as the preliminary method but burned using 

the settings from the coagulate method. The spectra were then uploaded to LiveID, the mass 

range was reduced to 400-1100 m/z, and the data binned to 0.05 Da. The data were exported 

from LiveID to R, where the spectra were averaged per individual. The mean accuracy of ten 

random forests was recorded for sex, age, and strain. The random forests were repeated for 

sex, age, and strain with the same spectra but with reduced mass ranges, 50-400 m/z and 400 

to 700 m/z and 600-1200 m/z. The ranges were selected based on the general pattern of the 

mass spectra; relative abundancies were lower for the low and high mass ranges than the 

centre. The spectra were also assigned as one of two random classifications to confirm that 

Table 2.3 The different changes made to the REIMS method to help improve burning of faecal 

pellets. The method was changed nine times, changes included the cutting mode of the electrode, 

the voltage of the electrode and how much water was pipetted on to a pellet before burning. Method 

H was established as the best method 

Method 

Attempt 

Cut or coagulate 

mode 
Voltage (V) 

Vol of water 

added (µl) Other 

A Cut 40 100  

B Cut 15 100  

C Coagulate 15 100  

D Coagulate 40 100  

E Cut 25 >200 Water was added until 

pellet was saturated 

F Cut 25 100 
 

G Cut 30 >200 
Waited 30 s 

before/after burning 

H Coagulate 40 >200 
Waited 30 s 

before/after burning 

I Cut 15 >200 
Waited 30 s 

before/after burning 
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the ability of the random forest to classify correctly was due to the spectra differences 

between males or females, adults and juveniles or the various strains.  

  

Method  Individual 1 Individual 2  Total Burns   

A          1          1          2 

B          3          4          7 

Figure 2.4. The workflow to establish the method (A-I) that 

produces the least number of burns per pellet. Nine pellets were 

collected from seven individuals (3 shown) and each pellet was 

burned using a different method. The samples were uploaded to 

LiveID which assigned several burns depending on when the 

burn signal passed the threshold intensity. The method with the 

least number of total burns would be the best for burning faecal 

pellets.   

+ 4 more individuals   

Pellets were 

burn and 

analysed with 

REIMS using 

one of 9 

different 

methods  

 

Data were 

uploaded to 

LiveID 
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The coagulate method was repeated three more times with the same 154 individuals but 

using either one pellet per individual, three pellets per individual or five pellets per individual. 

The samples were burned using the same settings as the coagulate method, and the spectra 

were uploaded to LiveID. The mass range was reduced to 400-1100 m/z, and the data binned 

to 0.05 Da. The spectra were exported to R to create new random forest models. The models 

were built as before using a mean of ten forests for sex, age, and strain.  

  

Table 2.4. The number of individuals used with the coagulate method, at least three pellets 

were collected from each individual.   

Sex Age  Strain Number of 

Individuals  

Female Adult (>36 Days) C57BL/6 15 

  BALB/c 32 

  BALB.k 12 

  ICR(CD-1) 3 

 Juvenile (<36 Days) C57BL/6 3 

  BALB/c 11 

  BALB.k 4 

  ICR(CD-1) 3 

Male Adult (>52 Days) C57BL/6 16 

  BALB/c 22 

  BALB.k 12 

  ICR(CD-1) 12 

 Juvenile (<52 Days) C57BL/6 2 

  BALB/c 4 

  BALB.k 2 

  ICR(CD-1) 1 

  Total 154 
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2.2.6 Repeating study with an increase in the number of samples used and the amount of pellet 

hydration (Coagulate/Hydration Method).     

New faecal pellets were collected from the same 154 lab mice as before if still available and 

were burned along with pellets from new individuals; pellets were collected from 176 

individuals altogether (Table 2.5). The method used in the repeat (Coagulate/hydrated 

method) consisted of burning 3 to 5 pellets per individual, dependent on the number of 

pellets available, using 35 V in coagulate mode. The voltage was lowered to 35 V as using 40 

V produced many sparks, and 35 V burned the pellets just as well as 40 V did. Enough water 

was added to the pellet until maximum hydration was reached to help with conductivity. The 

volume of water added to a pellet varied greatly between 50 and 200 µl due to the varying 

degrees of dehydration of pellets. The mass spectra were uploaded into Waters LiveID 

Software; the spectra were normalised, scaled and lock-mass corrected to Leu-enkephalin at 

m/z 544.26. The spectra were discretised (‘binned’) to a 0.05 Da bin width, and the m/z range 

was reduced to 400 to 1000 m/z. The data were exported from LiveID into an Excel file to be 

Table 2.5. The final classification models were created using 176 individuals with the 

coagulate/hydrated method. Five pellets were taken from each individual when possible but 

at least three pellets were collected.   

Sex Age  Strain Number of 

Individuals  

Female Adult (>36 Days) C57BL/6 13 

  BALB/c 36 

  BALB.k 12 

  ICR(CD-1) 11 

 Juvenile (<36 Days) C57BL/6 2 

  BALB/c 6 

  BALB.k 2 

  ICR(CD-1) 3 

Male Adult (>52 Days) C57BL/6 14 

  BALB/c 18 

  BALB.k 12 

  ICR(CD-1) 16 

 Juvenile (<52 Days) C57BL/6 9 

  BALB/c 8 

  BALB.k 6 

  ICR(CD-1) 8 

  Total 176 
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used in R for further analysis. The burns produced from burning multiple pellets per individual 

were averaged within R, so there was one relative intensity value per mass bin per individual 

to prevent pseudo-replication. Ten random forests were run using all the data to test the 

accuracy of predicting sex, age, and strain then the data was divided 70:30 to be used as 

training and test data.  

For some models, one of the classes would have many more samples than the other. 

The under-sampling function from the ROSE package was created to balance datasets 

randomly (Lunardon et al., 2013). For example, there were many more adult samples than 

juveniles so the under-sampling function was applied before creating random forest models. 

The under-sampling function would randomly select adult samples so there was a similar 

number of adults to juveniles. Over-sampling was also tried, increasing the number of rare 

samples in a bootstrapped data set. Over-sampling increased the random forest accuracies 

but did not increase prediction accuracy, possibly due to over-fitting. Models built with 

oversampling could not predict unknown samples. Therefore, under-sampling was chosen for 

imbalanced data sets. 

2.3 Results  

2.3.1 Optimising the REIMS Method 

The spectra of different classifications appear almost identical, and differences between 

spectra cannot be determined through observation (Figure 2.5). The leave-20%-out cross-

validations were higher for LiveID (76%) than OMB (Figure 2.10). Each individual was assigned 

as either ‘Random One’ or ‘Random Two’ using an online random number generator. Both 

software packages produced lower cross-validations results of the random data than the 

correctly classified data. OMB gave a cross-validation accuracy of 42%, which would be 

expected for randomised data; LiveID had a higher than excepted result of 62%. The PCA-LDA 

plots for the random data showed as much separation as the males and females (Figure 2.6). 
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Figure 2.5 a) The average relative intensity of 51 male and female of 

four lab strains of mice for each mass bin from 400 to 900 m/z b) The 

average relative intensity for 600 to 650 m/z. With the expectation of 

the three highest peaks which show a very small difference between 

males and females there was no observable differences between males 

and females. The highest peak for both sexes was bin 594.25, the 

female intensity was 0.008 more than males. LeuENK peak was 

removed from the spectra.   

a) 

b) 
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Software and data used Leave 20% out cross validation  

LiveID - Sex 

LiveID - Random 

OMB - Sex 

OMB – Random  

76% 

62% 

70% 

42% 

Figure 2.6 a) The prediction accuracy of leave a 20% out cross 

validations either using the 51 individuals with their correct sex 

classification or with a randomly assigned classification, either 

‘random one’ or ‘random two’. The validations were carried out in both 

software offered by waters LiveID and OMB b) The PCA-LDA plots 

from LiveID and OMB for the samples with the correct classification. 

c) The PCA-LDA plots from LiveID and OMB for the samples with a 

random classification. 

a) 

b) 

LiveID - Sex 

LiveID - Random 

OMB - Sex 

OMB – Random  
c) 
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Ten random forest models were created for each factor (sex, age, and strain), and the mean 

accuracy was calculated. (Figure 2.7). Each of the three factors had random forest accuracies 

(rf value) above 70%, considerably higher than the rf value of the randomised data of 38%. 

The pa values for age and strain were above 80%, while sex was 68%. It was still much higher 

than the randomised data of 43%; however, the standard errors for all values were relatively 

high (between 6 and 14%).   

The experiment was repeated nine times with a small subset of individuals changing 

one step of the method each time to reduce the number of burns per pellet (Table 2.6). The 

spectra produced from different pellets of the same individual that were burned using either 

coagulate or cutting in this study showed only a tiny difference in intensity with the intensity 

of Method H (Coagulate Method) higher than Method B (Figure 2.8). The most significant 

change to the number of burns produced was to add as much water as was needed to saturate 

each pellet rather than adding a designated volume of water. The amount of water required 

would change depending on the size and consistency of the pellet, with the best burning 

achieved when the water was able to saturate the whole pellet. 

Figure 2.7. The random forest accuracy produced from the training 

data and the prediction accuracy produced by using the model to 

predict unknown samples.  The accuracies are an average of ten 

random forests. If the random forests models were unable to find a 

pattern between classes, it would produce an accuracy of 50% for age 

and sex and an accuracy of 25% for strain.  

Random Forest Accuracy   Prediction Accuracy  

73%  

80% 

78% 

38% 

68% 

 82% 

 86% 

43±11% 

Sex 

Age 

Strain 

Random  

50% 50% 100% 100% 
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Table 2.6. The numbers of burns created from burning seven pellets using nine different 

burning techniques. The burning of faecal pellets was repeated nine times each with one 

change from the preliminary method . Seven faecal pellets from various individuals were 

burned for each of the different methods. Method produced the least number of burns per 

pellet. 

Method Total number of burns  Mean Number of Burns per 

pellet  

Preliminary  method  45 6.4 

A (Cut, 40 V, 100 µl) 41 5.9 

B (Cut, 15 V, 100 µl) 26 3.7 

C (Coag, 15 V, 100 µl) 31 4.4 

D (Coag, 40 V, 100 µl) 23 3.3 

E (Cut, 25 V, >200 µl) 24 3.4 

F (Cut, 25 V, 100 µl) 38 5.4 

G (Cut, 30 V, >200 µl) 10 1.4 

H (Coag, 40 V, >200 µl) 8 1.1 

 I (Cut 15 V, >200 µl) 12 1.7 

 

 

Figure 2.8. One pellet was burned with using a diathermy 

electrode on cut mode at 15 V, 100 µl of water was added to the 

pellet before burning (Method B). One pellet was burned set on 

coagulate mode and 40 V with 200 µl of water added (Method 

H /Coagulate Method).The mass spectra of two pellets from the 

same individual burned using two different methods. The 

spectrum for each pellet shows the same overall pattern but 

the intensity is higher for the pellet burned using method H.  

a

) 
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The accuracy was also improved when the file acquisition began 30 seconds before 

burning and was allowed to continue for 30 seconds after burning, allowing for a clear 

distinction between the background signal and the signal created by the aerosol produced 

from burning. The highest random forest accuracies were obtained with a bin size of 0.05 Da. 

The random forest accuracy for sex increased from 73% to 75% when the bin size was 

decreased to 0.05 Da. The random forests for the sex data were repeated with the sum of all 

the burns instead of the mean or using just one randomly selected burn. The mean of all the 

burns from each individual produced the highest random forest accuracy. The random forest 

accuracy increased slightly when the mass range was reduced to 400 – 700 m/z (Figure 2.9) 

  

Burns Summed 

69% 

 66% 

59% 

71% 

66% 

70% 

58% 

73%  

62% 

56% 

75% 

59% 

76% 

50% 

Method H/Coagulate 

Method 

One random burn from 

each Individual 

Bin size decreased to 

0.05 Da 

Mass range (50-400 m/z)  

Bin size 0.05 Da  

Mass range (400-700 m/z)  

Bin size 0.05 Da  

Mass range (600-1200 m/z)  

Bin size 0.05 Da  

50% 50% 

Random Forest Accuracy Prediction Accuracy 

Figure 2.9. Results from random forests models for male and females. 

Each model used the same data, but one parameter was changed. The 

spectra were summed instead of the mean taken. A random burn was 

selected from each individual rather than using the average of all 

burns. The bin size decrease to 0.05 Da and the mass range was 

changed. For each parameter an average of ten random forests was 

obtained.   

100% 100% 
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2.3.2 Results from the Coagulate Method 

Random forests produced higher accuracies with higher sample numbers; therefore, 

collecting samples from more individuals increased the overall accuracy and reduced the 

standard deviation. Using the coagulate method and more individuals produced an increase 

in the random forest accuracy of both sex and age but only produced an increase in prediction 

accuracy for sex (Figure 2.10). The standard deviation decreased in all cases apart from strain. 

With the initial method using 51 individuals, BALB.K samples were consistently misclassified, 

and in the newer model, 63% were misclassified and assigned as BALB/C. The random forest 

accuracy increased by 12% when BALB.k individuals were removed from the dataset, and the 

prediction accuracy increased by 15%. There was also an increase in accuracy when the 

BALB/c and BALB.k individuals were combined into one “strain” designated as BALB (Figure 

2.11). The classification accuracy for BALB/c and BALB was 96%, but the accuracies for the 

other two strains (ICR and C57BL/6) were much lower, especially when BALB/c and BALB.k 

were combined. Even though combining the two BALB strains gave a slightly higher random 

forest accuracy, BALB.k individuals were removed from the data set for subsequent strain 

models. BALB.k may be too closely related to BALB/c to be considered a separate strain (they 

only differ by an H2k mutation) but combining them caused too much of an imbalance in the 

dataset. 
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Figure 2.10. The random forest accuracy (%) and prediction accuracy 

(%) using the preliminary method and the coagulate method. Ten 

random forests were used to classify males and females (sex), adults 

and juveniles (age) and between different strains of lab mice (strain). 

For the coagulate method pellets were burned using the coagulate 

mode on 40 V and with 200 µl water added to each pellet.  The random 

forest model had a bin size of 0.05 a mass range of 400 to 1100 m/z and 

a total of 151 individuals were used. The initial method used cut mode, 

35 V, 100 µl of water added and a bin size of 0.1.    

Random Forest accuracy  Prediction accuracy  

Initial Method Coagulate Method 
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There was a problem with an imbalance in the data; there were more adults (n=121) 

than juveniles (n=30) and nearly twice as many BALB/c individuals than any other strain. This 

caused the overall random forest and prediction accuracies to be relatively high, even though 

most juveniles were classified as adults (Figure 2.12). When BALB/c and BALB.k individuals 

were combined, the unbalance between strains increased even more. Although the overall 

prediction accuracy increased because 96% of the BALB individuals were correctly assigned, 

only 64% of C57BL/6 and 48% of ICR individuals were assigned correctly (Figure 2.11). This 

may be why the prediction accuracies decreased for strain and age when more individuals 

were added, increasing the group imbalance.                                                                                                                                                               

  

50% 50% 

82% 

86% 

70%  71% 

 86% 

84% 

Random Forest Accuracy Prediction Accuracy 

All strains included 

BALB.K removed 

BALB/c and BALB.k 

combined 

Figure 2.11. a) The random forest accuracy (%) and prediction 

accuracy (%) using the optimised method for when all four strains are 

used in the model, when all BALB.k individuals are removed from the 

data and when BALB/c and BALB.k individuals are given the same 

classification (BALB). b) The individual classification accuracies for 

each strain when BALB.k is removed from the data set and when 

combined with BALB/c.   

BALB 

C57BL/6 

ICR(CD-1) 

96%  

48%  

64%  

BALB/c and BALB.k combined 

BALB/c 

C57BL/6 

ICR(CD-1) 59%  

78%  

96%  

BALB.k removed 

50% 50% 

a) 

b) 

100% 100% 

100% 100% 
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The coagulation method was also used to compare the optimum number of pellets 

per individual. The method was used to burn five pellets each from 128 individuals (only 

individuals with five pellets were used), but the analysis was carried out three times using the 

burns from one pellet, then the average burns of three and five pellets. The pellets included 

in the analysis with one or three pellets were chosen randomly, and the random forest and 

prediction accuracy for sex were calculated. The random forest accuracy increased with the 

number of pellets, and the standard deviation decreased slightly (Figure 2.13). There was little 

difference between the accuracy for three pellets and five pellets confirming that individuals 

that only produced three pellets would still be acceptable to include in further studies.   

Female 

n=26 

 

Male 

n=21 

Female 

Male 

83% 

n=22 

17% 

n=4  

80% 

n=17 

20% 

n=4 

 

Adult 

n=37 

 

Juvenile 

n=11 

Adult 

Juvenile 

100% 

n=37 

0% 

n=0 

4% 

n=0.5 

96% 

n=10.5 

Actual Classification  

P
re

d
ic

te
d

 C
la

ss
if

ic
at

io
n

  

Figure 2.12. The prediction accuracies of random forest model for sex 

and age. The average prediction accuracies for sex and age were 80 and 

78%. The model for sex was as accurate at predicting females as it was 

for males. The model for age however predicted everything as an adult 

but the lack of juveniles meant the overall accuracy was still high.   
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2.3.2 Results from the Coagulate/Hydration Method 

2.3.2.1 Classification of Sex 

The random forest model used to predict sex gave a prediction accuracy of 78% (Figure 2.14). 

The model was run another ten times but using all samples (samples were not split 70:30 into 

training and test) to establish what mass bins were the most responsible for the differences 

between males and females. When only individuals over 55 days old were included, the model 

accuracy increased by 8%, while the prediction accuracy increased to 81%. The top five most 

discriminant mass bins were also established; four out of five of the top mass bins were the 

same when both juveniles and adults were included in the model. The remaining mass bins 

were within the top 10 for both groups. The other four mass bins were ranked the same for 

both models (Figure 2.15). Out of the 44 juveniles misclassified, eleven of them were assigned 

the wrong sex in every model. There were only thirteen juvenile females, seven of whom were 

consistently misclassified. The random forest accuracy for sex with juveniles was only 76% for 

males and 30% for females. Only one of the top mass bins was the same for juveniles 

compared to adults (Bin 469.275) (Figure 2.16). Comparing adults and juveniles for the top 

bins that separate sex the most confirms a significant difference between adult and juvenile 

females but not males. 

  

Figure 2.13. The random forest and prediction accuracy using the 

same model properties (bin 0.05 and mass range 400-1100 m/z) using 

128 individuals but burning either one, three or five faecal pellets. All 

pellets were burned using coagulate mode on 40 V. All accuracies are 

an average of ten random forests.  
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Random Forest Accuracy Prediction Accuracy 

Sex with 

Juveniles removed 

78±6% 

 81±4% 

99±2% 

80±7% 

93±4% 

70±7% 

76±22% 

77±4%  

85±3% 

98±1% 

80±4% 

87±6% 

86±6% 

82±3% 

Sex 

Sex  

Juveniles and 

misclassifications removed  

Age  

With under-sampling 

Age 

Misclassifications removed  

Age  

Males Only 

Strain 

50% 50% 

Strain 

With under-sampling 

Strain 

With under-sampling and 

misclassifications removed 

78±4% 

91±3% 

84±7% 

91±6% 

100% 100% 

Figure 2.14. Random Forest and prediction accuracy for the 176 

sample.  Under-sampling indicates that the under-sampling function 

from the ROSE package was used before the random forests were 

performed to ensure each class had the same number of samples. A list 

of samples was created for each of the three groups (sex, age, and 

strain) that were always misclassified in the random forest models to 

be removed from subsequent models.  
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a) b) 

Figure 2.15. a) The intensities of the top five mass bins most responsible for 

the differences between males and females from an average of ten random 

forest runs when all samples were included. A mass bin value represents the 

centre of the bin size, mass bin 449.425 is all the intensities between 449.400 

to 449.450 for a bin size of 0.05.The increased size in points indicates those 

samples that were wrongly identified in all ten models. b) The intensities of 

the top five mass bins when juveniles (under 55 days) have been removed from 

the data set. c) The average prediction accuracy of ten random forest models 

when all data was included d) when juveniles were removed. e) The average of 

ten random forest accuracies of juvenile samples only, there were not enough 

juvenile samples to split the data into training and test set.    
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Figure 2.16. The relative intensities of adults and juveniles 

for the top five most discriminant mass bins to separate sex. 

There was no significant difference between intensities of 

male adults and juveniles. There was a significant difference 

between females, the spectra of females changed with age. 

This increased the probability of female juveniles being 

classified as males.  

***  ***  

***  

**  

***  

ns  

ns  ns  

ns  

ns  



  
 

68 
 

It was established that the same samples among the adults were consistently misclassified 

each time they were run. Two female BALB/c sisters showed similar burn events, with a 

maximum ion count of 1x10 (Figure 2.17). When observing the boxplots of the top five mass 

bins, the misclassified male individuals had lower intensities than the lower interquartile 

range. In contrast, the misclassified females had intensities higher than the higher 

interquartile range (Figure 2.15). Compared to ten mass bins at random, the intensities of 

misclassified individuals were more varied (Figure 2.18). It is not that these individuals have a 

lower-than-average intensity across the whole spectra for males and higher than average for 

females; they differ only in those mass bins responsible for sex variation. If these individuals 

have spectra more similar to the opposite sex, then it would be expected that removing them 

from the model would dramatically increase the classification accuracy. Removing these 

samples from the model will affect classification accuracy differently depending on why they 

were misclassified. Classification accuracy would increase if the samples were misclassified 

because the most discriminant mass bins’ intensity values differed from that class’s average. 

Removing the samples would not affect classification accuracy if it were another unknown 

reason for the misclassification. Removing these individuals and juveniles increased the 

accuracy dramatically to 98% for the model and 99 % for prediction accuracy (Figure 2.18). 

Greater separation was observed when an LDA was performed on the top 20 PCA components 

when specific samples were removed compared to an LDA on the top 40 PCA components 

with all samples included (Figure 2.19). Again, four of the most discriminant mass bins were 

the same for the model using all samples compared to the model with samples removed 

(Figure 2.20).  
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Figure 2.17. The mass spectra and burn events for two different 

samples. Samples 51236 and 51235 were both BALB/C sisters but 

51235 was always correctly identified as female whereas 51235 was 

always classified incorrectly as a male. LeuENK peaks have been 

removed as they are of a much higher intensity the other peaks cannot 

be observed.  
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Figure 2.18. a) The intensities of males and females for ten mass bins 

selected at random. The larger points are the individuals that were 

classified as the wrong sex in all ten random forest runs. The 

intensities of the misclassified individuals are much more varied for 

the random bins compared to the top five mass bins that are most 

responsible for the difference between male and females. b) The 

average prediction accuracy of ten random forest models when 

juveniles and the samples misclassified in all ten models using all the 

samples were removed from the model. c) The average prediction 

accuracy of ten random forest models when all samples were randomly 

assigned as either ‘random one’ or ‘random two’.    

a) 

b) c) 
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Figure 2.19. a) A PCA-LDA plot of sex using the top 40 

PCA components with all samples included in the 

model. b) A PCA-LDA plot of sex using the top 20 PCA 

components with juveniles and specific adult samples 

removed from the model. The adult samples removed 

were those that the random forest models constantly 

misclassified. The jitter position is a randomly assigned 

value to disperse the results vertically so individual 

sample points are visible 
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Figure 2.20. The intensities of the top five mass bins most responsible 

for the differences between males and females from an average of ten 

random forest runs when juveniles and the samples misclassified in all 

ten models using all the samples were removed. The intensities of five 

randomly selected mass bins, selected using an online random number 

generator  

Randomly Selected Mass Bins 

Most Discriminant Mass Bins 
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The below-average intensities for males and above-average for female 

misclassifications suggest that females that were misclassified had a mass spectrum more like 

that of males and vice versa. New samples were collected from 22 individuals, and their 

anogenital distance was measured (Group I). All the males that were measured were correctly 

assigned as male; their distance varied between 0.6 and 1.2 cm. The females that were 

measured were from four different sibling groups. The females were all correctly assigned as 

females except for three individuals from the same sibling group. The anogenital distance for 

females ranged from 0.5 to 0.8 cm with an average of 0.63, and the three misclassified 

females have distances of 0.53, 0.66 and 0.71. The second group of individuals were collected 

(Group II), and the male anogenital distance ranged from 1.07 to 1.98 cm with an average of 

1.5. Overall, the model correctly identified eight out of ten males, and the two misclassified 

males had a distance of 1.07 and 1.29 cm. The anogenital distance for the females ranged 

from 0.46 and 0.98 cm, with an average of 0.69 cm. Only four out of 11 females were correctly 

identified as female, three of them and an anogenital distance below the average of 0.69 and 

one with a distance of 0.75 cm. A t-test confirmed no significant difference between the 

anogenital distance of females correctly identified and misclassified (p=0.24). However, this 

would need to be repeated with more individuals measured to confirm an association 

between anogenital distance and classification.   

The original 176 individuals came from 36 sibling groups; 19 had more males than 

females, 15 had more females than males, and two groups had even numbers. Samples were 

not collected from every individual from a sibling group. Although eight sibling groups were 

in the dataset without female samples, only one had no females born into the group. Out of 

the 14 groups with more males than females, five had females that were not correctly 

identified, and the number of females varied between one and four in a sibling group. Six 

groups had all the females identified correctly, and the other groups had 33%, 50% and 75% 

of the females correctly identified. Overall, this gave an average prediction accuracy of 54% 

for females in sibling groups with more males. The prediction accuracy of females in groups 

with more females than males was 73%. A t-test gave a p-value of 0.25; therefore, there is no 

significant difference between the ability of REIMS to identify a female from a sibling group 

with more females or more males. The p-value decreased to 0.07 when using only the sibling 

groups with more than twice the number of individuals as the opposite sex (Figure 2.21). 
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Three groups of siblings had no males, two of these groups had a 100% prediction accuracy, 

and the third had two females, but only one was correctly identified. There was less difference 

between sibling groups when looking at the number of males correctly classified (p-value = 

0.60). The average of males predicted correctly in groups with more females was 72% and 

80% for groups with more males.  

Some of the most discriminant mass bins were only one Dalton apart. Comparing the 

intensities of the top eight mass bins to each other shows that the one Dalton apart mass bins 

Figure 2.21. a) The percentage of females from the total number of 

females within a sibling group that were correctly identified by random 

forests. Separated based on if the sibling group had more females than 

males (More Females) or if there were more males than females (More 

Males). b) The percentage of females from the total number of females 

within a sibling group that were correctly identified by random forests. 

Separated based on if the sibling group had at least twice as many 

females than males (More Females) or if there were at least twice as 

many males than females (More Males).    

b) 
Sibling Group had at least one 

more individual of one sex 

Sibling Group had at least 

twice as many individuals of 

one sex 

a) 
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had a stronger correlation. This suggests that these bins may be a result of carbon isotopes. 

Phospholipids and fatty acids consist of hydrocarbon chains. The presence of a 13C would 

increase the atomic mass by one. Therefore, one of each of the pairs of bins that were one 

Dalton apart was removed from the list of the top five mass bins (Figure 2.22). Two pairs of 

mass bins had a difference of 28 Daltons, which could be due to isomeric compounds or 

fragments differing by two CH2 entities, each with a molecular mass of 14. Isotopes were 

removed from the lists of the most discriminant mass bins, as they show the same intensity 

distribution as each other. Including the next informative mass bin that was not an isotope 

would be more valuable.    
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The model can separate adult mice based on sex when the samples are collected and 

burned simultaneously. New samples were collected and burned over a year after the 

previous sample collection. The model was created using all the adult samples from before, 

with the established list of samples that were consistently misclassified removed as the 

training data for 98 individuals in the training set. Removing the misclassified samples could 

help the training data build a random forest model with the best chance of finding the 

differences between classifications. The model was used to predict the test data, which 

consisted of 22 new individuals: 10 females and 12 Males (Group I). An average of five random 

forests gave an average prediction accuracy of 82%. Only five random forests were used as 

the random forest accuracy did not change between runs as the same data was used to build 

the model each time. The model consistently predicted seven females and 11 males correctly 

Figure 2.22. The intensities of each of the top eight mass bins most responsible 

for the differences between sexes against the other seven. The bins were the top 

eight most discriminant from an average of ten random forests using all 176 

samples. The highlighted plots are the pairs of mass bins that are either one, 28 

or 56 Dalton apart from each other. These bins show a stronger correlation 

compared to the other two bins (617.575 and 469.275) suggesting they may be 

isotopes (1 da apart) or have a fatty acid chain that either has two (28 Da apart) 

or four (56 Da apart) more hydrocarbons.    
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each time. This was repeated with the second group (Group II) of 21 individuals, 11 females 

and ten males, collected two weeks after Group I. The prediction accuracy was only 47%, as 

the model classified all the individuals as males. Group III, which contained 11 males and 11 

females, collected and burned a month after group I also gave an accuracy of just 50% as all 

individuals were classified as male. All samples were combined to create a new model minus 

one sample from the new groups. This model was used to predict the left-out sample and was 

repeated, and a new model was created until each new sample was tested. Of the 65 new 

samples, 28 were correctly identified, giving an accuracy of 65%. This is lower than with the 

first model but higher than when using only older samples in the model. The intensity 

distributions for groups II and III for the top three mass bins were much higher than the 

original model and group I (Figure 2.23). The average spectra also had a higher overall ion 

count across the spectra for groups II and III than the original 176 samples. (Figure 2.24). The 

increase in intensity was contributed to an increase in instrument performance due to a new 

StepWaveTM. 
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Actual Classification  

Figure 2.23 a) The relative intensities of female samples for the top three mass 

bins that separate sex for each of the four collection groups. Original represents 

the samples used to train the model from the 176 samples with juveniles and 

misclassifications removed. Groups I, II, and III were collected a year later, two 

weeks apart. b) The male samples from the same collection groups. c) The 

predictions accuracy for each of the three collection groups, the original group 

was used as the training data for groups I to III.    
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Figure 2.2 The average intensities of all samples from the 

original data set (n=176) and for the samples from groups 2 and 

3 (n=43). There were observable differences between the spectra 

and no correlation between the intensity of samples from the 

different groups. The samples from groups 2 and 3 were analysed 

with REIMS a year after the original samples.   

Original samples   

Group II & III samples 

R = 0.087 

p<2.2e-16 
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2.3.4. Classification of Age  

The random forest and prediction accuracy gave an average result of 80% from ten models 

when using the under-sampling function (Figure 2.14). Under-sampling was performed before 

the ten models, so a different group of adults was present in the dataset for each model. 

Unlike in previous models, the training and test data were split 80:20 to increase the number 

of juvenile samples in the training data. The data was split randomly, so the number of 

juveniles in the training data would change slightly each time, potentially leaving just four 

juvenile samples in the test data. Two models had only one juvenile misclassified, six of the 

ten runs had two juvenile samples misclassified, and the other two had three juvenile 

misclassified. Since the number of juveniles varied between 4 and 11, the percentage of 

juveniles misclassified varied between 12% and 50%, averaging 30%. The same juveniles were 

consistently misclassified, so the overall accuracy of predicting juveniles may be higher with 

increased juvenile numbers (Figure 2.25).  

The random forests were repeated ten times, but with all the data, so there was no 

split into training and test data. The top mass bins and a list of misclassified samples in each 

model were also established for this data set. Out of 176 individuals, 24 were consistently 

misclassified; they were assigned the wrong age classification in at least 9 out of ten models. 

Nine samples were misclassified in at least two of the model runs. One sample was 

misclassified in just one run of the model. This could have occurred by chance due to the 

random nature of random forests, so this individual was classified as always correctly 

identified. Unlike with sex, the samples that were misclassified and the individuals that were 

assigned the wrong age had varied intensities for the top mass bins, and they were not always 

the highest or lowest values (Figure 2.26).  

  



  
 

81 
 

 

 

 

  

All data with under-sampling  

Adults 

n=28 

Juveniles  
n=7  

82% 

18% 

Adults 

Juveniles 

31% 

69% 

All data with under sampling and 
misclassifications list removed   

Adults 

n=24 

Juveniles  
n=4 

93% 

7% 

9% 

91% 

Adults 

n=11 

Juveniles  
n=3 

83% 

17% 

4% 

96% 

Males with under sampling and 
misclassification list removed   

Actual Classification  

P
re

d
ic

te
d

 C
la

ss
if

ic
at

io
n

  

a) 

b) 

c) 

Figure 2.25. a) The average prediction accuracy of adults and juveniles 

from ten random forest models using the under-sampling function. b) 

The average prediction accuracy of adults and juveniles from ten 

random forest models using the under-sampling function and with the 

samples that were misclassified in all ten of the previous random forest 

models removed. c)  The average prediction accuracy of male adults and 

juveniles from ten random forest models using the under-sampling 

function and with the samples that were misclassified in all ten of the 

previous random forest models removed.  
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a) 

b) 

Figure 2.26. a) The average relative intensities of the five most 

discriminant mass bins of adults and juveniles. The larger points 

are the samples that were misclassified as the wrong age. With sex 

the misclassified samples were either above or below the 

interquartile range whereas the age misclassified samples have 

more varied intensities. b) The average relative intensities of 

randomly selected mass bins of adults and juveniles   
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The individuals that were misclassified were those closest to the age boundary (Figure 

2.27). Females were classified as adults when they reached 44 days, but maturity was 

probably reached before this point. However, no female samples were collected from 

individuals between 28 and 44 days old; all-female juveniles were between 25 and 28 days 

old. Samples were only collected from juveniles after weaning at 21 days old. An extra four 

days were added to allow the individuals to habituate to their post-weaning surroundings to 

reduce potential stress for the young juveniles. Males mature later than females, and adults 

were assigned to individuals 52 days old and above. The male juveniles ranged in age from 25 

to 51 days old. Age is a continuous variable, and the spectrum changes as the animal ages into 

adulthood (Figure 2.28). For the top five most discriminant mass bins, the juvenile intensity 

decreases as they age, and for females, the most significant drop was observed after 25 days.  

Figure 2.27. The age of all 176 mice in days and whether 

they were misclassified in all ten random forest models 

(always), between 2 and 8 random forest models 

(sometimes) or if they were never misclassified (never). 

The purple line indicates the age boundary for females 

and the green for males.   
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The males also showed a decline in the top mass bin intensity after 25 days, but it decreased 

less than the females. Males showed another drop before and after the 52-day mark, 

suggesting that maturing into adults affects the spectra. Ten random forests were repeated 

with under-sampling but with the consistently misclassified samples removed. The average 

random forest accuracy was 87%, while the prediction accuracy was 93%. Although there was 

an increase compared to the previous accuracy of 80%, the increase was less compared to 

sex. This model was repeated using only male samples, the random forest accuracy was 86%, 

Figure 2.28 The intensities of females under 100 days old 

for the top five mass bins responsible for the differences 

between adults and juveniles. The age boundary for females 

is 36 days old. The intensities of males under 100 days old 

for the top five mass bins responsible for the differences 

between adults and juveniles. The age boundary for males 

is 52 days old. 
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and the prediction accuracy was 85%. Removing the females did not affect the random forest 

accuracy, and the prediction accuracy decreased slightly. The classification of adults 

performed better when both males and females were included, and having a lower sample 

number could have more of an effect on accuracy than using both sexes (Figure 2.25). The 

PCA-LDA separation is also greater between adults and juveniles when the individuals closest 

to the age boundary were removed Figure 2.29) 
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Figure 2.29. a) A PCA-LDA plot of age using the top 70 

PCA components with all samples included in the 

model. b) A PCA-LDA plot of age using the top 20 PCA 

components with the samples closest to the age 

boundary removed. The jitter position is a randomly 

assigned value to disperse the results vertically so 

individual sample points are visible. 
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2.3.4 Classification of Age and Sex 

The average random forest accuracy when age and sex were included was 71%, and the 

prediction accuracy was 64%. This was lower than when only sex or age was included in the 

models. The random forest correctly identified adults more than juveniles, with adult females 

as the group most correctly identified (77%), but none of the juvenile females was correctly 

identified (Figure 2.30). There was a significant difference between the top five mass bins 

separating the four groups, and the adult females had a lower intensity distribution than the 

other groups. Female juveniles had intensities more similar to both male groups than females. 

The top mass bins that separated age and sex were very similar to those that separated males 

and females. An LDA on the top 40 components also showed a separation between all adults 

and juveniles, between adult females and males but not between juvenile males and females 

(Figure 2.31). When the male and female juveniles were grouped, the random forest accuracy 

for adult females, adult males, and juveniles remained 71%; the prediction accuracy increased 

to 76%. Female adults still had the highest classification accuracy at 81%, and juveniles had 

the lowest at 65% (Figure 2.32). The top five most discriminant mass bins remained the same 

as when juveniles were separated by sex.  
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Figure 2.30. The random forest and prediction 

accuracies from an average of ten random forests. The 

random forests were built with a different subset 

of data each time with about 70% of the samples. 

This was used to predict the classification of the 

remaining 30% as adult male, adult female, 

juvenile male, or juvenile female.  
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Figure 2.31. The intensities of the top five mass bins 

responsible for the differences between adult females, 

adult males, juvenile females, and juvenile males. b) A 

PCA-LDA plot of strain using the top 40 pca 

components.  
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Figure 2.32. The random forest and prediction 

accuracies from an average of ten random forests. The 

random forests were built with a different subset 

of data each time with about 70% of the samples. 

This was used to predict the classification of the 

remaining 30% as adult male, adult female or 

juvenile.  
 



  
 

91 
 

2.3.5 Classification of Strain 

With the BALB.k samples removed, a random forest accuracy of 82% and a prediction 

accuracy of 76% were achieved but, accuracy was inconsistent between each strain. BALB/c 

had the highest accuracy of 95%, whereas the other two strains were 68% and 71%, which 

was a range of 27%. Most of those samples that were misclassified were assigned as BALB/c. 

There were nearly twice as many BALB/c individuals as the other two strains. It was thought 

that this unbalancing in the group numbers might be causing a decrease in accuracy, like with 

age. Using the under-sampling function only increased the overall random forest accuracy by 

2% to 78%, and the prediction accuracy increased by 8% to 84% (Figure 2.14). The individual 

accuracies were more even this time, with BALB/c decreasing to 81%, C57BL/6 increasing to 

72%, and ICR to 80%. Like with age and sex, it was the same individuals being misclassified 

each time, and when these samples were removed from the data set, the random forest 

accuracy and the prediction increased to 91%. There was also less difference between the 

individual accuracies even though under-sampling was not used. BALB/c was the highest, with 

97%, followed by 90% for ICR and 79% for C57BL/6, giving a range of 18% (Figure 2.33). When 

using the under-sampling function with strain, only two of the top five mass bins were the 

same as when using all the data. There was a significant difference between the intensities of 

the top five mass bins, and separation was observed on an LDA of the top 80 PCA components. 

(Figure 2.34).  
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Figure 2.33. The prediction accuracies from an 

average of ten random forests for when all the 

data is used, when the under-sampling function 

was used with all the data and when the under-

sampling function was used with the 

misclassifications removed from the data set.  
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Figure 2.34. The intensities of the top five mass bins 

responsible for the differences between each 

strain.(Kruskal-Wallis p<6.9e-15 for all mass bins) b) 

A PCA-LDA plot of strain using the top 80 pca 

components.  

a) 

b) 

*** 

*** 

*** 

*** 
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2.4 Discussion 

2.4.1 Optimising the REIMS Method  

REIMS can produce a spectrum containing phenotypic information from faecal pellets. The 

ability of random forests to distinguish between spectra can be improved by changing the 

burning methodology and processing/model parameters. Adding water increased the 

accuracy; water helps with conductivity, and the optimum volume of water added depended 

on the sample. Some samples were drier than others, requiring more water, but smaller 

samples would disintegrate if too much water were added. Therefore, the amount of water 

to add to a sample should be done at the user’s discretion. For mouse pellets, 200 µl evenly 

distributed over the three pellets was efficient at obtaining conductivity without causing 

disintegration of pellets. Not all pellets produced by an individual are the same size and 

consistency. The faecal matter consistency may depend on the time since the individual last 

ate and the amount of water and food consumed. Therefore, if possible multiple pellets 

should be used for each individual, increasing sample processing time. The same analysis 

(random forests) was carried out using the same individuals but either using one, three or five 

pellets. The prediction accuracy also increased the more individuals included in the analysis, 

but only after individuals were removed to ensure that each class contained the same number 

of individuals. The prediction accuracy increased the more pellets were used, but there was 

not much of an increase between three and five pellets, so three pellets are adequate to use 

if five pellets are unavailable. Five was chosen as the maximum because this is the highest 

number of available pellets for all individuals. Obtaining more pellets from individuals in one 

sitting would require placing the mice in the collection cages for more than two hours. 

Keeping the mice from water and food for this long would have been detrimental to their 

welfare.      

The spectra were uploaded to Waters’ software LiveID, and the software can be used 

to normalise the data and build PCA-LDA models. Various parameters can be changed while 

building the model, including the standard deviation, bin size and mass range. Using the 

waters software has limitations as they only allow specific parameters to be controlled by the 

user. Unseen algorithms may occur within the software when performing PCA and LDA tests, 

leading to over-fitting. Therefore, the spectra produced using REIMS were analysed using 

random forests. Random forests cannot separate random data, and R allows the user more 
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control over changing parameters. A test set can confirm if over-fitting occurs; if there is 

overfitting, the classification accuracy of the training set will be significantly higher than the 

test set. An Excel file containing each mass bin and burn intensity can be extracted from LiveID 

and uploaded to other software, such as R, for further analysis. The bin size can be changed 

from 0.01 to 1.0; decreasing the bin size will increase the total number of bins using the same 

mass range. Having more bins may expose minor differences that may otherwise be hidden 

by more significant, consistent peaks but requires a much larger data file, leading to longer 

processing times. With the mice, samples decreasing the bin size increased the accuracy and 

a decrease in the mass range would help with processing time. With the mouse pellets, the 

accuracy increased when only the middle of the mass range was used (400 to 700 m/z). When 

carrying out a REIMS study, some time should be spent determining the best bin size and 

mass range, which may change depending on the questions being asked. A bin size of 0.1 was 

adequate for species separation (Davidson et al., 2019), but classification accuracy improved 

with a smaller bin size within species. This was probably due to the difference between 

species being more significant than those within a species.    

Random forests were used rather than relying on just PCA-LDA for analysis due to the 

potential for PCA-LDAs to cause overfitting. This would explain the low cross-validation results 

for the randomised data, even though the LDA showed high separation. The water’s software 

may perform additional filtering steps that can not be prevented to force a separation 

between data. Performing random forests in R gives the user more control over the analysis, 

and this method prevents overfitting, as random forests cannot separate random data. 

Therefore, once the model was built within LiveID, the binned data was extracted as a .csv file 

which was uploaded to R for analysis. Each individual must have one list of mass bin intensities 

for the random forests, but LiveID gives a list for each burn. The intensities were either 

averaged, summed, or a random burn was selected; the highest prediction accuracy was 

obtained when the data were averaged.  

A problem that may have been contributing to the high variation between models was the 

varying consistency of burning pellets. Each pellet should produce one burn; therefore, each 

individual should have had three burns. Many individuals produced more burns than pellets, 

with some having up to seventeen burn events. Some pellets burn better than others because 

they’re bigger or have a better consistency. Occasionally, pellets would have to be flattened, 
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and then water added to obtain a burn, some pellets would not burn regardless of the water 

added. It was unknown what caused a difference in pellets consistency, as there were 

problematic pellets to burn across all sex, strains, and ages. The consistency was based on an 

individual rather than any other factor. It could depend on the individual’s size or the length 

of time since the animal last ate; since the animals were fed ad litum, it cannot be known 

when they last ate. Burning multiple pellets and using an average ensures the spectra 

represent a pattern for an individual animal and not just a particular faecal pellet. Therefore, 

when analysing faecal pellets, multiple pellets should be burned per individual when possible. 

The efficiency of burning may have been affected by the mode choice of the diathermy 

electrode between cut or coagulate. A study using the monopolar electrode and REIMS to 

distinguish between cancerous and non-cancerous breast tissue compared coagulate and 

cutting modes. A leave-one-out cross-validation was used for analysis; cut mode produced an 

accuracy of 95.8%, while coagulate mode produced a similar accuracy of 94.7%. In cut mode, 

the high-intensity spectra were in the phospholipid range (600-850 m/z) and the triglyceride 

range (850-1000 m/z), while coagulate mode had higher intensities in the triglyceride range, 

the mass range for analysis was set to 600-1000 m/z. The study concluded using cut and 

coagulate spectra within their analysis, as both modes would be used during surgery (Edward 

et al., 2017). Using the coagulate mode in this study produced a slight decrease in burn 

number, possibly due to the coagulate button being more comfortable than the cut mode 

button. With coagulate mode, it was easier to maintain continuous contact with the pellet 

while burning (Figure 2.12). 

Changing analysis parameters such as bin size and mass ranges could increase random 

forest accuracies. The optimum parameters may depend on the type of faecal pellets to be 

burned and the proposed research question. The amount of smoke produced from the pellets 

could be observed changing while adjusting the electrode voltage; when the voltage was too 

low, the electrode was insufficient at burning the pellets, and so little to no smoke was 

produced. Sparks were produced when the voltage was too high, and the pellet disintegrated 

more quickly, causing less smoke and leading to more burns per pellet. For mouse pellets, the 

optimum voltage was 30 V when using cut mode and 35 V with coagulate mode. Changing 

between cut and coagulate mode and changing voltage only significantly reduced the number 

of burns produced.  
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Specific parameters will also increase processing time; depending on the number of 

variables, this could be quite a difference overall. Therefore, each time a REIMS project is 

approached, time should be taken to establish the best method to burn the pellets and 

analyse the spectra. This could be performed by just using a small subset of pellets. Box 2 

summarises each step that should be taken to help optimise the REIMS method, and this 

approach could be taken for other types of biological samples.  

  

The electrode is 

weighted towards the 

end of the pen due to 

the plastic tubing 

Coagulate 

mode 

Cut mode  

Figure 2.12. Due to weight distribution, the pen is easier to 

hold towards the end with the tubing, for those with smaller 

fingers this means the coagulate button is closer and easier to 

hold for longer periods of time. The position of the buttons 

would not affect every user and may only make a difference 

when burning for significant periods of time. 
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Box 2 

REIMS workflow for sampling faecal samples 

Does the Faeces produce a burn signal? 

Step 1: Establish Best Faecal Composition to Burn 

• Should the whole pellet be used – Is the faecal composition uniform?  

• Does water need to be added before burning and how much?  

• Does the pellet need to be prepared first e.g., mixed with water or alcohol? 

• Should the faeces be dried first? 

• Do the faeces need to be filtered, for herbivores vegetation may need to be removed? 

 

Step 2: Establish whether to use cut or coagulate mode on the diathermy electrode  

• Consider if using a different type of electrode is better (tweezers or bipolar probe) 

Step 3: Establish what voltage to use for the diathermy electrode  

Step 4: Determine how much faeces to use per sample (number of pellets), and how many burns per faecal 

sample. 

Do the spectra produced by REIMS contain discriminate information?  

Step 5: Upload the spectra to waters software, either LiveID or OMB  

Step 6: Establish what model parameters to use 

• Mass range – start with a wide range (e.g., 400-1100) 

• Bin Size – start with a large bin size (0.5) 

Step 7: Run a PCA-LDA, to determine if the samples separate   

Step 8: Export spectra from the Waters software for further analysis in R using random forests  

Step 9: Establish classification accuracy 

• Create ten random forests and establish the average classification accuracy and top 

discriminate mass bins 

Step 10: Improve classification accuracy 

• Change the mass range  

• Decrease the bin size  

• Repeat model with top mass bins only  

• Filter samples e.g., remove juveniles from models discriminating sex 
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2.4.2 Using REIMS to Distinguish Intra-species Variation  

The final overall prediction accuracy for assigning the correct sex to an individual was 99%. 

Although more steps were required to obtain this high accuracy than species identification, it 

shows REIMS can identify differences within the same species. When observing the boxplots 

of the top five most discriminant mass bins, the misclassified male individuals had lower 

intensities than the lower interquartile range. In contrast, the misclassified females had 

intensities higher than the higher interquartile range. When compared to five mass bins at 

random, the intensities of misclassified individuals were more varied, so it is not that these 

particular individuals have a lower-than-average intensity across the whole spectra for males 

and higher than average for females. They differ only in those mass bins responsible for sex 

variation. It was thought that these differences might be caused by bi-directional blood flow 

in the uterus. When foetuses of rodents are in the uterus, blood and steroids pass between 

siblings; therefore, a female lying between two males is exposed to higher levels of 

testosterone than a female beside one or no males. The anogenital distance of females 

surrounded by more males in the uterus is higher than other females (Vom Saal and Dhar, 

1992). The individuals with anogenital distance measured did not show a correlation between 

length and classification accuracy. Measurements were only taken from four sibling groups 

so that further research may show a stronger correlation. Even if the bi-directional flow of 

steroids affected the masculinisation of females, other parameters must also have an effect. 

It could be that bi-directional flow only contributes to increased hormone levels to the point 

of changing the spectrum when a female is surrounded on either side by two males. The sex 

ratio cannot be used to predict what order individuals lie in the uterus. 

Females from sibling groups with twice as many males as females did have a lower 

classification accuracy than other females, although the results were not statistically 

significant. It could be that the bi-directional flow is making some females have a more male-

like spectrum, but this is not the only factor affecting prediction accuracy. A potential 

influence may be the time since an individual last ate. When the pellet was produced, a 

difference may be observed between the first pellet produced during the two-hour collection 

period and the last pellet produced. Further work using anogenital distances would need to 

be carried out to confirm the effect bi-directional blood flow has on an individual’s ability to 

be classified. 
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REIMS can classify the sex of faecal pellets when pellets are collected and burned at 

once. When the ability to classify new samples using a model built with older samples was 

tested, the model could only correctly identify females in one of the three groups. All three 

new groups were collected a year after the testing model was built, and there was a two-

week gap between groups I and II. Between these two weeks, the StepWaveTM was cleaned, 

which could have caused a change to the average spectra produced from the faecal pellets of 

lab mice. The change in spectra was a higher overall intensity suggesting instrument 

performance increased. Individuals from group I was able to be classified so REIMS could be 

used to burn samples for a significant amount of time after creating the original model. The 

REIMS signal, however, is susceptible to change and should be checked when burning new 

samples. If the signal changes, adding new known samples to the original model could help 

identify new samples.      

REIMS can be used to classify lab mice as adults and juveniles. The highest overall 

accuracy (93%) for age was not as high as sex, but this was expected as age is a continuous 

variable. The prediction accuracy may improve if a model could be built with more individuals 

of a younger age (less than 30 days old). The changes between juveniles and adults happen 

much earlier in females than males. Females showed the most significant difference between 

25 and 28 days old, whereas males changed the most between 40 and 60 days old. Mice are 

considered sexually mature after 35 days but are not mature adults until three months old 

(Flurkey et al., 2007). The relative intensities for the mice changed more before 60 days old 

than after, suggesting the spectra are responding to sexual development as opposed to other 

types of development. Based on the spectra produced by REIMS, 35 days for sexual maturity 

could be considered an average between both sexes. The spectra for females changed before 

35 days (day 28), and for males, it was after day 45. It seems that more mass bins might be 

responsible for the differences between adults and juveniles, and the top five changed more 

when changing model parameters compared to sex and strain. This could be because what 

mass bins show the most significant change is dependent on the average age in days of the 

individuals classified as juveniles. The classification accuracy was higher for male juveniles 

than for females. Females showed more adult-like spectra much earlier than males. The 

classification of juveniles may improve if more juveniles below 30 days of age were added to 

the model. Therefore, when approaching an age study using REIMS, it may be beneficial to 
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base the age boundary on changes in the spectra rather than on an age chosen from the 

literature and to select each sex separately. 

REIMS could not be used to classify sex and age within one model. The differences 

between sexes are more prominent than age, and the random forests only separated adults 

by sex. There were more adults than juveniles, and an imbalanced data set significantly 

reduced classification accuracy. Separating adult males and females from juveniles may be 

possible if the model included more juvenile samples. Juvenile males and females may be too 

similar to separate; if changes in intensities due to sex occurs after sexual maturity, then 

increasing the sample number will have no effect.  

Lab strains can show differences in appearance and behaviour (Sultana et al., 2019, 

Jacome et al., 2011). BALB.k differs from the BALB/c strain by an H2k mutation, so the strains 

could be too similar for the random forests to differentiate between. (The Jackson Laboratory, 

2013). BALB/c and BALB.k could be combined into one class, but this caused an imbalanced 

data set, so BALB.k were removed from the models regarding strain. BALB/C and C57BL/6 are 

inbred strains and should be more like each other than the outbred strain ICR. In most models, 

C57BL/6 individuals did have the lowest classification accuracy but were only classified as 

BALB/c slightly more than as ICR(CD-1). BALB/c individuals were mostly correctly identified 

but were more likely to be classified as ICR than C57BL/6. The strains are, therefore, different 

enough for the REIMS to separate. As with BALB.k, BALB/c and C57BL/6 differ at the H2   site 

of the major histocompatibility class 1 gene, BALB/c is H2d and C57BL/6 is H2b (The Jackson 

Laboratory, 2013). Removing the misclassifications from the strain data did not dramatically 

improve the accuracy of all three strains compared with sex and age. The overall accuracy 

improved because the classification accuracy of C57BL/6 improved, BALB/c already had quite 

a high classification accuracy, and ICR(CD-1) only increased slightly. This could be because 

some C57BL/6 strains are more like BALB/c, making it hard to distinguish. Or, unlike age and 

sex, there is not one factor causing some individuals to be misclassified. It is promising that 

REIMS can show separation between strains as it suggests that if it can separate animals from 

the same species with different immune responses, it should successfully separate sub-

species in wild animals.  

The classification accuracy of various models increased dramatically when specific 

samples were removed from the data. The acceptability of removing samples is dependent 
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on the purpose of the model. When a random forest model is used to determine if there is a 

difference between samples, all samples should be included in the model. If a random forest 

model is being used to predict the classification of another data set, it may be practical to 

remove samples to obtain the highest random forest accuracy. A higher random forest 

classification (training set accuracy) increases the chance of test samples being correctly 

identified. If a high random forest accuracy were obtained because removing samples led to 

over-fitting, then the test set’s prediction accuracy would not increase. If overfitting occurred, 

the most important variables separating the training set would differ from the test set. If the 

increase in random forest accuracy due to removing samples were due to an increased 

probability of important variables being in the decision trees rather than overfitting, then the 

test set’s prediction accuracy would increase. An increase in both random forest and 

prediction accuracy was observed in this study when samples were removed. The benefit of 

REIMS analysis for ecologists and conservationists would be identifying unknown wild 

samples using a previously built model with known samples. The random forest models must 

always be created with known samples so it would be possible to refine the list of known 

samples according to a list of parameters. The prediction model should be built to give the 

highest chance of correctly identifying unknown samples.  If this were to be carried out with 

wild samples, it would be impossible to know the exact date of birth to exclude all individuals 

below a specific date. Random forest models must be built with known samples; some live 

trapping would be needed to establish a model to predict unknown samples. The random 

forest model could be built using samples from caught individuals above a certain weight or 

size to ensure they were adults.  This model could predict faecal samples collected using a 

non-invasive method.   It would be more valuable if a model built using laboratory samples 

could predict samples from the wild; then, no live trapping would be required.   

 

2.4.3 Conclusion  

REIMS can be used to distinguish intra-species variation of faecal pellets but requires more 

steps to analyse the results compared to species identification. The highest accuracies were 

received when only one variable was present; with sex and strain, the accuracy improved 

when only using adults. This would need to be considered when carrying out a REIMS project 

with multiple questions so each class being investigated has enough individuals, and each 
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group should have a relatively equal number of individuals. More steps were required in the 

analysis stage to build a model capable of identification of these more subtle changes than 

when analysing species. The REIMS method of analysing faeces is still much more universal 

than other methods, such as PCR techniques. A few steps can be changed to help overall 

accuracy at the instrument stage. These steps are minimal, and most biologists with no prior 

mass spectrometry knowledge should be able to conduct REIMS research. Even with taking 

the time to optimise the REIMS protocol, REIMS is still a much faster and more efficient 

method for phenotypic analysis of faeces.   
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Chapter 3: An Investigation into the Use of REIMS as a 

Non-Invasive Method of Pregnancy Detection in Okapi 

(Okapia johnstoni)  
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3.1 Introduction 

Since the beginning of the 2000s, the World Association of Zoos and Aquariums (WAZA) has 

aimed to become a world-leading conservation organisation. Their first review of their 

conservation projects in 2009 suggested that zoos contribute to conserving threatened 

species. However, the lack of funds individual zoos receive can be a limiting factor. The review 

suggests that more collaboration among zoos could help increase their potential as a 

conservation force (Gusset and Dick, 2010). Conservation has not always been a priority in 

zoos, and there were criticisms that zoos mainly used conservation for publicity to encourage 

more visitors to the zoo. Most of the research in zoos is still husbandry-based, but the 

research that could potentially help ex-situ and in-situ conservation efforts is increasing. 

Between 1998 and 2018, the European Association of Zoos and Aquaria contributed to 3345 

peer-reviewed articles, a threefold increase in the second decade (Welden et al., 2019). The 

change in attitude towards conservation in zoos may result from a response to climate 

change, habitat loss, an increase in disease and invasive species and other human-caused 

environmental changes leading to a dramatic loss in biodiversity. Zoos can help with research 

projects that would be more difficult to do in the field, especially for rare species and research 

that needs to be carried out in a controlled environment (Minteer and Collins, 2013). One of 

the most substantial contributions zoos can make to conservation is breeding and 

reintroducing individuals into the wild, which will help declining populations. 

Zoos help manage breeding programs, including extensive record-keeping to ensure 

genetic variability (Mallinson, 1995). Zoos rely on these breeding programs to prevent 

population numbers from declining. Zoos alone cannot be responsible for wild populations. 

Animals bred in captivity for many generations will not have the genetic diversity required to 

sustain a wild population. A decline in genetic diversity can lead to a shorter life span, poorer 

health and reduced reproduction (Minteer and Collins, 2013). It has been suggested that 

integration of zoo breeding programs with field based conservation projects will help ensure 

population sustainability. This would require zoo breeding programs to join larger 

conservation management projects and have captive animals exchanged for wild animals. If 

a programme of this magnitude was to occur, it would require management of genetic 

information, improved reintroduction success rates, the effect of environmental variations, 
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the effect of different husbandry techniques and control of disease risk. This all creates 

pressure on research by zoos both within the zoo and in the field (Lacy, 2013).  

Chester Zoo is one of the leading zoos for zoo-based conservation and has been 

involved with multiple ex-situ conservation projects (Chester Zoo, 2021). As an example, they 

have worked with other European zoos to help with the Cikananga Conservation Breeding 

Centre (CCBC). CCBC release captive birds of Indonesia’s most endangered species, including 

the Javan green magpie, into protected areas. The zoos sent experts to help with the 

husbandry needs of the birds, as healthy animals with good welfare are more likely to breed 

successfully (Owen et al., 2014). Chester Zoo has been helping increase the population of the 

Monsteny Brook Newt in Spain by breeding newts in the zoo for reintroduction to Monsteny 

National Park. Research carried out in Uganda helped establish the habitat requirements of 

the giant pangolin using camera traps and GPS biotags (Chester Zoo, 2021).  

The rapid decline of biodiversity has increased the need to prioritise conservation 

research, but the welfare of individual captive animals cannot be dismissed. Animal welfare 

should be considered in all captive animal research. Efforts should be made to increase the 

use of non-invasive techniques, such as obtaining hormones from urine or faeces rather than 

blood samples. Many zoos rely on faecal and urine samples to inform their research 

programmes as it easier and non-invasive to collect. Chester Zoo has been monitoring the 

steroid concentration of faeces of their five female Asian elephants (Elephas maximus) since 

2007. The females had synchronised oestrous cycles except for a 14-to-20-week period where 

three of the females became acyclic. Irregular cyclicity has been associated with lower 

fertility. The faecal progestogen and glucocorticoid metabolites were measured using enzyme 

immunoassays. Due to the extensive records kept by the zoo, all management changes that 

occurred were noted, and the zoo could check if they were having a negative impact on the 

elephants. The lack of change in faecal progestogen concentration was not due to the change 

in their daily routine. Although the zoo could not show a direct cause of the temporary pause 

in cyclicity, it did show the importance of regular monitoring of individuals (Edwards et al., 

2016).        
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One species Chester Zoo is helping conserve is the okapi (Okapia johnstoni). Okapis, 

relatives of the giraffe, are classified as endangered; their numbers have declined by 50% in 

the last 24 years. They have a small geographic range (14000 km2) and are only found in the 

forests of the Democratic Republic of the Congo (IUCN, 2017) (Figure 3.1). The main threat to 

okapi is habitat loss, as legal and illegal deforestation occurs for residential and commercial 

development and the logging industry. Okapis are protected under Congolese and 

International law, but hunting and armed military groups in certain areas contribute to their 

decline. The okapi population is distributed throughout the Congo forests, and an increase in 

deforestation increases the risk they will be physically isolated from each other, causing long-

term detrimental effects on genetic diversity (Nixon and Lusenge, 2008). The okapis are the 

only extant species of their genus, and without intervention to help conserve their numbers, 

may become extinct in the wild.  

Figure 3.1.  Okapi in Chester Zoo 2020 (© Natalie 

Koch), Chester Zoo had two female okapis during the 

study collection period. The geographic region 

inhabited by wild okapi (Africa Geographic Stories, 

2018) 
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The okapi is a challenging animal to study in the wild as they live in such dense forests 

that observation and tracking the animal is difficult (the Zoological Society of London only 

became aware of their existence in 1901). The Mbuti who lived in the same forests as the 

okapi considered them a forest spirit due to their elusiveness and would not hunt them (Okapi 

Conservation Project, 2020). Chester Zoo and the Uganda Wildlife Authority have been 

conducting surveys for Okapi in Semuliki National Park. It has helped support the Okapi 

Conservation Project in the Ituri Forest of DRC (Roffe, 2021). With only 76 okapis in European 

zoos, it is vital to have efficient breeding programmes to support a reintroduction project.  

Chester Zoo has been monitoring the progesterone metabolite cyclicity of their female 

okapi. Regular cycling suggests the animal is in good reproductive health, and a significant 

increase in concentration suggests the animal is pregnant. The zoo’s endocrinology team 

performs hormone assays on faecal samples to measure progesterone metabolite 

concentration. When an individual becomes pregnant, their progesterone metabolite cyclicity 

increases (Kusuda et al., 2007); eventually, it will increase to levels significantly higher than 

the baseline for confirmation that the individual is pregnant (Figure 3.2). This increase, 

however, may only occur at 300 days. Usually, pregnancy confirmation can be made five to 

nine months into gestation, and the okapi gestation is 15 months (Schwarzenberger et al., 

1996). Progesterone levels can change quickly, so there must be a substantial backlog of 

progesterone levels to detect significant increases. The zoo must constantly monitor the 

progesterone metabolite cyclicity of their okapi. It would therefore benefit from a pregnancy 

test that would only require one faecal sample that can determine pregnancy much earlier 

than using progesterone measurements. The zoo can adapt the husbandry needs of an animal 

they know is pregnant to increase the chance of a healthy pregnancy and offspring 

(Schwarzenberger et al., 1999).    

This study aimed to determine if the REIMS signature obtained from okapi faeces 

could be used to predict pregnancy. It was hoped that the spectra from archived samples 

from okapi at Chester Zoo when they had and had not been pregnant using REIMS could be 

used to build a predictive random forest model. This random forest would then have been 

used to classify new samples as pregnant or not pregnant. The classification accuracies for 

the initial models were lower than expected. Therefore, the second aim was to increase the 

classification accuracy by grouping the data by pregnancy stage and reducing the number of 
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variables (mass bins). Changing parameters did not increase classification accuracy 

significantly. The results suggested that either sample preparation or storage length was 

affecting the ability of REIMS to classify the faecal pellets. New samples were collected from 

the two okapis currently at Chester Zoo, but since one of the okapis had not been pregnant, 

individual identification was tested instead of pregnancy. Random forest models built using 

the new samples could distinguish which okapi produced the faecal pellets but could not for 

the older samples. This confirmed that either sample preparation or storage time has a 

negative impact on the utility of the REIMS spectrum.   

When the okapi 
became 

pregnant 

When the zoo 
knew the okapi 
was pregnant 

Figure 3.2. The progesterone metabolites of faecal pellets collected 

from an okapi at Chester Zoo. The zoo does not know the okapi is 

pregnant until there is a dramatic increase in progesterone. Once the 

okapi gives birth the zoo can work backwards to establish the date of 

conception  

When the okapi 
gave birth 
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3.2 Method 

3.2.1 Faecal Sample Collection from Okapis in Chester Zoo  

Chester Zoo provided archived faecal samples from Stuma and K’tusha; both females were 

born in the zoo, Stuma in 2005 and K’tusha in 2013. They were pregnant twice between the 

first and last sample collection; K’tusha was only two and a half months pregnant with her 

second calf when the collection ended. There were 208 faecal samples provided, 52 samples 

from each individual when they were pregnant and 52 when they were not (Table 3.1). 

Samples were collected as part of Chester Zoo’s routine procedures to monitor health and 

maintain their breeding programme and were collected up to eight hours after defecation. 

Samples could not be collected consistently; intervals between collected samples varied 

between one week and a month. The sample collection rate did increase when the animal 

was known to be pregnant. Samples from Stuma were collected from July 2011 to August 

2017 and from K’tusha from April 2016 to January 2020. The in-house endocrinology team at 

Chester Zoo had already measured the progesterone metabolites. The measurements were 

tracked over time to monitor the follicular cycle. Each sample from when an individual was 

not pregnant could be classified as increasing, decreasing, peak or low, depending on where 

it was collected during the cycle (Figure 3.3). When okapis defecate, they produce pellets 

 

Individual  Pregnancy Status  Follicular cycle 

status  

Total Number  

K’tusha Pregnant  52 

 Not Pregnant  Low 13 

  Increasing 13 

  Peak 13 

  Decreasing 13 

Stuma Pregnant   52 

 Not Pregnant  Low 13 

  Increasing 13 

  Peak 13 

  Decreasing 13 

  Total 208 

 

Table 3.1. The number of faecal samples collected by 

Chester Zoo from two female okapis. Both individuals were 

pregnant twice during the collection period. Each of the 

non-pregnant samples were assigned as low, increasing, 

peak or decreasing depending on their position in the 

follicular cycle (see Figure 2.1) 
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approximately 2 cm long and 1cm wide. For each sample, multiple pellets were homogenised, 

placed into a 15 ml conical sample tube, and stored at – 20oC.  

Faecal pellets were collected from the current okapi at Chester Zoo, K’tusha (n=43) 

and Ada (n=42) in November 2019. Ada was a female born in London Zoo in 2017 and moved 

to Chester in 2019. Samples were collected as before, but faecal pellets were not 

amalgamated. Several whole pellets produced simultaneously were stored at -20oC in small 

plastic sample bags.   

3.2.2 Using REIMS to Burn and Analyse Okapi Faecal Pellets. 

The diathermy electrode was set to 30 v, and water was added using a 1.5 ml dropper until 

the sample became saturated. Unlike rodent samples, burning did not completely 

disintegrate the sample. To ensure REIMS sampling was consistent, each sample was burned 

five times for 10s, and at least 30 seconds of acquisition time was added before and after 

burning a sample. Whole samples were burned using the same setting as the homogenised 

samples. Water was added to the whole pellet until complete hydration, and the whole pellet 

was burned within one acquisition file. Leu-enkephalin was continuously ejected at 50 µL/min 

Figure 3.3. The progesterone metabolites of faecal pellets collected from 

K’tusha for the first year of collection. All samples are from before K’tusha 

became pregnant. The progesterone metabolites are cyclic, each sample was 

assigned as increasing, peak, low or decreasing depending on when it was 

collected during the follicular cycle.  
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into the inlet capillary of the REIMS ionisation source to provide a lock mass. The sample cone 

and the heater bias were set to 60 V. The spectra were recorded in full-scan resolution, 

negative ion mode, at a scan rate of 1 scan per second from 50-1200 m/z. Samples were 

burned blind and in a random order determined by a random number generator (Haahr, 

1998). A sample file may contain more than one burn, but these were averaged when 

uploaded to R. Before being uploaded to R, the spectra were lock-mass corrected, binned to 

0.1, and the mass range was reduced to 400 to 1100 m/z within LiveID.  
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3.3 Results    

3.3.1 Using REIMS to distinguish pregnant and non-pregnant samples. 
A preliminary study was conducted to determine if REIMS could discriminate between faecal 

samples produced from a pregnant or non-pregnant individual. A total of 208 faecal pellets 

from two okapis that had been homogenised were analysed with REIMS. The spectra 

produced from burning were uploaded to LiveID, where the spectra were normalised and 

binned to 0.1 Da. The averaged spectra of pregnant samples had a similar pattern to those of 

non-pregnant samples. Comparing the average spectra of just one individual showed little 

difference between pregnant and non-pregnant samples. Minor differences between 

pregnant and non-pregnant samples can be observed when the intensities are compared for 

a small mass range (445 to 450 Da) (Figure 3.3). The average intensities across this range of 

mass bins were significantly different (p<0.004). This suggests that there may be differences 

between faecal pellets due to pregnancy, but these differences are too small to be observed 

on the spectra. This was similar to the previous study; the spectra for males and females were 

similar but could be distinguished using random forests.  

The spectra were analysed using random forests using a randomly selected training 

set (70% of all spectra) to predict the pregnancy status of the individuals in the test set (30% 

of all spectra). This was repeated ten times with both individuals in the model and one 

individual at a time to give an averaged random forest and prediction accuracy (Figure 3.4). 

The random forest accuracies were slightly above 50%, suggesting that pregnant and not 

pregnant samples could not be distinguished. There was, however, a significant difference 

between the top five most discriminant mass bins when samples of both individuals were 

included in the model (Figure 3.5). The top five most discriminant mass bins for pregnancy 

varied between each model. Eight mass bins occurred in the average top ten most 

discriminant mass bins of all three models and were significantly different between pregnant 

and non-pregnant samples. This suggested some consistent differences between pregnant 

and non-pregnant samples. Although the most discriminate mass bins varied between the 



  
 

114 
 

two individuals, they could still be used to show separation between pregnant and non-

pregnant samples of the other individual (Figure 3.6).   

  

Figure 3.3 a) The averaged spectra of all pregnant (n=52) 

and non-pregnant samples (n=52) of K’tusha. b) Small 

differences are observable between mass bins when 

comparing a small mass range (5 Da), the non-pregnant 

samples had intensities higher than pregnant samples in 

this range. The average intensities across this range of 

mass bins were significantly different (p<0.004) 

a)  

b)  
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Random Forest Accuracy   Prediction Accuracy  

Figure 3.4 The random forest accuracy and prediction accuracy 

when the mass range was set from 50 to 1200 m/z and the data 

binned to 0.1 Da for the two individual Okapi (Stuma and 

K’tusha) combined and on their own. Accuracies were from an 

average of ten random forest models and the data was split 

70:30 into training and test data. The Random class uses the 

same data as the other models but each sample as either been 

randomly assigned as ‘random one’ or ‘random two’. If there is 

no difference between two groups, the random forest accuracy 

would lie close to 50%. These results suggest there is no 

difference between pregnant and non-pregnant samples.      
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*** 

*** 

*** 

*** 

*** 

Figure 3.5 The relative intensities of the top five most 

discriminate mass bins of all pregnant and non-pregnant 

samples, all five bins show a significant different between 

pregnant and non-pregnant samples.   
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Figure 3.6 a) The relative intensities from all samples 

(K’tusha and Stuma) of the top five most discriminate 

mass bins that distinguished pregnant and non-pregnant 

samples of K’tusha. Four of the mass bins showed a 

significant different between pregnant and non-pregnant 

samples. b) The relative intensities from all samples 

(K’tusha and Stuma) of the top five most discriminate 

mass bins that distinguished pregnant and non-pregnant 

samples of Stuma. Four of the mass bins showed a 

significant different between pregnant and non-pregnant 

samples. 

a) 

b) 
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3.2.2 Changing Model Parameters to Increase Classification Accuracy  

Changes were made to the data processing to increase prediction accuracy. The mass range 

was reduced to 300 to 900 m/z, as none of the top ten most discriminant mass bins were 

outside this range. The bin size was decreased, and the raw spectra were run through 

Progenesis Bridge (version 1.0.29) before they were uploaded to LiveID. Progenesis Bridge is 

part of the MassLynx software, which combines all the burns from one acquisition file into 

one burn signal. These changes, however, only showed a slight increase in the random forest 

and prediction accuracy (Figure 3.7). A new model was created to ensure that there was no 

sample number in the training data that was lowering the expected random forest accuracy. 

A training model was built that contained all samples but one. The model was then used to 

predict the left-out sample; this was repeated for every sample. The accuracy of pregnant 

samples increased to 70%, but the classification accuracy of non-pregnant samples remained 

at 63%, suggesting there had been enough samples in the training model. (Figure 3.8). 

If the models could not determine the differences between samples because there 

were too many un-discriminant variables (too much noise), reducing the number of variables 

would have increased classification accuracy. A random forest was created to determine the 

Random Forest Accuracy   Prediction Accuracy  

63±4%  

66±4% 

62±4% 

46±5% 

 

62±4% 

66±7% 

 62±8% 

62±6% 

Mass range 300 to 900, 

bin 0.1 

Progenesis used, 50 to 

1200, bin 0.1 

50% 50% 100% 

Figure 3.7 Changes were made to the data set including 

decreasing the mass range and bin size in LiveID and 

using Progenesis to average the burns before being 

uploaded to LiveID. The random forest accuracies are an 

average of ten with both individuals included. The 

changes produced accuracies higher than the 50% 

expected by chance but are still too low to suggest 

significant differences between samples.   

100% 

Mass range 300 to 900, 

bin 0.05 

Progenesis used, 300 to 

900, bin 0.05 
65±4% 
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top 100 most discriminant mass bins, and then a random forest model was created using 

these 100 mass bins only, repeated ten times. The top 100 were used as random forests 

require an extensive data set to obtain reliable results. Using only top five or top ten could 

give a high random forest accuracy but it would not be a suitable predictive model. The 

prediction accuracy was much lower than the random forest accuracy due to over-fitting 

when using only five or ten mass bins. The average random forest accuracy increased to 78%, 

and the prediction accuracy to 76%. These results are higher than the classification accuracy 

obtained by chance and suggest small changes between pregnant and non-pregnant samples 

(Figure 3.9).   

  

Figure 3.8 A random forest model was created using all the 

data but one sample. The model was used to predict the 

classification of the one left out sample, this was repeated for 

all 208 samples. In LiveID the data was binned to 0.05, mass 

range was reduced to 300 to 900 m/z and the spectra were 

lock mass corrected before being uploaded to R for the 

random forest analysis.  
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Figure 3.9. Random forest confusion matrix for the average 

individual classification of all samples using the top 100 

discriminate mass bins only.  The relative intensities of the 

top five most discriminate mass bins in the mass spectrum 

that distinguish pregnant and non-pregnant samples when 

using top 100 mass bins only.  
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3.2.3. Early Versus Late Pregnancy  

The pregnant samples were split into late and early-pregnancy groups to potentially increase 

the difference between pregnant and non-pregnant samples. For K’tusha, the first 15 samples 

collected during her first pregnancy were assigned as early, and the last 15 were assigned as 

late, from a total of 43 samples. Stuma had fewer samples, so the first ten samples from both 

pregnancies were assigned as ‘early’ and the last ten collected as ‘late’. K’tusha only had 

samples from the first half of her second pregnancy collected, so these were omitted. A 

random forest model was created to distinguish between early and late pregnancy. It 

produced a classification accuracy of 59±3%, suggesting no difference between the spectra of 

late and early pregnant samples. Only one of the top five most discriminant bins of pregnant 

and non-pregnant samples showed a significant difference between early and late samples. 

However, separation was observed with an LDA on the top five principal components. (Figure 

3.10). If late-pregnancy samples varied more from non-pregnant samples, the classification 

accuracy would be higher when using only late-pregnancy samples compared to early-

pregnancy samples. However, the random forest classification accuracy for early pregnant 

and non-pregnant samples and late pregnancy and non-pregnant samples was 77% when 

using the top 100 mass bins (Figure 3.11). These results suggest no significant differences 

between samples collected early or late in the okapi’s pregnancy.  
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Figure 3.10.   a) The relative intensities of the top five most 

discriminate mass bins of early and late pregnancy. Only one 

mass bin (314.025) had a significant difference between early 

and late pregnancy suggesting that the REIMS spectra do 

not change during pregnancy. b) The first linear 

discriminant component from the top five pca components 

which were responsible for 99% of the variation. The jitter 

position is randomly assigned to each sample to spread out 

samples vertically for visualisation. 
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Figure 3.11 The confusion matrices of an average of ten 

random forests using samples from either the first three 

month of pregnancy (Early) or the last three months of 

pregnancy (Late) and randomly selected non-pregnant. The 

random forest model could predict early and late pregnancy 

better than non-pregnant samples, classification accuracy 

was slightly higher for late pregnancy samples than early 

samples.  
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3.2.4 The Effect of Progesterone Concentration  

The non-pregnant samples may have too much variation among themselves to allow for 

consistent differences between pregnant and non-pregnant samples. The non-pregnant 

samples were classified into four groups based on their progestogen concentration, 

decreasing, increasing, low and peak. Those samples with the highest concentrations were 

classified as peak and had similar concentrations to samples early in pregnancy (Figure 3.12 a 

+ b). It would be difficult to classify non-pregnant samples if a quarter of the samples had 

intensities the same as pregnant samples. It was thought that if the samples classified as peak 

were removed from the data set, the random forest accuracy would increase. Removing the 

peak samples, however, did not affect the random forest accuracy of non-pregnant samples 

(Figure 3.12 c). They may still be too much variation among the non-pregnant samples, but 

this is unlikely to be caused by different progesterone levels.  
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Not Pregnant 
n=25 

Pregnant 
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Not Pregnant 

Pregnant 

55% 

71% 

29% 

Data with Peak Classified values removed  

Actual Classification  

Figure 3.12 a). The progesterone concentration of each of the four follicular 

cycle groups of the non-pregnant and pregnant samples of both okapi 

individuals. Samples classified as peak have progesterone concentrations 

more similar to pregnant samples than other non-pregnant samples. b) The 

relative intensities for the top five mass bins most responsible for the 

differences between pregnant and non-pregnant samples. The samples 

classified as peak have intensities more similar to other non-pregnant 

samples than with pregnant samples. c) The ability of random forests to 

classify pregnant and non-pregnant samples did not increase by removing 

the non-pregnant samples classified as peak 

a) 

b) c) 
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3.2.5 The Effect of Storage Time on the Faecal Pellets  

The time between collecting the okapi faecal samples varied greatly, with eleven years 

between the first and last samples collected. The significant length of time in storage at -20oC 

might have influenced the ability of REIMS to classify the okapi samples. Random forests could 

quite accurately classify samples based on their collection date of non-pregnant samples. 

Random forests could predict K’tusha’s samples from 2016-2017 (the oldest 30 samples) with 

80% accuracy and samples from 2019-2020 (the newest 30 samples) with 78% accuracy. This 

increased to 93% when using the oldest 15 and newest 15 samples. The increase in accuracy 

when using fewer samples suggested that the differences between the oldest and newest 

samples increased when the time between sample collections increased. Random forests 

could be used to predict Stuma’s samples from 2009-2010 (the oldest 30 samples) with 71% 

accuracy and samples from 2016-2017 (the newest 30 samples) with 89% accuracy (Figure 

3.13) 

An LDA-PCA plot (LDA on the top five PCA components) separated both individuals’ 

oldest and newest samples (Figure 3.14). There was a significant difference between old and 

new samples of the top five most discriminant mass bins (Figure 3.15). These bins differed 

from the most discriminant mass bins of pregnancy (Figure 3.5). This suggests that although 

the samples could be separated based on collection date, that does necessarily confirm it was 

influencing the ability to classify pregnancy.  
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Figure 3.13 The classification accuracy of samples from 

K’tusha and Stuma based on collection date of the faecal 

sample.  a) The random forest confusion matrix for the 30 

oldest and 30 newest samples from K’tusha. b) The random 

forest confusion matrix for the 15 oldest and 15 newest 

samples from K’tusha, by reducing the number of samples 

it increases the time between the two groups. c) The random 

forest confusion matrix for the 30 oldest and 30 newest 

samples from Stuma d) The random forest confusion matrix 

for the 15 oldest and 15 newest samples from Stuma 

a) b) 

c) d) 
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Figure 3.14 Discriminant function analysis of the top 5 

principal component for classification of faecal samples on 

their collection dates for both okapis, K’tusha and Stuma.  

The separation of samples suggests there is a difference 

between spectra depending on the length of time the sample 

was in storage.  
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Figure 3.15 The relative intensities of the top five most 

discriminate mass bins that separate samples based on 

collection date. The two collection groups for both individuals 

show a highly significant differences suggesting that the 

REIMS spectral fingerprint changes due to the length of time 

a sample is in storage.  
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It was surmised that if the collection date does influence the REIMS spectra, 

classification accuracy would be improved if the samples were subdivided into groups based 

on the sample collection date. The data was split into four sub-groups and running random 

forests with the data from each group showed increased classification accuracy. Group I 

contained samples from Stuma from 2010 to 2012, and Group II included samples of both 

individuals from 2014 to 2017. Group III contained samples from Stuma’s first pregnancy and 

the non-pregnant samples from before this. Group IV contained the samples from before and 

during K’tusha’s first pregnancy (Figure 3.16). Group II had the lowest classification accuracy 

out of the four groups, possibly due to having the most extensive sample range and samples 

from both individuals. The top mass bins varied between the four groups, suggesting that the 

mass spectra are different, which may have been caused by the length of time in storage. The 

top five most discriminant mass bins varied for each group except for mass bin 314.025, which 

was in the top five for groups II and IV. Mass bin 314.025 was also in the top five bins most 

discriminant of sample collection year for K’tusha and early and late pregnancy. The top 19 

most discriminant mass bins between collection groups showed a significant difference 

Random Forest Accuracy   Prediction Accuracy  

83±9%  

66±5% 

76±11% 

46±5% 

71±25% 

 68±6% 

 73±3% 

71±13% 

Group I 

2010-2012 

Group III 

Stuma’s 1st Pregnancy 

50% 50% 100% 

Figure 3.16 The data were split into four groups based on 

collection data. Group 1 contained all samples between 2010 and 

2012. Group 2 contained all the samples from 2014 and 2017. 

Group 3 contained the samples from Stuma’s first pregnancy and 

the non-pregnant samples before the pregnancy. Group 4 

contained the samples from K’tusha’s first pregnancy and the 

non-pregnant samples before the pregnancy. The data were 

binned to 0.05 da and the mass range reduced to 300 to 900 m/z. 

The random forest and prediction accuracies were higher than 

when all samples were included in one model.  

 

100% 

Group II 

2014-2017 

Group IV 

K’tusha’s 1st Pregnancy 
70±11% 
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between all pregnant and non-pregnant samples (Figure 3.17). Mass Bin 314.024 (in the most 

changed significantly for the non-pregnant samples, negatively for K’tusha (Pearson 

correlation, R = -0.55 p = 2.4e-5) and positively for Stuma (Pearson correlation R = 0.5 p = 

0.00014). The mass bin did not show a significant difference for pregnant samples of either 

individual (Figure 3.18).  
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Figure 3.17 The relative intensities of all samples for the 

top five most discriminate mass bins of pregnancy for each of 

the four sub-groups based on collection dates. Mass Bin 

314.025 was in the top five for two of the sub-groups. Even 

though the top mass bins changed between the four groups 

all but three of the mass bins showed a significant difference 

between pregnant and non-pregnant samples.  
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Figure 3.18 Mass Bin 314.025 was in the top five most 

discriminate mass bins for several models suggesting it 

changes the most between samples. The intensity of the bin 

decreases over time for non-pregnant samples of K’tusha 

but increased for Stuma. The intensities of pregnant 

samples did not change with time for either individual. 

Correlation established using Pearson’s correlation.   

R = -0.55 
p = 2.4e-5 

R = 0.28 
p = 0.073 

R = 0.5 
p = 0.00014 

R = -0.16 
p = 0.26 
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3.2.6 Comparison of Homogenised and Whole Faecal Pellets  

The spectra of three randomly selected non-pregnant amalgamated samples from K’tusha 

were visibly different from each other both in spectral pattern and intensity (Figure 3.19). 

Three randomly selected non-pregnant whole pellets from K’tusha showed a much more 

similar pattern to each other compared to the homogenised samples (Figure 3.20). Random 

forests could distinguish between whole and homogenised non-pregnant pellets of K’tusha 

with 99% accuracy (Figure 3.21). There was a significant difference between the top five most 

discriminant mass bins, and PC1 and PC2 could separate all but five whole pellets from 

homogenised pellets (Figure 3.22). This suggests that the sample preparation of the historical 

samples held by the zoo has greatly influenced the faecal profile.  

A PCA could not separate the non-pregnant homogenised samples by individual but 

could separate whole pellets (Figure 3.23). Random forest models could distinguish between 

pellets of Ada and K’tusha with 93% accuracy; prediction accuracy was 94%. The random 

forest accuracy was much lower for the homogenised non-pregnant Stuma and K’tusha 

samples, random forest accuracy was 72%, and prediction accuracy was 66% (Figure 3.24). 

This also suggested that the more recently collected whole pellets burned by REIMS were 

more information-rich than the historical homogenised samples. Therefore, this study should 

be repeated using whole faecal pellets to establish if REIMS can determine pregnancy from 

okapi samples. 
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Figure 3.19 The spectra of three randomly selected non-

pregnant homogenised samples from K’tusha. The spectra 

show greater differences between individual pellets than 

compared to the averaged intensities of pregnant and non-

pregnant samples.  
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Figure 3.20 The spectra of three randomly selected non-

pregnant whole samples from K’tusha. The spectra are more 

similar to each other compared to the homogenised samples.  
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Figure 3.21. The random forest and prediction accuracy of 

non-pregnant samples from K’tusha. These results suggest 

there is a significant difference between the spectra 

produced from whole pellets compared to homogenised 

samples.  
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Figure 3.22. The square root relative intensities of the top 

five mass bins most responsible for the differences between 

the homogenised and whole pellets. The first two principal 

components that separate homogenised and whole pellets. 

Faecal samples are from K’tusha when not pregnant.  
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Figure 3.23 a) PC 1 (95%) against PC2 (5%) for whole pellet 

samples burned from Ada (n=42) and Ktusha (n=43) the 

current female okapi at Chester Zoo. b) PCA plot for the stored 

non-pregnant samples from Stuma (n=52) and Ktusha (n=52). 

Stuma and K’tusha were the only two female okapis until 

Stuma’s death in 2017. Ada and Ktusha show separation 

whereas Stuma and Ktusha do not. Burning whole pellets 

rather than amalgamated pellets may provide a more 

information rich spectra.  
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Figure 3.24. Random forests could distinguish between 

individuals to a higher accuracy for the whole pellets 

compared to the homogenised samples. Only sample from 

animals when they were not pregnant were used. The 

homogenised pellets had also been stored for much longer 

than the whole pellets.   
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3.4 Discussion  

REIMS cannot be used as a method of testing for pregnancy in okapi using homogenised 

archived samples. REIMS may still have the potential to be a valuable tool for zoo research. 

Random forests could not classify pregnant and non-pregnant samples, but specific mass bins 

did show a significant difference between samples. Reducing the number of mass bins 

increased prediction accuracy, as did only using samples from a particular time. REIMS could 

distinguish between individuals of samples burned as whole pellets but could not separate 

individuals of the combined samples. This suggests that sample quality could significantly 

affect the spectra obtained from burning.  

Okapis are herbivores classified as browsing ruminants (Clauss et al., 2006); browsers 

feed on leaves and grazers feed on grass. Ruminants are a sub-order of mammals that have 

four-chambered stomachs. The first chamber is the rumen, where bacteria and protists 

convert the cellulose of the plant material into simpler compounds to be absorbed (Mason et 

al., 2011). Browsers retain food particles in their rumen for a shorter time than grazers and, 

consequently, have a lesser ability to break down fibrous material. In ruminants, the higher 

digestive ability is associated with smaller faecal particles. The modulus of fineness (MOF) is 

a measurement used to record the particle size of faeces. A higher MOF means larger particle 

sizes and, therefore, smaller amounts of digested material. In a study that measured the MOF 

of 16 species of browsing ruminants, the okapi had the second-highest MOF, with their 

relative, the giraffe having the highest (Clauss et al., 2002). This suggests that faecal pellets 

produced by okapi have less digested faecal material and more undigested fibrous material 

than other mammals. The protocol used by breaking down the pellets and placing them into 

sample tubes is intended to remove the undigested materials and increase the number of 

faecal particles in the samples. As a result, what undigested material was present in the 

samples was much less consistent than with whole pellets. Some samples would have leaves 

and other twigs, which may have been from a different plant. Breaking the pellets down may 

have led to higher variation between samples. 

 Faecal sample preparation has been explored with human faecal samples. The 

microbiome was compared for differently prepared human samples. Samples were classified 

as fresh, homogenised (in a blender), frozen, frozen and homogenised (in a blender) and 

homogenised in a pneumatic mixer. The bacteria diversity was similar for each sample 



  
 

142 
 

regardless of the preparation method, but each taxon’s abundance varied. The frozen and 

homogenised samples had more Faecalibacterium, Streptococcus, and Bifidobacterium and 

less Oscillospira, Bacteroides, and Parabacteroides than fresh samples (Hsieh et al., 2016). 

Another study that compared fresh, homogenised, and washed with anaerobic dilution fluid 

(Biopsy wash) found similar results. Bacteria diversity was the same, but the abundance of 

proteobacteria varied between the biopsy wash samples and the fresh and homogenised 

samples (Mukhopadhya et al., 2022). It is unknown how much the microbiome influences the 

REIMS signature. If it does have an effect, then varying abundances of bacteria in the 

homogenised pellets would make them harder to analyse than the whole pellets. 

Mass spectrometry has been used to discriminate vegetation similarly to REIMS but 

with a different ion-ionisation source. Direct analysis in Real-Time (DART) ionisation is an ion 

source coupled with a TOF mass spectrometer. A gas (helium or nitrogen) is introduced 

through the DART source between two electrodes producing ions with electronic excitation. 

This plasma then travels through more electrodes so only neutral molecules remain. As these 

molecules leave the source, they pass through the sample, causing ionisation and then 

continue into the mass spectrometer’s inlet (Hoffmann and Stroobant, 2007). DART has been 

used to identify different species of oak trees (Cody et al., 2012) and legumes (Lancaster and 

Espinoza, 2012) and between wild and cultivated agarwood (Espinoza et al., 2014) with high 

accuracy. DART was also used to distinguish between Douglas-fir trees from two different 

locations, and random forests produced accuracies of 70% and 76% (Finch et al., 2017). 

Although mass spectrometry can be used to classify vegetation, it was unlikely to have an 

effect here. When burning the homogenised samples, the digested material disintegrated on 

burning, producing lots of smoke; the undigested material did not burn or produce smoke. 

The REIMS signature was more likely influenced by the digested material than the undigested 

vegetation. The diets of okapi (in a zoo context) should have been similar enough not to have 

had an effect, as DART could distinguish between species (Cody et al., 2012) but was less able 

to distinguish differences within species (Finch et al., 2017). Whole pellets could therefore 

produce, more reliant signals for classification. 

  As previously stated, okapis have a larger MOF compared to other mammals. REIMS 

could still be potentially be used to test pregnancy in other species with a lower MOF. Near-

infrared reflectance spectroscopy (NIR) is a method used to analyse the faeces of herbivores. 
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NIRS is a rapid, non-invasive analytical technique that measures the light of a sample in the 

near-infrared region of the electromagnetic spectrum (700–2500 nm). It has been used to 

determine the sex and species of red and fallow deer, red deer were successfully identified in 

81% of samples, and fallow deer was 77%. The classification of sex was only 60%, although 

they did include the two species within the sex classification (Tolleson et al., 2005). The 

classification of species and sex identification was less than that of using REIMS to identify 

rodent species. It could be due to the different methods (REIMS or NIRS) or because herbivore 

faeces have more variation and are, therefore, more challenging to classify. NIR can predict 

the diets of grazers through the analysis of faeces, but only within specific subsets. For 

example, the data collected from tropical regions could not be used to predict the diets of 

grazers from temperate regions (Dixon and Coates, 2009).  

The homogenised samples were stored in a freezer for a significant period. In this 

study, the pregnancy status accuracy increased when the data was split into subsets based on 

the collection date. Plotting the okapi samples through the total collection time showed less 

variation than occurred month to month, which suggests that the spectra were not changing 

with the length of storage time. Tracking the intensity of one mass bin showed changes for 

non-pregnant samples but not pregnant samples, but the changes increased for one 

individual and not the other. These results also suggest that storage time does not 

consistently impact the spectra.  

The individual’s age at the time of collection could have been having an effect. The 

relative intensities of mice did change with age, but only until they reached maturation. There 

was little difference between mice 100 days and 300 days old. Samples were only collected 

from the okapi when they reached breeding age. In this study, the animal’s age at collection 

was directly related to the time the sample was in storage. Therefore, it cannot be determined 

if the age or the storage time had an effect. NIR studies have been able to use faeces that had 

been stored for up to two decades, the spectra signature changed with time, but this did not 

affect the ability to predict the diet content of samples (Landau et al., 2008). The diet of mice 

did not affect their ability to be classified by REIMS (Davidson et al., 2019). Therefore, a 

change in spectra does not necessarily affect the ability to classify certain classes.  

Changes may have occurred at different time points due to environmental factors. 

Faecal glucocorticoid metabolites (FCM) have increased in captive polar bears when they 
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become stressed due to being transported (Hein et al., 2020). They varied in wild dogs from 

different zoos (Van der Weyde et al., 2016) and showed seasonal patterns in numbats (Curry 

et al., 2021). Okapis are pregnant for up to 15 months; within this time frame, many factors 

could have occurred that may have caused a change in the spectra that was more dominant 

than the change caused by pregnancy. During the sample collection period, there would have 

been social changes in the group, including the removal of the previous offspring to other 

zoos, a change in the stud male and the death of Stuma in 2017. It was unknown if any events 

occurred that could have caused a spectral change. Adding samples from multiple individuals 

from multiple zoos could help pregnancy classification. If changes occur through 

environmental factors, the random forests might find it difficult to establish what change in 

spectra was caused by external factors and what change was caused by pregnancy. If many 

individuals were included, there is potential for many more changes caused by external 

factors, but these changes are unlikely to be consistent. If the pregnancy causes an intensity 

change, then this change should be consistent for all individuals. Including more individuals 

would make it easier for random forests to establish what mass bins are only responsible for 

the difference in pregnant and non-pregnant samples.  

With confidence, REIMS could identify which individual a whole faecal sample came 

from. Individual identification would benefit conservationists as they could track animals 

released into the wild. Known samples could be collected while the animal is in captivity, and 

these samples could be used to create the random forest model. If the animal is released, the 

model could be used to predict if samples collected from the wild belonged to the animal. 

This could reduce the reliance on tracking devices or observational sightings to monitor 

released animals. None of the three females were related to each other; therefore, if REIMS 

could separate Ada and K’tusha but not Stuma and K’tusha, it would suggest the different 

sample preparation methods may be affecting the results. The ability to identify individuals 

also showed that whole pellets that have not been in long-term storage have information-

rich spectra. Random forests could also determine whether a sample from the same non-

pregnant individual had been homogenised. This suggests that homogenising the sample is 

having an impact on the REIMS signature. However, the homogenised samples were also 

older and had been in storage for significantly longer. The results confirm a difference 

between the types of faecal samples, but more work is needed to confirm the limiting factor. 
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Fresh, homogenised samples or long-term frozen whole pellets may produce information-rich 

spectra. Establishing pregnancy in herbivores using fresh whole pellets could still be possible. 

It would be valuable to repeat the study to distinguish between individuals since this 

investigation only included two individuals and to repeat with other species.  

In conclusion, the results suggest some differences between pregnant and non-

pregnant samples but not enough to establish a pregnancy test using REIMS. It could be that 

changes caused by pregnancy are not consistent enough to make a successful predictive 

model, or it could be an issue with sample preparation. The homogenisation or the long-term 

storage of these samples could have caused a reduction in spectra quality. A pregnancy test 

using REIMS may still be possible if a model was built using spectra produced from burning 

fresh whole pellets. Using samples from multiple individuals, half pregnant and the other half 

not pregnant, may improve the model rather than using pregnant and non-pregnant samples 

from the same individual. Using multiple individuals that are either pregnant or not should 

help the random forest model find the bins that change consistently due to pregnancy. Only 

using samples from two individuals meant that changes to the spectra could have been 

caused by other factors, such as age or environmental effects at the time of sample collection 

rather than pregnancy.          

  



  
 

146 
 

Chapter 4: REIMS Analysis of Stored Vole Pellets   
The effect of storage time on the classification of RIEMS signatures using faecal 

samples from Bank and Field Voles     

 

 

  



  
 

147 
 

4.1 Introduction 

The results from chapter three suggested that the long-term storage of samples caused a 

change in the faecal sample profile. Random forests could distinguish fresh whole samples by 

individual okapi but could not distinguish between the archived homogenised samples. It was 

unknown if the sample preparation, the long-term storage or both prevented their 

classification. Long-term monitoring of populations is a vital part of conservation research and 

management. Not being able to use archived samples would limit the usefulness of REIMS to 

long-term monitoring projects. Investigating the impact of long-term storage would help 

determine if pregnancy could still be determined in fresh faecal samples and if 

homogenisation of faeces was the limiting factor.  

Long-term monitoring of populations can help determine if population fluctuations 

are due to cyclic changes or external factors, including climate change (Stenseth et al., 1997). 

A study from 1987 to 2003 demonstrated the pied flycatcher population had declined in the 

Netherlands by 90% due to climate change. The decline of the migratory bird was caused by 

their peak food abundance occurring earlier than the bird’s breeding season due to increased 

temperatures (Both et al., 2006). The small mammal population of ten species was monitored 

in the Yukon Forest of Canada for 46 years using live-trapping methods. Most species (deer 

mouse, long-tailed vole, singing vole, western heather vole, meadow jumping mouse, West 

Siberian lemming and the Northern Bog lemming) populations decreased, but three species 

(red-backed vole, meadow vole and tundra vole) improved. Both the average winter and 

summer temperatures increased during this time. They may be responsible for the changes 

in the small mammal population, but predator numbers also increased during this time (Krebs 

et al., 2019).  

Many research sites, such as the Kalahari Meerkat Project (Paniw et al., 2019) or the 

Botswana Predator Conservation Trust (Hofmann et al., 2021), have been set up to collect 

data routinely by volunteers. Multiple researchers can use this information to answer various 

questions at any time. Since the data was collected for multiple reasons, the data collected 

can be quite expansive. Long-term population monitoring can be achieved through direct 

observations and the presence of signs and markers recorded over many years or by using 

biological sample analysis. The biological samples may be analysed as they are collected or 

stored and analysed at the end of the project. The results from chapter two suggested that 
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classification analysis using REIMS is better when samples are analysed at the same time. 

REIMS would be a valuable tool to conservationists for long-term monitoring if it can be used 

for faecal samples that have been stored by freezing. Other types of storage are available, 

including being stored in alcohol but freezing at -20oC is the most common method. 

This study aimed to determine how long-term storage (up to four years) would affect 

the classification of vole samples by species (Bank and Field voles) and sex (male and female). 

Samples were collected once a year from 2018 to 2021, and random forest accuracies were 

compared when samples from all collection years were in the model and used one year at a 

time. A random forest was built to distinguish between the collection year of the sample. A 

high random forest accuracy would suggest that the REIMS signature changes significantly 

over time. A random forest accuracy between 60% and 75% would suggest that changes were 

occurring, but they were small and may not affect other classification types. Even if random 

forests can identify collection year, that does not mean changes in the faeces affect the ability 

to classify other factors. A random forest was built to distinguish between bank and field voles 

from all collection years. The model was repeated using only the oldest samples in the model 

and again with the newest samples. If there was no significant difference between the 

random forest accuracies, then it would suggest that the time in storage has not affected the 

ability to classify species. Random forests were built to distinguish sex using all the samples 

and separated into the oldest and newer samples. If storage time does have an effect, then it 

would be expected that the random forest accuracy would be higher when using only recently 

stored samples in the model compared to using older samples.   
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4.2 Method  

4.2.1 Wild Vole Trapping and Breeding 

In the summer of 2020, 13 small mammal tube traps were placed in an area known as the 

meadow in Ness Gardens, Neston (Figure 4.1). The area was chosen as the grass had not been 

cut for a year, and signs, including runs and faecal pellets, indicated the presence of small 

rodents. Animals, when moving through their home range, will use the same paths and cause 

the grass to flatten over time; these animal paths are known as runs. The tube traps were 

filled with Harry Hamster, apple slices and hay (Figure 4.1c). The traps were placed for a week 

but were inactive to allow animals to become habituated to the presence of the traps. When 

the traps are inactive, animals can enter and leave the trap without being confined. After the 

first week, traps were switched to active, and traps were checked twice a day and topped up 

with food and bedding as needed. Any closed traps were opened into a large clear handling 

bag to determine the species of the caught animal. Bank voles, mice and any pregnant field 

voles were released in the location of the trap they were caught in. Field voles were 

transferred into an empty M3 cage and transported to the animal unit of the Mammalian 

Behaviour and Evolution group at the University of Liverpool’s Leahurst campus (MBE). The 

caught individuals were placed into cages set up in the standard method. All individuals 

brought into MBE were treated with Hartz® UltraGuard® OneSpot® to remove the voles of 

ticks and fleas. Field voles were set up in large containers (bins) to be allowed to breed. Voles 

already present in MBE were set up for breeding first to allow the captive individuals to 

acclimatise to their new surroundings.   

The breeding bins were filled to a depth of 15 cm with Lignocel Select Fine substrate, 

a water bottle, bedding, hay, cardboard, Harry Hamster and EURodent Diet were placed into 

the bin. Males and Females were placed into the bins simultaneously, and males were 

removed once offspring were detected or after five weeks. Offspring were removed from the 

bin after three weeks or earlier if the dam sired a second litter. Mothers were left in the bin 

for at least two weeks after the male was removed, as they were usually pregnant for a second 

time. Faecal pellets were collected from all offspring when they were weaned and once a 

week until they reached over 120 days old, and pellets were also collected at least once from 

captured voles. The animals were trapped and handled following international best practice 
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guidelines (Anonymous, 2018). Traps were checked twice daily, and animals in the lab were 

provided enrichment and handled using the tunnel method (Hurst and West, 2010).        

 

 

  

How a Tube Trap 

works 
How to prepare a 

Tube Trap 

Figure 4.1 a) Overview of Ness Gardens in Neston, the 13 

tube traps were placed in a circle approximately 10 paces 

apart as shown by the yellow circle (53°16'18.4"N 

3°02'54.5"W) ©Google. b) The area used for trapping was 

surrounded by a trench and the grass had been left to grow 

for a year © Natalie Koch 02/09/20. c) Demonstration 

videos of how the tube traps worked and how they were set 

up before being placed in Ness Gardens    

a) 

b) 

c) 
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4.2.2. Sample Collection  

Faecal samples were collected from captive and wild-caught bank voles (Myodes glareolus) 

and field voles (Mictrotus agrestis) (Table 4.1). Both vole species were housed in individual 

cages; field voles were kept in the larger MB1 cages, and bank voles in M3 cages. All animals 

had access to food, 5FL2 EURodent Diet (IPS Product Supplies Limited, London, UK) and water 

ad libitum. Both vole species were provided with Harry Hamster complete muesli (Supreme 

Petfoods Ltd., Ipswich, UK), and field voles were given fresh-cut grass once a day. Cardboard 

tubes and paper wool nest material for enrichment were provided to all animals, and voles 

also received hay. During sample collection, voles were moved to individual clean cages for a 

maximum of two hours or once the individual had produced at least five pellets. Pellets 

produced by an individual were removed from the cage using metal tweezers, placed in a 1.5 

ml Eppendorf tube, and stored at -18oC. After the two hours, voles were returned to their 

home cage regardless of defaecation.  

 

Table 4.1. The total number of voles faecal samples were collected from. Juveniles were 

only included in models built to distinguish age. Models build to distinguish sex or age only 

included captive born field voles.  

Captive born or 

Wild Caught  

Species  Sex Age Number of 

Individuals  

Captive Born 

Bank Vole 

Female 
Adult (>36 days) 28 

Juvenile 5 

Male 
Adult (>36 days) 27 

Juvenile 5 

Field Vole 

Female 
Adult (>36 days) 96 

Juvenile 44 

Male 
Adult (>36 days) 117 

Juvenile 37 

Wild Caught 

Bank Vole 
Female  5 

Male  6 

Field Vole 
Female  2 

Male  3 

 Total  376 
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4.2.3 Using REIMS to Burn and Analyse Faecal Pellets of Bank and Field Voles 

Three faecal pellets from ten different vole individuals caught in 2020 were burned using 

different electrode modes and voltages to establish the optimal settings for burning vole 

pellets. The burn signal was compared for each pellet burned to determine which settings 

gave the highest signal. Faecal pellets were burned using the cut mode at 35 V. Five faecal 

pellets were burned for each vole sample if possible, but at least three pellets were used. 

MilliQ was added as necessary (approximately 100 µl over all five pellets of each sample) to 

ensure sufficient conductivity. Leu-enkephalin was continuously ejected at 50 µL/min into the 

inlet capillary of the REIMS ionisation source to provide a lock mass. The sample cone and the 

heater bias were set to 60 V. The spectra were recorded in full-scan resolution, negative ion 

mode, at a scan rate of 1 scan per second from 50-1200 m/z. The spectra were uploaded to 

LiveID to be normalised lock mass corrected and binned to 0.05 Da; the mass range was 

reduced to 400 to 1100 m/z 

Samples were analysed in two separate groups. Group one contained the samples of 

bank and field voles that were already in the lab for use by other PhD students and contained 

a mixture of wild and captive-born individuals. Group one had one sample (consisting of 

several pellets collected simultaneously) per individual. The ages of the individuals born in 

captivity varied between 15 and 490 days old. Group two contains captive-born field voles; 

some had captive-born parents, and others had wild-caught parents (Figure 4.2). Group two 

contains multiple samples from the same individuals at different ages, but one random 

sample was selected from each vole for building random forest models. All samples were 

frozen at -20oC on the collection day and burned over two months (Table 4.2).  

  



  
 

153 
 

 

   

2018 

2019 

2020 

2020/2021 

Ness Gardens 

2020 

Group 2 

Field Voles Bank Voles 

Faecal samples are stored at -20oC on the day 

of collection  
Off-spring produced  

Wild caught field voles were brought into the 

lab 
Faecal samples were collected weekly up to 

nine weeks.  

Group 1 

Figure 4.2 Faecal samples were split into two groups 

based on when they were collected. Group 1 contains the 

field (n=115) and bank (n=77) voles already present in 

the lab. Some of these had been captive born and some 

wild-caught by another PhD Student. Group 2 contains 

samples that were collected on a weekly basis from field 

voles (n=297) born from either recently caught voles or 

the field voles already in the lab. The figure was made 

using biorender.com 
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4.3 Results 

4.3.1 Discrimination of Vole Pellets by Storage Collection Year  

A less than 60% classification accuracy would suggest that the spectra do not change with the 

length of storage time. Group one contained three different year groups; a random forest 

could classify the year groups with an accuracy of 65%. (Figure 4.3). Suggesting there are 

minor changes to the spectra caused by the length of time in storage. The top three mass bins 

that were most responsible for the differences between collection years did show a significant 

difference between the three storage years (Figure 4.4). The intensities of samples from the 

year 2020 diverged more compared to the other two groups. Group Two had four 

classifications years 2018 to 2021 and produced a random forest classification of 65%. Most 

samples were classified as either 2018 or 2021, suggesting no difference between the 2020 

and 2021 samples or between 2018 and 2019. Significant differences existed between the 

intensities of field vole samples between each collection year. Suggesting there are minor 

changes to the spectra caused by the length of time in storage. The most significant 

differences between collection years occurred between 2019 and 2020, between two and 

three in storage (Figure 4.5). This suggests some changes occurred to the samples over time 

but after the first two years of storage.  

  

Table 4.2. The range of days faecal samples were in -20oC storage for the different collection 

year groups. 

Collection Year Minimum days in 

storage 

Maximum days in 

storage 

Number of 

Samples  

2021 10 190 99 

2020 200 470 121 

2019 500 700 77 

2018 750 900 74 
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The expected accuracies 
if there were significant 

differences between 
storage year.  

 
rf = 100% 

The observed accuracies 
of each storage year.  

 
rf = 62% 

The expected accuracies 
if there were no 

differences between 
storage year.  

 

rf = 33% 

Figure 4.3 a) The expected accuracies for each collection year if 

there were significant differences between the spectra because of 

length of storage time. b) The random forest classification 

accuracy for each collection year using the group 1 data. c) The 

expected accuracies for each collection year if there were no 

significant differences between the spectra because of length of 

storage time. The observed accuracies lay between the two 

expected accuracies suggesting there are small changes between 

spectra due to storage time.   



  
 

156 
 

 

  

Figure 4.4 The data from Group 1. The relative intensities 

of each of the sample collection years for the top three mass 

bins that are most responsible for the differences between 

collection years. Samples from 2018 were stored at -20oC for 

over 750 days. Samples from 2019 were stored between 550 

days and 700 days. Samples from 2020 were stored for less 

than 100 days.  

*** 

* 

** 

a) 
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Figure 4.5 a) The random forest classification accuracy for 

each of the collection years from the Group 2 data. The 

samples were mostly classified as one of the two extreme 

years suggesting that the spectra change with a significant 

amount of storage time but does not significantly change 

from year to year. b) The intensities for the five most 

discriminant bins most responsible for differences between 

collection years. There is a significant difference between 

intensities with storage time but how they differ varies for 

each mass bin.   

a) 100% 

50% 

0% 

*** 

*** 

*** 

*** 

*** 

b) 
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4.3.2 Discrimination of Vole Species of Faecal Pellets Stored For up to Four Years  

Using all samples to create a random forest model to distinguish between bank and field voles 

gave a random forest accuracy of 96%. An LDA on the top 12 PCA components could 

distinguish between the intensities of field and bank voles (Figure 4.6). Even though some of 

the faecal pellets had been stored for up to three years, REIMS could distinguish species. 

Using samples from 2018 only gave a random forest accuracy of 95%, and using samples from 

2019 only gave an accuracy of 99%. There was no significant difference between the 

accuracies of species classification between different sample collection years (Kruskal-Wallis, 

p-value > 0.8). Samples collected from 2020 were excluded as there were only a limited 

number of bank voles. The separation observed from an LDA on the top 12 PCA components 

between the intensities of field and bank voles from 2018 was very similar to the intensities 

from samples from 2019 (Figure 4.7). The results from analysing the two collection years 

suggest that samples are unaffected by the time left in storage.  

The ten five most discriminant mass bins for species varied slightly between using all 

samples (model all-years), samples from 2018 only (model 2018) and 2019 only (model 2019). 

Three mass bins were the same for all three models, and five were found in at least two 

models (Table 4.3). The intensities of the three mass bins in the top ten most discriminant 

mass bins for each model showed significant differences between bank and field voles but 

only slightly between collection years. Two mass bins only appeared in the top ten most 

discriminant bins for the model using all years, but they showed a significant difference for 

each year group. Three mass bins were randomly selected, and there were no differences 

between the intensities for bank and voles or between collection years (Figure 4.8). Mass bins 

may still show significant differences between classes without appearing in the top ten. It may 

be just the ranking of mass bins that changes between models rather than what bins have a 

significant difference between species Differences between species were more significant 

than the differences between collection years, even for three randomly selected mass bins.  
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Figure 4.6 All the random forest classification accuracy 

for all samples. The mass spectra for bank and field voles 

from all samples collected. An LDA using the top 12 PCA 

components for all samples. The results show that REIMS 

can be used to discriminate samples that have been stored 

for up to three years.  
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Figure 4.7 All the random forest classification accuracy 

for bank and fields voles for when only using samples from 

the same collection year 2018, or 2019. The mass spectra 

for bank and field voles from samples collected in 2018 or 

2019. An LDA using the top 12 PCA components for 

samples from 2018 or 2019. Using samples from one year 

only did not significantly change the classification 

accuracy or spectra of species, therefore storage time does 

not affect species classification.   
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Table 4.3 The top ten most discriminant mass bins 

for the random forest model using all the samples 

(model all-inclusive) when using samples collected in 

2018 only (model 2018) and when using samples 

collected in 2019 only (model 2019).  

Model All-Inclusive Model 2018 Model 2019  
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433.325 433.325 433.325 

434.325 434.325 
 

459.425 
 

459.425  
474.225 

 

482.275 
 

482.275  
497.325 

 

  
529.525  

604.475 
 

796.625 
  

811.525 811.525 
 

811.575 
  

812.525 812.525 812.525 
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433.325  812.525 812.575 

Mass Bins in top ten for all three models 

796.625 811.575 

Mass Bins only in top ten for model all-years  

1091.525 588.825 663.425 

Three randomly selected mass bins 

Figure 4.8 The relative intensities for bank voles and 

field voles for samples from 2018 only, 2019 only and 

all samples (2018-2020). a) The three mass bins that 

were in the top ten most discriminant mass bins for 

three models (model 2018, model 2019, model all-

inclusive). b) The two mass bins that were only in the 

top ten most discriminant mass bins for model all-

inclusive. c) Three randomly selected mass bins.  
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4.3.3 Using Older Samples to Predict Species of Newer Samples.  

Samples collected in 2018 could predict the species classifications of samples collected in 

2019 to an accuracy of 95%. Longer stored samples can therefore predict the species of newer 

samples when samples are burned simultaneously. Samples from 2018 and 2019 could 

correctly predict the field vole samples from 2020 with respective accuracies of 97% and 82%. 

Only four bank voles were collected in 2020, so longer stored samples could not predict bank 

vole classification (Figure 4.9). These results confirm that REIMS classify vole species using 

faecal samples that have been in storage for up to four years and they could be new to predict 

newer samples.. 

100% 
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0% 

8% 

Bank Vole 

n=44 

Field Vole 

n=33 

Bank Vole 

Field Vole 

92% 

97% 

3% 

2018 samples as training data 

2019 samples as test data 

Figure 4.9 The random forest accuracies of using 

one year group to build the random forest model 

(training data) to predict the species of samples 

from a different year group (test data).  
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4.3.4 Discrimination of Sex of Vole Faecal Pellets Stored up to Four Years  

Bank Voles  

Group one was used to classify bank voles as male or female; a random forest accuracy of 

73% was obtained, and the classification accuracy of females (73%) was higher than males 

(61%). There was no discrimination between males and females of an LDA using the top ten 

PCA components, suggesting no difference between the spectra of male and female bank 

voles. The random forests were repeated using the top 100 mass bins only, and the 

classification accuracy of the sex of bank voles increased to 90%. An LDA of the top 5 PCA 

components showed discrimination between male and female bank voles (Figure 4.10).  

 To determine if storage time influences sex discrimination, random forest models 

were built to discriminate between male and female bank voles from 2018 only and 2019 

only. The random forest accuracy for using 2018 bank vole samples was 86%. The 

classification of females increased to 99%, but the classification of males decreased to 64%. 

This suggests that the faecal pellets of male bank voles may have been influenced by being in 

storage. The classification of male and female samples from 2019 remained at 90%, 

suggesting that if changes did occur to the male spectra, they occurred in storage between 

storage years three and four. An LDA using the top 5 PCA components also showed a slight 

increase in separation between males and females in 2018 compared to 2019, it was expected 

that 2019 would show an increased separation, but there were more samples from 2019 than 

2018, which could be influencing the LD component (Figure 4.11).  
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Figure 4.10 The classification accuracy of male and 

females using all bank vole samples. An LDA using 

the top 10 pca components using all bank vole 

samples. A random forest model was conducted with 

all mass bins for each species to determine the top 

100 mass bins. A new random forest model was 

created with just the top 100 most discriminant mass 

bins. The confusion matrices for the classification 

accuracy of males and females all bank vole samples 

using the top 100 most discriminant mass bins. An 

LDA using the top five pca components was 

performed with the relative intensities of the top 100 

mass bins.  
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Figure 4.11 The classification accuracy of males and 

females using bank vole samples from 2018 or 2019. 

An LDA using the top 5 pca components using bank 

vole samples from 2018 or 2019  
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Field Voles 

A random forest using all field vole samples from group 2 gave a random forest accuracy of 

62%; this increased to 80% when using the top 100 mass bins (Figure 4.12). The field vole 

samples were split into two groups; the first group contained samples from 2018 and 2019 

(longer stored samples) the second group contained samples from 2020 and 2021 (shorter 

stored samples). The random forest accuracy of sex discrimination using 2018 and 2019 field 

vole samples was 82% and 81% when using samples from 2020 and 2021. A Kruskal-Wallis 

test found no difference between the mass bins that discriminate sex for samples stored for 

more than two years compared to samples stored for less than two years (p>0.432). An LDA 

using the top 5 PCA components suggested that males and females of shorter stored samples 

were less distinguished than samples stored for longer (Figure 4.13).   
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Figure 4.12 The classification accuracy of male and 

females using all field vole samples. An LDA using 

the top 10 pca components using all field vole 

samples. A random forest model was conducted with 

all mass bins for each species to determine the top 

100 mass bins. A new random forest model was 

created with just the top 100 most discriminant mass 

bins. The confusion matrices for the classification 

accuracy of males and females all field vole samples 

using the top 100 most discriminant mass bins. An 

LDA using the top five pca components was 

performed with the relative intensities of the top 100 

mass bins.  

  



  
 

169 
 

  Field Voles 
2018+2019 Samples 

17% 

83% 18% 

82% 

Female 

n=29 

Male 

n=30 

Male 

 

Female 

100% 

50% 

0% 

Actual Sex 

P
re

d
ic

te
d

 S
ex

 
Field Voles 

2020+2021 Samples 

25% 

75% 14% 

86% 

Female 

n=37 

Male 

n=41 

Male 

 

Female 

100% 

50% 

0% 

Actual Sex 

Figure 4.13 The classification accuracy of males and 

females using field vole samples from 2018 or 2019 

The averaged spectra of 2018 or 2019 bank vole 

samples of each sex. An LDA using the top 5 pca 

components using bank vole samples from 2018 or 

2019  

 



  
 

170 
 

Comparing the most discriminate mass bins of sex 

The top five most discriminant mass bins of sex when using only longer stored were slightly 

different to samples stored for less (Table 4.4). The relative intensities were more similar 

between males and females of older samples. It could be an external factor in 2018 leads to 

faecal pellets of males and females being more similar or pellets changing due to storage time. 

For bank voles, there were still significant differences between males and females of older 

stored samples and shorter stored samples of the top five mass bins when using all samples 

(Figure 4.14). With field voles, two of the discriminant mass bins that showed a significant 

difference for short-termed stored samples did not for long-termed stored samples (Figure 

4.15).  
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Table 4.4 The top five most discriminant mass bins 

for the random forest model using all the bank vole 

samples, when using samples collected in 2018 only 

and when using samples collected in 2019 only. The 

field vole samples, when using all samples, samples 

collected in 2018 and 2019 when using samples 

collected in 2020 and 2021.    
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Figure 4.14 A comparison of how five discriminant mass 

bins of males and female bank voles vary with storage 

year. a) The relative intensities of the top five most 

discriminant mass bins of males and females for all bank 

vole samples. b) The relative intensities bank vole samples 

collected in 2018 and stored for four years c) The relative 

intensities of bank vole samples collected in 2019 and 

stored for three years.  

a) 

b) 

c) 
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Figure 4.15 A comparison of how five discriminant mass 

bins of males and female field voles vary with storage year.  

a) The relative intensities of the top five most discriminant 

mass bins of male and females for all field vole samples, b) 

The relative intensities of field vole samples collected in 

2018 and 2019 and stored for three to four years c) The 

relative intensities of field vole samples collected in 2020 

and 2021 and stored up to two years.  

a) 

b) 

c) 
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4.3 Discussion  

Random forests could distinguish between collection years, but this did not affect the 

classification of species or sex of bank and field voles. REIMS could only discriminate sex when 

the random forest models were built using the top 100 most discriminant mass bins. Storage 

time did not seem to affect the ability to classify the sex of bank voles, but more analysis with 

an increased sample number would be beneficial as only two storage years could be 

compared. REIMS could be used to classify the sex of field voles, but the range of intensities 

between males and females was closer in the longer stored samples. Bank voles showed a 

decrease in the sex classification accuracy of males when only using samples from 2018, but 

the classification of females increased. If the storage time affects sex classification accuracy, 

it would increase when using samples from 2019. Since this did not occur, the reduction in 

male accuracy using 2018 samples could be due to the lack of male samples rather than 

changes caused by storage. To confirm the effect of storage time on sex, the model needed 

to be repeated with more samples stored over 700 days.  

Most of the top ten mass bins responsible for differences between years and sex were 

within the 600 – 900 m/z range, suggesting that glycerophospholipids (Edward et al., 2017) 

were responsible for the differences between these factors. The top ten mass bins for species 

separation were mainly in the fatty acid range <600 m/z. A study classifying types of meat 

using REIMS also observed that changes to the phospholipid profile caused by age and the 

animal’s diet did not affect species classification (Balog et al., 2016). Fatty acids may be 

changed more due to storage time than phospholipids. 

REIMS was used to determine how the lipidomics profiles changed with the storage 

time of dried sea cucumber (Stichopus japonicas). Sea cucumbers are freeze-dried routinely 

after being removed from seawater as it helps with transportation, but this can cause a 

decrease in nutritional value. The oxidation of fatty acids causes the deterioration. 

Multivariate analysis confirmed the lipidomic profiles (acquired through REIMS) signifcantly 

changed due to the amount of lipid oxidation caused by increased storage of the dried 

cucumber (Song et al., 2021). Therefore, the lipid profile of REIMS spectra of faecal samples 

may also be changing due to storage. The fatty acid profiles of 22 human serum samples did 

not change after being stored for up to ten years at -80oC (Matthan et al., 2010). The changes 

in microbiota composition of 24 human faecal samples due to five years in storage at -80oC 
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were less than the individual variation already present (Tap et al., 2019). The microbiota of 

human faecal samples that were freeze-dried before being stored at -20oC for 14 years was 

comparable to fresh samples suggesting microbial profiles are preserved during storage (Kia 

et al., 2016). Faecal glucocorticoid concentrations of elephants and bears have been found 

reliable for up to two years at -20oC. Samples that had been freeze-dried and then stored at 

room temperature were comparable to the control group for the elephant samples but not 

for the bear samples after two years (Hunt and Wasser, 2003). The spectral fingerprint 

produced by REIMS may be more stable with time if faecal samples were stored at -80oC 

rather than -20oC. Freeze-drying may also be an option, but it can be expensive and 

inaccessible, especially when working in the field. Most of the changes due to storage 

occurred between years one and two. This work would benefit from using samples stored for 

up to five or ten years to determine if changes continue with storage time or begins to 

stabilise.   

The differences in intensities between different storage years may not result from 

storage. Environmental factors also influence the microbiome; the same strain of lab mice 

from different vendors will have different microbiomes (Hufeldt et al., 2010). Rodents 

obtained several species of bacteria after moving from the wild to the lab (Bowerman et al., 

2021). The microbiomes of rodents kept in the same cage become more similar; it will also be 

influenced by genetics and diet (Hildebrand et al., 2013). Currently, no studies have been 

carried out using REIMS to investigate the microbiome, but REIMS has been used to identify 

seven different E. coli strains (Strittmatter et al., 2014) and to classify different Candida 

species (Cameron et al., 2016). Since REIMS can be used to find differences between bacteria, 

it could be possible to detect changes in the microbiome. Changes in the microbiome due to 

diets, storage or environmental factors may result in different faecal profiles and therefore 

REIMS spectra.  

Changes to the fatty acid phospholipid profile may cause a change to the REIMS 

spectral fingerprint, but this may not affect the classification of spectra. Spectral differences 

caused by phenotypic differences, such as species, may always be more prominent than 

differences caused by storage. Therefore, the storage time of faecal samples may not have to 

be considered for all classification studies. Intra-species variations such as sex may be more 

prone to changes caused by storage as these factors are harder to classify. It was, therefore, 
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more challenging for random forests to find what bins change due to sex and which change 

due to storage. When carrying out species classification, storage time should be taken into 

consideration. Using samples from long-term storage for some factors may be possible, but 

they should not be mixed with new or short-term stored samples. In other cases, only fresh 

samples may be suitable.   

In conclusion, to investigate species and sex, classification models can be built using 

samples that have been stored for up to four years and potentially longer. A small sample 

number affected the classification accuracies more than any other factor. With suitable 

sample numbers REIMS could be used for long-term monitoring projects.  
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Chapter 5: Application of REIMS to Species Profiling in 

Field Studies  
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5.1 Introduction  

Monitoring small mammals is used to track the population of endangered species, measure 

the effect of climate change and human interference and the impact of small mammals on 

agriculture (Freeman et al., 2022).  The monitoring of bank and field vole populations over six 

decades indicated the cyclic behaviour of damage to forests in Germany was parallel to the 

fluctuations in the vole population. Rodent abundance was measured using snap traps and 

the number caught per 100 trap nights over a few nights each year from 1952 to 2014 in 

Lower Saxony and 2002 to 2012 in Saxony was calculated. The damage to trees caused by 

rodents was recorded in May and December each year. The results showed that bank and 

field vole populations fluctuated every two to three years. This was the first study to confirm 

the cyclicity of voles in temperate forests. The vole population growth correlated with beech 

seed intensity; beech trees were the most common type in the surrounding area, and that 

year’s climate influenced the density of beech seeds. The damage caused to the forests in 

Lower Saxony was in synch with the vole population cycles. An increased population increased 

the demand for nesting material and food resources. A higher density seed year was not 

always followed by a population increase in the Saxony forests suggesting that ten years was 

not long enough to track cyclic fluctuations. This study showed that the use of rodenticides 

could be reduced in years of lower populations. Trees could be planted in the year after peak 

population to reduce damage to young trees and increase their chance of survival (Imholt et 

al., 2017). The disadvantage of the method used in this study to monitor the vole population 

was lethal snap traps. In the UK, snap traps are not allowed outside due to the risk to non-

target species (BPCA, 2018).  

Small mammal monitoring is often used in rat control studies; methods for rat control 

should aim not to affect non-target species (Davidson and Hurst, 2019). Rodenticides were a 

prevalent method used to target rats in the 20th century, but they caused non-target species 

to become poisoned, including predators that consumed the contaminated prey. A study in 

Spain that examined 71 carcasses of great bustards (Otis tarda) collected from 1991 to 2010 

found that birds with higher concentrations of chlorophacinone (an anticoagulant found in 

rodenticide) in their liver also had more pathogens and parasites (Lemus et al., 2011). In UK 

agriculture, wood mice, bank voles and field voles are not considered pest species but may 

be affected by methods used to target rats, house mice or grey squirrels (Brakes and Smith, 



  
 

179 
 

2005). The UK limited the use of certain anticoagulants because they affected non-target 

species, but this may have increased the resistance of Norway rats to anticoagulants. Farmers 

in the UK must choose between using older rodenticides that cause less harm to non-target 

species that rats have developed resistance to or using new toxic ones (Buckle, 2013). The 

populations of non-target species have been shown to decrease in areas with routine rat 

control. This could then negatively affect the predators such as owls, weasels and kestrels 

that feed on the declining rodent populations and increase their risk of secondary poisoning 

(Brakes and Smith, 2005).  

Many small mammals are at risk of extinction; the water vole, hazel dormouse, Orkney 

vole, harvest mouse and the lesser-white-toothed shrew are all small mammals in the UK 

listed as near-threatened to endangered by the IUCN red list. The mammal society runs 

national surveys on the harvest mouse and the water vole (Coomber et al., 2023). 

Conservation projects can distribute their limited funds more efficiently with more 

information about population numbers and their distribution. REIMS could be a potential tool 

for conservationists and for research into rodent control methods. Faecal pellets could be 

collected from rat bait boxes and analysed using REIMS to determine what species are visiting 

the boxes. REIMS could also be used as a non-invasive method to determine the species 

distribution of an area and reduce the use of snap and live trapping.  

This study aimed to determine if REIMS could be used to monitor the rodent 

population by analysing faecal samples collected from the field without trapping animals. This 

would be achieved by comparing the species distribution of field mice, bank and field voles 

using traditional live-trapping, REIMS analysis and camera traps. Faecal samples were 

collected from animals caught in tube traps (active traps) and from traps that remained open 

(inactive traps). The faeces were analysed using REIMS, and the active trap samples were used 

to build a random forest model to predict species of samples from the inactive traps. Camera 

traps were set up to watch the inactive traps so species could be confirmed. However, due to 

a large amount of camera trap footage, species of pellets collected from inactive traps could 

not be confirmed. The number of tube and camera traps was chosen based on the number of 

animals caught in the previous year collecting field voles [Chapter 4]. A slight increase in the 

rodent population was anticipated as the population gradually increased over the previous 

two years. However, there was an unanticipated “boom” in population, and the number of 
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animals entering the traps daily was much higher than expected. It was assumed that the 

videos from the camera traps would be used to check what animals visited the inactive traps 

each night and determine if REIMS had correctly identified the species. Based on the previous 

year and preliminary testing of the camera traps, there were expected to be 600 video events 

or around five hours of footage. However, the boom in rodent population meant there was a 

total of 19,000 video events collected over the four weeks, for 158 hours of footage. During 

the four weeks of fieldwork, 952 pellets were collected from the open traps, but not all of the 

camera trap footage could not be used to confirm the species classification of every pellet. 

Footage from one night was monitored for each inactive trap; this was used to establish 

species distribution via camera traps and could be compared to the species distribution of 

active and inactive traps. The species distribution was expected to vary for voles and be 

consistent for mice across the four sites. If there were no significant differences between 

species distribution between the inactive traps and using the camera, then it would be 

assumed the predicted species were correct.  

Four different field types were used in the study, as rodents have different habitat 

preferences due to their diets. Bank voles live in woodlands and hedgerows and eat fruit, nuts 

and small insects. Field voles are found in grasslands and eat seeds, roots and leaves. Field 

mice are found in both woodland and grasslands as they eat berries and seeds (Flowerdew et 

al., 2004). The species distribution of each site was compared for each method. If similar 

results were found between the three methods, it would demonstrate that species can be 

established by collecting faecal pellets. The efficiency of using the two methods to establish 

species distribution was also compared to confirm whether the REIMS method is valuable to 

conservationists or ecologists.  
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5.2 Method                                   

Fieldwork was carried out over four weeks to establish the species distribution of field mice, 

field and bank voles using three different methods. Fieldwork occurred at four sites, two at 

the University of Liverpool’s Leahurst Campus and Ness Gardens (Figure 5.1). A total of 40 

tube traps were used; they were baited with Harry Hamster, apple slices and bedding. Half of 

the traps were set as active for a week, and the other half were set as inactive and then were 

swapped the following week. The live-trapping method used active traps; they would trap an 

animal inside, the traps were checked daily, and the animal was released after recording the 

species. The species was identified by observing the animal’s features, including ear size, tail 

length, colouring and face shape (Figure 5.2). Faecal pellets were collected into a single 

Eppendorf tube and stored at -20oC. The REIMS method involved inactive traps, they would 

not trap an animal, and therefore multiple animals could enter and leave the trap daily. Faecal 

pellets were collected from the inactive trap. Each pellet was placed into a tube and analysed 

as an individual sample. What species produced the sample or how many animals defecated 

in the tube was unknown. The camera trap method involved setting up cameras in front of 

the entrances of the inactive traps to record what animals entered the traps (Figure 5.3).  

Ten tube traps, five active and five inactive, were placed at each site, but camera traps 

were not placed in Site IV as there was a limited number. The traps were placed in a transect 

with ten spaces between each trap, alternating between active and inactive. Four different 

sites (Site I, Site II, Site III, Site IV) were chosen. Two of the sites chosen had long grass, one 

was a woodland area, and one hedgerow area was chosen (Figure 5.4).  

All faecal pellets were burned with REIMS in a randomised order. Up to five faecal 

pellets were burned using cut mode on 35 V for each sample collected from active traps. Up 

to ten faecal pellets were burned one at a time from the inactive trap using the same REIMS 

settings. The spectra produced were uploaded to LiveID, normalised, lock mass corrected, 

binned to 0.5 Da, and the mass range was reduced to 400 to 1100 m/z. The exported LiveID 

data was uploaded to R, and the data from the active traps were used to create a model to 

predict the species of the faecal samples collected from the inactive traps.  
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Video of a Bank 

Vole 

Site 1 

 

Site 2 

 

Site 3 

 Site 4 

 

Video of a Field 

Vole 

Video of a Field 

Vole 

Figure 5.1 The placement of the tube traps, indicated 

by the yellow lines. Ten traps were placed along each 

transect with ten spaces between them. a) Two field 

sites were at the University of Liverpool Leahurst Campus, 

10 traps were placed at each site ©Google. Site 1 

53°17'24.1"N 3°01'30.3"W, site 2 53°17'22.1"N 3°01'45.3"W  

b) Two sites with ten traps each were in Ness Gardens, 

Neston ©Google. Site 3. 53°16'20.8"N 3°02'54.5"W Site 4,  

53°16'20.3"N 3°02'54.5"W c) Video of three species of 

rodents interacting with the tube traps. 

a)  

b)  

c)  
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Bank Vole 

Large ears, long tail (50-80% body length), red-like colouring, pointed face, fur 

on tail 

Field Vole 

Flat ears, short tail (30-50% body length), square shaped face, fur on tail 

Figure 5.2.  The identifying features of the three species of rodent 

caught in tube traps. Shrews may also enter the trap but a hole in 

the trap door allows them to escape. The bank and field voles were 

captive voles from MBE photographed in the summer 2020. The 

field mouse was caught during the summer of 2021 and released 

back into the wild. © Natalie Koch 

Field Mouse 

Very large ears, tail much longer than body length, large eyes, no fur on tail   

5 cm 

5 cm 

5 cm 
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Figure 5.3 Both active and inactive traps were used during the 

field work. Active traps would trap an animal therefore all pellets 

in the trap came from the same individuals. Inactive traps would 

not trap the animal and therefore faecal pellets could be from 

multiple individuals and species.   

Compare Species 

distribution of both 

methods   

Use rf model 

from active 

traps to 

predict 
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inactive trap 

samples  

Live Trapping Method 

Species 

identified in 
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observer  

Create an RF 

model  

Validate RF 
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Establish 

species 

distribution  

REIMS Analysis Method 

Species 

identified by 

observer 

from camera 

trap footage  

Predict species 

Confirm species 

through camera 

trap  

Establish 

Species 

distribution  
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Site 1- Week 1 Site 1- Week 2 Site 1- Week 3 Site 1- Week 4 

Site 1 – Grassland: Ideal 

for field voles 
Site 2 – Woodland: Ideal 

for bank voles 

Site 3 – Hedgerows: Ideal 

for field voles 
Site 4 – Grassland: Ideal 

for field voles 

Figure 5.4.  Four different sites were chosen of different habitat 

types as voles prefer difference areas due to their diets. Five of 

each trap were placed in a transect, every other trap was set to 

active and were swapped over each week.  
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5.3 Results 

5.3.1 Determining The Species of Faecal Pellets Collected from Inactive Traps 

 A random forest built using pellets from the active traps gave an accuracy of 91±2% (training 

set, 70% of samples) and a prediction accuracy of 86±6% (test set). The intensities of the top 

five most discriminant mass bins significantly differed between the three species (Figure 5.5). 

This model was then used to predict the species of the faecal pellets collected from the 

inactive traps. The species distribution identified by camera traps and REIMS analysis of 

pellets collected from inactive traps was compared for thirteen traps (Figure 5.6). As 

expected, there were slight differences between the inactive and camera traps, as not all the 

animals visiting a trap will leave a faecal pellet. There was only one trap where REIMS 

identified an individual as a species not observed visiting the trap on the camera. An ANOVA 

confirmed no significant difference between the distribution of each species between the two 

methods (Bank vole p=0.21, Field voles p=0.86 and Field mice p=0.22). These results suggest 

that the random forest model has correctly identified the faecal pellets from the inactive 

traps.  
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*** *** 

*** 

*** *** 

Figure 5.5 Four different sites were chosen of different habitat 

types as voles prefer difference areas due to their diets. Five of 

each trap were placed in a transect, every other trap was set to 

active and were swapped over each week.  
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 Bank Vole Field Vole Field Mouse 

Figure 5.6. The species distribution of samples collected from 

day one from 13 traps. The camera data is the total number of 

times any animal was observed on camera. The faecal samples 

collected from the inactive traps were analysed using REIMS 

and the species predicted using the random forest built with 

all samples collected from the active traps. If REIMS was not 

able to distinguish between samples the data would show an 

even distribution of all three species. Trap 25 was the only 

trap that REIMS classified a sample as a species that was not 

observed on camera.   



  
 

189 
 

5.3.2 Species Distribution of Rodents Across Four Different Field Sites  

The total number of observed animals is summarised in Table 5.1. There was no significant 

difference between the species distribution using the REIMS method (inactive traps) and 

using camera traps (ANOVA p > 0.19). There was a significant difference between the species 

distribution using the live trapping method (active traps) compared to cameras (Kruskal-

Wallis, p<0.003) and inactive traps (Kruskal-Wallis, p<0.0009) (Figure 5.7). The distribution of 

species varied throughout the 24 hours of camera trap footage that was analysed, only bank 

voles were active during the day, and field voles became active before field mice (Figure 5.8). 

The camera and inactive traps analysis showed that field mice were the most abundant, 

followed by bank and field voles. The results for the active traps suggested that field mice 

were the least abundant; it did suggest that there were more bank voles than field voles, as 

with the other two methods. The species distribution of voles was as expected for three sites,  

 

Method Site Bank Vole Field Vole Field Mouse 

Active Trap All Sites 115 72 30 

Camera Trap All Sites 481 202 535 

Inactive Trap All Sites 309 144 499 

 

Active Trap Site I 1 48 10 

Camera Trap Site I 18 180 156 

Inactive Trap Site I 20 51 125 

 

Active Trap Site II 42 2 9 

Camera Trap Site II 185 4 225 

Inactive Trap Site II 89 20 127 

 

Active Trap Site III 44 0 7 

Camera Trap Site III 278 21 154 

Inactive Trap Site III 135 17 171 

 

Active Trap Site IV 28 22 2 

Inactive Trap Site IV 65 56 76 
 

Table 5.1. The total number of individuals caught in camera 

traps, observed on camera or faecal pellet classified with REIMS 

of each species for all four sites. No cameras were placed in site 

IV. 
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Figure 5.7. The total species distribution across all four sites and 

for all four weeks. The tube trap samples were the animals that 

were caught in the closed traps and identified through 

observation. The camera traps samples was the total number of 

times an animal of each species appeared in the camera trap 

footage over a 24 h period. There was a total of 15 cameras 

places in front of the open traps in sites 1, 2 and 3, the animals 

were identified through observation. The REIMS analysis 

samples were the faecal samples collected from the open traps 

over four weeks from four sites. The samples were analysed with 

REIMS and random forest model was used to predict the 

species.  

Species Distribution (%) for live trapping (Active Traps)  

Species Distribution (%) for Camera Traps 

Species Distribution (%) for REIMS analysis (Inactive Traps) 
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but site IV had more bank voles than expected. The species distribution also varied between 

methods used for each site (Figure 5.9). The active traps showed fewer field mice for all four 

sites than the other two methods. In site III, no field voles were trapped in the active traps, 

but a small number was observed on the cameras and through REIMS analysis (inactive traps). 

The species distribution for the camera traps and REIMS analysis (inactive traps) were more 

like each other than compared live trapping (active traps) distribution.   
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Sunrise Sunset 

Figure 5.8. The number of individuals of each species that interacted with 

the open tube trap at a certain time from the camera trap footage (n=15). 

Field Mice were almost exclusively observed at night. Bank voles were 

observed more often at night but would also visit traps during the day. 

Field voles did not visit the traps during the day as much as bank voles but 

were observed earlier than field mice. Active and inactive traps were 

checked between 11 am and 6 pm.  
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Site I  

Camera Traps Inactive Traps 

Site II  

81% 

2 
17% 

51% 
44% 

5% 

26% 
64% 

10% 

38% 54% 

10% 

45% 55% 

>1% 

79% 

17% 
4% 

Site III  42% 53% 

5% 
86% 

14% 

79% 

17% 

4% 

Site IV  

54% 
42% 

4% 

28% 

33% 39% 

Figure 5.9. The total species distribution for each site from all 

four weeks, no cameras were placed in site 4. The species 

distribution varied for each site habitat type varied and suited 

different species. Sites one and four were grassland and preferred 

by field voles. Sites Two was a woodland and sites three was 

hedgerows both were preferred by bank voles. The active traps 

had a smaller number of field mice compared to the cameras and 

inactive traps. Site four had a higher number of bank voles than 

expected   
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5.4 Discussion  

5.4.1 Comparison of the Three Different Methods Used to Determine Species Distribution  

5.4.1.2 Live-Trapping (Active Traps) 

The advantage of using active traps is observing the individual closely. It is the best 

method for determining other attributes about the animals, such as sex, health, pregnancy or 

lactating status. Mark-recapture methods can be used with live trapping to track an individual 

and determine their home range. The benefit of live trapping is that all the data was collected 

on the day of trapping; no additional analysis time was required, such as watching videos or 

lab work needed to establish species distribution. There are fewer costs; trapping requires 

the up-front cost of the traps, bait and bedding. Disadvantages include detrimental effects on 

the animal; this includes handling the animal (Gelling et al., 2009) and keeping the animal in 

the trap overnight (Fletcher and Boonstra, 2006). A study trapping bank voles and field mice 

found traditional handling methods caused a reduction in the animal's immune response 

compared to animals that were trapped but not handled (Gelling et al., 2009). Corticosterone 

concentrations increased in meadow voles caught in Longworth traps (Fletcher and Boonstra, 

2006). The temperatures were relatively high during the fieldwork period, and covers made 

from grass were placed over any exposed traps to help keep the temperatures low. Apples 

were placed in the traps to help with hydration, but there were many incidents when the 

caught animal did not seem to eat them, which could have caused the animal to become 

dehydrated. However, it could be that the animals only eat apples when they are dehydrated. 

Using live trapping means animal identification depends on the person checking the traps. 

Therefore the species classification accuracy is reliant on the ability of the person to 

determine the differences between species. The species distribution of the tube traps greatly 

underestimated the number of field mice in the area. This is because field mice are nocturnal, 

whereas the voles were observed on the camera traps visiting traps throughout the day 

(Figure 5.8). Voles are, therefore, more likely to visit the trap first and set it off, suggesting 

there are more voles in the area than mice.  

5.4.1.2 Camera Traps  

The advantage of camera traps was the potential to obtain behavioural information and 

observe other species, including shrews and hedgehogs. How the animals used the traps 
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varied between species, bank voles would quickly enter the trap, take food and leave the trap 

area. Mice and field voles would take more time interacting with the trap before entering. 

Mice and field voles were more likely to spend time in the trap or take food from the trap and 

sit outside the trap for long periods. The advantage of cameras over live trapping is the 

information can be stored and investigated later for different research purposes. The camera 

traps also produced the most data, although this meant there was too much to be processed. 

Camera traps were able to observe every animal that visited the trap, unlike tube traps which 

only capture the first animal to visit, and REIMS can only identify animals that leave faecal 

pellets. Camera traps are non-invasive; there is no interaction with the animal, and the animal 

is not contained for any time. Camera traps also required the least amount of time in the field, 

the batteries were changed in the camera each day, but this took less time than collecting 

pellets from traps or handling animals. The camera traps’ disadvantage was the time required 

to analyse the data. So much video was collected that data was only collected from one night 

for each trap. The amount of footage collected was higher than expected due to the 

population boom, so in some studies, too much footage may not be an issue. If it was known 

that there was such a high population, fewer cameras could have been used, and cameras 

could have been used in site IV. There were incidents of data being unusable from the camera 

due to the camera view being obstructed, usually due to bad weather. Heavy rain obscured 

the footage, so it could not determine what animals were present. It was difficult to identify 

species that visited during dusk when there was low vision due to lack of sunlight, but the 

camera had not yet switched to night vision. Species identification could be difficult even 

when the camera was not obscured. The camera trap method relies on human identification 

and is much harder to determine species than live trapping. Identifying features such as ears 

and tails may be challenging to see, and most of the videos were in black and white, so colour 

could not be used to determine between bank and field voles. The animals would move so 

fast that the images were blurred when stopping the video for identification. The species 

identification using camera traps likely had the lowest classification accuracy. To confirm this, 

other people would need to watch all the trap videos and compare results. The data from the 

cameras were based on the number of videos of a species, but likely many videos were of the 

same individual. It was probable that all three species would return to the trap, so the species 

distribution of all videos is representative of the number of individuals.  
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5.4.1.3 REIMS Analysis of Pellets from Inactive Traps 

The advantage of using REIMS for population monitoring was identifying multiple animals in 

a trap, not just the first to visit. Out of the 20 inactive traps over the four weeks, samples 

could be collected 280 times. Samples were collected from tubes 227 times, with a successful 

collection rate of 81%. This was higher than the rate at which individuals were caught in the 

active traps; the active traps had a collection rate of 78%. Collecting faecal pellets from the 

tubes took about the same time as handling animals from closed traps. Unlike live trapping, 

the traps are not checked twice a day. Active tube traps need to be checked regularly to 

release any enclosed animals. Collecting faecal pellets means stored biological samples can 

be used for further testing, such as DNA analysis or providing diet information. The REIMS 

method is also non-invasive and does not rely on human observation for species 

identification. The random forest classification accuracy of samples from active traps was 

92%. Therefore model likely identified 92% of the inactive trap samples as the correct species. 

The classification accuracy of the other methods will depend on the individual researchers’ 

ability to distinguish between species. Even for a researcher with a high ability to classify 

rodent species, it is unlikely that the classification accuracy when using camera traps would 

be higher than 92% due to the number of videos that do not show a clear image. The 

disadvantage of REIMS was the extra analysis steps required; the burning of the samples took 

more time compared to live trapping. Access to a mass spectrometer was required; mass 

spectrometers are very expensive and inaccessible to some research groups. The cost of 

running samples on a mass spectrometer is relatively low. A known model is required to 

identify the unknown samples, which must be burned simultaneously with the unknown 

samples. However, the known samples do not need to be collected simultaneously with the 

unknown samples. As shown in chapter four, stored samples could predict the unknown 

samples. Despite the potential extra costs and analysis required, there are many advantages 

of using REIMS compared to the other two methods (Table 5.2)    
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Other methods could be used to collect faeces besides leaving tube traps open. An 

undergraduate student explored other methods of collecting faeces and found that using an 

upside-down clear food container on top of a piece of wood with bait was sufficient for 

collecting faecal samples (Figure 5.10). Further work could be carried out to determine if 

REIMS could analyse pellets found by chance in the wild, as they would be a random sampling 

method that is not biased due to using bait.  Previous large-scale monitoring programmes 

have relied on volunteers using live trapping techniques (Flowerdew et al., 2004). Using 

REIMS analysis would vastly reduce the amount of live trapping required, and it would be 

easier to obtain volunteers as they would not need to know how to identify species.  

 

 Active Traps Camera Traps Inactive Traps 

Accurate representation of species distribution  x ✓ ✓ 

Non-invasive x ✓ ✓ 

Identification by observation  ✓ ✓ x 

Additional analysis required  x ✓ ✓ 

Additional costs x x ✓ 

Allowed for multiple sampling  x ✓ ✓ 

Time-consuming  x (least) ✓ (Most)  ✓ 

 

Table 5.2 The advantages and disadvantages of using each 

method to establish species distribution of rodents. The REIMS 

analysis of faecal pellets collected from inactive traps had the 

most advantages, but extra costs may limit its use.    

 



  
 

197 
 

5.4.2 The Affect of the Population Boom   

The identification of REIMS samples could not be confirmed using camera traps due to the 

population boom. The population increase was likely due to the COVID-19 pandemic and the 

relatively mild winter. Due to the pandemic, the grass and hedges were not cut back as usual. 

Rodents prefer enclosed spaces (Jensen et al., 2002), so the rodents may move to other areas 

when the grass is cut during the summer. Not cutting the grass would also lead to more food 

during the year than in pre-pandemic winters. Rodents only breed in the summer, and the 

population usually declines over winter. With a mild winter, more individuals are likely to 

survive to breed, and they are more likely to breed earlier (Kaikusalo, 1972). Site IV may have 

had more bank voles than expected because of the increased rodent population. Although 

site four was mainly grassland, it was between two woodland areas. Bank voles were more 

likely to be in the grassy areas to move between the two patches of woodland or because 

they had to create home ranges in these areas as there was no more room in the woods. The 

home ranges of voles do not usually overlap, although large males may tolerate younger 

males. Larger, more dominant individuals may force others to move into less preferable areas 

Figure 5.10. An alternative method to collecting faecal pellets rather 

than using traps. A plastic containers is attached to a piece of wood with 

food placed inside. The container can be lifted to remove faecal pellets. 

Animals can enter and leave, since the trap is clear the animal can see 

there is no risk of being trapped. These traps could be checked less often 

than traditional traps since there is no risk of trapping an animal. It is 

also easier to obtain the faecal samples when no bedding is required.  

Wooden Slab 

Plastic Food 

Container 

Small mammals 

enter/leave here Harry Hamster used 

as Bait 
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when resources are scarce (Lin and Batzli, 2004). It is rare for such a high trapping rate. The 

highest daily trap rate the previous year was only 31%. This high trap rate probably 

contributed to the underestimation of field mice, as other studies have shown camera 

trapping to be comparable to live trapping (De Bondi et al., 2010).    

The population boom meant there was too much camera trap data to process by one 

person. Advances in deep learning algorithms will allow computers to watch and record data 

from camera traps. Deep neural networks (DNN) were used to extract information from 

camera trap images from the Snapshot Serengeti dataset. The model was trained to detect if 

an image contained an animal, the species, the number of animals and if they performed one 

of six behaviours. Any images with more than one species were removed from the dataset. 

The DDN was unsuccessful at identifying rare classifications, including the presence of 

offspring, which only occurred in 1.8% of images (Norouzzadeh et al., 2018). Most of the 

literature and current projects (Carl et al., 2020, Loos et al., 2018) attempting to improve the 

automatic detection of species from camera trap videos are built to detect large mammals. 

Studies are being used in lab settings to track small animals (Bains et al., 2016, Singh et al., 

2019), but it is unlikely that deep learning will be able to determine the differences between 

wild bank and field voles for some time yet.     

An issue with any trapping method is that it is not considered random due to neo-

phobia. Neo-phobia is the fear of novel items; therefore, small mammals may avoid traps. 

This could cause biased sampling based on health and age, as individuals needing food will 

take more significant risks and enter the trap. Tube traps may enforce neo-phobia, and 

animals may learn to avoid traps (Stryjek et al., 2019). Due to the population boom, it is 

unlikely that neo-phobia was causing a sample bias towards unhealthy animals, as most 

animals would lack resources in high-density populations. Other studies have shown that the 

number of times an individual rodent is willing to enter a trap can vary throughout a trapping 

session (Brehm and Mortelliti, 2018). The live trapping in this study was biased towards voles 

as they arrived at traps earlier. Collecting faeces through open traps is also less likely to 

increase neo-phobia as the animals would not associate the open traps with a negative 

experience.  
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5.4.3 Conclusion  

The relative distribution was different for each species depending on the method used.  

Camera traps could identify nearly every individual that visited the trap; REIMS could only 

establish individuals in the trap long enough to defecate, and live trapping could only identify 

the first animal to find the trap. More samples were collected using the REIMS method than 

the tube traps. Camera traps recorded the most data, but until automated detection 

technology and algorithms are developed to the point of widespread usage, they are not the 

most practical choice for small mammal monitoring. REIMS was a more straightforward 

method to implement than camera traps, although this was due to the population boom. 

Unlike live trapping, it did not underestimate mice and is better for the animal’s welfare. 

Although some live trapping would be required to build a random forest to predict the 

unknown samples, only a small number of known samples would be required to predict a 

large number of unknown samples. REIMS may be best utilised for large-scale, long-term 

monitoring projects. These projects would be more cost-effective as only one mass 

spectrometer would be required. Long-term projects are usually carried out in collection 

blocks rather than continuously each year. A few samples collected via live trapping during 

each block could be used to predict the species of all other faecal pellets collected. Further 

work would need to be required to determine the effect of location on prediction accuracy. 

But a training model with samples from all locations may be able to predict samples from all 

locations, or a training model would be required for each location. If a model of multiple 

locations could be used, REIMS could conduct monitoring studies in multiple countries with 

all samples sent back to one location for REIMS analysis. In conclusion, REIMS can be used to 

monitor wild populations of rodents as results are comparable to traditional methods such as 

live trapping and camera traps.  
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5.5 Ethical Statement  

Fieldwork was carried out in accordance with international best practice guidelines, handling 

of animals was minimal, and animals were released at the site of capture. The fieldwork did 

not involve pain, suffering or lasting harm, and no specific licences were required to carry out 

the work.   
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Chapter 6: Discussion   
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6.1 Key Findings 

REIMS can analyse faecal samples for population monitoring. Faecal pellets can be burned 

using a diathermy electrode to produce an ‘aerosol’ drawn into a TOF mass spectrometer, 

producing a spectral fingerprint unique to the sample. Machine learning or dimension-

reducing analytic methods can be applied to discriminate the samples by various classification 

groups. The ease of discrimination depends on the factor being analysed, the classification 

accuracy of species was higher than differences within a species, and differences within an 

individual were the hardest to classify. Classification accuracy improved dramatically with 

sample numbers, especially for classification factors with more subtle differences and classes 

that required a balanced number of samples. The results suggest that analysis can work with 

samples that have been stored. Therefore for ongoing projects, samples can be stored in a 

freezer until an adequate number of samples are acquired. Sample preparation is an essential 

factor to consider before REIMS analysis for herbivores. REIMS could discriminate between 

whole pellets from two okapis but could not discriminate between homogenised pellets of 

two individuals. Okapis have particularly inefficient digestive systems, and the method used 

to prepare samples for storage may have reduced faecal content and increased foliage 

content. The ability to discriminant between individual herbivores is promising and suggests 

that REIMS analysis could be used to analyse faecal samples of other large mammals. The 

results suggest that the spectral fingerprints are influenced slightly by the time the samples 

are kept in storage but that these changes do not affect the ability to classify samples by 

species or sex.  

The principles of the 3Rs (Replacement, Reduction and Refinement) were proposed in 

1959 and suggest all scientists carrying out research with live animals should find ways of 

implementing the 3Rs to reduce the suffering of animals (Stratton and Burch, 1959). REIMS 

has the potential to refine experiments by providing an option to collect information about a 

species through the non-invasive collection of their faeces. The results using REIMS to 

discriminant species from wild samples confirmed that faecal pellets can be collected from 

small mammals without live-trapping. The method of analysing pellets collected from inactive 

traps was more accurate in species distribution than live trapping. As well as being better for 

animal welfare, collecting faecal pellets was more manageable and efficient than live trapping 

in the field. Although time is required to burn and analyse the pellets after collection, using 
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REIMS still provides many benefits. The time required to burn the pellets was less than 

required to analyse camera trap footage from the same collection period.  The key findings 

are summarised in Table 6.1. 
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Table 6.1. A summary of the adavtages and disdavantages of each Factor REIMS was used to investigate in this study  

 

Factor analysed 

by REIMS 

Advantage  Disadvantage  Conclusion  

Distinguish  Sex  Classification accuracy of over 80% 

was achieved when using adult 

samples  

 

Classification Accuracy was less than 

species 

Required a large number of samples  

REIMS could be used to distinguish the sex of adult 

samples  

Distinguish Age  Significant differences were observed 

between adult and juvenile samples 

for some mass bins 

Could not obtain a classification 

accuracy of 80% for adults and juveniles  

Could potentially classify age for animals with a longer life 

span as some differences observed  

Distinguish Strain  Could distinguish between some 

strains of lab mice with over 80% 

accuracy  

Could not distinguish between the more 

closely related strains 

The classification was only achieved when class number 

was balanced. The results suggest REIMS could distinguish 

between sub-species  

Distinguish 

Pregnancy 

Significant differences were observed 

between pregnant and non-pregnant 

samples for some mass bins 

Could not be used to determine 

pregnancy of long-termed stored 

homogenised samples  

Without further investigation, it cannot be determined if 

REIMS is not able to distinguish pregnancy in any okapi 

samples or just not in archived homogenised samples 

Faecal samples of 

ruminants  

It could be used to determine 

between individuals when using whole 

pellets  

It could not be used to determine 

individuals when using archived 

homogenised samples 

REIMS can be used to analyse faecal pellets of ruminants, 

but more work is needed to investigate the impact of 

sample preparation and storage  

Distinguish 

Individuals 

REIMS could be used to determine 

between individuals when using whole 

pellets 

Only two individuals of one species 

were compared  

The study should be repeated with other species and more 

individuals to confirm that REIMS can be used to identify 

individuals  

Archived Samples Older samples could be used to make 

a predictive model to determine the 

species and sex of lab mice and voles 

of newer samples 

Cleaning the STEP wave meant samples 

analysed before the cleaning had 

different relative intensities than those 

analysed after. The archived okapi 

samples could not be distinguished by 

pregnancy or individual 

Archived samples may need to be considered on a case-by-

case basis. The REIMS instrument needs to be monitored 

for changes, and spectra may need to be adjusted when 

working with archived samples. More work is needed to 

determine if sample preparation had more of an effect 

than storage length  

Samples from the 

Field  

REIMS could be used to determine the 

species of samples collected from the 

wild. It is less invasive than live 

trapping.  

More time-consuming and expensive 

than live trapping alone.  

REIMS analysis could be used as an additional non-invasive 

tool for conservationists and ecologists  
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6.2 Further Work  

It would be a benefit if REIMS could detect rare species in the field as it can be easier to collect 

faeces of rare animals than to observe them. The hazel dormouse is endangered in the UK, 

and a national reintroduction programme is needed to help the species recover. The 

dormouse monitoring is challenging using live trapping as they primarily live in the canopy of 

woodland. Monitoring of the dormouse is vital to why some reintroduction schemes have 

worked while others have not. The UK National Dormouse Monitoring Programme (NDMP) 

have been using nest box recording schemes organised by volunteers since 1988. Nest boxes 

are set up at various sites, and volunteers check the nest boxes around once a month. The 

number of nest boxes provided has varied between 10 and 500. A review of the nest box 

recordings found a population decline of 72% between 1993 and 2014 (Goodwin et al., 2017). 

Although nest boxes help monitor long-term population trends, they can underestimate a 

population by two-thirds during short-term surveys compared to live trapping methods 

(Vogel et al., 2012). Another method of monitoring dormice is to use footprint tunnels. 

Footprint tunnels are long plastic open-ended tubes with a sheet of white cardboard inside. 

Ink is placed at the tunnel entrance, and as an animal walks through, they leave footprints on 

the white cardboard; the footprints can be used to identify the animal (Melcore et al., 2020). 

Tunnel footprints are highly cost-effective for monitoring small mammals but rely on an 

excellent clear footprint for identification. If too many animals pass through the tube, or the 

same animal moves back and forth through the tunnel, it can be complicated to distinguish 

footprints. REIMS could be used along with these methods; faecal pellets could be collected 

from nest boxes and footprint tunnels to identify animals. Faecal samples could identify what 

animals have been in the nest boxes, even if they were empty at the time of collection or if 

footprints are unclear. Faecal samples have already been collected from wild dormice using 

nest boxes to be analysed using PCR to evaluate their diets (Chanin et al., 2015). Samples from 

nest boxes with dormice present could be used to build the random forest model needed to 

predict the species of samples collected from empty boxes or tunnels. Samples could also be 

collected from dormice that are quarantined before being reintroduced. REIMS could also be 

used to identify faecal samples found opportunistically.      

More work is required to establish the benefit of using REIMS in zoo and conservation 

research. The results from this study suggested that REIMS could be used to discriminant 
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individuals from whole faecal pellets from herbivores. It would be beneficial to determine if 

REIMS could be used to analyse faeces from other species. Being able to detect pregnancy 

earlier than they can with hormone assays could still possibly be achieved using REIMS. This 

investigation in this study was limited due to COVID restraints; only samples from one species 

were analysed and stored for a significant time. The samples used for pregnancy were also 

prepared differently than those used for individual discrimination, which may have had an 

effect. Therefore, repeating the pregnancy study, using whole pellets and samples collected 

simultaneously from multiple individuals, would be beneficial. This would mean obtaining 

samples from more than one zoo. It may be easier to begin with a different species, such as 

zebras, as there are more of them in zoos than okapis. A preliminary study could be carried 

out using samples from lab mice already being used for breeding. Collecting samples from 

multiple individuals without storing them for a long time would be easier.  If pregnancy can 

be discriminated in the lab mice but not in zoo animals, it would suggest that herbivore pellets 

were too difficult to analyse. It may also be beneficial to investigate species of herbivores as 

species was the easiest factor for REIMS to discriminate. If REIMS cannot be used to identify 

species of some herbivores, then it is unlikely REIMS could analyse any factor of herbivores. 

REIMS should be able to discriminate species of herbivores as it could discriminate between 

two okapi individuals. If REIMS can be used to investigate large mammals in captivity, it could 

then be used to analyse samples of wild animals. This would work best if samples from captive 

animals could be used to build the random forest models to predict phenotypes of wild-

collected samples.  

One of the most significant benefits REIMS could bring to zoos would be to detect sex 

in the excrement (guano) of birds. Identification of sex through observation can be very 

difficult and almost impossible for some adult species and all chicks. It is vital in zoos to 

determine sex early as chicks of a different sex may have different husbandry needs. If the 

bird is to be relocated for breeding purposes, it will allow the animal more time to settle in if 

it is moved as soon as possible. It would also increase the accuracy of matching breeding pairs 

(Griffiths, 2000). Sex identification of chicks can be necessary for research purposes. It has 

been found that temperature affects the sex ratio of the Australian brush-turkey. The sex 

ratio was due to embryo mortality at particular temperatures rather than temperature-

dependent sex determination found in reptiles (Goth and Booth, 2005). Faecal samples can 
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be collected easily from captive and wild birds using a plastic box, a vinyl-coated cloth and a 

plastic tray. The tray with plastic cloth is placed at the bottom of the box with a mesh covering 

to keep the bird raised above the collection tray. The bird can be placed in the box, and after 

defaecation, the contents in the tray can be poured into a plastic tube to be stored until 

analysis (Borrelli et al., 2020). The sample could be burned using either the diathermy 

electrode or bipolar forceps. The composition of bird faeces is different to mammals, so the 

samples may need to be prepared differently, such as by being dried before burning. If the 

samples are capable of being burned and producing a REIMS signature, then discrimination 

of bird sex could be analysed using the same method as the lab mice.  

 If REIMS can be used to discriminate pregnancy in samples, it would suggest that 

REIMS may have the potential to discriminant other physiological variations such as stress. 

Good animal welfare is defined by the five freedoms: freedom from hunger and thirst, 

discomfort, pain, injury and disease, freedom to express normal behaviour and freedom from 

fear and stress. This last freedom is the hardest to measure. An animal’s response, especially 

behaviour to a stressful event, will depend on species, age, life history, pregnancy or presence 

of offspring and could vary due to “personality”.  Therefore, it is better to have a quantitative 

measurement of stress that anthropomorphism cannot influence (Wolfensohn et al., 2018). 

The stress response has been measured using heart rates, respiration rate, blood pressure 

and temperature (von Borell et al., 2007). The problem with these techniques is that the 

method themselves are invasive and may produce a stress response. The other commonly 

used method is to measure hormones, particularly cortisol. Cortisol concentrations have been 

shown to increase compared to the basal cortisol concentration when an individual is exposed 

to a short-term stressor, such as being transported (Tozlu Çelik et al., 2021). However, when 

an animal is exposed to a long-term stressor, such as poor housing conditions, cortisol 

concentration may not increase. Cortisol fluctuations also occur for factors other than a stress 

response, which may not accurately indicate stress (Wolfensohn et al., 2018). REIMS could 

potentially measure stress and detect the presence of cortisol, but the REIMS spectra may 

also contain other stress indicators. The spectral fingerprint may vary for animals before and 

after a stressful event and therefore randomForest models could be used to discriminant 

between a stressed and non-stressed animal. This could be used by zoos and farms to 

determine how stressful a particular experience is such as transport or a medical procedure. 
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For this to be investigated it would require purposely stressing multiple animals which have 

several ethical considerations. It would therefore be better to investigate REIMS’s ability to 

discriminant stress by collecting faeces from animals already being exposed to a stressful 

event for other purposes. This could involve collecting faeces from lab mice that are already 

being researched for stress-related reasons are animals that are exposed to invasive 

procedures for medical reasons.  

REIMS could be used as a quick preliminary study before investigating longer, more 

complicated mass spectrometry methods. Faecal samples have been analysed using other 

mass spectrometers, and a spectral fingerprint of bovine faeces was achieved using LC-HRMS 

(High-Resolution Mass Spectrometry) (Cesbron et al., 2017).  MALDI-TOF analysis was used to 

establish pregnancy bio-markers in the faeces of polar bears that were unique to pregnant 

samples. Faecal pellets were collected from three pregnant and three non-pregnant polar 

bears housed in a zoo. Protein was extracted from the samples by suspending samples with 

phosphate-buffered saline (PBS), then agitated for 30 min, and centrifuged for 20 min. The 

supernatant was then filtered and added to ammonium sulphate, mixed for 30 min, 

centrifuged for 30 mins, resuspended in PBS, desalted, and then a Bradford assay was to 

evaluate protein concentration. The samples were then precipitated, resuspended in lysis 

buffer, mixed with dye and kept in the dark on ice for 30 minutes. Lysine was added to stop 

the labelling reaction and left for another 15 minutes in the dark. Buffers were added, and 

samples were separated using 2D-gel electrophoresis. The bands present due to pregnancy 

were extracted, and the peptides were then identified using MALDI-TOF. Two proteins had 

much higher concentrations in pregnant samples than in non-pregnant ones (Curry et al., 

2012). This method required multiple sample preparation steps before MALDI-TOF could 

analyse the samples. REIMS and random forest models could be used to identify if there are 

any ions present that can discriminant between samples before being identified by other MS 

methods. REIMS is a much faster method that can be used to confirm an investigation has 

potential before using the much longer methods required by running gels and mass 

spectrometry.  

It would be interesting to investigate what influences the spectral fingerprint 

produced by REIMS. If the microbiome produces a REIMS spectrum, it will benefit research in 

multiple disciplines. A host's microbiome is influenced by the microbes obtained from parents 
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and their environment and can affect the individual’s health. It is unknown to what extent the 

distribution of the microbiota present in the environment influences an individual's 

microbiota (Cullen et al., 2020). There are many reasons to investigate the microbiome; some 

bacteria in the gut have been found to increase cancer development, and manipulating the 

microbiome could improve treatment (Bhatt et al., 2017). Changing the diets of mice from 

low-fat and plant-based to high-fat, high-sugar diets altered the microbiome after one day 

and increased adiposity in the mice (Turnbaugh et al., 2009). Some neurobiological diseases, 

including Parkinson’s and Alzheimer’s, have been affected by the microbiome and could be 

used to establish a biomarker (Tremlett et al., 2017). The microbiome is more diverse 

between species than individuals of the species. If the microbiome influences the REIMS 

spectrum, it would account for factors such as species having higher classification accuracies 

than sex.  REIMS might not be used to determine a microbiome's diversity or the exact 

composition but could be used to track changes. One method to determine if the microbiome 

influences the spectral fingerprint would be to compare the faeces of germ-free mice to mice 

of the same species, sex and age but exposed to the environment. If REIMS could be used to 

discriminate between the germ-free and non-germ groups, then the microbiome may 

influence the spectra. Sibling groups that were just born could be split between two nursing 

mothers. If REIMS can discriminate between the nursing groups but not their sibling group, 

this would also suggest a change in the spectrum due to the microbiome. The microbiome 

could be changed by providing probiotics or antibiotics to some mice and not others to be 

distinguished by REIMS.  

 

6.3 Conclusion  

REIMS is a non-invasive technique for analysing animal faeces for population monitoring. 

REIMS can be used to discriminate species, sex, and age of faecal pellets from rodents and 

has the potential to be used for other species and to discriminate physiological differences. 

REIMS could help conservation by helping breeding programmes in zoos, establishing species 

distribution, and identifying rare species. Further work would establish if REIMS could be used 

to monitor the welfare of animals by measuring stress or the microbiome. The ability of REIMS 

to discriminate depends on the samples being used and the investigated factor. However, 

extra steps and refinements can be made to increase classification accuracy, including 
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increasing the sample number, changing the sample type (whole pellet) and reducing the 

number of mass bins used in random forests. More advanced machine learning techniques 

like neural networks may also increase classification accuracy. This study has examined some 

of the possible uses of REIMS for faecal analysis, but more research would demonstrate the 

true potential of this method.  
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Chapter 7: Publications 
Publication contributions completing this PhD  
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7.1 Rapid identification of species, sex and maturity by mass spectrometric 

analysis of animal faeces 

DAVIDSON, N. B., KOCH, N. I., SARSBY, J., JONES, E., HURST, J. L. & BEYNON, R. J. 2019. Rapid 

identification of species, sex and maturity by mass spectrometric analysis of animal faeces. BMC 

Biology, 17, 1-14. 

 

I collected and analysed the faecal samples by REIMS using the method established in chapter 

2. I used random forests to discriminate the sex, maturity and strain origin of the faecal 

samples and determined that samples labelled as juveniles above 30 days old were always 

classified by randomForest as adults (Figure 5). I was able to establish what bins were most 

responsible for the differences between males and females and between adults and juveniles 

using RandomForestExplainer (Figure 6). I repeated this for the different lab strains and 

carried out LDA-PCA to create kernel density and scatter plots to highlight the separation 

between strains (Figure 7). The software provided by Waters to normalise and bin the data 

was updated between the initial species discrimination analysis and my analysis. I, therefore, 

reanalysed all the work by Nicola Davidson using the New Software and all my work using the 

old software to ensure there were no differences. There was no significant difference 

between the random forest accuracies using either software therefore in the paper, species 

discrimination used the results from the old software and sex, age and strain used the results 

from the new software.  
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7.2 The application of rapid evaporative ionization mass spectrometry in the 

analysis of Drosophila species—a potential new tool in entomology 

WAGNER, I., KOCH, N. I., SARSBY, J., WHITE, N., PRICE, T. A. R., JONES, S., HURST, J. L. & BEYNON, R. J. 

2020. The application of rapid evaporative ionization mass spectrometry in the analysis of Drosophila 

species—a potential new tool in entomology. Open Biology, 10, 200196 

 

The paper aimed to determine if REIMS could be used to discriminant different species of 

Drosophila by burning the whole insect. The study used the same random forest analysis I had 

developed for this PhD and I wrote the R scripts that were used to analyse the spectra 

produced by burning whole insects. This included random forests that were used to 

discriminate five different species of Drosophila (Figure 4) and the associated boxplot figures 

(Figure 5). The random forests were used to discriminant the sex of one species D. 

melanogaster and all five species combined and the associated kernel density and 

scatterplots (Figure 6).  
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7.3 Social status and ejaculate composition in the house mouse.  

BAYRAM, H. L., FRANCO, C., BROWNRIDGE, P., CLAYDON, A. J., KOCH, N., HURST, J. L., BEYNON, R. J. & 

STOCKLEY, P. 2020. Social status and ejaculate composition in the house mouse. Philosophical 

Transactions of the Royal Society B: Biological Sciences, 375, 20200083. 

 

The paper aimed to determine if the house mice changed the composition of seminal vesicle 

secretions due to social status. The protein content of the secretions was analysed using 

HPLC-MS; an electrospray ionisation source and an LTQ Orbitrap Velo mass spectrometer 

were used. The male house mice were divided into three groups, dominant, subordinate and 

control based on their scent-marking behaviour, dominant individuals will deposit more. The 

abundance of 29 proteins that were selected based on previous studies was used to compare 

the three groups. I performed random forest analysis to determine if the abundances of these 

proteins varied between dominant, subordinate and control individuals. I was able to 

establish which proteins varied the most between the three groups. I also performed an LDA-

PCA analysis to help visualise the results (Figure 5). I investigated the use of cforests instead 

of random forests, cforests consist of extra steps when creating the decision trees. The 

classification accuracy of the training data was generally higher than using random forests, 

but the training data was much lower. It could be the extra steps in the cforests cause 

overfitting and I, therefore, determine cforests would not be a sufficient method to use for 

predicting unknown samples which would be required for most studies involving REIMS.  
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