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A B S T R A C T   

Research evidence suggests that adipocytes in obesity might facilitate SARS-CoV-2 replication, for it was only 
found in adipose tissue of individuals with overweight or obesity but not lean individuals who died from COVID- 
19. As lipid metabolism is key to adipocyte function, and viruses are capable of exploiting and manipulating lipid 
metabolism of host cells for their own benefit of infection, we hypothesize that adipocytes could not only impair 
host immune defense against viral infection, but also facilitate SARS-CoV-2 entry, replication and assembly as a 
reservoir to boost the viral infection in obesity. The latter of which could mainly be mediated by SARS-CoV-2 
hijacking the abnormal lipid metabolism in the adipocytes. If these were to be confirmed, an approach to 
combat COVID-19 in people with obesity by taking advantage of the abnormal lipid metabolism in adipocytes 
might be considered, as well as modifying lipid metabolism of other host cells as a potential adjunctive treatment 
for COVID-19.   

Introduction 

COVID-19 severity and obesity 

SARS-CoV-2 is a positive-sense, single-stranded RNA virus. By 
binding its spike (S) protein to the host membrane receptor – 
angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 enters host cells 
by endocytosis for replication and infection [1]. People with obesity are 
susceptible to acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
infection with severe symptoms/complications and poor prognosis [2], 
and the consequently high hospitalization and mortality statistics should 
prioritize action for this particularly vulnerable population [3]. Obesity 
has long been associated with susceptibility to severe outcomes 
following respiratory viral infections such as influenza [4]. As the most 
significant character to define obesity – fat mass, can it promote SARS- 
CoV-2 infection [5]? Outside of the adipocyte, several lines of evidence 
suggest that excess adiposity could lead to impaired immune cell 

responses/defense against viral infection [6]. Inside of the adipocyte, 
can it actually facilitate SARS-CoV-2 replication to boost the infection 
quantitatively in patients with obesity? Body composition measure-
ments indicate that the percentage of fat mass could exceed 40 % in 
people with severe obesity [5], and ACE2 (assisting SARS-CoV-2 entry 
into the host cell) gene expression at the mRNA level is present in human 
adipose tissue, although protein expression has not been confirmed [7]. 
However, it is interesting to note that viral replication was only found in 
adipose tissue of individuals with overweight or obesity who died from 
coronavirus disease 2019 (COVID-19), but not in those with a BMI < 25 
Kg/m2 [8]. 

SARS-CoV-2 and adipocytes in obesity 

The key question is whether viral replication is associated with the 
quality of the adipocyte. Adipocytes are most specialized for lipid 
metabolism in terms of lipogenesis and lipolysis [9]. Even though SARS- 
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CoV-2 replication was observed in cultured human adipocytes, the dif-
ferentiation/lipid accumulation status was not examined in these adi-
pocytes [10]. Further study indicated that SARS-CoV-2 replication was 
accompanied by high levels of intracellular lipid/ triacylglycerol (TAG) 
in human adipocytes [8], which is consistent with the observation that 
viral replication was only detected in adipose tissue of patients who died 
from COVID-19 with obesity and overweight [8]. However, we specu-
late that rather than the most obvious manifestation – very high intra-
cellular TAGs, abnormal lipid metabolism in adipocytes may be the 
potential target for SARS-CoV-2 to hijack to promote its infection in 
obesity [11]. This is supported by RNA viruses rely heavily on other 
various host lipid metabolites such as free fatty acids (FFAs) and phos-
pholipids for its replication and further assembly [12]. Moreover, it has 
long been established that viruses are extremely good at exploiting and 
even modifying lipid signaling, synthesis and compartmentalization of 
host cells for their own benefit of entry and infection [13]. Therefore, as 
the site where significant abnormal lipid metabolism occurs, adipocytes 
in obesity might facilitate SARS-CoV-2 replication in themselves to boost 
the subsequent infection. 

The hypothesis 

In addition to impairing host immune defense against viral infection, 
adipocytes could facilitate SARS-CoV-2 entry, replication and assembly 
intracellularly to boost the viral infection in obesity. This could mainly 
be mediated by SARS-CoV-2 hijacking the abnormal lipid metabolism in 
the adipocytes. Hence, adipocytes in obesity might be a perfect reservoir 
for SARS-CoV-2. 

Evaluation of the hypothesis 

Adipocytes play a crucial role in maintaining metabolic and immu-
nologic homeostasis, especially by mobilizing FFAs from lipid droplets 
(LDs) to the extracellular environment – lipolysis [14]. Excess FFAs 
lipolyzed from adipocytes (abnormal lipid metabolism) in obesity are 
lipotoxic [15]. They could impair T-cells function, attenuate the adhe-
sion and phagocytic activity of macrophages, and even induce their 
apoptosis, thereby weakening the host’s immune defense against the 
viral infection [15,16]. In parallel, excess FFAs could systemically boost 
SARS-CoV-2 transmission by directly assisting membrane fusion be-
tween virus and other host cells (than adipocytes) in obesity [17]. This is 
realized by palmitoylation sites of viral S protein -covalent attachment 
of FFAs to the cytoplasmic side of viral S proteins in the endoplasmic 
reticulum (ER) [1,18]. 

Besides promoting the viral transmission among other host cells, how 
could adipocytes in obesity become a perfect reservoir for SARS-CoV-2 
by facilitating the viral entry, replication and assembly? 

Free fatty acids: bait, fuel or shield? 

As the major fuel tank located in the nearly first line of defense [19], 
adipocytes are extremely susceptible to be hijacked by invading path-
ogens. Although adipocytes are capable of eliciting immune responses 
(as immune cells do) [20], the disadvantage of immobility (mobility is a 
significant feature of immune cells) may have prompted them to develop 
unusual defense strategies against invading pathogens, which is a 
research area worth exploring. As no SARS-CoV-2 replication was 
detected in the adipose tissue of lean individuals who died from COVID- 
19 [8], we speculate that adipocytes could adapt their lipid metabolism 
to defend against SARS-CoV-2 infection. For instance, flux of FFAs from 
plasma lipoproteins (hydrolyzed by lipoprotein lipase secreted by adi-
pocytes) or the lipolysis – a ‘bait’ [21], might lure and assist SARS-CoV-2 
entry into adipocytes by palmitoylation mediated-membrane fusion for 
its later destruction (discussed in Lipid droplets: Nemesis). 

By contrast, SARS-CoV-2 entry into adipocytes could be boosted in 
obesity either by overexpression of ace2 or excess lipolysis induced- 

membrane fusion [22]. Once inside the adipocytes, abundant ‘ready to 
use’ intracellular FFAs resulted from lagged lipogenesis – turnover of 
intracellular FFAs to TAGs stored in LDs (another key feature of 
abnormal lipid metabolism in obesity) [23], might directly be exploited 
by SARS-CoV-2 for phospholipid synthesis and S protein modification, 
thereby intensifying its assembly in adipocytes. Recent studies have 
demonstrated that SARS-CoV-2 replication could be extensively reduced 
by reducing content of FFAs in host cells [24]. In terms of fueling SARS- 
CoV-2 replication and assembly in adipocytes, these abundant intra-
cellular FFAs might be subject to β-oxidation in the mitochondria before 
channeling into the tricarboxylic acid cycle for adenosine triphosphate 
(ATP) production. This tremendous workload of energy generation 
might explain high levels of oxidative stress in SARS-CoV-2-infected host 
cells of individuals with obesity [25]. Moreover, inhibition of mito-
chondrial β-oxidation of FFAs using trimetazidine has been suggested as 
a potential treatment for COVID-19-induced acute cardiac injury [26], 
as FFAs are the primary energy source for cardiomyocytes (similar to 
adipocytes) function and metabolism [27,28]. 

It is intriguing to note that SARS-CoV-2 might also use adipocytes in 
obesity as a hideout for immune evasion. Though immune cell infiltra-
tion is a hallmark of adipose tissue in obesity [29], the abundant 
intracellular FFAs (resulting from lagged lipogenesis) might disrupt lipid 
rafts in cytokine signal transduction [30], thereby blocking the immune 
response against SARS-CoV-2 in adipocytes in obesity. 

Lipid droplets: Nemesis or culprit? 

LDs are paramount in regulating adipocyte metabolism including 
buffering FFA-elicited lipotoxicity by lipogenesis [31]. As TAGs are 
accumulated between the two leaflets of the endoplasmic reticulum (ER) 
membrane, nascent LDs are proposed to emerge by budding from the 
outer leaflet or by excision of the outer and inner leaflets of the ER 
membrane [32], either of which processes could temporarily interrupt 
membrane integrity, thereby decreasing the surface tension of ER 
membrane [33]. As a result, vigorous formation of LDs in adipocytes 
could significantly loosen the ER membrane [34], which might be fatal 
for the formation of SARS-CoV-2 replication organelles, for high surface 
tension is indispensable for its tethering on the ER membrane [35]. 
Although these organelles consist of complex membrane structures that 
might potentially increase the surface tension of the ER membrane to 
facilitate tethering of double-membrane vesicles for viral replication 
[36], once lured inside the adipocytes, SARS-CoV-2 viral nucleic acids 
might be susceptible to intracellular destruction. The nemesis – vigorous 
formation of LDs, will disrupt the ER membrane and inhibit the for-
mation of the replication organelles. Without this protective microen-
vironment, the viral nucleic acids exposed to the cytosol will be rapidly 
destroyed by triggering innate immune responses [37], which might 
imply why no evidence of SARS-CoV-2 replication was detected in adi-
pose tissue of lean individuals who died from COVID-19 [8]. 

By contrast, besides copious material and energy (excess intracel-
lular FFAs), lagged formation of LDs in adipocytes in obesity could also 
provide the ER membrane with proper tension for SARS-CoV-2 to tether 
its replication organelles and indulge in replication. Paradoxically, in-
hibition of formation of LDs was observed to suppress SARS-CoV-2 
propagation in host cells [38]. However, it should be noted that in 
these experiments, the net effects of inhibiting synthesis of lipid medi-
ators to interrupt formation of LDs was lowering intracellular content of 
FFAs [38], which matches increasing formation of LDs in adipocytes. 

Adipocytes: medium? 

Secretory autophagy is exploited by various positive-sense RNA vi-
ruses for assembly and transmission [39]. Even though it is increased 
adipocyte degrative autophagy with which obesity is associated [40], 
SARS-CoV-2-induced oxidative stress might switch the increased 
degrative autophagy to secretory autophagy by altering the crosstalk 
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between the mitochondria and lysosomes [41,42]. SARS-CoV-2 exocy-
tosis/infectivity can thus be boosted, for the traditional ‘one assembly 
processed by the ER-to-Golgi intermediate compartment at a time’ being 
bypassed by multiple virus assemblies being packed in a single secretory 
autophagosome. 

Conclusion 

We hypothesize that in obesity adipocytes could protect SARS-CoV-2 
against host defense by inducing lipotoxicity in immune cells. Concur-
rently, SARS-CoV-2 could hijack the abnormal lipid metabolism in the 
adipocytes, specifically excess lipolysis and lagged lipogenesis, to boost 
its entry (as well as into other host cells), replication, assembly and even 
immune evasion. Furthermore, SARS-CoV-2 could promote secretory 
autophagy-mediated exocytosis to enhance the viral infectivity. Taken 
together, the adipocytes in obesity can be a perfect reservoir for SARS- 
CoV-2 (Fig. 1). 

Tackling obesity has never been an easy task, but reflected on excess 
(e.g., saturated) FFAs lipolyzed from adipocytes in obesity systemically 
boosting SARS-CoV-2 entry by palmitoylation mediated-membrane 
fusion, taking advantage of this abnormal lipid metabolism with un-
saturated FA supplementation could be a potential therapy, as unsatu-
rated FFAs could block the viral entry into host cells by interfering its S 

protein binding to ACE2 [43]. Modifying lipid metabolism of other host 
cells might be another promising adjunctive treatment for COVID-19, as 
activation of peroxisome proliferator-activated receptor γ in immune 
cells could induce lipogenesis/reduce intracellular FFAs to orchestrate 
host defense against SARS-CoV-2 infection [44–46]. 
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Fig. 1. In obesity (A) adipocytes could protect SARS-CoV-2 against host immune defense. (B) SARS-CoV-2 could hijack excess lipolysis to boost its transmission 
systemically as well as (C) entry into the adipocytes. (D) Lagged lipogenesis could supply SARS-CoV-2 with (E) the ER membrane with proper tension to tether its 
replication organelles; (F) FFA and ATP for its replication and assembly. (G) SARS-CoV-2 could promote secretory autophagy-mediated exocytosis. 

J. Zhu et al.                                                                                                                                                                                                                                      



Medical Hypotheses 171 (2023) 111020

4

References 

[1] V’Kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and 
replication: implications for SARS-CoV-2. Nat Rev Microbiol 2021;19(3):155–70. 

[2] Stefan N, Birkenfeld AL, Schulze MB. Global pandemics interconnected - obesity, 
impaired metabolic health and COVID-19. Nat Rev Endocrinol 2021;17(3):135–49. 

[3] Jackson-Morris AM, Nugent R, Ralston J, Barata Cavalcante O, Wilding J. 
Strengthening resistance to the COVID-19 pandemic and fostering future resilience 
requires concerted action on obesity. Glob Health Action 2020;13(1):1804700. 

[4] Almond MH, Edwards MR, Barclay WS, Johnston SL. Obesity and susceptibility to 
severe outcomes following respiratory viral infection. Thorax 2013;68(7):684–6. 

[5] Volgyi E, Tylavsky FA, Lyytikainen A, Suominen H, Alen M, Cheng S. Assessing 
body composition with DXA and bioimpedance: effects of obesity, physical activity, 
and age. Obesity (Silver Spring) 2008;16(3):700–5. 

[6] Marti A, Marcos A, Martinez JA. Obesity and immune function relationships. Obes 
Rev 2001;2(2):131–40. 

[7] Hikmet F, Mear L, Edvinsson A, Micke P, Uhlen M, Lindskog C. The protein 
expression profile of ACE2 in human tissues. Mol Syst Biol 2020;16(7):e9610. 

[8] Zickler M, Stanelle-Bertram S, Ehret S, Heinrich F, Lange P, Schaumburg B, et al. 
Replication of SARS-CoV-2 in adipose tissue determines organ and systemic lipid 
metabolism in hamsters and humans. Cell Metab 2022;34(1):1–2. 

[9] Morigny P, Boucher J, Arner P, Langin D. Lipid and glucose metabolism in white 
adipocytes: pathways, dysfunction and therapeutics. Nat Rev Endocrinol 2021;17 
(5):276–95. 
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