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A B S T R A C T

Traditional power grids are gradually transitioning to smart grids with high penetration of renewable
energy, which can realize the efficient utilization of power resources and low carbon emissions.
However, the uncertainties of renewable energy (e.g., wind power) and load demand pose considerable
challenges to secure operation and cost-effective planning in smart grids, such as generation mainte-
nance scheduling (GMS). In this context, conventional methods including stochastic optimization
and robust optimization are adopted to cope with the uncertainties and formulate the GMS plan.
Unfortunately, these methods fail to consider the temporal information in uncertain variables, which
can introduce extra operational costs brought by the uncertainties. To address this issue, we consider
the temporal correlation of the uncertain wind power and load demand, and develop a data-driven
two-stage nested robust optimization (NRO) approach for GMS to minimize the total costs of power
system operation under uncertain scenarios. In our proposed approach, a temporal correlation Dirichlet
process mixture model (TCDPMM) is developed to investigate the temporal information in the
wind power and load demand datasets. Then, variational Bayesian inference (VBI) is employed to
construct the data-driven uncertainty set, in which the temporal information for the uncertain variables
and the correlations between the uncertain variables are considered. Subsequently, combined with
this uncertainty set, a two-stage GMS problem is converted to a “min-max-max-min” optimization
problem which is solved by the parallel Benders’ decomposition algorithm. The effectiveness and
superiority of the proposed approach are demonstrated with a six-bus power system and a practical
power system in China.

1. Introduction
Generation maintenance scheduling (GMS) is one of the

core tasks for power systems operation, which can prolong
the useful life of power equipment and improve the utiliza-
tion of power resources [1, 2]. According to the annual distri-
bution characteristics of load demand, GMS can reasonably
arrange the maintenance commitment plan and outage stage
of power generation and transmission equipment, which is
of great significance for ensuring the economy and security
of power system operations.

Recently, GMS has attracted the attention of scholars to
improve the flexibility of power systems operation. Consid-
ering the benefits of generation companies and independent
system operators, a non-cooperative dynamic game-based
coordination model for electricity markets is proposed in [3].
Furthermore, Ref. [4] presents an integrated generation and
transmission maintenance scheduling model combined with
N-1 contingency constraints, which improves the security
of the power system operation. On this basis, to ensure
the economy of the system, the authors in [5] develop a
dynamic game-based bi-level approach, in which a main-
tenance scheduling mechanism for the integrated energy
systems is proposed and the overall revenues are maxi-
mized. In general, the above studies formulate reasonable
maintenance scheduling plans. However, the uncertainties
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in power systems (e.g., renewable power and load demand)
are ignored, which is disadvantageous [6, 7]. Actually, as
the proportion of renewable power in power grids and social
power consumption increase year by year, the uncertainty of
renewable power (such as wind power) and load demands
can bring adverse impacts to power systems operation, such
as voltage fluctuation and power flow change, which should
not be ignored in GMS.

For formulating the GMS plan with uncertainties, cur-
rent methods can be divided into stochastic programming
(SP) and robust optimization (RO). In SP, the probability
distributions of the uncertain variables are assumed to be
known. For instance, wind power is usually considered to
follow the Weibull distribution [8]. In [9], an integrated
stochastic optimization model is proposed to jointly opti-
mize the operation and maintenance of the power system,
and the uncertainties from prices, demands and renewable
energy generation are explicitly characterized via different
scenarios. Considering the uncertainty of renewable en-
ergy resources, Ref. [10] formulates a stochastic multi-stage
maintenance scheduling model for the active distribution
network, which is solved by the stochastic Monte Carlo tree
search method. In the above mentioned studies, the uncertain
variables such as wind power and load demand are assumed
to follow the specific distributions, and their uncertainties
are analogized by the large number of scenarios generated
by the scenario generation method. Then, SP transforms
the uncertain GMS problem into the deterministic one by
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solving the expected value of the objective function for these
scenarios. However, the exact probability distribution of the
uncertainty variables in practice is difficult to be obtained
directly, and a large number of scenarios sharply increases
the computational burden.

To address these issues, robust optimization (RO) is
applied to the GMS of power systems, which character-
izes the randomness by the boundaries of the uncertainty
variables and makes the optimal decision under the worst-
case scenario. Ref. [11] develops a robust maintenance
scheduling optimization model, in which the wind power
uncertainty set is constructed and the forced outages of
equipment are also considered. On this basis, considering
the uncertainty of load demand, wind power generation and
equipment unavailabilities, a reliability constraint based tri-
level adaptive robust multi-resolution model for the GMS
problem is proposed, and a robust maintenance scheduling
for units immunized against the worst case is obtained [12].
In [13], a two-stage robust optimization model for the long-
term GMS of a power system is formulated, in which the
uncertainties including the load demand, the contingencies
in the transmission network and the marginal cost are taken
into account. Ref. [14] incorporates the uncertainty of load
demand into a multi-scale multi-resolution GMS model
based on a stochastic affinely adjustable robust approach.
Compared with the SP methods, the above RO methods
for GMS do not need to know the specific distribution of
the uncertainty variables, and the solution efficiency is also
improved. However, there are some drawbacks to the RO
methods: 1) relying on the boundary information of the
uncertain variables, the results are too conservative, and 2)
the probability information of the uncertainty variables is not
fully considered. Therefore, the RO method will be limited
in making optimal decisions under the worst-case scenario
when the uncertain variables dataset, such as wind power
and load demand, has the characteristics of high dimensional
and data correlation. It is necessary that new methods need
to be found to deal with the uncertainties in GMS.

In recent years, it is widely developed that machine
learning methods are applied to explore the internal infor-
mation in the uncertainty dataset [15]. In general, machine
learning methods include Gaussian mixture model (GMM),
Dirichlet process mixture model (DPMM), Wasserstein met-
ric, generative adversarial network (GAN) and so on. Ref.
[16] implements the uncertainty modeling of multivariate
wind power based on GMM, and the multi-peaked char-
acteristics of the probability distribution for wind power
are portrayed. Further, Ref. [17] utilizes DPMM to fit the
probability distribution of wind power and automatically
obtains Gaussian mixture components from the updated
data. Moreover, Wasserstein metric is used to find the true
probability distribution of the uncertain data in Ref. [18]. In
Ref. [19], the spatial and temporal information in the wind
power dataset is captured based on GAN. The above studies
apply machine learning methods to explore the internal in-
formation in the uncertainty dataset, including probabilistic,

temporal and spatial information, which improves the ac-
curacy of uncertainty characterization with more efficiency.
Therefore, the conservativeness of the optimization results
decreases when machine learning methods are applied to
RO.

Leveraging the strengths of machine learning methods
in uncertainty characterization, data-driven robust optimiza-
tion (DDRO) has been an emerging paradigm for dealing
with uncertainties, in which the data-driven uncertainty set
is constructed based on machine learning methods and more
information in the uncertainty dataset is utilized. It is widely
applied to unit commitment problems [20, 21, 22], micro-
grids [23, 24, 25], virtual power plant [26], energy manage-
ment [27, 28], reserve dispatch [29], etc. On the one hand,
considering the correlation information in the uncertainty
dataset, Refs. [22, 26] construct the uncertainty set of the
uncertain variables based on support vector machine (SVM)
and DPMM, respectively. In Ref. [22], the construction of
the uncertainty set for the wind power is inspired by support
vector machine (SVM), and the conservativeness of the opti-
mization results is decreased in RO. Further, considering the
label information of historical data and correlations among
the uncertainties, Ref. [26] develops a two-stage virtual
power plant stochastic robust optimization model, in which
the ambiguity set is constructed by DPMM. On the other
hand, considering the probability information in the uncer-
tainty dataset, Refs. [21, 27, 28, 29] construct the uncertainty
set of the probability distributions for the uncertain vari-
ables. In [21], a novel distance-based ambiguity set for wind
power is developed through Kullback–Leibler divergence,
and a distributionally robust optimization model for unit
commitment is established. The uncertainty set of proba-
bility distributions for wind power generation is constructed
based on Wasserstein metric, and the operation costs of the
power system are minimized in [27, 28]. On this basis, the
one-dimensional wind power generation is extended to the
multivariate wind power generation. Ref. [29] constructs the
multivariate probability distributions ambiguity set based on
the kernel density estimation (KDE), and proposes a risk-
averse two-stage stochastic robust optimization method to
deal with the reserve dispatch problem with wind power.
It can be summarized from the above studies that DDRO
based on machine learning methods can well extract the
internal information (e.g., probability distribution and cor-
relation) in the uncertainty dataset to construct the data-
driven uncertainty set, which improves the data-adaptive
flexibility and reduces the conservatism of the optimization
results. However, there are few studies on the application of
DDRO to GMS, and DDRO approaches for GMS need to be
further explored. The reasons and research gaps are shown
as follows.

(1) The temporal information of the uncertainty set in
DDRO model is not fully considered, which should be
further characterized when the uncertainty variables
are time series. Note that the temporal information
represents that the data at the current period relies on
the data from the previous period. For instance, wind
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power data from adjacent time periods are correlated,
since the constant variation of wind speed can be
portrayed by the Markov process [30].

(2) The correlations between the uncertainty variables are
not taken into account in the existing GMS model.
Actually, GMS is a medium and long-term planning
problem with a specific correlation between uncer-
tain variables. Take wind power and load demand
as an example, the wind power generation may be
massive, and load demand becomes high to consume
wind power at a certain period in the GMS planning
problem.

(3) Priori’s work on GMS problems under uncertainties
mainly focuses on SP and RO. The former needs to
know the probability distributions for the uncertain
variables, and the latter relies on the boundary infor-
mation of the uncertain variables. The more internal
information in the uncertainties datasets has not been
fully considered in these methods. Therefore, DDRO
method has great potential for application to the GMS
problem.

To address these issues, we propose a data-driven two-
stage nested robust optimization approach for generation
maintenance scheduling, and its framework is shown in Fig.
1. In this figure, the temporal information in the wind power
and load demand data is firstly characterized by TCDPMM,
and the data-driven uncertainty set is constructed by the VBI
results from TCDPMM. Then, these steps are integrated into
the two-stage robust optimization model for GMS consider-
ing temporal correlation. In this context, the contributions of
this paper are as follows:

(1) A temporal correlation Dirichlet process mixture
model (TCDPMM) is proposed, and the data-driven
uncertainty set based on TCDPMM is constructed,
which can portray the temporal correlation of wind
power and load demand uncertainties. Here, the tem-
poral correlation not only represents the temporal in-
formation in the dataset for the uncertain variables but
also contains the correlations between the uncertain
variables. This aims to solve research gaps 1 and 2.

(2) In comparison with conventional robust GMS models,
a data-driven two-stage NRO GMS model with a
“min-max-max-min” four-level structure form is de-
veloped. The proposed GMS model is difficult to be
solved directly, and the parallel Benders’ decompo-
sition algorithm is introduced to solve it. Moreover,
since the data-driven uncertainty set is integrated into
the proposed GMS model, the Bayesian nonparamet-
ric method is leveraged for GMS in the power system.
The contribution is targeted to deal with the research
gap 3.

(3) The effectiveness and superiority of the proposed
approach are verified in the 6-bus power system and
the 26-bus Yantai power system in China. Meanwhile,
the NRO methods with different data-driven uncer-
tainty sets are compared in terms of the total cost

of the power system operation. Here, the uncertainty
sets include the DPMM-based data-driven set, the
TCDPMM-based data-driven uncertainty set without
considering correlation and the proposed TCDPMM-
based uncertainty set.

The rest of this paper is organized as follows. The data-
driven uncertainty set based on TCDPMM is constructed
in Section 2. Section 3 presents the two-stage NRO model
for GMS, which integrates the proposed uncertainty set. In
Section 4, the two-stage NRO model is solved by the par-
allel Benders’ decomposition algorithm. Comparison case
studies are shown in Section 5, and the conclusion is drawn
in Section 6.

Fig. 1: Overall framework of the proposed approach

2. Data-Driven TCDPMM Based Uncertainty
Model
Note that the wind power and load demand data in

the power system contain rich information (e.g., temporal
characteristic and correlation), which is difficult to be well
portrayed by empirical distribution or single distribution
[31]. DPMM, an infinite mixture Gaussian model based on
Dirichlet process (DP), is usually applied to describe the
distribution of input data [32]. The uncertainty and corre-
lation of input data can be well characterized by DPMM
[33]. However, the temporal characteristics are not fully
considered in DPMM when the input data is time-series,
such as the wind power and load demand data in the power
system. In this section, we propose a data-driven TCDPMM
to explore the temporal information of the wind power and
load demand data. Meanwhile, to characterize the correla-
tion between uncertain variables, the data-driven uncertainty
set with temporal correlations is constructed based on the
TCDPMM.

2.1. Dirichlet Process Mixture Model
DPMM is a non-parametric Bayesian model based on

DP, which can be described by a mixture of probabilistic
distributions and their corresponding weights [34]. Here,
the mixture probabilistic distributions and the corresponding
weights are represented by 𝐺 and 𝝅, respectively. Note that
𝐺 is the discrete distribution and can be represented by DP
distribution if 𝐺 ∼ 𝐷𝑃 (𝛼,𝐺0), where 𝛼 is the concentration
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parameter, and 𝐺0 is the base distribution. Generally, DP
is expressed explicitly by stick-breaking representation, and
that of 𝐺 is defined as below.

𝐺 =
∑∞

𝑘=1
𝜋𝑘𝛿𝐷𝑘 (1)

𝜋𝑘 = 𝛽𝑘
𝑘−1
∏

𝑙=1
(1 − 𝛽𝑘) (2)

where 𝜋𝑘 is the random weight of the distribution 𝐷𝑘 sam-
pled from the base distribution 𝐺0, and

∑∞
𝑘=1 𝜋𝑘 = 1.

Note that the set of 𝐷𝑘 stands for the mixture Gaussian
distributions 𝐺. 𝛿𝐷𝑘 is a Kronecker function. 𝛿𝐷𝑘 = 1 if 𝐷𝑘
is chosen by 𝐺, and 𝛿𝐷𝑘 = 0 elsewhere. 𝛽𝑘 is the proportion
of 𝜋𝑘 broken off from the remaining the unit length stick, and
𝛽𝑘 ∼ 𝐵𝑒𝑡𝑎(1, 𝛼). In this way, the graphical model of DPMM
with sticking-breaking representation is depicted as follows.

Fig. 2: The graphical model of DPMM

Fig. 2 shows the relations among variables. Here, 𝜃𝑘 is
the parameter for Gaussian distribution 𝐷𝑘, and the latent
variable 𝑧𝑖 indicates that the observation 𝑥𝑖 is assigned to
which Gaussian distribution. Therefore, the mathematical
expression of DPMM with stick-breaking representation is
shown in (3).

𝝅|𝛼 ∼ 𝐺𝐸𝑀(𝛼)
𝜃𝑘|𝐺0 ∼ 𝐺0

𝑧𝑖|𝝅 ∼ 𝝅
𝑥𝑖|𝑧𝑖, (𝜃𝑘)∞𝑘=1 ∼ 𝐹 (𝜃𝑧𝑖 )

𝐹 (𝜃𝑧𝑖 ) = 𝑝(𝑥𝑖|𝒛,𝜽) =
∞
∏

𝑘=1
𝑘(𝑥𝑖|𝜇𝑘,Σ𝑘)

𝑧[𝑖]𝑘

(3)

where 𝐺𝐸𝑀(𝛼) stands for the construction process of the
weighted 𝝅, and 𝐹 (𝜃𝑧𝑖 ) is a Gaussian mixture distribution.
The parameter 𝜽 consists of the mean vector 𝝁 and the
covariance matrix 𝚺, and 𝜽 = (𝜇𝑘,Σ𝑘)∞𝑘=1. 𝑘(⋅|⋅) rep-
resents the k-th Gaussian distribution. The binary variable
𝑧[𝑖]𝑘 indicates that if i-th observation data belongs to k-
th Gaussian component, 𝑧[𝑖]𝑘 = 1, otherwise, 𝑧[𝑖]𝑘 = 0. The
derivation of (3) is presented in Appendix D.1.

2.2. Temporal Correlation Dirichlet Process
Mixture Model

In DPMM, the mutually independent latent variable 𝒛
indicates which Gaussian distribution the observation 𝒙 is
associated with. The temporal characteristics are not fully
considered when the observation 𝒙 is time-series. To explore
the temporal correlation of the observation data, we propose
a TCDPMM, and its graphical model is shown in Fig. 3.

Different from DPMM, 𝑧𝑖 and 𝑧𝑖−1 are the mutually
dependent in Fig. 3. In other words, the value of 𝑧𝑖 is

Fig. 3: The graphical model of TCDPMM

related to 𝑧𝑖−1, which means that the correlation between
𝑥𝑖 and 𝑥𝑖−1 is characterized through the hidden variable
𝑧. In this way, the temporal correlation of 𝒙 is extracted
when the observation 𝒙 is time-series. Moreover, the same as
DPMM represented in Subsection 2.1, the Gaussian mixture
distribution of the observation 𝒙 = {𝑥𝑖}𝐼𝑖=1 in the proposed
TCDPMM is expressed as follows.

𝑝(𝒙|𝒛,𝜽) =
𝐼
∏

𝑖=1

∞
∏

𝑘=1
𝑘(𝑥𝑖|𝜇𝑘,Σ𝑘)

𝑧[𝑖]𝑘 (4)

where 𝒛 = (𝑧[𝑖]𝑘 )𝑖=𝐼,𝑘=∞𝑖=1,𝑘=1 and 𝜽 = (𝜃𝑘)𝑘=∞𝑘=1 are the set of 𝑧𝑘
and 𝜃𝑘, respectively.

According to the graphical model shown in Fig. 3, the
joint distribution of the all random variables is expressed as

𝑝(𝒙, 𝒛,𝝅,𝝁,𝚺) = 𝑝(𝒙|𝒛,𝝁,𝚺)𝑝(𝒛|𝝅)𝑝(𝝅)𝑝(𝝁,𝚺) (5)
Traditionally, the relevant parameters of the prior dis-

tribution can be easily estimated based on the mathemat-
ical and statistical characteristics of the observation data.
However, the hyper-parameters 𝑤 = (𝝅,𝝁,𝚺) and the latent
variable 𝒛 are difficult to be determined directly due to the
multi-dimensional complexity of the observation data 𝒙. To
this end, Variational Bayesian inference (VBI) is employed
to address such a dilemma in this paper. The core of VBI is
to use the variational distribution 𝑞 to approximate the poste-
rior distribution 𝑝. Based on VBI, the posterior distribution
𝑝 is approximated by a factorized variational distribution:

𝑞(𝒛,𝝅,𝝁,𝚺) = 𝑞(𝒛)𝑞(𝝅)𝑞(𝝁,𝚺) (6)
where 𝑞(𝝅) is a Dirichlet distribution, and 𝑞(𝝁,𝚺) follows a
Gaussian-Wishart distribution. The specific expressions of
𝑞(𝝅) and 𝑞(𝝁,𝚺) are shown in the Appendix A. The VBI for
TCDPMM is similar to that of DPMM, and it is represented
in the Appendix D.2, in which the optimal distributions of
𝑞(𝒛), 𝑞(𝝅) and 𝑞(𝝁,𝚺) are determined.

As shown in the Appendix D.2, the optimal distribution
of 𝑞(𝒛) is given by:

𝑞∗(𝒛) =
𝐼
∏

𝑖=1

𝐾
∏

𝑘=1
(𝑟𝑖𝑘)

𝑧[𝑖]𝑘 (7)

𝑟𝑖𝑘 = 𝑝(𝑧[𝑖]𝑘 = 1) =
𝜌𝑖𝑘
𝐾
∑

𝑗=1
𝜌𝑖𝑗

(8)

where 𝑟𝑖𝑘 is the weight that the observation 𝑥𝑖 belongs to k-
th Gaussian component, and 𝜌𝑖𝑘 represents the probability
that k-th Gaussian component samples observation data 𝑥𝑖,
which is shown in Appendix A.
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Note that since 𝑧𝑘 is correlated with 𝑧𝑘−1 in TCDPMM
when the observation 𝒙 is the time series, the optimal distri-
bution 𝑞∗(𝒛) needs to be modified, which is reformulated as
follows.

𝑞∗(𝑧𝑘) = 𝑞(𝑧𝑘|𝑧𝑘−1) (9)

In this way, the conditional probability of 𝑧𝑘 is as below.
𝑝(𝑧[𝑖]𝑘 = 1) = 𝑝(𝑧[𝑖]𝑘 = 1|𝑧[𝑖−1]

𝑘′
= 1)

=
𝑝(𝑧[𝑖]𝑘 = 1, 𝑧[𝑖−1]

𝑘′
= 1)

𝑝(𝑧[𝑖−1]
𝑘′

= 1)

(10)

where 𝑘′ is the maximum weight Gaussian component that
observation data 𝑥𝑖−1 associates with. Specifically, Eq. (10)
illustrates that the 𝑖-th observation data belongs to the 𝑘-th
Gaussian component depending on the Gaussian component
(𝑖−1)-th observation data belongs to. In order to display
𝑝(𝑧[𝑖]𝑘 = 1), we define 𝑝(𝑧[𝑖]𝑘 = 1, 𝑧[𝑖−1]

𝑘′
= 1) as below.

𝑝(𝑧[𝑖]𝑘 = 1, 𝑧[𝑖−1]
𝑘′

= 1) =
(

𝑚 ⋅ 𝑝(𝑧[𝑖]𝑘 = 1) + 𝑚
′
⋅ 𝑝(𝑧[𝑖]

𝑘′
= 1)

)

×
(

𝑚 ⋅ 𝑝(𝑧[𝑖−1]𝑘 = 1) + 𝑚
′
⋅ 𝑝(𝑧[𝑖−1]

𝑘′
= 1)

)

= (𝑚 ⋅ 𝑟𝑖𝑘 + 𝑚
′
⋅ 𝑟𝑛
𝑘′
) ⋅ (𝑚 ⋅ 𝑟𝑖−1𝑘 + 𝑚

′
⋅ 𝑟𝑖−1
𝑘′

)

(11)

where 𝑚 = 𝜋
𝜋+𝜋′

and 𝑚′ = 𝜋′

𝜋+𝜋′
represent the proportion

of 𝑘-th Gaussian component and 𝑘′ -th Gaussian component,
respectively. Therefore, 𝜌𝑛𝑘 is reformulated as.

𝜌𝑖
𝑘′

=
𝑝(𝑧[𝑖]𝑘 = 1, 𝑧[𝑖−1]

𝑘′
= 1)

𝑝(𝑧[𝑖−1]
𝑘′

= 1)

= (𝑚 ⋅ 𝑟𝑖𝑘 + 𝑚
′
⋅ 𝑟𝑖
𝑘′
) ⋅ (𝑚 ⋅

𝑟𝑖−1𝑘

𝑟𝑖−1
𝑘′

+ 𝑚
′
⋅ 𝑟𝑖−1
𝑘′

)

(12)

The weight 𝑟′𝑖𝑘 is modified by normalization 𝜌𝑖
𝑘′

.

𝑟
′𝑖
𝑘 =

𝜌𝑖
𝑘′

∞
∑

𝑗=1
𝜌𝑖
𝑗′

(13)

Therefore, 𝑞∗(𝒛) is reformulated as below.

𝑞∗(𝒛) =
𝐼
∏

𝑖=1

𝐾
∏

𝑘=1
(𝑟

′𝑖
𝑘 )
𝑧[𝑖]𝑘 (14)

In this way, the optimal distribution of 𝑞(𝒛) in TCDPMM
can be calculated by (14). Moreover, the optimal distri-
butions of 𝑞(𝝅) and 𝑞(𝝁,𝚺) can be calculated by (D.17)
and (D.18). In order to make the variational distribution
𝑞 as close as possible to the posterior distribution 𝑝, we
implement the iterative update of the parameters using the
Expectation-Maximization (EM) algorithm [35]. The opti-
mal parameter 𝑤∗ and optimal distribution 𝑞∗(𝒛) in TCDP-
MMM can be obtained when the EM algorithm reaches
convergence. That is, the optimal variational distribution
over the optimal parameters is determined, which is the
closest to the posterior distribution 𝑝. The detailed flow of
the EM algorithm can be referred to Appendix B.

2.3. The Construction of Data-driven Uncertainty
Set

In this paper, the observation 𝒙 = {𝑥𝑖}𝑖=𝐼𝑖=1 consists of
wind power and load demand, in which 𝑥𝑖 = {𝑃𝑤𝑡,𝑖, 𝑃𝑙𝑜𝑎𝑑,𝑖}.
Moreover, the observation 𝒙 is considered to follow a mix-
ture of Gaussian distributions. Based on TCDPMM, the tem-
poral information in the observation 𝒙 can be characterized.
Meanwhile, the mean, the covariance and the correlation
parameters can be obtained according to the variational
inference for TCDPMM.

In order to capture the uncertainty of wind power and
load demand, the data-driven uncertainty set is constructed
based on the results from TCDPMM variational inference,
which is shown as below.

𝑈 = 𝑈1 ∪ 𝑈2 ∪⋯ ∪ 𝑈𝑖 (15)
𝑈𝑖 = {𝐮|𝐮 = µ𝑖 + 𝜔𝑖𝚿𝑖

1∕2Λ𝑖𝐙, ‖𝐙‖∞ ≤ 1, ‖𝐙‖1 ≤ 𝚽𝑖}
(16)

where 𝑈𝑖 is the uncertainty set for the i-th Gaussian com-
ponent. µ𝑖, 𝜔𝑖, 𝚿𝑖 can be obtained from the inference re-
sults of the i-th Gaussian component using the variational
inference algorithm [36]. Λ𝑖 is the scaling factor. 𝐙 is the
auxiliary variable, which can control the correlation among
uncertainties. 𝚽𝑖 stands for the uncertainty budget.

It is found from (15) that the data-driven uncertainty
set 𝑈 is composed of multiple basic uncertainty sets. The
number of basic uncertainty sets depends on the number
of clustered components of the observed data, which is
obtained by the VBI for TCDPMM. Meanwhile, the basic
uncertainty set𝑈𝑖 corresponding to component 𝑖 is explicitly
shown in (16). Since the proposed data-driven uncertainty
set is constructed based on the VBI for TCDPMM, it can
capture more internal information in the uncertain variables
dataset. There are several advantages of the proposed uncer-
tainty set. First, the temporal information for the uncertain
variables is mined in the proposed data-driven uncertainty
set, since TCDPMM considers the temporal correlation of
the observation data. Second, the correlation between the
uncertain variables is considered in the proposed uncertainty
set, which is subject to the auxiliary variable 𝐙. Finally,
the proposed uncertainty set is constructed by the Gaussian
components, which utilizes the probabilistic information of
the uncertain variables.

The data-driven uncertainty set considering the temporal
information and correlation between the uncertain variables
will be integrated into the two-stage generation maintenance
scheduling model in the next section.

3. Two-Stage NRO Model for GMS
Generally, GMS problem is a sequential decision-

making problem, and it contains two stages [37]. In the first
stage, the maintenance decisions are determined to obtain
the number of available units. On this basis, the generation
scheduling for the available units is optimized in the second
stage. Apparently, GMS is a typical two-stage programming
problem. However, the GMS becomes an uncertain mathe-
matical problem when the uncertain wind power and load
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demand are integrated into the two-stage model. To cope
with the uncertainties, a TCDPMM-based two-stage NRO
optimization model for the GMS of the power system is
presented as follows.

1) Objective Function
The objective of the two-stage robust optimization model

for GMS is to minimize the total cost of the power system
under the worst case uncertainty scenario, which is shown in
(17).

min
𝑥,𝑔

𝑛𝐺
∑

𝑖=1

𝑇
∑

𝑡=1

The first term
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(𝑐𝑀,𝑖𝑥𝑖,𝑡 + 𝑐𝑅,𝑖(1 − 𝑔𝑖,𝑡))+

max
𝑃𝑤𝑡,𝑃𝑙𝑜𝑎𝑑∈𝑈

min
𝑃𝐺

𝑛𝐺
∑

𝑖=1

𝑇
∑

𝑡=1
(𝑐𝑂,𝐺𝑖 + 𝑐𝐹 ,𝐺𝑖)𝑃𝐺𝑖
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

The second term

(17)

where the first term represents the cost in the first stage,
which consists of maintenance cost and reserve cost for all
generation units in the power system. The second term is
the operation cost in the second stage, including generation
cost and fuel cost. The i-th unit generation maintenance
status 𝑥𝑖,𝑡 and the i-th unit operation status 𝑔𝑖,𝑡 are the first
stage decision variables, and the output power 𝑃𝐺𝑖 of i-
th unit is the second stage decision variable. 𝑐𝑀,𝑖 and 𝑐𝑅,𝑖
are the maintenance factor and reserve factor of i-th unit,
respectively. 𝑐𝑂,𝐺𝑖 and 𝑐𝐹 ,𝐺𝑖 are the generation factor and
fuel factor of i-th unit. It should be noted that the output
power 𝑃𝑤𝑡 of WT and load demand 𝑃𝑙𝑜𝑎𝑑 are uncertain
variables, which are subject to the data-driven uncertainty
set 𝑈 constructed in (15) and (16).

Usually, an uncertainty set corresponds to a “max-min”
problem in RO. Therefore, the second stage optimization
problem contains multiple “max-min” problems when the
data-driven uncertainty sets for wind power and load de-
mand consisting of multiple subsets are embedded in the
two-stage optimization model for GMS. Note that we need
to find the minimum operation cost under the worst-case
scenario. That is to say, our goal is to find the problem with
the largest value of the objective function from the multiple
“max-min” problems, which corresponds to the worst-case
scenario and is represented by the “max-max-min” form.
Therefore, the two-stage robust optimization model for GMS
is converted to the NRO model with a “min-max-max-min”
form, which is defined as below.

min
𝑥,𝑔

𝑛𝐺
∑

𝑖=1

𝑇
∑

𝑡=1

The first term
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(𝑐𝑀,𝑖𝑥𝑖,𝑡 + 𝑐𝑅,𝑖(1 − 𝑔𝑖,𝑡))+

max
𝑛={1,...,𝑖}

max
𝑃𝑤𝑡,𝑃𝑙𝑜𝑎𝑑∈𝑈𝑛

min
𝑃𝐺

𝑛𝐺
∑

𝑖=1

𝑇
∑

𝑡=1
(𝑐𝑂,𝐺𝑖 + 𝑐𝐹 ,𝐺𝑖)𝑃𝐺𝑖
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

The second term

(18)

2) Constraints for Units Maintenance
To improve the performance of units, the units mainte-

nance duration constraint should be enforced by (19). Mean-
while, in order to ensure the reliability of the power supply,
the number of units maintenance simultaneously is limited
in (20), and the uninterrupted units maintenance constraint

is represented in (21).
𝑇
∑

𝑡=1
𝑥𝑖,𝑡 = 𝐷𝑖,∀𝑖 (19)

𝑛𝐺
∑

𝑖=1
𝑥𝑖,𝑡 ≤ 𝑅𝑡,∀𝑡 (20)

𝑥𝑖,𝑡 − 𝑥𝑖,𝑡−1 ≤ 𝑥𝑖,𝑡+𝐷𝑖−1,∀𝑖,∀𝑡 = 2, ..., 𝑇 + 1 −𝐷𝑖 (21)

where 𝐷𝑖 is the maintenance duration of i-th unit, and 𝑅𝑡 is
the maximum number of unavailable units at time t.

3) Constraints for Logic Relationships and Reserve
The logic relationships between the generation mainte-

nance status and the operation status are described in (22).
Constraint (23) enforce the reserve of the power system.

𝑥𝑖,𝑡 ≥ 𝑚𝑖,𝑡,∀𝑖,∀𝑡 (22)
𝑛𝐺
∑

𝑖=1
𝑃max,𝐺𝑖(1 − 𝑥𝑖,𝑡) ≥ (1 + 𝑟𝑡)𝑃𝑙𝑜𝑎𝑑,𝑡,∀𝑡 (23)

where 𝑃max,𝐺𝑖 is the maximum power output of i-th unit, and
𝑟𝑡 is the reserve coefficient at time t. The load demand of time
t is represented by 𝑃𝑙𝑜𝑎𝑑,𝑡.

Note that 𝑥𝑖,𝑡 and 𝑔𝑖,𝑡 are binary variables, which are
shown in (24).

𝑥𝑖,𝑡, 𝑔𝑖,𝑡 ∈ {0, 1},∀𝑖,∀𝑡. (24)
where the unit i is in maintenance state/shutdown state at
time t, if 𝑥𝑖,𝑡 = 1 / 𝑔𝑖,𝑡 = 1, the unit i is in available
state/operation state, otherwise.

4) Constraints for Generation and Ramping Limits
In second stage, the supply and demand balance of the

system should be satisfied, so the power balance constraint is
described in (25). Meanwhile, the minimum and maximum
outputs of each unit are specified in (26), and the ramping
rate limits of units are presented in (27) and (28).

𝑛𝐺
∑

𝑖=1
𝑃𝐺𝑖,𝑡 +

𝑛𝑊
∑

𝑗=1
𝑃𝑤𝑡𝑗,𝑡 = 𝑃𝑙𝑜𝑎𝑑,𝑡,∀𝑡 (25)

𝑃min,𝐺𝑖(1 − 𝑔𝑖,𝑡) ≤ 𝑃𝐺𝑖,𝑡 ≤ 𝑃max,𝐺𝑖(1 − 𝑔𝑖,𝑡) (26)

𝑃
𝐺𝑖,𝑡

− 𝑃
𝐺𝑖,𝑡−1

≤ 𝑅𝑈𝑖,∀𝑖,∀𝑡 (27)

𝑃
𝐺𝑖,𝑡−1

− 𝑃
𝐺𝑖,𝑡

≤ 𝑅𝐷𝑖,∀𝑖,∀𝑡 (28)

where 𝑃𝐺𝑖,𝑡 and 𝑃𝑤𝑡𝑗,𝑡 are the power output of i-th unit and
j-th WT, respectively. 𝑛𝐺 and 𝑛𝑊 are the number of units
and WT. 𝑃min,𝐺𝑖 is the minimum power output of i-th unit.
𝑅𝑈𝑖 and 𝑅𝐷𝑖 are the ramp up rate and the ramp down rate
of i-th unit.

5) Constraints for Transmission Lines
The transmitted power is affected by the capacity of

transmission lines, which is described in (29) and (30).
∑

𝑏
𝑘𝑙𝑏 ⋅

(

∑

𝑖∈𝑏
𝑃𝐺𝑖,𝑡 +

∑

𝑗∈𝑏
𝑃𝑤𝑗,𝑡 −

∑

𝑑∈𝑏
𝑃𝑑,𝑡

)

≤ 𝑓𝑙max (29)

∑

𝑏
𝑘𝑙𝑏 ⋅

(

∑

𝑖∈𝑏
𝑃𝐺𝑖,𝑡 +

∑

𝑗∈𝑏
𝑃𝑤𝑗,𝑡 −

∑

𝑑∈𝑏
𝑃𝑑,𝑡

)

≥ −𝑓𝑙max

(30)
where 𝑓𝑙max is the maximum power flow of the line l, and
𝑘𝑙𝑏 is the power flow distribution factor for the transmission
line l due to the net injection at bus b.
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The two stages in the proposed NRO model for GMS are
defined as the “here-and-now” and “wait-and-see” stages.
Specifically, in the first stage, “here-and-now” variables
including maintenance status 𝑥𝑖,𝑡 and operation status 𝑔𝑖,𝑡
can be optimized, which helps the power system operation to
determine the number of available units. On this basis, “wait-
and-see” variable 𝑃𝐺𝑖 will be obtained once the uncertain
variables 𝑃𝑤𝑡 and 𝑃𝑙𝑜𝑎𝑑 are revealed in the second stage.
Therefore, the sequential decision-making process of GMS
in the power system operation is captured. In particular, it
should be noticed that the uncertain variables determined
at the second stage are from the data-driven uncertainty
set which characterizes the temporal information in the
uncertainties dataset and the correlations between the un-
certain variables. Meanwhile, the model combined with the
Bayesian nonparametric model-TCDPMM can adapt to the
complexity of wind power and load demand datasets, which
fully leverages the internal information in the datasets to
achieve more efficient power systems operations.

4. Model Solution
The two-stage NRO model for GMS constructed in

Section III is a multi-level structure optimization problem,
which is reformulated in the form of the general compact
matrix for description brevity.

min
𝐱

𝐜𝑇 𝐱 + max
𝑛={1,...,𝑖}

max
𝐮∈𝑈𝑛

min
𝐲∈Ω(𝐱,𝐮)

𝐛𝑇 𝐲 (31)

𝐬.𝐭. 𝐀𝐱 ≥ 𝐝, 𝐱 ∈ 𝐬𝐱 (32)

Ω(𝐱,𝐮) = {𝐲 ∈ 𝐬𝐲 ∶ 𝐖𝐲 ≥ 𝐡 − 𝐓𝐱 −𝐌𝐮} (33)

𝑈 = 𝑈1 ∪ 𝑈2 ∪⋯ ∪ 𝑈𝑖 (34)

𝑈𝑖 = {𝐮|𝐮 = µ𝑖 + 𝜔𝑖𝚿𝑖
1∕2Λ𝑖𝐙, ‖𝐙‖∞ ≤ 1, ‖𝐙‖1 ≤ 𝚽𝑖}

(35)
where 𝐱 and 𝐲 are the first-stage decision variables and the
second-stage decision variables, which can be described by
𝐱 = {𝑥, 𝑔} and 𝐲 = {𝑃𝐺𝑖}, respectively. 𝐮 represents the
uncertain variables, and 𝐮 = {𝑃𝑤𝑡, 𝑃𝑙𝑜𝑎𝑑}. The objective
function (18) is represented as (31), and constraint (32) is the
set of all the first-stage constraints including maintenance
constraints and reserve constraints that are formulated in
(19)-(24). The set of second-stage constraints (25)-(30) is
shown in (33). Constraints (34)-(35) are the data-driven
uncertainty set defined in Section II. Note that 𝐬𝐱 and 𝐬𝐲
represent the feasibility set of 𝐱 and 𝐲.

In general, the conventional two-stage robust optimiza-
tion model for GMS is a “min-max-min” model. To solve
this model, it is decomposed into a master problem (MP)
and a sub-problem (SP) in the conventional method. Since
the objective function values of MP and SP can converge
to the same value, the optimal solutions for the model can
be obtained by iterative solving MP and SP. However, the
nested model in (31) is a “min-max-max-min” model, in
which the uncertainty set 𝑈 is a non-convex set consisting
of multiple subsets. Note that a subset corresponds to a SP. It
means that problem (31) can be decomposed into a MP and

multiple SPs. Therefore, the two-stage NRO model for GMS
in this paper is difficult to be solved directly by the conven-
tional method. To address this issue, we introduce a parallel
Benders’ decomposition-based approach to solve the two-
stage NRO for GMS. The parallel Benders’ decomposition-
based approach is described in 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 1.

As shown in 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 1, the proposed approach de-
composes the two-stage problem into a master problem and
multiple sub-problems. The specific expression of MP is as
below.

𝐌𝐏 ∶ min
𝐱,𝜼

𝐜𝑇 𝐱 + 𝜂

𝐬.𝐭. 𝐀𝐱 ≥ 𝐝
𝜂 ≥ (𝐡 − 𝐄𝐲 −𝐌𝐮𝑙∗)𝑇𝝅∗

𝑙 ,∀𝑙 ≤ 𝑘
𝐱 ∈ 𝐬𝐱, 𝐲 ∈ 𝐬𝐲, 𝜂 ∈ 𝐑

(36)

where 𝜂 is an auxiliary variable. 𝐮𝑙∗ and 𝝅∗
𝑙 are the optimal

solutions for SP at the l-th iteration, which represent the
worst-case uncertainties realization and the value of the dual
variable, respectively. The MP is to make decisions for units
maintenance and reserve to minimize the total cost of the
power system when the uncertainties are captured from the
SP in the previous iteration.

After obtaining 𝐱∗ in the MP, the SP can determine the
worst-case wind power and load demands. Meanwhile, the
optimality cuts associated with the determined worst-case
are added to MP for the next iteration. Specially, we should
notice that each uncertainty set𝑈𝑖 corresponds to a subprob-
lem 𝐒𝐏𝑖, which forms a “max-max-min” problem combined
with the worst property of robust optimization. To deal
with the tri-level structure, we transform “max-max-min”
problem into the multiple subproblems (𝐒𝐏𝑛, 𝑛 = 1, ..., 𝑖)
and solve them in parallel. In each iteration, the largest one
is selected by comparing the optimal objective values of all
subproblems such that the worst-case uncertainties can be
revealed and determine the optimality cuts added to MP. The
subproblem (𝐒𝐏𝑖) is expressed as below.

𝐒𝐏𝑖 ∶ max
𝐮∈𝑈𝑖

min
𝐲

𝐛𝑇 𝐲

𝐬.𝐭.𝐖𝐲 ≥ 𝐡 − 𝐓𝐱∗ −𝐌𝐮
𝐲 ∈ 𝐬𝐲

(37)

where 𝐱∗ is the optimal decision obtained in the MP. In
general, the “max-min" problem can be converted into a
single-level problem based on the dual theory. In this paper,
we introduce the dual variable 𝜋 and transfer the inner min
problem of 𝐒𝐏𝑖 into the max problem such that the problem
(37) is redefined as below.

𝐒𝐏𝑖 ∶ 𝑄𝑖(𝐱∗) = max
𝐮,𝝅

(𝐡 − 𝐓𝐱∗ −𝐌𝐮)𝑇𝝅

𝐬.𝐭. 𝐆𝑇𝝅 ≤ 𝐛
𝝅 ≥ 0, 𝐮 ∈ 𝑈𝑖

(38)

where𝑄𝑖(𝐱∗) is the objective function value of i-th 𝐒𝐏. Note
that the product of 𝐮 and 𝝅 in (38) contains the bilinear terms
𝐙𝝅, which are linearized by employing the big-M method
in this paper. In detail, the transformation of 𝐙𝝅 is shown
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below.
0 ≤ 𝐅 ≤𝑀0 ⋅ 𝐙
𝝅 −𝑀0(1 − 𝐙) ≤ 𝐅 ≤ 𝝅

(39)

where 𝑀0 is a very large positive number, and 𝐅 = 𝐙𝝅. In
this way, 𝐒𝐏𝑖 is converted into a linear programming model
which can be solved by commercial solvers.

Algorithm 1 Parallel Benders’ Decomposition Algorithm
1: Set 𝐿𝐵 ← −∞, 𝑈𝐵 ← ∞, 𝑘 ← 0, and 𝜀 ← 10−3

2: while |

|

|

𝑈𝐵−𝐿𝐵
𝑈𝐵

|

|

|

≥ 𝜀 do
3: Solve 𝐌𝐏 to obtain 𝐱∗𝑘+1, 𝜂

∗
𝑘+1, 𝐲

1∗, ..., 𝐲𝑘∗;
4: Update 𝐿𝐵 ← 𝑐𝑇 𝑥∗𝑘+1 + 𝜂

∗
k+1;

5: for 𝑖 = 1 to 𝑛 do
6: Solve 𝐒𝐏𝑖 to obtain 𝐮𝑘+1𝑖 and 𝑄𝑖(𝐱∗𝑘+1);
7: end for
8: 𝑖∗ ← argmax

𝑖
𝑄𝑖(𝐱∗𝑘+1);

9: 𝐮𝑘+1 ← 𝐮𝑘+1𝑖∗ and 𝑄(𝐱∗𝑘+1) ← 𝑄𝑖∗ (𝐱∗𝑘+1);

10: Update 𝑈𝐵 ← min
{

𝑈𝐵, 𝐜𝑇 𝐱∗𝑘+1 +𝑄(𝐱
∗
𝑘+1)

}

;

11: Create second-stage variables 𝐲𝑘+1 and add cuts 𝜂 ≥ 𝐛𝑇 𝐲𝑘+1,
𝐓𝐱 +𝐖𝐲𝑘+1 ≥ 𝐡 −𝐌𝐮𝑘+1 to 𝐌𝐏;

12: 𝑘 ← 𝑘 + 1;
13: end while
14: return 𝑈𝐵.

It is notable that 𝑈𝐵 and 𝐿𝐵 are the upper and the
lower bounds, which can be obtained from MP and SP,
respectively. 𝜀 represents the optimality gap that is used to
determine when the algorithm stops. When the gap between
𝑈𝐵 and 𝐿𝐵 is smaller than the 𝜀, the algorithm converges
and the optimal solution of the two-stage NRO for GMS is
determined.

5. Simulations and Results
In this section, we conduct case studies to verify the

effectiveness of the proposed approach. The data-driven
two-stage NRO model for the GMS is solved using GUROBI
within MATLAB 2021b. In Subsection 5.1, the parameters
and data for the power system are represented. Subsection
5.2 illustrates the performance of the proposed TCDPMM
model. On this basis, Subsection 5.3 analyzes the results
from the data-driven two-stage NRO approach for GMS on
a six-bus system. Finally, the proposed approach is applied
to the 26-bus Yantai power system to demonstrate its perfor-
mance and superiority.

5.1. Data and Parameter Settings
In this paper, all case studies are carried out on a mod-

ified IEEE 6-bus system and a 26-bus Yantai power system
in China. The topology of the 6-bus power system is shown
in Fig. 4, which contains 2 wind turbines, 4 generators, and
4 load demands. The parameters of all units are taken from
[13], which are shown in Table 1. Note that the reserve cost
of units is set to 1% of the maintenance cost, and the fuel
cost of units is assumed to be 14.4 $/MW. The parameters
of the transmission lines for IEEE 6-bus system are obtained
from [38]. Wind power and load demand datasets are derived
from the real annual data of Austria in 2015. The time

TABLE 1
The parameters of all units

Unit 𝑐𝑀 ($) 𝑐𝑂,𝐺 ($/MWh) 𝑃𝑚𝑎𝑥∕𝑃𝑚𝑖𝑛(MW) D(h) RU/RD(MW/h)
𝑃𝐺1 40000 63 520/0 4 350
𝑃𝐺2 30000 73 360/0 5 250
𝑃𝐺3 10000 98 200/0 2 100
𝑃𝐺4 40000 73 360/0 5 250

step for GMS is one week and the operation horizon is one
year which can be divided into 52 weeks. The weekly load
demand and wind power generation are shown in Fig. 5.
Furthermore, the optimality gap 𝜀 is predefined as 10−4.

Fig. 4: Six bus power system

Fig. 5: Load demand and wind generation

5.2. Effectiveness of TCDPMM Model
To verify the effectiveness of the TCDPMM model

constructed in Section 2, we compare the component results
that TCDPMM and DPMM explore the internal information
of wind power and load demand datasets. The components
based on TCDPMM and DPMM are shown in Fig. 6, and the
data in the same component has common intrinsic features.
From Fig. 6(a) and Fig. 6(b), we can find that the number
of components based on DPMM is 13, and the number of
components based on TCDPMM is 5. Obviously, the number
of components for the datasets is reduced after taking into
account the temporal correlation.

Further, in order to exhibit the difference between
DPMM-based components and TCPMM-based components
clearly, the probabilistic information of components is rep-
resented in Fig. 7. We can see that the probability of
TCDPMM-based components becomes larger than the prob-
ability of DPMM-based components. This means that the
typical features of the datasets can be better mined due to

Page 8 of 16



Data-Driven Nested Robust Optimization for Generation Maintenance Scheduling Considering Temporal Correlation

(a) DPMM

(b) TCDPMM

Fig. 6: Components for TCDPMM and DPMM

Fig. 7: Probability of components

the fewer quantities of lower probability components, when
the temporal information of datasets is considered.

Based on the component results obtained from
TCDPMM and DPMM, the data-driven uncertainty sets of
wind power and load demand are represented as boxplots
in Fig. 8. Each subfigure in Fig. 8 contains two boxes
representing wind power and load demand, respectively.
The horizontal coordinate of all boxes represents the
components, and the vertical coordinate represents the
corresponding value of the uncertainty set. Note that the
red symbols in all boxes represent data outliers that are

(a) DPMM

(b) TCDPMM

Fig. 8: Data-driven uncertainty set based on DPMM and
TCDPMM

contained in the corresponding uncertainty set. Comparing
Fig. 8(a) and Fig. 8(b), it can be obtained that the number of
TCDPMM-based data-driven uncertainty sets is lower than
the number of DPMM-based data-driven uncertainty sets,
and the number of data outliers in Fig. 8(b) is also lower than
the number of data outliers in Fig. 8(a). Generally, the data
outliers in the uncertainty set lead to higher conservatism
in robust optimization. Taking the load demand uncertainty
set corresponding to c9 in Fig. 8(a) as an example, the
uncertainty set can be expressed as 320 ≤ 𝑢 ≤ 480,
but it will be reformulated as 280 ≤ 𝑢 ≤ 480 when the
data outliers are considered. The range of uncertainty
sets becomes more extensive, which will improve the
conservativeness of the robust optimization results. In
addition, each component corresponds to a data-driven
uncertainty set. It means that the data-driven uncertainty
sets have the same probabilistic information as the
corresponding components. The data-driven uncertainty
set with small probability information will lead to more
conservative results in robust optimization. Therefore, it
can be concluded that the TCDPMM-based data-driven
uncertainty set can lead to lower conservatism, which can
be verified in Subsections 5.3 and 5.4.

5.3. Six-Bus Power System
In this subsection, two case studies are conducted, where

the data-driven two-stage NRO approach for GMS is applied
to the modified six-bus power system, and the NRO methods
with various uncertainty sets are compared in terms of the
total cost of the power system operation.

Case 1 – (Data-driven Two-stage NRO for GMS on a Six-
Bus System): In order to represent the outperformance of the
TCDPMM-based two-stage NRO for GMS, we conduct the
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Fig. 9: The deviation of wind power and load demand
compared to DM method

TABLE 2
The optimal maintenance decisions of units in different meth-
ods

Method unit1 (weeks) unit2 (weeks) unit3 (weeks) unit4 (weeks)
DM 38-41 3-7 50-51 45-49
CRO 8-11 2-6 20-21 25-29
NRO 1-4 43-47 35-36 48-52

TABLE 3
Cost comparison of different methods

Method Total cost ($) the first stage ($) the second stage ($) Conservativeness

DM 1.8665× 106 5.0640× 105 1.3601× 106 -

CRO 2.2671× 106 5.4020× 105 1.7269× 106 21.5%
NRO 2.1060× 106 5.0680× 105 1.5992× 106 12.8%

simulations to compare with the deterministic model (DM)
and the conventional two-stage robust optimization model
(CRO) for GMS, and the conservativeness is introduced as a
measure indicator to quantify the performance of the differ-
ent robust optimization methods. Note that the uncertainties
of wind power generation and load demand are not consid-
ered in the DM, and the specific formulation representations
of the DM and the CRO are placed in Appendix C. Moreover,
the budget value Φ of the TCDPMM-based uncertainty set
is set to be 20 in this case, and the values of Φ𝑤𝑡 and Φ𝐿𝑜𝑎𝑑
are also set to be 20 in the CRO method.

The purposes of the proposed NRO approach for GMS
are to make the optimal generation maintenance plans under
the worst case. Specifically, at the expense of certain operat-
ing costs, it can seek the optimal maintenance decisions for
units to endure the normal operation of the system under the
worst case, such as the maximum load demand and the min-
imum wind generation. The effectiveness of the proposed
method is verified by the comparative results shown in Fig.
9, Table 2 and Table 3.

Comparing the TCDPMM-based NRO method, the CRO
method and DM method, Fig. 9 illustrates the volatility of
wind power and load demand, and the comparison results
of maintenance decisions are shown in Table 2. As can
be seen from Fig. 9, the wind output power is always re-
duced, and the load demand power is always increased in
the TCDPMM-based NRO method when the budget value
Φ = 20, which is consistent with the worst uncertainty
case in robust optimization. It indicates that the units power
generation is higher and wind power generation is lower

in the TCDPMM-based NRO method compared to the DM
method. Moreover, to cope with the uncertainties of wind
power and load demand, the optimal maintenance decisions
for the units in the CRO method change from weeks 38-
41, 3-7, 50-51 and 45-49 to weeks 8-11, 2-6, 20-21 and 25-
29, respectively. The optimal maintenance decisions for the
units in the NRO method change from weeks 38-41, 3-7, 50-
51 and 45-49 to weeks 1-4, 43-47, 35-36 and 48-52. Note
that the optimal maintenance decisions in the DM and NRO
methods are shown in Table 2.

On the basis of the optimal maintenance decisions, the
total cost of the power system operation that contains the
first stage cost and the second stage cost is obtained, which
is shown in Table 3. On the one hand, the total cost for
TCDPMM based NRO method is higher, which is US$ 2.106
× 106 compared with US$ 1.8665 × 106 regarding that of
the DM method. The reason is that the system sacrifices
some economic costs to deal with the uncertainty of wind
power and load demand, which can improve the security
and stability of the system operation. On the other hand, it
should be noticed that the first stage cost of the DM method
is US$ 5.064 × 105, lower than US$ 5.068 × 105 in the
NRO method. This is because that the TCDPMM-based
NRO method enhances the reserve capacity of the system
and increases the reserve cost in the first stage. Moreover,
its operation cost of the second stage is US$ 1.5992 × 106,
higher than US$ 1.3601 × 106 regarding the DM method.
Consequently, we can draw a conclusion from the above
simulation results that the TCDPMM-based NRO for GMS
can improve the robustness of the power system at the
expense of lower economic cost, since its total cost increases
by only US$ 2.395× 105.

To quantify the performance of the proposed method, the
cost in the DM method is regarded as a baseline. We can
find from Table 3 that the total cost for TCDPMM based
NRO method is lower, which is US$ 2.106 × 106 compared
with US$ 2.2671 × 106 regarding that of the CRO method.
The conservativeness of the CRO and the NRO can be calcu-
lated by

(

2.2671 × 106 − 1.8665 × 106
)

∕1.8665 × 106 and
(

2.106 × 106 − 1.8665 × 106
)

∕1.8665×106, and the values
of the conservativeness are 21.5% and 12.8%, respectively.
Apparently, compared with the CRO, the conservativeness
of the proposed NRO method is reduced by 8.7%, which
means that the proposed NRO method reduces the cost of
the power system to deal with the uncertainties. Meanwhile,
the first stage cost of the NRO method is US$ 5.068 × 106,
lower than US$ 5.402 × 106 regarding the CRO method. It is
indicated that the reserve cost in the NRO method is reduced,
compared to the CRO method. Moverover, its operation cost
of the second stage is US$ 1.5992 × 106, lower than US$
1.7269 × 106 regarding the CRO method. The above results
show that in comparison with the CRO method, the NRO
method copes with the uncertainties by means of the lower
reserve capacity, and the optimal results is less conservative.
Therefore, the performance of the NRO to cope with the
uncertainties is better than the CRO method.
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Case 2 – (Comparative Analysis of Various Uncer-
tainty Sets under NRO framework): In this case, we com-
pare the experimental results for different uncertainty sets
under the NRO framework. The uncertainty sets contain
DPMM-based uncertainty set, TCDPMM-based uncertainty
set without considering the correlation between variables,
and the proposed TCDPMM-based uncertainty set. For
brevity, these uncertainty sets under NRO are represented by
Method 1, Method 2 and Method 3. To verify the advantages
of Method 3, the impacts of budget value for the uncertainty
set on the total cost are elaborately analyzed by setting the
budget value to be 10, 15 and 20, respectively. The optimiza-
tion results with different budget values are represented in
Table 4.

It can be observed from Table 4 that the total cost of the
system operations increases as the budget value increases.
It can be revealed that the higher the value of Φ is, the
more severe the worst uncertainty case is, which leads to a
conservatism increase in the system operation. Moreover, we
can notice that the total cost in Method 3 is US$ 2.0671×
106, US$ 2.0875× 106 and US$ 2.106× 106, lower than
US$ 2.2231× 106, US$ 2.2414× 106 and US$ 2.2593× 106
regarding Method 1, when budget value Φ is set to 10, 15,
20. Apparently, the economic performance of Method 3 is
better than Method1. The reasons mainly include two points:
1) the TCDPMM-based uncertainty set contains fewer data
outliers than the DPMM-based uncertainty set, while the
data outliers lead to higher conservatism, 2) DPMM-based
components contain some small probability of components,
such as the probability of c8 is only 0.038. It means that
the DPMM-based uncertainty set contains a large number
of small probability scenarios, which leads to a higher cost
for the system to cope with uncertainty. In addition, it is
notable that the total cost in Method 3 decreased by 7%,
6.9% and 6.8% compared to Method 1. It indicates that
the optimization results of Method 3 are much lower than
Method 1 in terms of conservativeness.

The advantage of considering correlations between vari-
ables is verified by comparing Method 3 with Method 2. It
can be found from Table 4 that the total cost for Method
2 is higer than that of Method 3. This is because that the
range of the uncertainty set based on TCDPMM becomes
smaller after considering the correlation between variables.
To be specific, taking the wind power uncertainty set in
week 43 as an example, the uncertainty set is represented by
𝑃wt = 18.04+5.54𝑧1, |𝑧1| ≤ 1when the correlation between
wind power and load demand is considered. On the contrary,
the uncertainty set can be represented by 𝑃wt = 18.04 +
16.39𝑧1, |𝑧1| ≤ 1 when the correlation is not considered.
For ease of understanding, these two uncertainty sets are
further elaborated by Fig. 10. As shown in Fig. 10, the
upper bound of the uncertainty set becomes smaller and the
lower bound becomes larger after considering the correlation
between the uncertain variables. Therefore, the output range
of wind power becomes smaller, which reduces the cost
of the system to cope with the uncertainty and reduces
the conservativeness of robust optimization for GMS. In

Fig. 10: Comparison of the uncertainty sets

TABLE 4
Cost comparison of different methods

Budget Φ=10 Φ=15 Φ=20
Method 1 ($) 2.2231× 106 2.2414× 106 2.2593× 106

Method 2 ($) 2.0852× 106 2.1131× 106 2.1413× 106

Method 3 ($) 2.0671 × 𝟏𝟎𝟔 2.0875× 𝟏𝟎𝟔 2.1060× 𝟏𝟎𝟔

summary, the TCDPMM-based two-stage NRO method not
only considers the temporal information in the dataset and
the correlation between the uncertain variables, but also
reduces the conservativeness of robust optimization, which
decreases the cost of dealing with the uncertainties of wind
power and load demand.

5.4. The 26-Bus Yantai Power System
In this subsection, we consider a 26-bus Yantai power

system in China to verify the effectiveness of the proposed
data-driven NRO model based on TCDPMM. The topology
of the system is shown in Fig. 11, which consists of 26 buses,
4 generators, 39 transmission lines, and 19 loads. Moreover,
two wind farms are installed at Buses 2 and 12. The units
parameters are origin from Ref. [39], and the line parameters
of the Yantai power grid can be found in Ref. [40]. The
weekly load demand and wind power generation are shown
in Fig. 12, and the data-driven uncertainty set is the same as
in the previous study on the six-bus system.

Fig. 11: 26-bus Yantai power system

For brevity, Φ is set to be 15, and Fig. 13 presents the
deviation of wind power generation and load demand when
the proposed NRO approach is applied to the Yantai power
grid. It can be found from Fig. 13 that the volatility of load
demand is positive, and that of wind power generation is
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Fig. 12: Load demand and wind generation

negative. This indicates that the load demand is increased
and the wind power generation is reduced in the proposed
NRO model for GMS, which corresponds to the worst-case
uncertainty scenario in the RO method.

Fig. 13: The deviation of load demand and wind generation
when Φ = 15

To verify the economics of the proposed NRO approach,
the total costs of different uncertainty sets under the NRO
framework are presented in Table 5. Note that Method 1,
Method 2 and Method 3 in Table 5 are consistent with
the methods in Case 2, and Φ is set to be 10, 15, and
20, respectively. By comparing the total costs, we can see
from Table 5 that the total cost in Method 2 is US$ 8.74×
105, US$ 8.98× 105 and US$ 9.22× 105, lower than US$
9.69× 105, US$ 9.88× 105 and US$ 1.01× 106 regarding
Method 1. The percentage of cost reduction is 9.8%, 9.1%
and 8.7%,respectively. This reveals that the cost of the sys-
tem coping with the uncertainty of wind power and load
demand can be reduced when the temporal information of
the uncertainty variables is considered.

Moreover, we can find from Table 5 that the total cost
determined by Method 3 is US$ 8.54× 105, US$ 8.69×
105 and US$ 8.83× 105, lower than US$ 8.74× 105, US$
8.98× 105 and US$ 9.22× 105 regarding that of Method 2.
Obviously, the total cost in Method 3 is further reduced. It is
because that the correlation between the uncertain variables
is characterized in the proposed data-driven uncertainty set,
which reduces the conservativeness of robust optimization.
Therefore, it can be concluded that considering the temporal
correlation of wind power and load demand, the TCDPMM-
based two-stage NRO method for GMS has better economic
performance, since the cost of tackling the uncertainties is

TABLE 5
Cost comparison of different methods

Budget Φ=10 Φ=15 Φ=20
Method 1 ($) 9.69× 105 9.88× 105 1.01× 106

Method 2 ($) 8.74× 105 8.98× 105 9.22× 105

Method 3 ($) 8.54 × 𝟏𝟎𝟓 8.69× 𝟏𝟎𝟓 8.83× 𝟏𝟎𝟓

reduced. In this way, the effectiveness and superiority of the
proposed approach are verified in the Yantai power system.

6. CONCLUSION
In this paper, we present a data-driven two-stage NRO

framework for GMS in the power system to cope with
the uncertainties of wind power and load demand. As the
limitations of traditional DPMM information characteri-
zation, the TCDPMM, an improved DPMM method, is
developed to characterize the temporal correlation of the
uncertain variables. With the Gaussian component results
of TCDPMM and variational Bayesian inference, the data-
driven uncertainty set is constructed, which captures the
temporal information in the uncertainties datasets and cor-
relations between wind power generation and load demand.
Moreover, with data-driven uncertainty set embedded in the
robust optimization model, the two-stage problem for GMS
is reformulated as a “min-max-max-min” problem, in which
the NRO model is solved by the introduced parallel Benders’
decomposition algorithm, and the optimal maintenance de-
cisions are determined under the worst case. The simulation
results show that 1) the proposed TCDPMM has a better
performance in terms of mining the temporal information
in the datasets compared to the DPMM method, since the
inference results of TCDPMM contain fewer components,
2) compared to the deterministic GMS model that does not
consider the uncertainties, the developed NRO model is
better to improve the security and stability of the system at
the cost of lower economic cost, and 3) the proposed NRO
method for GMS has a lower conservatism compared to
the DPMM based NRO method and TCDPMM based NRO
method without considering correlation, which helps reduce
the operation cost to deal with uncertainties.

The proposed NRO for GMS method has two limitations,
as follows:

(1) There exists the spatial correlation of wind power
generator output in the same region of the power system.
However, it is not considered in the proposed two-stage NRO
model for GMS, which may impede the economic operation
of the power system.

(2) The uncertainties in GMS are from wind power,
photovoltaic power generation, load, and the contingencies
in the transmission network, etc. Only wind power and load
uncertainties are considered in the proposed model, and the
correlations among multiple uncertain variables needs to be
further studied.

Therefore, the future work will focus on the above two
limitations.
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Appendix A Variational distributions of 𝑞(𝝅)
and 𝑞(𝝁,𝚺)

In TCDPMM, 𝑞(𝝅) is a Dirichlet distribution that can be
represented by:

𝑞(𝝅) = 𝐷𝑖𝑟(𝝅|𝜶) (A.1)
where 𝜶 has components 𝛼𝑘 updated by:

𝛼𝑘 = 𝛼0 +𝑁𝑘 (A.2)
Since TCDPMM consists of multiple Gaussian distribu-

tions, the variational distribution 𝑞(𝝁,𝚺) can be reformu-
lated as:

𝑞(𝝁,𝚺) =
𝐾
∏

𝑘=1
𝑞(𝝁𝑘,𝚺𝑘) (A.3)

The posterior of 𝑞(𝝁𝑘,𝚺𝑘) is a Gaussian-Wishart distri-
bution which can be given by
𝑞∗(𝝁𝑘,𝚺𝑘) =  (𝝁𝑘|𝒎𝑘, (𝛽𝑘𝚺𝑘)−1)𝑊 (𝚺𝑘|𝚿𝑘, 𝑣𝑘) (A.4)

where 𝝁𝑘 and 𝚺𝑘 are the mean vector and precision matrix
in TCDPMM, respectively. Distinctively, 𝒎𝑘 and 𝚿𝑘 are the
mean vector and precision matrix in the Gaussian-Wishart
distribution. 𝛽𝑘 and 𝑣𝑘 are parameters in the Gaussian-
Wishart distribution. Moreover, the related parameters can
be calculated by :

𝛽𝑘 = 𝛽0 +𝑁𝑘 (A.5)

𝒎𝑘 =
1
𝛽𝑘

(𝛽0𝒎0 +𝑁𝑘𝒙𝑘) (A.6)

𝑾 −1
𝑘 = 𝑾 −1

0 +𝑁𝑘𝑺𝑘 +
𝛽0𝑁𝑘
𝛽0 +𝑁𝑘

(𝒙𝑘 −𝒎0)(𝒙𝑘 −𝒎0)𝑇

(A.7)
𝑣𝑘 = 𝑣0 +𝑁𝑘 (A.8)

𝑁𝑘 =
𝐼
∑

𝑖=1
𝑟
′𝑖
𝑘 (A.9)

𝒙𝑘 =
1
𝑁𝑘

𝐼
∑

𝑖=1
𝑟
′𝑖
𝑘𝒙𝑖 (A.10)

𝑺𝑘 =
1
𝑁𝑘

𝐼
∑

𝑖=1
𝑟
′𝑖
𝑘 (𝒙𝑖 − 𝒙𝑘)(𝒙𝑖 − 𝒙𝑘)𝑇 (A.11)

where 𝛽0 and 𝑣0 are the initial values for 𝛽𝑘 and 𝑣𝑘. 𝑚0 is the
initial vector for 𝑚𝑘.

On this basis, 𝜌𝑖𝑘 is defined as below:

ln 𝜌𝑖𝑘 = 𝐸[ln𝜋𝑘] +
1
2
𝐸[ln |𝚺𝑘|] −

𝐷
2
ln(2𝜋)

− 1
2
𝐸𝜇𝑘,𝚺𝑘 [(𝒙𝑖 − 𝝁𝑘)𝑇𝚺𝑘(𝒙𝑖 − 𝝁𝑘)]

(A.12)

𝐸[ln𝜋𝑘] = 𝜓(𝛼𝑘) − 𝜓(𝛼) (A.13)

𝐸[ln |𝚺𝑘|] =
𝐷
∑

𝑛=1
𝜓
(

𝑣𝑘 + 1 − 𝑛
2

)

+𝐷 ln 2 + ln |𝑾 𝑘|

(A.14)
𝐸𝜇𝑘,𝚺𝑘 [(𝒙𝑖 − 𝝁𝑘)𝑇𝚺𝑘(𝒙𝑖 − 𝝁𝑘)]

= 𝐷𝛽−1𝑘 + 𝑣𝑘(𝒙𝑖 −𝒎𝑘)𝑇𝑾 𝑘(𝒙𝑖 −𝒎𝑘)
(A.15)

where𝐷 is the dimensionality of the observation 𝒙, and 𝜓(⋅)
is the digamma function.

Appendix B EM algorithm for TCDPMM
In general, EM algorithm is divided into Expectation-

step and Maximization step. In Expectation-step, the weight
𝑟′𝑖𝑘 can be calculated when the parameters 𝝅 and 𝜽 are fixed.
In other words, the variational distribution 𝑞(𝒛) can be deter-
mined. Furthermore, keeping the weight 𝑟′𝑖𝑘 fixed, the param-
eters 𝝅 and 𝜽 are updated in Maximization step. It means that
the variational distributions 𝑞(𝝅) and 𝚺 are obtained. The
optimal posterior distributions 𝑞∗(𝒛), 𝑞∗(𝝅) and 𝑞∗(𝜽) are
determined when convergence is reached at the Expectation
and Maximization steps. That is to say, the posterior distri-
bution 𝑝(𝒙|𝒛,𝜽) is approximated by 𝑞∗(𝒛)𝑞∗(𝝅)𝑞∗(𝝁,𝚺). The
EM algorithm for TCDPMM is shown in 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 2.

Algorithm 2 The EM Algorithm for TCDPMM
1: Input observation dataset 𝑋 = {𝑥𝑖}

𝐼
𝑖=1;

2: Initialize the mean vector 𝒎0, the precision matrix 𝑾 0, the parameters
𝛼0, 𝛽0 and 𝑣0;

3: while
|

|

|

|

𝜽𝑡−𝜽𝑡−1
𝜽𝑡−1

|

|

|

|

≥ 𝜍 do
4: for 𝑘 = 1 to 𝑀 do
5: Evaluate the weight 𝑟𝑖𝑘 by the expression in (8);
6: Modify the weight 𝑟′𝑖𝑘 by the expression in (13);
7: end for
8: for 𝑖 = 1 to 𝐼 do
9: Calculate 𝑁𝑘, 𝒙𝑘 and 𝑺𝑘 by the expression in (A.9), (A.10) and

(A.11);
10: end for
11: for 𝑘 = 1 to 𝑀 do
12: Update 𝛽𝑘, 𝒎𝑘, 𝑾 −1

𝑘 and 𝑣𝑘 by the expression in (A.5), (A.6),
(A.7) and (A.8);

13: end for
14: end while

15: Output 𝑝(𝒙|𝒛,𝜽) =
𝐼
∏

𝑖=1

∞
∑

𝑘=1
𝑁𝑘(𝑥𝑖|𝜇𝑘,Σ𝑘)

𝑧[𝑖]𝑘

Note that lines 4 to 7 represent the Expectation-step,
and the lines 8 to 13 stand for the Maximization step in
𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 2. 𝜍 is the gap, which can affect the number of
iterations for EM algorithm and the accuracy of the optimal
results. The values of 𝝁𝑘 and 𝚺𝑘 is equal to the value of 𝒎𝑘
and 𝑾 𝑘 when the EM algorithm reaches convergence.
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Appendix C Conventional two-stage robust
optimization and deterministic
model for GMS

The conventional two-stage robust optimization (CRO)
model for is shown as below.

min
𝑥,𝑔

𝑛𝐺
∑

𝑖=1

𝑇
∑

𝑡=1

The first term
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(𝑐𝑀,𝑖𝑥𝑖,𝑡 + 𝑐𝑅,𝑖(1 − 𝑔𝑖,𝑡))+

max
𝑃𝑤𝑡,𝑃𝑙𝑜𝑎𝑑∈𝑈

min
𝑃𝐺

𝑛𝐺
∑

𝑖=1

𝑇
∑

𝑡=1
(𝑐𝑂,𝐺𝑖 + 𝑐𝐹 ,𝐺𝑖)𝑃𝐺𝑖
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

The second term

(C.1)

𝐬.𝐭. (19) − (30) (C.2)

𝑢𝑤𝑡(𝑡) = 𝑃𝑤𝑡(𝑡) − 0.2 ∗ 𝐵𝑤𝑡(𝑡) ∗ 𝑃𝑤𝑡(𝑡) (C.3)

𝑢𝐿𝑜𝑎𝑑(𝑡) = 𝑃𝐿𝑜𝑎𝑑(𝑡) + 0.2 ∗ 𝐵𝐿𝑜𝑎𝑑(𝑡) ∗ 𝑃𝐿𝑜𝑎𝑑(𝑡) (C.4)
𝑇
∑

𝑡=1
𝐵𝑤𝑡(𝑡) ≤ Φ𝑤𝑡 (C.5)

𝑇
∑

𝑡=1
𝐵𝐿𝑜𝑎𝑑(𝑡) ≤ Φ𝐿𝑜𝑎𝑑 (C.6)

𝑈 = 𝑢𝑤𝑡 ∪ 𝑢𝐿𝑜𝑎𝑑 (C.7)

where 𝐵𝑤𝑡 and 𝐵𝐿𝑜𝑎𝑑 are binary variables. Φ𝑤𝑡 and Φ𝐿𝑜𝑎𝑑
represent the uncertainty adjustment parameters of the wind
power and load.

Unlike the two-stage NRO model for GMS, the wind
power generation and load demand are determined in the
deterministic GMS model, which means that the uncertain-
ties of wind power and load is not considered. The specific
expression of the deterministic model for GMS is shown
below.

min
𝑥,𝑦

𝑛𝐺
∑

𝑖=1

𝑇
∑

𝑡=1
{𝑐𝑀,𝑖𝑥𝑖,𝑡 + 𝑐𝑅,𝑖(1 − 𝑔𝑖,𝑡) + (𝑐𝑂,𝐺𝑖 + 𝑐𝐹 ,𝐺𝑖)𝑃𝐺𝑖}

(C.8)
𝐬.𝐭. (19) − (30) (C.9)

Appendix D DPMM and VBI for DPMM
D.1 DPMM

An I-dimensional vector 𝒙 = {𝑥𝑖}𝐼𝑖=1can represent the
observation data, and the probability density function of 𝒙
is expressed as follows.

𝑝(𝒙|𝝅,𝜽) =
∞
∑

𝑘=1
𝜋𝑘𝑝𝑘(𝒙|𝜃𝑘) (D.1)

where 𝜋𝑘, 𝜃𝑘, and 𝑝𝑘(𝑥|𝜃𝑘) represent the weight, parameter
and probability density function of the component 𝑘. Here,
the prior of the component 𝑘 is set to be a Gaussian distribu-
tion. Therefore, 𝜃𝑘 stands for the mean and covariance of the
Gaussian distribution, and (D.1) is reformulated as below.

𝑝(𝒙|𝝅,𝜽) =
∞
∑

𝑘=1
𝜋𝑘𝑘(𝒙|𝜇𝑘,Σ𝑘) (D.2)

where 𝑘(⋅|⋅) is the Gaussian component 𝑘. 𝜇𝑘 and Σ𝑘 are
the mean and covariance of the component 𝑘, and 𝜃𝑘 =

(𝜇𝑘,Σ𝑘). Note that 𝒙 = {𝑥𝑖}𝐼𝑖=1 contains 𝐼 observation data
which is mutually independent samples. Hence, the DPMM
on the observation data is represented as follows.

𝑝(𝒙|𝝅,𝜽) =
𝐼
∏

𝑖=1

{ ∞
∑

𝑘=1
𝜋𝑘𝑘(𝑥𝑖|𝜇𝑘,Σ𝑘)

}

(D.3)

Here, it is not clear which Gaussian component the
observation data 𝑥𝑖 belongs to. To address this issue, the
latent variable vector 𝒛 = {𝑧[𝑖]𝑘 }𝑖=𝐼,𝑘=∞𝑖=1,𝑘=1 is introduced
to indicate the association of the observed data with the
Gaussian component, and 𝒛 is the binary variable vector.
For instance, 𝑧[𝑖]𝑘 = 1 shows that the observation data 𝑥𝑖
belongs to the Gaussian component 𝑘. In this way, it is
known that the observation data 𝑥𝑖 follows which Gaussian
component, which means that the latent variable vector 𝒛 and
the parameter set 𝜽 are given. Therefore, (D.3) is formulated
as follows.

𝑝(𝒙|𝒛,𝜽) =
𝐼
∏

𝑖=1

∞
∏

𝑘=1
𝑁𝑘(𝑥𝑖|𝜇𝑘,Σ𝑘)

𝑧[𝑖]𝑘 (D.4)

The relationship between 𝒛 and 𝝅 is as follows.

𝑝(𝒛|𝝅) =
𝐼
∏

𝑖=1

∞
∏

𝑘=1
𝜋
𝑧[𝑖]𝑘
𝑘 (D.5)

D.2 VBI for DPMM
In section D.1, the mathematical model of DPMM is

constructed. VBI is introduced to estimate the parameters
of the model in this section. Note that we need to find
the maximum of the posterior probability 𝑝(𝒙) when the
parameters set Ω = {𝝅, 𝒛,𝜽} is given. Since the poste-
rior distribution 𝑝 is difficult to be determined directly, the
variational distribution 𝑞(Ω) is introduced. In this way, the
logarithm of 𝑝 is expressed as follows.

ln 𝑝(𝒙) = ∫ ln
𝑝(𝒙,Ω)
𝑝(Ω|𝒙)

× 𝑞(Ω)𝑑Ω

= ∫ 𝑞(Ω) {ln 𝑝(𝒙,Ω) − ln 𝑝(Ω|𝒙)}𝑑Ω

= ∫ 𝑞(Ω) ln
𝑝(𝒙,Ω)
𝑞(Ω)

𝑑Ω − ∫ 𝑞(Ω) ln
𝑝(Ω|𝒙)
𝑞(Ω)

𝑑Ω

(D.6)

Here, the evidence lower bound and Kullback-Leibler
(KL) divergence are denoted as follows.

ELBO = ∫ 𝑞(Ω) ln
𝑝(𝒙,Ω)
𝑞(Ω)

𝑑Ω (D.7)

KL(𝑞(Ω)||𝑝(Ω|𝒙)) = −∫ 𝑞(Ω) ln
𝑝(Ω|𝒙)
𝑞(Ω)

𝑑Ω (D.8)

Therefore, (D.6) can be reformulated as

ln 𝑝(𝒙) = ELBO + KL(𝑞(Ω)||𝑝(Ω|𝒙)) (D.9)

Here, in order to maximize ln 𝑝(𝒙), the variational distri-
bution 𝑞(𝛀) is used to approximate 𝑝(Ω|𝒙), which can help
minimize KL(𝑞(Ω)||𝑝(Ω|𝒙)). Note that the posterior proba-
bility 𝑝(𝒙) in (D.9) is a constant, and the KL divergence is
non-negative. Hence, the minimization of the KL divergence

Page 15 of 16



Data-Driven Nested Robust Optimization for Generation Maintenance Scheduling Considering Temporal Correlation

can be transformed into the maximization of the ELBO. That
is to say, the maximization of ln 𝑝(𝒙) is transformed into the
maximization of the ELBO. To solve the maximum value
of the ELBO, the parameters in 𝑞 including 𝝅, 𝒛 and 𝜽 are
assumed to be mutually independent. In this way, 𝑞(Ω) is
decomposed as follows.

𝑞(Ω) = 𝑞(𝒛)𝑞(𝝅)𝑞(𝜽) (D.10)
Next, (D.7) can be transformed as

ELBO = ∫ 𝑞(Ω) ln
𝑝(𝒙,Ω)
𝑞(Ω)

𝑑Ω

= ∫ 𝑞(𝒛)𝑞(𝝅)𝑞(𝜽) {ln 𝑝(𝒙,Ω) − ln 𝑞(Ω)} 𝑑Ω

= ∫ 𝑞(𝒛)
{

∫ 𝑞(𝝅)𝑞(𝜽) ln 𝑝(𝒙,Ω)𝑑𝝅𝑑𝜽
}

𝑑𝒛

− ∫ 𝑞(𝒛) ln 𝑞(𝒛)𝑑𝒛 + 𝑐𝑜𝑛𝑠𝑡

= ∫ 𝑞(𝒛)
{

𝐸𝝅,𝜽 [ln 𝑝(𝒙,Ω)] − ln 𝑞(𝒛)
}

𝑑𝒛+𝑐𝑜𝑛𝑠𝑡

(D.11)

We calculate the first order partial derivative of (D.11)
with respect to 𝑞(𝑧), which is shown as follows.

𝜕𝐸𝐿𝐵𝑂
𝜕𝑞(𝒛)

= 𝐸𝝅,𝜽 [ln 𝑝(𝒙,Ω)] − ln 𝑞(𝒛) − 1 + 𝑐𝑜𝑛𝑠𝑡 = 0

(D.12)
Therefore, the optimal distribution of 𝑞∗(𝒛) can be ob-

tained, which is as below.
ln 𝑞∗(𝒛) = 𝐸𝝅,𝜽 [ln 𝑝(𝒙,Ω)] + 𝑐𝑜𝑛𝑠𝑡
= 𝐸𝝅,𝜽 [ln 𝑝(𝒙, 𝒛,𝝅,𝜽)] + 𝑐𝑜𝑛𝑠𝑡
= 𝐸𝝅,𝜽 [ln 𝑝(𝒙|𝒛,𝜽) + ln 𝑝(𝒛|𝝅) + ln 𝑝(𝝅) + ln 𝑝(𝜽)] + 𝑐𝑜𝑛𝑠𝑡
= 𝐸𝝅[ln 𝑝(𝒛|𝝅)] + 𝐸𝜽[ln 𝑝(𝒙|𝒛,𝜽)] + 𝑐𝑜𝑛𝑠𝑡

(D.13)
where 𝑐𝑜𝑛𝑠𝑡 represents the constant terms not related to 𝒛.
Substituting (D.4) and (D.5) into (D.13), ln 𝑞∗(𝒛) is repre-
sented by

ln 𝑞∗(𝒛) =
𝐼
∑

𝑖=1

𝐾
∑

𝑘=1
𝑧[𝑖]𝑘 ln 𝜌𝑖𝑘 + 𝑐𝑜𝑛𝑠𝑡 (D.14)

where 𝜌𝑖𝑘 represents the probability that k-th Gaussian com-
ponent samples observation data 𝑥𝑖, which is shown in
(A.12). Further, taking logarithms on both sides, 𝑞∗(𝒛) is
formulated by.

𝑞∗(𝒛) =
𝐼
∏

𝑖=1

𝐾
∏

𝑘=1
(𝑟𝑖𝑘)

𝑧[𝑖]𝑘 (D.15)

where 𝑟𝑖𝑘 is the weight that the observation 𝑥𝑖 belongs to
k-th Gaussian component, and 𝑟𝑖𝑘 can be obtained after
normalizing 𝜌𝑖𝑘, which is represented by:

𝑟𝑖𝑘 = 𝑝(𝑧[𝑖]𝑘 = 1) =
𝜌𝑖𝑘
𝐾
∑

𝑗=1
𝜌𝑖𝑗

(D.16)

Note that the optimal distributions of 𝑞∗(𝜋) and 𝑞∗(𝜃)
in DPMM are considered to be the Dirichlet distribution
and Gaussian-Wishart distribution, which can be shown as

follows.
𝑞∗(𝝅) = 𝐷𝑖𝑟(𝝅|𝜶) (D.17)

𝑞∗(𝝁𝑘,𝚺𝑘) =  (𝝁𝑘|𝒎𝑘, (𝛽𝑘𝚺𝑘)−1)𝑊 (𝚺𝑘|𝚿𝑘, 𝑣𝑘) (D.18)

where the parameter calculations for (D.17) and (D.18) are
shown in Appendix A. Therefore, the optimal parameters 𝜋∗
and 𝜃∗ can be obtained.

Importantly, our goal is to find the maximum value of
the posterior probability 𝑝(𝒙), which is divided into Ex-
pectation step and Maximization step. In Expectation step,
the optimal distribution of 𝑞(𝒛) is solved by (D.13), and
the variational distribution 𝑞∗(𝒛) is fixed. On this basis, the
optimal parameters 𝝅∗ and 𝜽∗ are obtained by (D.17) and
(D.18) in Maximization step, which can help maximize 𝑝(𝒙).
When Expectation step and Maximization step converge
simultaneously, the maximum value of 𝑝(𝒙) is obtained.
Meanwhile, 𝒛, 𝝅 and 𝜽 are determined, which indicates
that the posterior distribution 𝑝(𝒙|𝝅,𝜽) is obtained. The EM
algorithm for DPMM is shown in 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 3.

Algorithm 3 The EM Algorithm for DPMM
1: Input observation dataset 𝑋 = {𝑥𝑖}

𝐼
𝑖=1;

2: Initialize the mean vector 𝒎0, the precision matrix 𝑾 0, the parameters
𝛼0, 𝛽0 and 𝑣0;

3: while
|

|

|

|

𝜽𝑡−𝜽𝑡−1
𝜽𝑡−1

|

|

|

|

≥ 𝜍 do
4: for 𝑘 = 1 to 𝑀 do
5: Evaluate the weight 𝑟𝑖𝑘 by the expression in (8);
6: end for
7: for 𝑖 = 1 to 𝐼 do
8: Calculate 𝑁𝑘, 𝒙𝑘 and 𝑺𝑘 by the expression in (A.9), (A.10) and

(A.11);
9: end for

10: for 𝑘 = 1 to 𝑀 do
11: Update 𝛽𝑘, 𝒎𝑘, 𝑾 −1

𝑘 and 𝑣𝑘 by the expression in (A.5), (A.6),
(A.7) and (A.8);

12: end for
13: end while

14: Output 𝑝(𝒙|𝒛,𝜽) =
𝐼
∏

𝑖=1

∞
∑

𝑘=1
𝑁𝑘(𝑥𝑖|𝜇𝑘,Σ𝑘)

𝑧[𝑖]𝑘

Note that lines 4 to 6 represent the Expectation-step,
and the lines 7 to 12 stand for the Maximization step in
𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 3. 𝜍 is the gap, which can affect the number of
iterations for EM algorithm and the accuracy of the optimal
results. The values of 𝝁𝑘 and 𝚺𝑘 is equal to the value of 𝒎𝑘
and 𝑾 𝑘 when the EM algorithm reaches convergence.
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