
IFASD-2011-028

UPDATING COMPUTATIONAL AEROELASTIC MODELS
USING FLIGHT FLUTTER TEST DATA

S. Timme1 and K. J. Badcock1

1CFD Laboratory, School of Engineering, University of Liverpool
Liverpool L63 3GH, United Kingdom

Sebastian.Timme@liverpool.ac.uk

Keywords: Computational Fluid Dynamics, System Identification, Model Updating

Abstract: A method is presented to identify a correction for the system matrices
of a computational aeroelastic model based on information from flight test data. The
correction matrices are identified using the method of Nissim and Gilyard adapted in this
work to exploit the predictive capabilities of numerical aeroelastic tools while correcting
for missing physics and systematic modelling errors. The simplified aerodynamics in the
original Nissim and Gilyard method are discarded using computational fluid dynamics to
evaluate the aerodynamic influence in the fluid/structure coupled system.

1 INTRODUCTION

Several techniques have been discussed in the literature to use subcritical flight flutter
test data to extrapolate for the flutter speed to establish the safe flight envelope. The
most widely used method, possibly due to its simplicity and robustness, is the curve fit
of a typical instability indicator, such as the modal damping values, and its variation
with the freestream velocity. This is essentially the method which was used in the first
formal flutter test conducted by von Schlippe of Junkers Airplane Company in 1935 [1]
to avoid undue risk from the then standard approach of flying at maximum speed to
demonstrate stability. The basic procedure was to excite the components of the structure
at resonant frequencies, to measure and plot the response amplitude with increasing flight
speed, and to judge the test continuation from the previous results. The basic elements
of flight flutter testing (excitation, data acquisition and data analysis) have remained the
same ever since, although the technologies used have seen remarkable improvements, most
significantly with the development of digital computers for data analysis [2].

The damping curve fit belongs to the category of direct methods, others of which, such as
the flutter margin method or the envelope function, are reviewed in several papers [3–5].
Methods of the second category (i.e. indirect methods) aim to identify the equations of
motion of the whole system (including matrices to describe the aerodynamic coupling)
to predict the stability of the aircraft with varying flight speed. A prominent example is
the Nissim and Gilyard method [6]. With the Nissim and Gilyard method the aeroelastic
equations of motion are recast to allow forced excitation, and then, the system is excited
with some known input signal (e.g. a chirp) and the modal response as output is analysed.
An overdetermined system is formed when using more excitation frequencies than having
modal degrees–of–freedom and solved for the system matrices in the common least squares
sense. Thus, we are dealing with an inverse problem as spectral information is used to
reconstruct matrices.

The original Nissim and Gilyard method made two important assumptions. First, the as-
sumed simplified aerodynamics challenge the method’s applicability in the transonic flight
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regime where significant variation of the aerodynamic influence can be expected [7,8]. In-
deed, we are dealing with a strictly nonlinear problem and the aerodynamic coupling
matrix cannot be assumed to be constant with respect to any parameter variation. This
point is addressed in this paper using computational fluid dynamics (CFD) to model the
aerodynamics. Secondly, the original method implicitly neglects nonlinear static aeroe-
lastic deformation of the structure for dynamic pressure variations as the matrices of
generalised damping and stiffness are assumed to be constant. In [9] it was argued that
for flexible high aspect ratio swept wings the nonlinear static aeroelastic deformation
plays an important role in the instability mechanism and a nonlinear structural model
was required.

In previous work [7,8,10] a small nonlinear eigenvalue problem, consisting of the structural
equations corrected for the fluid/structural coupling, was solved to predict the stability of
the aeroelastic system. Computational fluid dynamics methods were used to compute the
aerodynamic correction term, the evaluation of which significantly influences the accuracy
and efficiency of the numerical scheme, particularly in the transonic flight regime with
nonlinear flow features (like shock waves and separation) where linear aerodynamics fail.
Kriging interpolation together with coordinated risk–based sampling was applied for the
reconstruction of the elements of the aerodynamic influence matrix to search parameter
spaces for instability and to update aerodynamic models of variable fidelity.

This paper aims to develop a method to allow the use of flight flutter test data to update
numerical predictions. Different to the original Nissim and Gilyard method, knowledge
of the system is assumed via a numerical model which is updated based on identified
corrections. Thus, rather than modelling the whole system with constant matrices, the
matrices for updating are constant to correct a nonlinear trend provided by the numerical
model. The aerodynamics are provided by CFD predictions avoiding the shortcomings of
simplified modelling. As realistic flight flutter test data are not available to the authors
in this paper, these data are emulated by unsteady CFD simulations as well.

The paper continues with the presentation of the flow and structural models, and the
discussion of the eigenvalue stability analysis. Then, the original and the adapted Nis-
sim and Gilyrad method are described together with results for the Goland wing/store
configuration and the multidisciplinary optimisation wing.

2 MODELS

2.1 Flow Models

The Euler equations are considered as the aerodynamic model. In compact dimensionless
notation, these equations, establishing a system of five coupled first order partial differ-
ential equations in space to describe conservation of mass, momentum and energy while
neglecting viscous and heat–conduction effects, are written as

d

dt

∫

Ω(t)

wf dV +

∫

∂Ω(t)

F · n dS = 0, (1)

where the vector of fluid unknowns wf contains density, velocity components and total
energy, and F denotes the convective fluxes evaluated at the surface ∂Ω of the time–
dependent control volume Ω. The governing equations are solved using a block–structured,
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cell–centred, finite–volume scheme for spatial discretisation [11]. The computational do-
main is discretised using a finite number of non–overlapping control volumes with the
governing equations applied to each in turn. Convective fluxes are evaluated by the ap-
proximate Riemann solver of Osher and Chakravarthy [12] with the MUSCL scheme [13]
achieving essentially second order accuracy and van Albada’s limiter preventing spurious
oscillations around steep gradients. Boundary conditions are enforced using two layers of
halo cells.

Spatial discretisation leads to a system of nf first order ordinary differential equations
in time written in semidiscrete notation as ẇf = Rf (wf , η) where wf and η denote
vectors of fluid and structural unknowns, respectively, and Rf is the fluid residual vector.
The structural contribution influences the fluid response due to the moving fluid mesh in
unsteady simulations. Implicit time marching in pseudo time converges to steady state
solutions, while a second order dual time stepping is used for unsteady simulations [14].
Resulting linear systems are solved by a Krylov subspace iterative method applying block–
incomplete lower/upper factorisation for preconditioning [10].

2.2 Modal Structural Model

The structural equations of motion, a set of second order ordinary differential equations
in time, are defined in physical coordinates as

Mδẍs + Cδẋs + Kδxs = f (2)

where M , C and K denote matrices of mass, damping and stiffness, respectively. Com-
monly, the aircraft structure is represented as a linear combination of normal modes,
small in number when compared with the large dimension of the CFD fluid system. The
deflections δxs of the (linear) structure are defined at the set of physical coordinates xs

by δxs = Φ η, where the vector η contains the nη generalised coordinates (modal ampli-
tudes). The columns of the matrix Φ (having dimensions ns×nη) contain the mode shape
vectors evaluated from a finite–element model of the structure. The structural equations
in Eq. 2 are projected onto the modal system and an appropriate scaling is applied to
obtain generalised masses of magnitude one (i.e. ΦT MΦ = I). This gives a system of
nη second order ordinary differential equations in time for the modal structural model
written as

η̈ + Ψ η̇ + Ω η = ϑΦTf . (3)

The generalised stiffness matrix Ω = ΦT KΦ contains the nη normal mode frequencies
squared on the diagonal. The generalised damping matrix Ψ = ΦT CΦ contains the nη

values of modal damping on the diagonal with an individual term evaluated as 2ζωη

where ωη is a normal mode frequency and ζ is a modal damping ratio. The vector f of
aerodynamic pressure forces at the structural grid points follows from the wall pressure,
the area of the surface segment and the unit normal vector, and thus is a function of fluid
and structural unknowns. It is then projected using the mode shapes to obtain the nη

generalised forces ΦTf . The mapping between the fluid and structural meshes uses the
constant volume tetrahedron transformation [15] although other methods can be used.
The parameter ϑ for the mass ratio is obtained from the nondimensionalisation of the
governing equations of the flow and structure and depends on reference values of density
and length.
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3 EIGENVALUE STABILITY FORMULATION

For the linear stability analysis of the aeroelastic system, the development and interaction
of the aeroelastic modes originating in the wind–off (uncoupled) structural system is the
main concern. The linear stability analysis assumes small amplitude structural motion
and a linear relationship between a structural deflection and the fluid response. Then,
the system of equations in Eq. (3) is written as an eigenvalue problem for the eigenvalues
λ = σ ± iω, {

λ2 I + λ Ψ + Ω − ϑQ(λ)
}

η̂ = 0 (4)

where η = η̂ eλt and ΦTf = Q η with Q as the aerodynamic influence matrix. A sta-
ble system has all of its eigenvalues with a negative real part. The evaluation of the
aerodynamic influence often significantly contributes to the overall cost of the analysis.
Conventional methods applied in industrial problems use a linear aerodynamic theory,
such as the doublet lattice method, corrected for its well known limitations in the tran-
sonic regime using experimental data or higher fidelity (nonlinear) flow predictions [16].
In recent years the use of high fidelity computational fluid dynamics to model the un-
steady aerodynamics, particularly in the transonic regime, has become feasible, and thus
an active area of investigation.

One approach, referred to as the Schur complement eigenvalue method, has been discussed
in [10]. The coupled aeroelastic system of fluid and structural equations is written as a
first order ordinary differential equation in time1 and linearised about the steady state
(equilibrium) solution w0,

δẇ = R(w0, µ) + A(w0, µ) δw (5)

where δw = w −w0 is the vector of unknowns of the fluid and structural systems and R

contains the corresponding residuals. The parameter µ is an independent parameter, and
the stability behaviour with respect to its variation is sought. The steady state residual
is by definition zero, while A(w0, µ) = ∂R/∂w is the system Jacobian matrix, evaluated
at the steady state and conveniently partitioned into blocks expressing the dependencies
of fluid and structural systems.

The fluid Jacobian matrix ∂Rf/∂wf = Aff describes the influence of the fluid unknowns
on the fluid residuals and has by far the largest number of nonzero elements for a modal
structural model. The matrix block ∂Rf/∂η = Afη + λ Afη̇ describes the dependence of
the fluid residual on the moving fluid mesh. Importantly, the fluid residual Rf must be
differentiated with respect to both the generalised coordinates η and their corresponding
velocities η̇ = λη as these influence both the grid displacements x(η) and grid velocities
ẋ(η̇) of the fluid mesh. The Jacobian matrix block ∂Rη/∂wf = Aηf describes how the
structure responds to changes in the flow field and is formed as Aηf = λ−1ϑΦT ∂f/∂wf .
The structural Jacobian matrix ∂Rη/∂η = Aηη is conveniently split into two contribu-
tions, one from the normal mode frequencies and damping terms and one due to the
aerodynamic force vector, and is given by Aηη = −λ−1

{
(Ω + λΨ ) − ϑΦT ∂f/∂η

}
. From

experience the second term is usually negligible but can easily be included in the calcula-
tion.

1Note that the structural equations are written as η̇ = −λ−1
{
(Ω + λΨ)η − ϑ ΦTf

}
assuming linear

structural motion. In contrast to previous work [8, 10], the usual augmentation of the modal structural
model giving dimensions 2nη × 2nη for the unknowns [η, η̇] has been removed in this paper.
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Proceeding as for Eq. (4) leads to the following eigenvalue problem for the coupled system

(
Aff Afη + λAfη̇

Aηf Aηη

) (
ŵf

η̂

)
= λ

(
ŵf

η̂

)
(6)

which can be rearranged noting that the relevant eigenvalues of interest for the stability
analysis originate in the uncoupled structural system,

{
λ I − Aηη + Aηf (Aff − λI)−1(Afη + λ Afη̇)

}
η̂ = 0. (7)

The latter expression is called the Schur complement of the system matrix with respect
to the matrix block (Aff − λI) [17]. Using the definitions of the Jacobian matrix blocks
from above gives

{
λ2 I + λ Ψ + Ω − ϑ

(
C2 − C3 (Aff − λI)−1(Afη + λ Afη̇)

)}
η̂ = 0 (8)

with C2 = ΦT ∂f/∂η and C3 = ΦT ∂f/∂wf . It is clear that the aerodynamic influence
matrix from Eq. (4) is modelled as Q(λ) = C2 − C3 (Aff − λI)−1(Afη + λ Afη̇) defining
a nonlinear dependence on the eigenvalue. The eigenvalue problem is solved for varying
values of an independent parameter µ to trace the development of the aeroelastic modes.

An efficient way of finding the roots of such nonlinear algebraic systems are Newton–type
methods which require the evaluation of the residual and its exact or an approximate
Jacobian matrix. The evaluation of the aerodynamic influence Q, particularly the term
involving the matrix inverse, is the main cost as it requires operations on the high di-
mensional fluid system, whereas the cost to form the terms associated with structural
Jacobian matrix Aηη is negligible in comparison. As there are nη relevant solutions of the
eigenvalue problem, the cost of forming the interaction term at each Newton iteration,
for each value of the independent parameter µ, and for a range of system parameters
becomes too high without approximations. As one approximation, a Taylor series [18]
can be written for λ = λ0 + λε as

(Aff − λI)−1
≈ (Aff − λ0I)−1 + λε(Aff − λ0I)−1(Aff − λ0I)−1 (9)

where λε denotes a small variation to the reference value λ0. Pre–computing the factors
in the series for the right–hand side matrix (Afη + λ Afη̇), requiring 4nη linear solves per
shift λ0, allows the application of the expansion in the vicinity of λ0.

Two approaches have been discussed [10]. The quasi–Newton method evaluates the exact
residual while the series expansion is used for the Jacobian matrix. The exact residual is
conveniently computed by first forming the product b = (Afη +λAfη̇) η̂ for the current so-
lution of the eigenvector, and then solving one linear system of the form (Aff −λI) y = b,
the solution of which is multiplied with the matrix C3. The series method also applies
the series expansion to the residual which is possible for small λε and for the independent
parameter µ not affecting the pre–computed values (i.e. for symmetric problems). In
this paper to represent variation in the dynamic pressure, the parameter µ expresses the
altitude. Altitude variation allows simulations in a matched point fashion where refer-
ence values of density and speed of sound are adjusted according to standard atmosphere
conditions with the velocity following from the freestream Mach number. For more de-
tails on the original Schur complement eigenvalue formulation is reader is referred to the
literature.
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The two methods (i.e. quasi–Newton and series) just described are generally referred to
as full order as they constantly involve operations on the unsimplified CFD system to
form the aerodynamic influence matrix. It is clear that neither of the full order for-
mulations is appealing when the number of system parameters (besides the bifurcation
parameter) becomes high. The aerodynamic influence matrix depends on the eigenvalue,
particularly the imaginary part giving the response frequency, and the steady state so-
lution. The steady state makes it dependent on a large number of parameters in both
the flow model (e.g. Mach number and angle of attack) and the structural model due
to structural parameters generally influencing the mode shapes required to compute the
matrix (Afη + λAfη̇). In [7, 8] an approximation of the aerodynamic influence term was
devised which enables the stability analysis in larger parameter spaces efficiently. Two
approximations were applied. First, the aerodynamic influence is evaluated for a constant
amplitude harmonic motion using Q(ω) rather than Q(λ) making it an analogy to the
conventional p–k method. Secondly, the variation in the aerodynamic influence matrix is
found from interpolating numerical samples using kriging. Thus, the two main tasks of
the approximation are efficient sampling of the parameter space and accurate reconstruc-
tion of the matrix elements. Once the aerodynamic influence matrix can be represented
by the approximation model, the eigenvalue problem can be solved as often as necessary
at very low computational cost. It is remarked that the approach is not limited to the
kriging technique per se.

A sample of the aerodynamic influence matrix can be formed in both the frequency and
time domains. Solving the nη linear systems of the form (Aff − iωI) Y = (Afη + iω Afη̇)
and multiplying the nf×nη solution matrix Y by the matrix Aηf to integrate the responses
is referred to as the linear frequency domain approach. This is the preferred choice due
to the significant computational cost involved in time domain simulations. Alternatively
in the time domain allowing the use of arbitrary CFD solvers, the aerodynamic influ-
ence matrix is evaluated from the generalised forces ΦTf following an excitation in the
structural unknowns. The generalised forces are Fourier decomposed and divided by the
corresponding Fourier coefficient of the forced structural motion.
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Figure 1: Representative element Q1,2 of aerodynamic influence matrix for baseline Goland wing/store
configuration using Euler flow model.

One representative element of the aerodynamic influence matrix Q for the baseline Goland
wing/store configuration, the structural model of which is defined elsewhere [19], is shown
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in Fig. 1. The element with the mass ratio set to one describes the mapping between
the aerodynamic response in the first degree–of–freedom due to changes in the second
generalised coordinate. The black dots in the figure indicate sample locations while the
coloured and meshed surfaces represent the kriging interpolation used in the stability
analysis to describe the variation of the matrix elements. The two dimensional parameter
space is defined by the dimensionless response frequency and freestream Mach number.
Note that the response frequency is the primary parameter dimension which always has to
be included in the sampling as the eigenvalue problem is nonlinear. Solving the eigenvalue
problem gives a prediction of the eigenvalue and eigenvector for any combination of the
bifurcation parameter and the different system parameters, where the imaginary part of
the obtained eigenvalue (i.e. the response frequency) is used itself to define the parameter
space for the sampling of the interaction matrix.

4 ADAPTED METHOD OF NISSIM AND GILYARD

As mentioned above, there are two general categories of methods to use flight flutter test
data to predict the onset of aeroelastic instability. The way discussed hereafter is to
identify the whole aeroelastic system by computing the equations of motion, using the
method of Nissim and Gilyard [6], rather than attempting to extrapolate to the instability
point from a curve fit of a chosen stability criterion such as the modal damping and the
variation with the dynamic pressure.

The eigenvalue problem for the aeroelastic stability analysis was given in Eq. (4). It is
restated as {

λ2 I + λ Ψ + Ω − ϑQ(ω)
}

η̂ = 0

with the complex–valued aerodynamic influence matrix Q(ω) = QR + iω Q̃I approximated

for constant amplitude harmonic motion, and Q̃I = ω−1QI . The subscripts R and I denote
real and imaginary parts, respectively. It is remarked that, generally, the matrices QR

and QI are not constant with respect to the frequency as indicated in Fig. 1. Often, the
notation, using the matrices Kη = Ω − ϑQR and Cη = Ψ − ϑQ̃I , is more familiar with
structural dynamicists, {

λ2 I + λ Cη + Kη

}
η̂ = 0, (10)

where the real and imaginary parts of the aerodynamic influence matrix are interpreted
as aerodynamic stiffness and damping, respectively, and combined with the real–valued
structural stiffness and damping matrices [20]. As the aerodynamic influence, scaled
through the mass ratio, goes to zero, the structural eigenvalue problem is restored.

4.1 Original Method of Nissim and Gilyard

Following the ideas presented in [21], a system identification technique, referred to as the
Nissim and Gilyard method, was devised in [6]. Adapted to the dimensionless notation
used in the present work, the forced aeroelastic system is written as,

{
−ω2I + iω Cη + Kη

}
η̂ = ΦTF ĝ(ω), (11)

where the right–hand side defines the forcing term. The latter equation transposed and
rearranged gives the constraint equation for the system identification

η̂T KT
η + iω η̂T CT

η − ĝ(ω)F T
η = ω2 η̂T (12)
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where Fη = ΦTF is the generalised forcing matrix. The physical forcing matrix F has
dimension ns ×m with m as a chosen number of forcing columns applied. In the original
work it was recommended to apply at least two linearly independent forcing columns to
negate the influence of measuring error. In a numerical experiment, a forcing vector has
entries of one according to the physical coordinates where the (single) external forcing
function g(t) is applied, and thus, the forcing matrix F is de facto not an unknown. This
information can be used to monitor the simulation results. In a flight flutter test, on the
other hand, knowing/measuring the modal response η̂ due to, for instance, the deflection
of a control surface does not tell how the modal degrees–of–freedom were excited in the
first place, and hence, this matrix is assumed to be an additional unknown.

Assuming only one forcing vector is used to simplify the following presentation, the system
of constraint equations can be written for k distinct forcing frequencies, excited at a fixed
flight test point, as,




η̂T
1 iω1 η̂T

1 −ĝ(ω1)

η̂T
2 iω2 η̂T

2 −ĝ(ω2)
...

...
...

η̂T
k iωk η̂T

k −ĝ(ωk)







KT
η

CT
η

F T
η


 =




ω2
1 η̂T

1

ω2
2 η̂T

2
...

ω2
k η̂T

k




, (13)

which is an overdetermined linear system (if k > nη) of the general form TX = B to
be solved in the common least–squares sense. As the coefficient matrix T and the right–
hand side matrix B are complex–valued while the solution matrix X is real–valued, it was
argued instead to solve the real–valued linear system [TR, TI ]

T X = [BR, BI ]
T to avoid the

sensitivity to measuring errors.

The constraint of having a real–valued solution matrix X prompted the authors of the
original work to use rather simplified aerodynamics (i.e. quasi–steady), which, adapted
to the dimensionless notation used in this work, can be written as A = A0 + iωA1,
and thus, Kη = Ω − ϑA0 and Cη = Ψ − ϑA1. The similarity to the matrix Q given
above is intended. To identify the constant matrices of aerodynamic stiffness A0 and
damping A1, the aeroelastic system was excited at two distinct dynamic pressures to
distinguish between the structural and aerodynamic contributions in the overall stiffness
and damping terms. Importantly, the generalised matrices of stiffness Ω and damping Ψ
were assumed to be only dependent on the system parameters of the linear structure (i.e.
nonlinear structural deformation during flight following variation in the dynamic pressure
and causing changes in the modal description of the system are excluded). Assuming this,
the (constant) structural matrices could just as well be identified by a ground vibration
test instead.

An example is presented next for the baseline Goland wing/store configuration, the struc-
tural model of which is defined in [19]. This wing configuration has four normal modes
with frequencies (given in Hz) of 1.689, 3.051, 9.173 and 10.83, while structural damping
is neglected. The mode shapes were given in [8]. To replace unavailable real flight test
data, unsteady time accurate simulations were done using the Euler equations as aerody-
namic model and a computational mesh with about 24,000 control volumes. The store
aerodynamics are not modelled. The excitation signal used throughout in this work is a
linear chirp following the functional relation,

g(t) = ga sin
(
2πf0t + πκt2

)
(14)
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where ga is the excitation amplitude and κ is the constant rate of frequency increase (chirp
rate). It is evaluated as κ = (f1−f0)/(0.8t1) with f0 and f1 limiting the frequency range to
be excited and t1 as the length of the time signal. To excite all relevant frequencies of the
test case, the limiting excitation frequencies are chosen to be f0 = 0.5 Hz and f1 = 15 Hz.
The amplitude of the chirp is set to ga = 5 × 10−4 in dimensionless units to maintain
linearity in the simulations. One physical structural coordinate is excited per unsteady
simulation. The structural points of the Goland wing selected for excitation are shown in
Fig. 2. With some imagination, applying a force at these points corresponds to a control
surface deflection of the real wing. Results are presented using three forcing columns
corresponding to an excitation in the coordinates 41, 40 and 33. Following a starting
period to allow the decay of transients when switching the temporal discretisation in the
CFD simulations from steady state pseudo time to unsteady dual time, a time signal of
t1 = 20 s is simulated, applying the excitation for a period of time 0.8t1 and running at a
sampling frequency of 1024 Hz. This relatively large sampling frequency, corresponding to
a nondimensional time step of about 0.13, was found to be necessary to satisfy temporal
accuracy in the unsteady simulations with acceptable discretisation errors. However, only
every eighth step was taken for the Fourier analysis of the input/response signals to obtain
ĝ and η̂.

40

4133

20 28

21 z

x

Figure 2: Physical structural coordinates of Goland wing.

Results are presented in Figs. 3(a) through 5 and Tables 1 through 3 for a subsonic
freestream Mach number of 0.85. Numerical simulations, using the eigenvalue analysis
as described above, predict the instability to occur alongside the interaction of the first
bending and first torsion modes with a critical altitude of 22,560 ft. The system identifica-
tion is done using simulation results at 29,000 ft and 32,000 ft. Representative frequency
response functions η̂/ĝ at an altitude of 32,000 ft for the four aeroelastic modes are given
in Fig. 3(a) showing resonant behaviour close to the normal mode frequencies and two
pairs of modes that interact. For the results shown in the figure, the excitation was ap-
plied at the structural coordinate 40. To complement the results at Mach 0.85, additional
frequency response functions are shown in Fig. 3(b) for a transonic freestream Mach num-
ber of 0.925. The baseline Goland wing/store configuration without structural damping
is known to exhibit a (nearly single degree–of–freedom) torsion mode limit–cycle insta-
bility in this higher Mach number regime starting from very high altitudes [10]. Hence, a
small amount of structural damping was added (i.e. a damping ratio of 0.05 in all modal
degrees–of–freedom) resulting in a critical altitude of about 54,000 ft. Compared with the
lower Mach number, a more distinct response around the second mode frequency can be
observed consequently.

Tables 1 through 3 give the identified system matrices. The generalised forcing matrix
with the three forcing columns corresponding to coordinates 41, 40 and 33 is given in
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(a) Mach 0.85 and altitude of 32,000 ft
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Figure 3: Frequency response function (FRF) at two freestream Mach numbers (coordinate 40).

Table 1. Following the definition of this matrix with Fη = ΦT F , is is clear that each
column in this matrix corresponds to the modal deflection (one entry per mode) at the
physical structural coordinate where the excitation signal is applied. The identification
gives reasonable results indicating an adequate excitation with little numerical error.
Rather than showing the actual structural stiffness and damping matrices of the modal
system, the matrices containing the normal mode frequencies and modal damping ratios
are given in Tables 2 and 3, respectively. The reference input matrices, used to define the
structure in the unsteady simulations, are simply diagonal matrices containing the normal
mode frequencies and modal damping ratios, respectively. A reasonable identification of
the normal mode frequencies is obtained, while relatively high errors are observed in off–
diagonal matrix elements. The modal damping ratios are not identified to be zero and
an error is introduced. These inaccuracies, requiring more attention, will be discussed
further following the presentation of the aerodynamic matrices.

The matrices of aerodynamic stiffness and damping are not given in the form of a table
but as a representative matrix element cross–plotted with the exact numerical results of
the aerodynamic influence matrix. These results, which demonstrate the shortcomings of
the assumptions applied in the Nissim and Gilyard method concerning the aerodynamic
influence, are presented in Fig. 4. Even at the chosen subsonic Mach number of 0.85,
the approximation of the aerodynamic influence matrix using constant terms is poor. A
nearly linear development with respect to frequency (given in dimensionless form) can be
observed. Interestingly, the reference data in the figure correspond to the samples for the
response surfaces shown in Fig. 1. In Fig. 1, while the constant approximation seems to be
fair at a freestream Mach number of 0.85 in relation to the global variation, it certainly
gets worse entering the transonic regime. In the case of the symmetric Goland wing
without static aeroelastic deformation, the discussion of variation in dynamic pressure is
irrelevant for the aerodynamic influence term as the matrix A (or equivalently Q) is indeed
independent of the dynamic pressure and the expression ϑA is accurate with respect to
the mass ratio ϑ.

The true measure of accuracy for the identification of the system are the stability results.
The mode tracing with respect to the altitude (in a matched point analysis) using the
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input identified at 29,000 ft

−0.1115 −0.0963 −0.0796 −0.1117 −0.0927 −0.0809

0.1077 −0.1936 0.0916 0.1074 −0.1929 0.0926

−0.0254 0.1521 −0.0203 −0.0254 0.1501 −0.0196

−0.0778 −0.0195 0.0682 −0.0738 −0.0251 0.0727

Table 1: Generalised forcing matrix Fη (in ft) for three forcing columns (coordinates 41, 40 and 33).

identified frequencies in Hz

1.688 0.514 0.038 0.362

0.024 3.088 0.299 0.417

0.037 0.081 9.168 0.352

0.103 0.778 0.236 10.83

Table 2: Matrix with normal mode frequencies.

identified modal damping ratios

−0.003 0.004 0.009 0.010

0.001 −0.004 −0.004 −0.004

−0.000 −0.000 −0.000 −0.000

0.001 −0.002 −0.003 −0.003

Table 3: Matrix with modal damping ratios.

identified system matrices at the chosen freestream Mach number of 0.85 is presented in
Fig. 5. Two sets of reference results are included in the figure. The first set uses the
full order eigenvalue solver applying the series method approximation as described above.
In previous studies it was demonstrated that the series method gives accurate results
compared with quasi–Newton [8]. The second set of results uses the kriging approxima-
tion for the aerodynamic interaction term with the samples extracted assuming constant
amplitude harmonic motion. These results are included to demonstrate the accuracy of
the kriging approximation with samples for Q(ω). The only notable discrepancy can be
seen for the second mode frequency at low values of altitude due to the strongly damped
character of this mode, where the assumption of constant amplitude harmonic motion for
the aerodynamic influence loses accuracy. Interestingly, the results using the identified
system matrices are accurate and the critical altitude is predicted to about 22,300 ft. It
was found that the system identification at different pairs of subcritical altitudes resulted
in similar agreement in obtaining the flutter altitude. In addition, the identification at
the transonic freestream Mach number of 0.925 gave a critical altitude of about 55,000 ft,
which is close to the exact numerical prediction of 54,000 ft, despite the significant vari-
ation in the aerodynamic influence matrix.

Thus, it seems that the Nissim and Gilyard method allows an acceptable identification of
the system even when the aerodynamic modelling assumptions are severly violated. Re-
turning to the errors introduced in the structural stiffness and damping matrices as found
in Tables 2 and 3, respectively, it is suggested that the identification process gives the
four system matrices that best describe the dynamics. However, as a consequence of the
aerodynamic modelling assumptions, a correction is added to the structural matrices to
deal with these acknowledged errors. This idea is supported by observing that the struc-
tural matrices show different errors for identification at different altitudes. In addition,
the mode tracing was found to be inaccurate at higher altitudes resulting in additional
incorrect bifurcation points (even though the significance of this inaccuracy could be con-
sidered as negligible). In some sense, we are not identifying the correct system matrices,
but the best description of the dynamics varying with the chosen test altitudes.
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Figure 4: Representative element Q1,2 of aerodynamic influence matrix for baseline Goland wing/store
configuration at Mach 0.85.
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Figure 5: Mode tracing for baseline Goland wing/store configuration using Nissim and Gilyard (NG)
method at Mach 0.85.

4.2 Adapted Method

Two aspects motivated an adaptation of the original Nissim and Gilyard method. First, a
framework is sought that allows the use of computational aeroelastic simulations (applying
high fidelity CFD modelling for the aerodynamics) in flutter clearance when updating
numerical models with flight flutter test data. Secondly, the assumption of constant
matrices, and thus simplified physics, to identify the system is avoided when updating
a nonlinear trend, provided by the numerical model, with constant corrections. This
approach, different to the original Nissim and Gilyard method, requires a more or less
accurate numerical model of the real system. Based on Eq. (12), write the adapted
constraint equation as

η̂T δKT
η + iω η̂T δCT

η − ĝ(ω)F T
η = η̂T

{
ω2I − iω CT

η − KT
η

}
, (15)
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identified frequencies in Hz

1.689 0.083 0.080 0.129

0.007 3.050 0.096 0.128

0.017 0.069 9.163 0.117

0.041 0.029 0.161 10.82

Table 4: Matrix with normal mode frequen-
cies using adapted Nissim and Gilyard
method.

identified modal damping ratios

0.000 −0.001 0.000 −0.001

−0.000 −0.000 0.000 0.000

0.000 0.000 0.000 −0.000

−0.000 −0.000 0.000 0.000

Table 5: Matrix with modal damping ratios
using adapted Nissim and Gilyard
method.

where the matrices δKη and δCη denote the identified (constant) updates for the assumed
model matrices Kη and Cη. Thus, rather than identifying the entire aeroelastic system
with constant matrices, a constant correction is identified based on an assumed numerical
representation of the problem. The latter equation is a simple rearrangement of the
constraint equation in Eq. (12) assuming some knowledge of the real problem (i.e. a
numerical model) is available. The equation simplifies to the original formulation if no
numerical model is available. The latter expression can be recast following Eq. (13) to
define an overdetermined system. Choosing this path, a numerical model can be adjusted
using test data.

An important and computationally expensive element of the adapted method, when CFD
modelling is used to evaluate the aerodynamic influence, is the matrix Q of the assumed
numerical model on the right–hand side of the constraint equation. It would become
prohibitive to directly evaluate this matrix for each frequency and combination of other
system parameters (such as freestream Mach number). Instead, the kriging interpolation
approximation, as described above, is applied to provide the variation in the elements
of the aerodynamic influence matrix at any parameter location based on few expensive
numerical samples. These samples are precomputed using the assumed numerical model
of the aeroelastic system.

5 RESULTS

The unsteady simulation results, created and analysed for the original Nissim and Gilyard
method as described previously, are now used for the adapted method taking the same
set of three forcing columns. The generalised forcing matrix (not shown herein) was
found to be on a par with the results given in Table 1, while an improvement in the
row corresponding to the fourth mode was observed. To test the adapted method, the
structural stiffness and damping matrices from the assumed numerical model found on
the right–hand side of the constraint equation were based on arbitrarily chosen normal
mode frequencies and damping ratios. Here, the nominal normal mode frequencies of
the Goland wing/store case were rounded to one significant digit (e.g. for the first mode
we take 2 Hz), while for the modal damping ratios different values between 0.1 and 0.5
were used for the four degrees–of–freedom. In addition, the elements of the aerodynamic
influence matrix of the assumed numerical model on the right–hand side were modified
by a randomly chosen constant value.

The structural system matrices are nicely identified as shown in Tables 4 and 5, where the
corrections added to the assumed values are presented. The modal damping ratios are
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Figure 6: Representative element Q1,2 of aerodynamic influence matrix for baseline Goland wing/store
configuration at Mach 0.85.
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Figure 7: Mode tracing for baseline Goland wing/store configuration using adapted Nissim and Gilyard
(ANG) method at Mach 0.85.

essentially zero, while the peak errors in the frequency matrix are reduced. A representa-
tive element of the aerodynamic influence matrix is given in Fig. 6 comparing reference
data using the full order samples and the identified results using the Nissim and Gilyard
method in its original and adapted form. As for the identified structural matrices, results
are shown for the aerodynamics of the assumed model plus the correction. The adapted
Nissim and Gilyard method predicts the correction δQ to be very close to the imposed
constant error (with opposite sign). This is expected as the correct aerodynamics of
the system, modified by a random constant value, were applied on the right–hand side of
Eq. (15) for the identification. The same accuracy in the system identification for both the
structural and aerodynamic correction matrices was observed for the transonic freestream
Mach number of 0.925 identifying the system using simulation results at 60,000 ft and
63,000 ft, the results of which are not shown herein.
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Figure 8: Mode tracing for baseline Goland wing/store configuration using adapted Nissim and Gilyard
(ANG) method at Mach 0.925.

As a remark of caution, for the results presented herein, the system is well defined (e.g.
the imposed error in the aerodynamic matrix is indeed constant), which demands an ac-
curate identification of the system for the method to be useful. Once the error between
the numerically predicted aerodynamics and the experimental data becomes non–constant
due to modelling discrepancy, a similar behaviour as for the original Nissim and Gilyard
method should be expected. An incorrect assumption of a constant update for the aerody-
namics would introduce an additional correction in the structural matrices. However, as
we are identifying an update to a numerical model, confidence about the general accuracy
in the modelling is increased.

The tracing of the four relevant modes with respect to the altitude is presented in Figs. 7
and 8 for freestream Mach numbers of 0.85 and 0.925, respectively. The results using
the identified correction matrices are indistinguishable from the reference kriging results
following the agreement in the matrices themselves. For the transonic freestream Mach
number of 0.925, inaccurate mode tracing at altitudes lower than the instability onset is
observed using the identified system from the original Nissim and Gilyard method. This
supports the previously stated point concerning the best identification of the dynamics
at a chosen altitude but not of the actual system matrices. As said before, the critical
altitude is nevertheless reasonably predicted.

A second test case is the multidisciplinary optimisation (MDO) commercial transport
wing. A transonic freestream Mach number 0.85 is chosen for the analysis. Static aeroe-
lastic deformation is considered which, in contrast to the Goland wing/store configuration,
gives a dependence of the aerodynamic influence matrix on the altitude. The modal struc-
tural model retains eight normal modes. The normal mode frequencies (all given in Hz)
are 0.844, 2.162, 3.559, 3.989, 5.008, 5.369, 6.573 and 7.300. No structural damping is
included. The mode shapes projected onto the CFD surface mesh have been given else-
where [8]. A computational mesh with 65,000 control volumes is used for the current
Euler simulations. The excited frequency range is between f0 = 0.1 Hz and f1 = 10 Hz
simulating t1 = 20 s of real time with a sampling frequency of 1024 Hz chosen for temporal
accuracy in the CFD simulations. Every eighth time step was retained for the system
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input (×10−3) identified (×10−3) at 6,000 m

4.786 9.144 10.99 4.785 9.139 10.98

−1.985 6.322 11.90 −1.984 6.319 11.89

4.399 −3.193 −10.99 4.397 −3.190 −10.98

0.526 −4.348 3.852 0.532 −4.339 3.856

1.354 −2.151 −1.439 1.353 −2.148 −1.438

0.640 0.262 −5.156 0.634 0.259 −5.152

−3.233 10.23 −3.433 −3.226 10.21 −3.424

−4.276 1.844 1.884 −4.269 1.841 1.879

Table 6: Generalised forcing matrix Fη (in m) for three forcing columns.

identified frequencies in Hz

0.846 0.042 0.082 0.077 0.073 0.005 0.052 0.188

0.065 2.160 0.073 0.052 0.055 0.100 0.095 0.098

0.042 0.052 3.556 0.069 0.056 0.008 0.083 0.047

0.037 0.018 0.097 3.987 0.094 0.078 0.017 0.165

0.057 0.029 0.068 0.014 5.004 0.041 0.049 0.034

0.046 0.028 0.091 0.057 0.036 5.364 0.086 0.088

0.093 0.045 0.105 0.019 0.008 0.101 6.566 0.098

0.022 0.006 0.072 0.086 0.035 0.060 0.056 7.292

Table 7: Matrix with normal mode frequencies using adapted Nissim and Gilyard method.

identification. As for the Goland wing/store configuration, three forcing columns are used
for the identification while exciting structural coordinates of the finite element model to
simulate control surface deflection. The excitation is done around the statically deformed
wing following the simulation of a steady state.

The identified matrices of generalised forcing and normal mode frequencies for the MDO
wing are shown in Tables 6 and 7. The identification of the forcing matrix is accurate. To
test the adapted method the normal mode frequencies of the assumed numerical model
were rounded to one significant digit, and random values for the modal damping ratios
between 0.1 and 1.0 were imposed. While the identified normal mode frequencies are
improved compared with the results from the original Nissim and Gilyard method us-
ing response signals at altitudes of 5,000 m and 6,000 m (e.g. the lowest frequency was
identified as 0.907 Hz with the original method), the errors in the off–diagonal matrix el-
ements are reduced by almost an order of magnitude throughout. The matrix containing
the modal damping ratios (not shown herein) was identified to be essentially zero, again
significantly improving the results obtained from original method.

In addition, the aerodynamics of the assumed model were modified as described in the
following. The design altitude of the MDO wing configuration was chosen to be 13,000 m,
and the numerical model was assumed to predict the static aeroelastic deformation at
the design point accurately. For the presentation of the adapted method, an error in the
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Figure 9: Modification of aerodynamic influence matrix for MDO wing configuration.

elements of the aerodynamic influence matrix, linearly varying with altitude, was imposed
away from the design point. This modification and its identification is illustrated in
Fig. 9(b) for the representative matrix element real(Q2,2). The matrix element is shown
in dependence on the altitude at fixed frequency. The reference surface of the matrix
element in the frequency/altitude parameter space is shown in Fig. 9(a). Note that the
magnitude of the matrix element is small, but multiplying with the mass ratio introduces
a factor of the order of 106. It is interesting to remark that, in this case, there is a nearly
constant relation of the given reference matrix element with respect to the altitude. The
development of the modified matrix element of the assumed numerical model can be seen
in Fig. 9(b). The update is identified at four subcritical altitudes giving the linear trend of
the imposed error, which is then linearly extrapolated in altitude to correct the assumed
model.

The results of the stability analysis showing the tracing of the four modes with the lowest
frequencies are presented in Fig. 10. The reference results, using the kriging approximation
for the aerodynamic influence matrix as described above, predict the instability in the first
mode at a critical altitude of about 4,500 m. The analysis, using the identified system
from the original Nissim and Gilyard method, is inaccurate given critical conditions at
about 5,500 m, even though the system matrices were identified using altitudes of 5,000 m
and 6,000 m. As observed previously for the Goland wing/store configuration, identifying
the system at different subcritical altitudes changed the outcome of the tracing notably.
Using the system matrices obtained from the adapted method, on the other hand, results
in an accurate prediction compared with the reference solution. Compared with the
four modes in Goland wing/store configuration, the increased number of retained normal
modes, while applying the same number of forcing columns, does not corrupt the method.
However, the performance for a larger number of included modes remains to be seen.

As for the Goland wing/store configuration, we are looking at a well defined numerical
model imposing constant or linearly varying errors, and accuracy in the current discussion
is hence required. The general idea of the approach, however, is clear. A numerical
model of a configuration should be available while lacking accuracy due to modelling
discrepancies compared with the real system. The numerical model is then tuned to
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Figure 10: Tracing of modes 1 to 4 for MDO wing configuration using adapted Nissim and Gilyard (ANG)
method at Mach 0.85.

match observations based on subcritical flight test data. Extrapolation to predict the
critical point, as generally required for flutter prediction techniques based on flight test
data, still becomes an issue. This was demonstrated for the MDO wing configuration
undergoing static aeroelastic deformation. However, the task of extrapolation would use
a trend established from tuning the model in subcritical conditions building confidence in
the numerical model.

6 CONCLUSIONS

The work presented herein describes an approach based on the Nissim and Gilyard method
to update computational aeroelastic predictions with flight test data by identifying cor-
rections for the matrices of the numerical model. The central idea is to use the predictive
capabilities of computational aeroelastic tools, capturing the dominant physics of the
problem, while adding information from flight tests of the real aircraft to correct for
missing physics and/or systematic errors in the numerical model. Computational fluid
dynamics is used to evaluate the aerodynamic influence matrix of the assumed numeri-
cal model, while kriging interpolation is applied to account for parameter variation. As
real flight test data are not available for the test cases discussed, unsteady simulations
using the Euler flow model are exploited instead. The results using the identified system,
presented for the Goland wing/store configuration and the multidisciplinary optimisation
wing, are improved compared with the original Nissim and Gilyard method, and good
agreement with reference predictions is found.

In the general case, extrapolation of the aerodynamic influence matrix is required to
predict the flutter onset. This extrapolation is equivalent to other flutter predictions
methods, such as the damping curve fit, and becomes critical when a sudden loss of
damping is encountered (where sudden changes in the aerodynamic influence matrix are
not unlikely). The current approach could be used to evaluate a correlation between
the numerical model and real data within the stable flight regime to account for the
shortcomings in the modelling, which would then be used with increased confidence to
extrapolate to the flutter onset.
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