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A method is explored to identify a correction for the system matrices of a computational
aeroelastic model based on information from flight test data. The correction matrices
are identified using the Nissim and Gilyard method adapted in this work to exploit the
predictive capabilities of numerical aeroelastic tools while correcting for missing physics
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1. Introduction

Several techniques have been discussed in the literature to use subcritical flight

flutter test data to extrapolate for the flutter speed to establish the safe flight enve-

lope. The most widely used method, possibly due to its simplicity and robustness,

is the curve fit of a typical instability indicator, such as the modal damping val-

ues, and its variation with the freestream velocity. This is in essence the method

which was used in the first formal flutter test conducted by Boris von Schlippe of

Junkers Airplane Company in 1935 [von Schlippe, 1936] to avoid undue risk from

the then standard approach of flying the aircraft at maximum speed to demonstrate

its stability. The basic procedure was to excite the components of the structure at

resonant frequencies, to measure and plot the response amplitude with increasing

flight speed, and to judge the test continuation from the previous results. The basic

elements of flight flutter testing (excitation, data acquisition and data analysis) have

remained the same ever since, although the technologies used have seen remarkable

improvements, most significantly with the development of digital computers for data

analysis [Kehoe, 1995].
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The damping curve fit belongs to the category of direct methods, others of

which, such as the flutter margin method or the envelope function, are reviewed

in the papers of Dimitriadis and Cooper [2001] and Kayran [2007]. Methods of the

second category (i.e. indirect methods) aim to identify the equations of motion of

the whole system (including matrices to distinguish the aerodynamic coupling) to

predict the stability of the aircraft with varying flight speed. A prominent example

is the method of Nissim and Gilyard [1989]. With the Nissim and Gilyard method

the aeroelastic equations of motion to model the system dynamics are written as

a response problem allowing forced external excitation. The system is then excited

with some known input signal (e.g. a chirp) and the modal response as output is

analysed and fed into the dynamics’ model. An overdetermined algebraic system

is formed when using more excitation frequencies than having modal degrees–of–

freedom and solved for the system matrices in the common least squares sense.

Thus, we are dealing with an inverse problem as spectral information is used to

reconstruct matrices.

The Nissim and Gilyard method made two important assumptions. First, the

simplified aerodynamics assumed in the equations of motion challenge the method’s

applicability in the transonic flight regime where significant variation of the aerody-

namic influence can be expected [Timme and Badcock, 2011]. Indeed, we are dealing

with a strictly nonlinear problem and the aerodynamic coupling matrix cannot be

assumed to be constant with respect to any parameter variation. This point is

addressed in this paper using computational fluid dynamics (CFD) to model the

aerodynamics. Secondly, the original method implicitly neglects (nonlinear) static

deformation of the structure for variation in the dynamic pressure as the matrices of

generalised damping and stiffness are assumed to be constant. In Bendiksen [2008]

it was argued that for flexible high aspect ratio swept wings the nonlinear static

deformation plays an important role in the instability mechanism and a nonlinear

structural model is required. In addition, the original method outright disregards

possible advances in numerical aeroelastic modelling to complement the analysis.

In previous work by Badcock and Woodgate [2010], a small nonlinear eigenvalue

problem, consisting of the structural equations corrected for the fluid/structural

coupling, was solved to predict the stability of the aeroelastic system. Computa-

tional fluid dynamics methods were used to compute the aerodynamic correction

term, the evaluation of which significantly influences the accuracy and efficiency of

the numerical scheme, particularly in the transonic flight regime with nonlinear flow

features (such as shock waves and separation) where linear aerodynamics fail. Krig-

ing interpolation together with coordinated risk–based sampling was applied for the

approximation of the aerodynamic influence matrix to search parameter spaces for

aeroelastic instability and to update aerodynamic models of variable fidelity [Timme

and Badcock, 2011], [Timme et al., 2011].

This paper aims to explore a method to allow the use of flight flutter test data to

update numerical predictions. Different to the original Nissim and Gilyard method,
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knowledge of the system is assumed via a numerical model which is updated based

on identified corrections. Thus, rather than modelling the complete system with

constant matrices, the matrices for updating are constant instead to correct a po-

tentially nonlinear trend provided by the numerical model. The aerodynamics are

evaluated by CFD simulations avoiding the shortcomings of simplified linear mod-

elling. As realistic flight flutter test data are not available to the authors in this

paper, these flight data are emulated by unsteady CFD simulations as well.

The paper continues with the presentation of the flow and structural models

and the discussion of the eigenvalue stability analysis using CFD methods. Then,

the original and the adapted Nissim and Gilyard methods are described together

with results for the Goland wing/store configuration and the multidisciplinary op-

timisation (MDO) wing.

2. Models

2.1. Flow Model

The Euler equations are considered as the aerodynamic model in this investigation.

In compact dimensionless notation, these equations, establishing a system of five

coupled first order partial differential equations to describe conservation of mass,

momentum and energy while neglecting viscous and heat–conduction effects, are

written as

d

dt

∫

Ω(t)

wf dV +

∫

∂Ω(t)

F · n dS = 0, (1)

where the vector of fluid unknowns wf contains density, velocity components and

total energy, and F denotes the convective fluxes evaluated at the surface ∂Ω of

the time–dependent control volume Ω. The governing equations are solved using a

block–structured, cell–centred, finite–volume scheme for spatial discretisation [Bad-

cock et al., 2000]. The computational domain is discretised using a finite number

of non–overlapping control volumes with the governing equations applied to each

in turn. Convective fluxes are evaluated by the approximate Riemann solver of Os-

her and Chakravarthy [1983] with the MUSCL scheme [van Leer, 1979] achieving

essentially second order accuracy and van Albada’s limiter preventing spurious os-

cillations around steep gradients. Boundary conditions are enforced using two layers

of halo cells.

Spatial discretisation leads to a system of nf first order ordinary differential

equations in time written in semidiscrete notation as ẇf = Rf (wf ,η) where wf

and η denote vectors of fluid and structural unknowns, respectively, and Rf is the

fluid residual vector. The dimension of the fluid system is five times the number of

control volumes. The structure influences the fluid response due to the moving fluid

mesh and boundary conditions in unsteady simulations. Implicit time marching in

pseudo time converges to steady state solutions, while a second order dual time
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stepping is used for unsteady simulations [Jameson, 1991]. Resulting linear systems

are solved by a Krylov subspace iterative method applying block–incomplete lower–

upper factorisation for preconditioning [Badcock and Woodgate, 2010].

2.2. Modal Structural Model

The structural equations of motion, a set of second order ordinary differential equa-

tions in time, are defined in physical coordinates as

Mδẍs + Cδẋs +Kδxs = qf (2)

where M , C and K denote matrices of mass, damping and stiffness, respectively.

Commonly, the aircraft structure is represented as a linear combination of normal

modes, small in number when compared with the large dimension of the CFD fluid

system. The deflections δxs of the (linear) structure are defined at the physical

coordinates xs by δxs = Φη, where the vector η contains the nη generalised co-

ordinates (modal amplitudes). The columns of the matrix Φ (having dimensions

ns × nη) contain the mode shape vectors evaluated from a finite–element model of

the structure. The structural equations in Eq. (2) are routinely transformed into the

modal system and an appropriate scaling is applied to obtain generalised masses of

magnitude one (i.e. ΦTMΦ = I). This gives a system of nη second order ordinary

differential equations in time for the modal structural model written as

Iη̈ + Ψ η̇ +Ω η = qΦTf . (3)

The generalised stiffness matrix Ω = ΦTKΦ contains the nη normal mode circular

frequencies squared on the diagonal. The generalised damping matrix Ψ = ΦTCΦ

contains the nη values of modal damping on the diagonal with an individual term

evaluated as 2ζωη where ωη is a normal mode circular frequency and ζ is a modal

damping ratio. The vector f of aerodynamic pressure forces at the structural grid

points follows from the wall pressure coefficient, the area of the surface segment and

the unit normal vector, and thus is a function of fluid and structural unknowns. It

is then projected using the mode shapes to obtain the nη generalised forces ΦTf .

The mapping between the fluid and structural meshes uses the constant volume

tetrahedron transformation [Goura, 2001] although other methods can be used.

The dynamic pressure is denoted by q.

3. Eigenvalue Stability Formulation

For the linear stability analysis of the aeroelastic system, the development and in-

teraction of the aeroelastic modes originating in the wind–off (uncoupled) structural

system is the main concern. The linear stability analysis assumes small amplitude

structural motion and a linear relationship between a structural deflection and the

fluid response. Then, the system of equations in Eq. (3) is written as an eigenvalue

problem for the eigenvalues λ = σ ± iω,
{
λ2 I + λΨ +Ω − qQ(λ)

}
η̂ = 0 (4)
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where η = η̂ eλt and ΦTf = Qη with Q as the aerodynamic influence matrix. A

stable system has all of its eigenvalues with a negative real part, while a purely

imaginary eigenvalue gives the onset of an instability of the Hopf type (i.e. flutter).

The evaluation of the aerodynamic influence often significantly contributes to the

overall cost of the analysis. Conventional methods applied in industrial problems

use a linear aerodynamic theory, such as the doublet lattice method, corrected for

its well known limitations in the transonic regime using experimental data or higher

fidelity (nonlinear) flow predictions [Palacios et al., 2001]. In recent years the use

of high fidelity computational fluid dynamics to model the unsteady aerodynamics,

particularly in the transonic regime, has become feasible, and thus an active area

of investigation.

One approach, referred to as the Schur complement eigenvalue method, has first

been discussed by Badcock and Woodgate [2010]. The coupled aeroelastic system

of fluid and structural equations is written as a first order ordinary differential

equation in timea and linearised about the steady state (equilibrium) solution w0,

δẇ = R(w0, µ) +A(w0, µ) δw (5)

where δw = w − w0 is the joined vector of unknowns of the fluid and structural

systems andR contains the corresponding residuals. The parameter µ is an indepen-

dent parameter, and the stability behaviour with respect to its variation is sought.

The steady state residual is by definition zero, while A(w0, µ) = ∂R/∂w is the

system Jacobian matrix, evaluated at the steady state and conveniently partitioned

into blocks expressing the dependencies of fluid and structural systems.

The fluid Jacobian matrix ∂Rf/∂wf = Aff describes the influence of the fluid

unknowns on the fluid residuals and has by far the largest number of nonzero el-

ements for a modal structural model. This matrix block is evaluated analytically

(which is crucial for the efficiency of the scheme) as described by Woodgate and

Badcock [2007]. The matrix block ∂Rf/∂η = Afη + λAfη̇ describes the depen-

dence of the fluid residual on the moving fluid mesh. Importantly, the fluid resid-

ual Rf must be differentiated with respect to both the generalised coordinates η

and their corresponding velocities η̇ = λη as these influence both the grid dis-

placements x(η) and grid velocities ẋ(η̇) of the fluid mesh. The Jacobian matrix

block ∂Rη/∂wf = Aηf describes how the structure responds to changes in the

flow field and is formed as Aηf = λ−1qΦT ∂f/∂wf . The structural Jacobian matrix

∂Rη/∂η = Aηη is conveniently split into two contributions, one from the structural

stiffness and damping terms and one due to the aerodynamic force vector, and is

given by Aηη = −λ−1
{
(Ω + λΨ) − qΦT ∂f/∂η

}
. From experience the second term

is usually negligible but can easily be included in the calculation.

Proceeding as for Eq. (4) leads to the following eigenvalue problem for the cou-

aNote that the structural equations are written as η̇ = −λ−1
{

(Ω + λΨ)η − qΦTf
}

.
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pled system
(
Aff Afη + λAfη̇

Aηf Aηη

)(
ŵf

η̂

)
= λ

(
ŵf

η̂

)
(6)

which can be rearranged noting that the relevant eigenvalues of interest for the

stability analysis originate in the uncoupled structural system,
{
λ I −Aηη +Aηf (Aff − λI)−1(Afη + λAfη̇)

}
η̂ = 0. (7)

The latter expression is called the Schur complement of the system matrix with

respect to the matrix block (Aff −λI). Using the definitions of the Jacobian matrix

blocks from above gives
{
λ2 I + λΨ +Ω − q

(
C2 − C3 (Aff − λI)−1(Afη + λAfη̇)

)}
η̂ = 0 (8)

with C2 = ΦT ∂f/∂η and C3 = ΦT∂f/∂wf . It is clear that the aerodynamic influ-

ence matrix from Eq. (4) is modelled as

Q(λ) = C2 − C3 (Aff − λI)−1(Afη + λAfη̇) (9)

demonstrating the dependence on the eigenvalue. The eigenvalue problem is then

solved for varying values of an independent (i.e. bifurcation) parameter µ (typi-

cally representing the dynamic pressure) to trace the development of the aeroelastic

modes.

In this paper the aeroelastic modes are traced with respect to the equivalent

airspeed VEAS. To allow simulations in a matched point fashion, altitude variations

are imposed at fixed freestream Mach numbers where reference values of density

and speed of sound are adjusted according to standard atmosphere conditions with

the true airspeed VTAS following from the Mach number. The equivalent airspeed

is then evaluated from VEAS = VTAS

√
̺/̺0 where ̺ is air density at altitude and

̺0 is standard sea level density.

An efficient way of finding the roots of such nonlinear algebraic systems are

Newton–type methods which require the evaluation of the residual and its exact or

an approximate Jacobian matrix. The evaluation of the aerodynamic influence Q,

particularly the term involving the matrix inverse, is the main cost as it requires

operations on the high dimensional fluid system, whereas the cost to form the terms

associated with the structural Jacobian matrix Aηη is negligible in comparison.

As there are nη relevant solutions of the eigenvalue problem, the cost of forming

the aerodynamic influence term at each Newton iteration, for each value of the

independent parameter µ, and for a range of system parameters becomes too high

without approximations. As one approximation, a Taylor series expansion [Bekas

and Saad, 2005] can be written for λ = λ0 + δλ as

(Aff − λI)−1
≈ (Aff − λ0I)

−1 + δλ(Aff − λ0I)
−1(Aff − λ0I)

−1 (10)

where δλ denotes a small variation to the reference value λ0. Pre–computation of

the factors in the series expansion for the right–hand side matrix (Afη + λAfη̇),
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requiring 4nη linear solves per shift λ0, allows the application of the expansion in

the vicinity of λ0.

Two approaches have been discussed in Badcock and Woodgate [2010]. An ap-

proximate Newton method evaluates the exact residual while the series expansion is

used for the Jacobian matrix. The exact residual is conveniently computed by first

forming the product b = (Afη + λAfη̇) η̂ for the current solution of the eigenpair

(η̂, λ), and then solving one linear system of the form (Aff −λI)y = b, the solution

of which is multiplied with the matrix C3. The alternative series method also applies

the series expansion to the residual which is possible for small δλ and for problems

where changes in the independent parameter µ do not influence the pre–computed

values. For more details on the original Schur complement eigenvalue formulation

the reader is referred to the literature.

The two methods (i.e. approximate Newton and series) just described are gener-

ally referred to as full order as they constantly involve operations on the unsimplified

CFD system to form the aerodynamic influence matrix. It is clear that neither of

the full order formulations is appealing when the number of system parameters (be-

sides the bifurcation parameter) becomes high. The aerodynamic influence matrix

depends on the eigenvalue, particularly the imaginary part giving the response fre-

quency, and the steady state solution. The steady state makes it dependent on a

large number of parameters in both the flow model (e.g. Mach number and angle of

attack) and the structural model due to structural parameters generally influencing

the mode shapes required to compute the matrix (Afη + λAfη̇).

In previous work [Timme et al., 2011] an approximation of the aerodynamic

influence term was devised which enables the stability analysis in larger parameter

spaces efficiently. The variation inQ was found from interpolating numerical samples

using kriging. Thus, the two main tasks of the approximation are efficient sampling

of the parameter space and accurate reconstruction of the matrix elements. Also,

the aerodynamic influence is evaluated for constant amplitude harmonic motion

giving Q(ω) rather than Q(λ), which is commonly done in conventional p–k type

of analyses. Once the aerodynamic influence is represented by the approximation

model, the eigenvalue problem can be solved as often as necessary at very low

computational cost. It is remarked that the approach is not limited to the kriging

technique per se.

A sample of the aerodynamic influence matrix can be formed in both the fre-

quency and time domains. Solving the nη linear systems of the form (Aff−iωI)Y =

(Afη+ iω Afη̇) and multiplying the nf ×nη solution matrix Y by the matrix Aηf to

integrate the responses is referred to as the linear frequency domain approach. This

is the preferred choice due to the significant computational cost involved in time

domain simulations. Alternatively in the time domain, allowing the use of arbitrary

CFD solvers (with modal motion functionalities), the aerodynamic influence matrix

is evaluated from the generalised forces ΦTf following an excitation in the structural

unknowns using Fourier analysis.
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Fig. 1. Representative element Q1,2 of aerodynamic influence matrix for baseline Goland
wing/store configuration using Euler flow model.

One representative element of the aerodynamic influence matrix Q for the base-

line Goland wing/store configuration, the structural model of which is defined else-

where [Beran et al., 2004], is shown in Fig. 1. The element describes the mapping

between the aerodynamic response in the first modal degree–of–freedom due to

changes in the second generalised coordinate. The black dots in the figure indicate

sample locations while the black and white coloured, meshed surfaces represent the

kriging interpolation used in the stability analysis to describe the variation of the

matrix elements. The two dimensional parameter space is defined by the dimen-

sionless response frequency and freestream Mach number. Note that the response

frequency is the primary parameter dimension which always has to be included in

the sampling as the eigenvalue problem is nonlinear. Solving the eigenvalue problem

gives a prediction of the eigenvalue and eigenvector for any combination of the bi-

furcation parameter and the different system parameters, where the imaginary part

of the obtained eigenvalue (i.e. the response frequency) is used itself to define the

parameter space for the sampling of the interaction matrix.

4. Adapted Method of Nissim and Gilyard

As mentioned above, there are two general categories of methods to use flight flutter

test data to predict the onset of aeroelastic instability. The way discussed hereafter is

to identify the whole aeroelastic system by computing the equations of motion, using

the method of Nissim and Gilyard [1989], rather than attempting to extrapolate to

the instability point from a curve fit of a chosen stability criterion such as the modal

damping and the variation with the dynamic pressure.

The eigenvalue problem for the aeroelastic stability analysis was given in Eq. (4).

It is restated as
{
λ2 I + λΨ +Ω − qQ(ω)

}
η̂ = 0

with the complex–valued aerodynamic influence matrix Q(ω) = QR+iω Q̃I approx-
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imated for constant amplitude harmonic motion, and Q̃I = ω−1QI . The subscripts

R and I denote real and imaginary parts, respectively. It is remarked that, generally,

the matrices QR and QI are not constant with respect to the frequency as indicated

in Fig. 1. Often, the notation using the matrices Kη = Ω− qQR and Cη = Ψ − qQ̃I

is more familiar with structural dynamicists,
{
λ2 I + λCη +Kη

}
η̂ = 0 (11)

where the real and imaginary parts of the aerodynamic influence matrix are inter-

preted as aerodynamic stiffness and damping, respectively, and combined with the

real–valued structural stiffness and damping matrices. As the aerodynamic influ-

ence, scaled through the dynamic pressure, goes to zero, the structural eigenvalue

problem is restored.

4.1. Original Method of Nissim and Gilyard

Following the ideas presented by Gaukroger et al. [1980], a system identification

technique, referred to as the Nissim and Gilyard method, was devised [Nissim and

Gilyard, 1989]. Adapted to the notation used in the present work, the forced aeroe-

lastic system is written as,
{
−ω2I + iω Cη +Kη

}
η̂ = ΦTF ĝ(ω) (12)

where the right–hand side defines the forcing term. The latter equation transposed

and rearranged gives the constraint equation for the system identification

η̂
TKT

η + iω η̂
TCT

η − ĝ(ω)FT
η = ω2 η̂

T (13)

where Fη = ΦTF is the generalised forcing matrix. The physical forcing matrix F

has dimensions ns ×m with m as a chosen number of forcing columns applied. In

the original work it was recommended to apply at least two linearly independent

forcing columns to negate the influence of measuring error. In the current numerical

experiments, a forcing vector has entries of one according to the physical coordi-

nates where the (single) external forcing function g(t) is applied, and thus, the

forcing matrix Fη is known beforehand. This information can be used to monitor

the analysis results. In a flight flutter test, on the other hand, finding the modal

response due to, for instance, the deflection of a control surface does not tell how

the modal degrees–of–freedom were excited in the first place, and hence, this matrix

is assumed to be an additional unknown.

Assuming only one forcing vector is used to simplify the following presentation,

the system of constraint equations can be written for k distinct forcing frequencies,

excited at a chosen fixed flight test point, as,



η̂
T
1 iω1 η̂

T
1 −ĝ(ω1)

η̂
T
2 iω2 η̂

T
2 −ĝ(ω2)

...
...

...

η̂
T
k iωk η̂

T
k −ĝ(ωk)







KT
η

CT
η

FT
η


 =




ω2
1 η̂

T
1

ω2
2 η̂

T
2

...

ω2
k η̂

T
k




(14)
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which is an overdetermined linear system (if k > nη) of the general form TX = B

to be solved in the common least–squares sense. As the coefficient matrix T and

the right–hand side matrix B are complex–valued while the solution matrix X is

real–valued, it was argued instead to solve the equivalent real–valued linear system

[TR, TI ]
TX = [BR, BI ]

T to avoid the sensitivity to measuring errors.

The constraint of having a real–valued and constant solution matrixX prompted

the authors of the original work to use simplified aerodynamics (i.e. quasi–steady),

which can be written as A = A0+iωA1, and thus, Kη = Ω−qA0 and Cη = Ψ−qA1.

The similarity to the matrix Q given above is intended. To identify the constant

matrices of aerodynamic stiffness A0 and damping A1, the aeroelastic system was

excited at two distinct dynamic pressures to distinguish between the structural and

aerodynamic contributions in the overall stiffness and damping terms. Importantly,

the generalised matrices of structural stiffness Ω and damping Ψ were assumed to

be constant despite the required variation in the dynamic pressure (i.e. structural

deformation during flight potentially causing changes in the modal description of

the system are considered negligible).

An example is presented next for the baseline Goland wing/store configuration,

the structural model of which was defined by Beran et al. [2004]. The wing/store

configuration has four normal modes with frequencies (given in Hz) of 1.689, 3.051,

9.173 and 10.83, while structural damping is neglected. The mode shapes splined to

a CFD surface grid were visualised in Timme et al. [2011]. To replace unavailable

real flight test data, unsteady time accurate simulations were done at realistic flight

conditions using the Euler equations as aerodynamic model and a computational

mesh with about 24,000 control volumes. The store aerodynamics were not mod-

elled. The excitation signal used throughout in this work is a linear chirp following

the functional relation,

g(t) = ga sin
(
2πf0t+ πκt2

)
(15)

where ga is the excitation amplitude and κ is the constant rate of frequency increase

(chirp rate). It is evaluated as κ = (f1 − f0)/(0.8t1) with f0 and f1 limiting the

frequency range to be excited and t1 as the length of the time signal. To excite all

relevant frequencies of the test case, the limiting excitation frequencies are chosen

to be f0 = 0.5 Hz and f1 = 15 Hz. The amplitude of the chirp signal is set to

ga = 5 × 10−4 lb to maintain linearity in the simulations. One physical structural

coordinate is excited per unsteady simulation. The structural points of the Goland

wing selected for excitation are shown in Fig. 2. With some imagination, applying

a force at these points corresponds to a control surface deflection of the real wing

to excite the system.

Results are presented using three forcing columns corresponding to an excita-

tion in the coordinates 41, 40 and 33, respectively. Following a starting period to

allow the decay of transients when switching the temporal discretisation in the CFD

simulations from steady state pseudo time to unsteady dual time, a time signal of

t1 = 20 s is simulated, applying the excitation for a period of time 0.8t1 and running
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Fig. 2. Physical structural coordinates of Goland wing/store configuration.

at a sampling frequency of 1024 Hz. This relatively large sampling frequency, cor-

responding to a nondimensional time step of about 0.13, was found to be necessary

to satisfy temporal accuracy in the unsteady simulations with acceptable discreti-

sation errors. However, only every eighth step was taken for the Fourier analysis of

the input/response signals to obtain ĝ and η̂.

Results can be found in Figs. 3 through 5 and Tables 1 through 3 for a subsonic

freestream Mach number of 0.85. Numerical simulations, using the eigenvalue anal-

ysis in a matched point fashion as described above, predict the instability to occur

alongside the interaction of the first bending mode and first torsion mode with a

critical velocity of VEAS = 609 ft/s (corresponding to an altitude of 22,560 ft). The

system identification is done using simulated flight data at 29,000 ft and 32,000 ft to

have different dynamic pressures. Representative frequency response functions η̂/ĝ

(showing the modulus) for the four aeroelastic modes are given in Fig. 3. Resonant

behaviour close to the normal mode frequencies and two pairs of modes that interact

are shown. For the results provided in the figure, the excitation was applied at the

structural coordinate 40 at an altitude of 32,000 ft. To complement the results at

Mach 0.85, additional responses are shown for a transonic freestream Mach number

of 0.925. The baseline Goland wing/store configuration without structural damping

is known to exhibit a (nearly single degree–of–freedom) torsion mode limit–cycle

instability in this higher Mach number regime starting from very high altitudes

[Badcock and Woodgate, 2010]. Hence, a small amount of structural damping was

added (i.e. a damping ratio of 0.05 in all modal degrees–of–freedom) resulting in a

critical velocity of VEAS = 317 ft/s (corresponding to an altitude of about 54,000 ft).

Compared with the lower Mach number, a more distinct response around the second

mode frequency can consequently be observed in the figure.

Tables 1 through 3 give the identified system matrices. The generalised forcing

matrix with the three forcing columns corresponding to coordinates 41, 40 and 33

is given in Table 1. Following the definition of this matrix with Fη = ΦTF , it is

clear that each column in this matrix corresponds to the modal deflection (one

entry per mode) at the physical structural coordinate where the excitation signal is

applied. The identification gives reasonable results indicating an adequate excitation
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Fig. 3. Frequency response function at two freestream Mach numbers (coordinate 40).

with little numerical error. The strongest discrepancies can be found in the matrix

row corresponding to the deflection in the fourth mode. The structural stiffness and

damping matrices of the modal system are given in Tables 2 and 3, respectively. The

reference input matrices, used to define the structure in the unsteady simulations,

are simple diagonal matrices. The stiffness matrix has elements with the normal

mode circular frequencies squared, while, in this case, the structural damping is

zero. A reasonable identification of the diagonal entries is obtained, while relatively

high errors are observed in off–diagonal matrix elements, particularly in the second

column. The modal damping is not identified to be zero and an error is introduced.

These inaccuracies, requiring more attention, will be discussed further following the

presentation of the aerodynamic matrices.

The matrices of aerodynamic stiffness and damping are not given in the form of

a table but as a representative matrix element cross–plotted with the exact numer-

ical results of the aerodynamic influence matrix. These results, which demonstrate

the shortcomings of the assumptions applied in the Nissim and Gilyard method

concerning the aerodynamic influence, are presented in Fig. 4. Even at the chosen

subsonic Mach number of 0.85, the approximation of the aerodynamic influence

matrix using constant terms is poor. A nearly linear development with respect to

the dimensionless reduced frequency k = ωb
VTAS

(where b is half the reference length)

can be observed. Interestingly, the reference data in the figure correspond to the

samples for the response surfaces shown in Fig. 1. In there, while the constant ap-

proximation seems to be fair at a freestream Mach number of 0.85 in relation to the

global variation, it certainly gets worse entering the transonic regime. In the case of

the symmetric Goland wing without static deformation, the discussion of variation

in dynamic pressure is irrelevant for the aerodynamic influence term as the matrix

A (or equivalently Q) is indeed independent of the dynamic pressure.

The true measure of accuracy for the identification of the system are the stabil-
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Table 1. Generalised forcing matrix Fη for three forcing columns.

reference matrix matrix identified at 29,000 ft % Error
(ft) (ft)

–0.1115 –0.0963 –0.0796 –0.1117 –0.0927 –0.0809 0.18 –3.74 1.63
0.1077 –0.1936 0.0916 0.1074 –0.1929 0.0926 –0.28 –0.36 1.09

–0.0254 0.1521 –0.0203 –0.0254 0.1501 –0.0196 0.00 –1.31 –3.45
–0.0778 –0.0195 0.0682 –0.0738 –0.0251 0.0727 –5.14 28.7 6.60

Table 2. Generalised structural stiffness matrix Ω.

reference matrix identified matrix
(lb-ft) (lb-ft)

112.7 0.0 0.0 0.0 112.5 –10.4 –0.1 –5.2
0.0 367.6 0.0 0.0 –0.0 376.4 3.5 6.9
0.0 0.0 3321.6 0.0 0.1 0.3 3318.0 4.9
0.0 0.0 0.0 4632.6 0.4 23.9 2.2 4634.3

Table 3. Generalised structural damping matrix Ψ .

reference matrix identified matrix
(lb-ft-s) (lb-ft-s)

0.0 0.0 0.0 0.0 –0.059 0.051 0.159 0.172
0.0 0.0 0.0 0.0 0.039 –0.150 –0.158 –0.186
0.0 0.0 0.0 0.0 –0.004 –0.017 –0.014 –0.069
0.0 0.0 0.0 0.0 0.136 –0.290 –0.387 –0.453

ity results. The mode tracing with respect to the equivalent airspeed (in a matched

point analysis) using the identified system matrices at the chosen freestream Mach

number of 0.85 is presented in Fig. 5. Two sets of reference results are included in the

figure. The first set uses the full order eigenvalue solver applying the series method

approximation as described above. In previous studies it was demonstrated that

the series method gives accurate results compared with the approximate Newton

method [Timme et al., 2011]. The second set of results uses the kriging approxi-

mation for the aerodynamic interaction term with the samples extracted assuming

constant amplitude harmonic motion. These results are included to demonstrate the

accuracy of the kriging approximation with samples for Q(ω). The only notable dis-

crepancy can be seen for the second mode frequency at higher values of equivalent

airspeed due to the strongly damped character of this mode, where the assump-

tion of constant amplitude harmonic motion for the aerodynamic influence loses

accuracy. Interestingly, the results using the identified system matrices are accurate

and a critical velocity of VEAS = 613 ft/s (corresponding to an altitude of about

22,300 ft) is predicted. The system identification at different pairs of subcritical

altitudes resulted in similar agreement in obtaining the flutter point. In addition,

the identification at the transonic freestream Mach number of 0.925 gave a critical

altitude of about 55,000 ft, which is close to the reference prediction of 54,000 ft,

despite the significant variation in the aerodynamic influence matrix.
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Fig. 4. Representative element Q1,2 of aerodynamic influence matrix for baseline Goland
wing/store configuration at Mach 0.85.

300 400 500 600 700 800 900
−0.05

0

0.05

0.1

0.15

0.2

V
EAS

 in ft/s

D
am

pi
ng

 r
at

io

 

 

ref full
ref kriging
NG method

300 400 500 600 700 800 900
0

2

4

6

8

10

12

V
EAS

 in ft/s

F
re

qu
en

cy
 in

 H
z

 

 

ref full
ref kriging
NG method

Fig. 5. Matched point mode tracing for baseline Goland wing/store configuration using Nissim
and Gilyard (NG) method at Mach 0.85.

Thus, it seems that the Nissim and Gilyard method allows an acceptable identifi-

cation of the system even when the aerodynamic modelling assumptions are severely

violated. Returning to the errors introduced in the structural stiffness and damping

matrices as found in Tables 2 and 3, respectively, it is suggested that the iden-

tification process gives the four system matrices that best describe the dominant

physics. However, as a consequence of the aerodynamic modelling assumptions, a

correction is added to the structural matrices to deal with these acknowledged er-

rors. This observation is supported by noting that the structural matrices show

different errors for identifications at different altitudes. In addition, the mode trac-

ing was found to be inaccurate at higher altitudes resulting in additional incorrect
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bifurcation points (even though the significance of this inaccuracy is considered to

be negligible). In some sense, we are not identifying the correct system matrices,

but the best description of the dynamics varying with the chosen test altitudes.

4.2. Adapted Method

Two aspects motivated an adaptation of the original Nissim and Gilyard method.

First, a framework is sought that allows the use of computational aeroelastic sim-

ulations, applying high fidelity CFD modelling for the aerodynamics, to assist in

flutter clearance when updating numerical models with flight flutter test data. Sec-

ondly, the assumption of constant matrices, and thus simplified physics, to identify

the system is avoided when updating a potentially nonlinear trend, provided by the

numerical model, with constant corrections. This approach, different to the original

Nissim and Gilyard method, requires a more or less accurate numerical model of

the real system. Based on Eq. (13), write the adapted constraint equation as

η̂
T δKT

η + iω η̂
T δCT

η − ĝ(ω)FT
η = η̂

T
{
ω2I − iω CT

η −KT
η

}
, (16)

where the matrices δKη and δCη denote the identified constant updates for the

matrices Kη and Cη of the provided model. Thus, rather than identifying the en-

tire aeroelastic system with constant matrices, a constant correction is identified

based on an assumed numerical representation of the problem. The latter equation

is a simple rearrangement of the constraint equation in Eq. (13) assuming some

knowledge of the real problem (i.e. a numerical model) is available. The equation

simplifies to the original formulation if no numerical model is available. The latter

expression can be recast following Eq. (14) to define an overdetermined system to

be solved in a least–squares sense. Choosing this path, a numerical model can be

adjusted using test data.

An important and computationally expensive element of the adapted method,

when CFD simulations are used to evaluate the aerodynamic influence, is the matrix

Q of the provided numerical model on the right–hand side of the constraint equation.

It would become prohibitive to directly evaluate this matrix for each frequency and

combination of other system parameters (such as freestreamMach number). Instead,

the kriging interpolation approximation, as described above, is applied to provide

the variation in the elements of the aerodynamic influence matrix at any parameter

location based on few expensive numerical samples. These samples are precomputed

using the provided numerical model of the aeroelastic system.

5. Application of Adapted Method

The unsteady simulation results, created and analysed for the original Nissim and

Gilyard method as described previously, are now used for the adapted method taking

the same set of three forcing columns. To test the adapted method, the structural

stiffness and damping matrices from the provided numerical model (i.e. the matrices
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Table 4. Generalised forcing matrix Fη.

matrix identified at 29,000 ft % Error
(ft)

–0.1109 –0.0958 –0.0793 –0.54 –0.52 –0.38
0.1071 –0.1926 0.0911 –0.56 –0.52 –0.55

–0.0253 0.1510 –0.0202 –0.39 –0.72 –0.49
–0.0772 –0.0194 0.0677 –0.77 –0.51 –0.73

Table 5. Generalised matrices of structural stiffness Ω and damping Ψ .

identified stiffness matrix identified damping matrix
(lb-ft) (lb-ft-s)

112.7 –0.3 –0.3 –0.7 –0.001 0.051 0.011 –0.024
–0.0 366.3 –0.4 1.1 0.000 –0.016 0.009 –0.000
–0.0 –0.2 3314.7 0.5 –0.000 0.019 0.008 –0.034
0.1 0.0 –1.1 4619.9 –0.004 –0.063 0.009 0.035

found on the right–hand side of the constraint equation) were based on arbitrarily

chosen normal mode frequencies and damping ratios. Here, the nominal normal

mode frequencies of the Goland wing/store case were rounded to one significant digit

(e.g. for the first mode we take 2 Hz), while for the modal damping ratios different

values between 0.1 and 0.5 were used for the four degrees–of–freedom. In addition,

the elements of the aerodynamic influence matrix of the provided numerical model

were modified by a constant value randomly chosen.

The structural matrices are given in Tables 4 and 5 based on the identification at

Mach 0.85. The generalised forcing matrix is found to be better identified compared

with the results given in Table 1. While the first three matrix rows corresponding to

the deformations in modes 1 to 3 were already identified accurately with the original

method, clear improvements in the last row are observed. The errors in the matrix

entries are consistently reduced below 1%. The generalised matrices of stiffness and

damping are nicely identified as shown in Table 5 where the identified corrections

added to the provided matrix values are presented. The peak errors in the stiffness

matrix, particularly in the second column, are reduced, while the entries of the

damping are reduced consistently by almost an order of magnitude throughout.

A representative element of the aerodynamic influence matrix is given in Fig. 6

comparing reference data using the full order samples and the identified results using

the Nissim and Gilyard method in its original and adapted form. As for the identified

structural matrices, results are shown for the aerodynamics of the provided numeri-

cal model plus the correction. The adapted Nissim and Gilyard method predicts the

correction δQ to be very close to the imposed constant error (with opposite sign).

This is expected as the correct aerodynamics of the system, modified by a random

constant value, were applied on the right–hand side of Eq. (16) for the identifica-

tion. The same accuracy in the system identification for both the structural and

aerodynamic correction matrices was observed for the transonic freestream Mach
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Fig. 6. Representative element Q1,2 of aerodynamic influence matrix for baseline Goland
wing/store configuration using adapted Nissim and Gilyard (ANG) method at Mach 0.85.
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Fig. 7. Matched point mode tracing for baseline Goland wing/store configuration using adapted
Nissim and Gilyard (ANG) method at Mach 0.85 and 0.925.

number of 0.925 identifying the system using simulated flight test data at 60,000 ft

and 63,000 ft, the results of which are not shown herein.

As a remark of caution, for the results presented herein, the system is well de-

fined (e.g. the imposed error in the aerodynamic matrix is indeed constant), which

demands an accurate identification of the system for the method to be useful. Once

the error between the numerically predicted aerodynamics and the experimental

data becomes non–constant due to modelling discrepancy, a similar behaviour as

for the original Nissim and Gilyard method should be expected. An incorrect as-

sumption of a constant update for the aerodynamics would introduce an additional

correction in the structural matrices. However, as we are identifying an update to a
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numerical aeroelastic model, confidence about the general accuracy in the modelling

is increased.

The tracing of the four relevant modes with respect to the equivalent airspeed

is presented in Fig. 7 for freestream Mach numbers of 0.85 and 0.925. The results

using the identified correction matrices are indistinguishable from the reference

kriging results following the close agreement in the system matrices. Using the

identified system from the original Nissim and Gilyard method, on the other hand,

the damping ratio of the first mode (with the damping ratio defined according to

classical text books such as Bisplinghoff and Ashley [1962]) is predicted too low for

airspeed values below the critical point. For the transonic freestream Mach number

of 0.925 (showing the instability occuring in the second mode), inaccurate mode

tracing at airspeeds higher than the instability onset is observed as well. These

observations support the previously stated point concerning the best identification

of the dominant dynamics at a chosen altitude but not of the actual system matrices.

As said before, the critical point (equivalent airspeed or altitude) is nevertheless

reasonably predicted.

A second test case is the MDO wing as a model of a commercial transport wing.

A transonic freestream Mach number 0.85 is chosen for the analysis. Static aeroe-

lastic deformation is considered which, in contrast to the Goland wing/store con-

figuration, gives a dependence of the aerodynamic influence matrix on the dynamic

pressure. The modal structural model retains eight normal modes. The normal mode

frequencies (all given in Hz) are 0.844, 2.162, 3.559, 3.989, 5.008, 5.369, 6.573 and

7.300. No structural damping is included. The mode shapes splined to the CFD

surface mesh have been visualised in Timme et al. [2011]. A computational mesh

with 65,000 control volumes is used for the current Euler simulations. The excited

frequency range is between f0 = 0.1 Hz and f1 = 10 Hz simulating t1 = 20 s of

physical time with a sampling frequency of 1024 Hz chosen for temporal accuracy

in the CFD simulations. Every eighth time step was retained for the system iden-

tification. As for the Goland wing/store configuration, three forcing columns are

used for the identification while individually exciting structural coordinates of the

finite element model to simulate control surface deflection at realistic flight condi-

tions as the means of system excitation. The excitation is done about the statically

deformed wing following the simulation of a steady state.

As above, to challenge the adapted method, the normal mode frequencies of the

provided numerical model were rounded to one significant digit, while random values

for the modal damping ratios between 0.05 and 0.5 were imposed. The identified

matrices of generalised forcing and structural stiffness for this second configuration

are shown in Tables 6 and 7. The identification of the forcing matrix is accurate

with a worst error of 1.52%. The same accuracy can be found in the structural

stiffness matrix identified using response signals at altitudes of 5,000 m and 6,000 m.

Diagonal entries are close to the nominal values (to be evaluated as the square of

the normal mode circular frequency), while off–diagonal elements are very small
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Table 6. Generalised forcing matrix Fη for three forcing columns.

reference matrix matrix identified at 6,000 m % Error
(×10−3 m) (×10−3 m)

4.786 9.144 10.990 4.785 9.138 10.985 –0.02 –0.07 –0.05
–1.985 6.322 11.900 –1.985 6.320 11.886 –0.00 –0.03 –0.12
4.399 –3.193 –10.990 4.398 –3.189 –10.985 –0.02 –0.13 –0.05
0.526 –4.348 3.852 0.534 –4.336 3.856 1.52 –0.28 0.10
1.354 –2.151 –1.439 1.354 –2.148 –1.439 0.00 –0.14 0.00
0.640 0.262 –5.156 0.634 0.259 –5.153 –0.94 –1.15 –0.06

–3.233 10.230 –3.433 –3.227 10.211 –3.420 –0.19 –0.19 –0.38
–4.276 1.844 1.884 –4.270 1.842 1.879 –0.14 –0.11 –0.27

Table 7. Generalised structural stiffness matrix Ω.

identified stiffness matrix
(N-m)

28.6 0.3 0.4 –5.2 –1.0 –0.4 2.4 0.1
–0.3 184.2 0.4 0.7 0.2 0.4 –0.0 0.0
–0.0 0.3 498.9 0.7 0.1 0.1 –0.9 –0.0
–0.2 0.1 –0.5 627.4 0.1 –0.2 0.5 –0.7
–0.1 0.2 0.1 0.2 988.7 0.1 –0.3 0.2
0.0 0.4 0.2 0.8 0.3 1136.1 –1.2 0.5
0.4 –0.1 –1.2 –0.2 –0.3 –0.8 1702.4 –0.6
0.1 0.1 –0.0 0.5 0.1 –0.1 –0.5 2099.3

in comparison. Also, the results are improved compared with the original method.

The diagonal entry in the first mode, for instance, was identified to a value of 33.5

corresponding to an error of 19.2%, while most of the off–diagonal elements were

reduced by almost an order of magnitude using the adapted method. Similar to

the stiffness matrix, the identification of the structural damping matrix (not shown

herein) was improved significantly throughout.

The aerodynamics of the provided numerical model were modified as well in

order to discuss how the model updating based on system identification could be

exploited to establish trends when required to extrapolate to the instability point. A

design altitude of the configuration was (rather arbitrarily) chosen to be 13,000 m,

while the provided numerical model is assumed to predict the physics at this design

point accurately. An error in the elements of the aerodynamic influence matrix,

linearly varying with altitude, was imposed. This modification and its identification

are illustrated for a representative matrix element in Fig. 8 showing the depen-

dence on altitude at a fixed reduced frequency. The development of the modified

matrix element of the provided numerical model can be seen. The model updates

are identified at four subcritical altitudes reproducing the expected linear trend of

the imposed error. This trend is then linearly extrapolated with respect to altitude

to correct the provided numerical model.

The results of the stability analysis showing the tracing of the four aeroelastic

modes with the lowest nominal frequencies are presented in Fig. 8. The reference
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Fig. 8. Adapted Nissim and Gilyard (ANG) method applied to MDO wing configuration.

analysis, using the kriging approximation for the aerodynamic influence matrix in

a frequency/altitude parameter space, predicts the instability in the first mode at

a critical velocity of VEAS = 218 m/s (corresponding to about 4,500 m in altitude).

The analysis, using the identified system from the original Nissim and Gilyard

method, overpredicts the critical conditions slightly to about VEAS = 222 m/s with

the system matrices identified at altitudes of 5,000 m and 6,000 m. This prediction

deteriorates when using altitudes at increasing distance to the instability. It can

also be seen that the damping ratio in the critical mode is only reproduced well in

close range to the identification point. Using the system matrices obtained from the

adapted method, on the other hand, results in an accurate prediction compared with

the reference solution. Compared with the four aeroelastic modes in the previous

Goland wing/store configuration, the increased number of normal modes, while

applying the same number of independent forcing columns, does not corrupt the

method. However, the behaviour for a more realistic number of retained normal

modes (typically about 100) remains to be seen.

As for the previous configuration, we are looking at a well defined numerical

problem imposing constant or linearly varying errors, and accuracy in the current

discussion is hence required. The general idea of the approach, however, should be-

come clear. A numerical model of a configuration should be available while lacking

accuracy, compared with the real system, due to modelling discrepancies. The nu-

merical model is then tuned to match observations based on subcritical flight tests.

Extrapolation to predict the critical point, as is generally required for flutter pre-

diction techniques based on flight test data, still becomes an issue. This was demon-

strated for the MDO wing configuration undergoing static aeroelastic deformation.

However, the task of extrapolation would use a trend established from tuning the

model in subcritical conditions building confidence in the numerical model.
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6. Conclusions

The work presented in this paper describes an approach based on the Nissim and

Gilyard method to update computational aeroelastic predictions with flight test

data by identifying corrections for the matrices of the underlying numerical model.

The central idea is to use the predictive capabilities of computational aeroelastic

tools, capturing the dominant physics of the problem at hand, while adding in-

formation from flight tests of the real aircraft to correct for missing physics and

systematic errors in the numerical model. Computational fluid dynamics is used to

evaluate the aerodynamic influence matrix of the provided numerical model, while

kriging interpolation is applied to account for parameter variations. As real flight

test data are not available for the test cases discussed, unsteady simulations using

the Euler flow model are exploited instead. The results using the identified system,

presented for the Goland wing/store configuration and the multidisciplinary optimi-

sation wing, are generally improved compared with the original Nissim and Gilyard

method, and good agreement with reference predictions is found.

In the general case, extrapolation of non–constant system matrices is required to

predict the flutter onset. This extrapolation is equivalent to other flutter prediction

methods, such as the damping curve fit, and becomes critical when a sudden loss of

damping is encountered (where also sudden changes in the aerodynamic influence

matrix are not unlikely). The presented approach could be exploited to evaluate

a correlation between the numerical model and real data within the stable flight

regime to account for the shortcomings in the modelling, the information of which

could then be used with increased confidence in the numerical model to extrapolate

to the flutter onset.
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