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Abstract

Computers should make our lives easier; they should complement human abilities and allow
us to perform to our maximum potential. They should not be some Kafkaesque machines
that require us to carefully navigate some arbitrary bureaucracy that forces us to commu-
nicate with black boxes, unsure whether we are even putting the right information into the
machine or getting the right answer out. Nevertheless, the algorithms used in our daily
lives are often inhumane.

One solution is for algorithms to better understand the risk and uncertainties present in
the situations where they are used, within the inputs, the internal calculations and outputs.
Such an approach has many potential benefits. Understanding the uncertainties can allow
algorithms to make better decisions. Uncertainty in the output of an algorithm may lead to
ways in which decisions can be interrogated. Allowing algorithms to deal with variability
and ambiguity with their inputs means they do not need to force people into uncomfortable
classifications. It is essential to compute with what we know rather than make assumptions
that may be unjustified.

There are two types of uncertainty that algorithms have to deal with: aleatory uncertainty
– caused by the natural variability of a system, and epistemic uncertainty – caused by a lack
of knowledge. Traditionally, both types of these statistics are considered using probability
theory. However, using precise probability distributions to model epistemic uncertainty can
lead to illogical, inconsistent and incorrect results. This thesis considers how algorithms
can compute with both types of uncertainty.

This thesis explores imprecise probabilities as a way of computing with both types of uncer-
tainty through probability bounds analysis. The mathematics of computing with these ob-
jects is reviewed before the prospect of using an automatic uncertainty compiler to translate
uncertainty naive code into code taking complete account of the uncertainty is considered.
This approach can enable analysts who may be unwilling or unable to rewrite their codes
to include intrusive uncertainty analysis with their algorithms.
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Problems related to epistemic uncertainty within binary classifications are considered, both
within the input and output of the algorithms. The problem of characterising the uncertain-
ties associated with binary classification where there is no gold standard that can perfectly
reveal the true class is explored. This problem is particularly relevant in medicine, where
harm may be caused by incorrectly interpreting the result of diagnostic tests.

Epistemically uncertain inputs – in the form of intervals – within logistic regression, a
popular binary classifier within statistics and machine learning, are also considered. A
novel imprecise approach is shown that considers the set of possible models in an imprecise
way instead of reducing the epistemic uncertainty to a single middle-of-the-road model. The
approach works when there is uncertainty in the dependent and independent variables.

Finally, a chapter is devoted to considering the impact of diagnostic uncertainty within
epidemiological models. Throughout the COVID-19 pandemic, governments relied on a
combination of testing and epidemiological modelling to guide policy and public health
interventions. However, many of the tests performed were imperfect, and it is vital to
understand the impact this uncertainty has on models. This work considers that problem
by creating a compartmental model with a testing and quarantining system, and can be
used to analyse the effect of imperfect mass testing on the spread of the disease.

vi
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Outline of This Thesis

Chapter 1 reviews the impact that algorithms increasing have on daily life and the ir asso-
ciated risks. Several classical examples are reviewed where algorithms enabled annoyances,
injustices and catastrophes. This chapter argues that better handling of risk and uncer-
tainty would help to alleviate some of these problems and acts as the motivation for the
rest of the thesis. In particular, it is crucial to compute with what we know rather than
to make assumptions that may be unjustified or untenable. To this effect, this thesis aims
to address twin problems problems: how uncertainty can be included directly within the
calculations and how much uncertainty there is in the output.

Chapter 2 reviews probability bounds analysis (PBA) as a way of enabling algorithms to
calculate their uncertainties directly. Intervals, probability boxes and confidence boxes are
introduced as uncertain objects that characterise both epistemic and aleatory uncertainties.

Chater 3 introduces the concept of having a compiler that can translate source code that
does not have any intrusive uncertainty analysis into code that includes PBA objects. The
components that would be required to create such a compiler are considered. The advan-
tages of such an approach and the numerous issues that would make an uncertainty compiler
difficult are reviewed.

To assess the performance of binary classifiers, central to many machine learnign algorithms,
one needs to be able to compare the results to the ground truth. Calculating performance
statistics requires a gold standard test that determines the true classification. However,
all tests are imperfect, and therefore there can be significant uncertainty associated with
an imperfect gold standard. Chapter 4 explores this problem. The chapter reviews pre-
vious work addressing this problem before introducing a new method based on imprecise
probabilities.

Chapter 6 takes the “no test is perfect” idea from Chapter 4 and considers how the epidemi-
ological impact flawed testing has when testing is employed to try to stem the spread of
disease. This is achieved by creating a compartmental model that can assess the dynamics
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of a test and quarantine system. The effect of imperfect diagnostic tests within such a
system is considered for various test statistics and testing regimes.

Chapter 5 presents a novel method to include interval uncertainties within logistic regression
models. This is achieved by considering the set of possible models consistent with the
intervals. This approach can be used when there is uncertainty in the model’s features or
labels. Several algorithms are presented to estimate the set of models, and comparisons are
made to methods within the literature.

Figure 1 shows all six chapters of the thesis and the connections between them.
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Figure 1: Connections between the chapters within this thesis. The blue chapters
predominantly review the literature, whereas the green chapters represent novel

contributions.
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A Note on the Word “Algorithm”

The Oxford English Dictionary defines the world algorithm (in a computer science and
mathematics context) to mean

A procedure or set of rules used in calculation and problem-solving; a precisely defined set
of mathematical or logical operations for the performance of a particular task.

In a decision making context algorthims tend to be either:

• rule-based algorithms: human-defined instructions intended to be direct and unam-
biguous, or

• machine learning algorithms: where the algorithm comes up with its own instructions
in order to solve the task.

These algorithms often perform one of a few basic tasks:

• prioritisation – finding a ranking over a given number of objects to return the best,

• classification – picking a catagory,

• association – finding links between objects, and

• filtering – isolating the important information [11].

An alternative approach defines algorithm singularly and anthropomorphically to describe
the collection of different rule-based or machine learning systems that form a black box
system that takes an input, performs some mathematical and computer science wizardry
and returns an output [12]. The YouTube algorithm decides on what video to recommend
next. Banks use algorithms to decide whether or not to give someone a credit card. Within
a self-driving car it is the algorithm that is doing the driving, despite the fact that there
will be numerous individual algorithms that decide on the speed, the direction and monitor
the traffic conditions.

It is within this anthropomorphic definition that algorithms need to be made more humane.
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Chapter 1

Humane Algorithms

In Issac Asimov’s seminal science fiction book I, Robot, the Handbook of Robotics (56th
Edition, 2058AD) states that the first law of robotics is: “A robot may not injure a human
being or, through inaction, allow a human being to come to harm.” [13] Although some
suggest that Asimov’s Laws may be a simplistic view of machine ethics [14], the first law
is a pertinent starting point when it comes to discussing the risk posed by algorithms. In-
creasingly inhumane algorithms adjuidcate more and more of our daily lives, with potential
harms ranging from irritation to injustice, from confustion to catastrophe.

There is even evidence that people are beginning to move from “algorithm aversion”, prefer-
ring advice from a human over advice from an algorithm, to “algorithm appreciation” and
going out of their way to do things using automated systems [15]. This trend does depend
on the context of the decision, with human decision making still preferred in medicine,
economics and education [16–18].

Then there is the danger of humans treating algorithms as epistemic superiors who can
perform tasks far better than other humans and trusting in the algorithm’s advice over
their own decision making. Take, for instance, the numerous examples of people who have
driven cars into perilous, and sometimes fatal, situations because their satellite navigation
system instructed them to do so [19, p. 15].

There is a need to ensure that algorithms are humane and work and play well with humans,
anticipating and serving their needs and frailties. There are several fundamental issues that
a humane algorithm would need to address. The review Jobin et al. [20] revealed that there
is an emerging consensus amoung the many principles and guidelines published for ethical
artificial intelligence. The five ethical issues they highlight are: transparency (including
explainability), justice and fairness, non-maleficence, responsibility and accountability, and

1
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privacy. Although, by definition, no humane algorithm would be maleficent. Humane
algorithms do not just include the issues related to AI ethics. However, they must also
consider the numbers used within their calculations and the context for the decisions as
essential issues. This chapter reviews such issues and highlights that careful consideration
of risk and uncertainty is fundamental in creating humane algorithms.

1.1 The Numbers of the Future

“Prey, Mr. Babbage, if you put into the machine the wrong numbers will the right answers
come out”. This question was put to Charles Babbage twice, by members of both houses of
the UK Parliament, upon his invention of the difference engine [21], which can be considered
as a very early ancestor of today’s computers. Babbage was “not able rightly to apprehend
the kind of confusion of ideas that could provoke such a question.” Yet, similar problems
still occur even though almost two centuries have passed between Babbage’s conversations
with the parliamentarians. It is still the case that if the input is incorrect, the algorithm will
still produce an output that will be wrong, but with the added air of algorithmic authority,
often referred to as “garbage in, garbage out”.

What Baggage could not have possibly imagined is that the distant descendant of the
machines that he created would be so ubiquotous within today’s society. He would not be
able rightly to apprehend that people are still putting the wrong numbers into the machine
and expecting the right answers to come out.

Modern science and engineering is all about numerical calculation. With the inexorable
growth of computer power, more of these calculations are being undertaken with more com-
plex computer simulations. These developments mean that new computation-intensive and
machine learning technologies are being explored which promise to revolutionise engineering
by replacing the magic of engineers with algorithmic witchcraft.

The numbers used within scientific calculations do not represent so abstract philosophical
or numerological constructs but instead are counts, measurements or other representations
of the real world. For instance, if an engineer needed to use the number 5 they do not
mean some vague concept of fiveness but instead a real value likely to have some associated
unit and possibly some uncertainty. However, the computer languages used to make these
calculations have very few good options to take units and uncertainties into account. It
would make no sense to add 5 meters and 4 seconds, nor would it be possible to calculate
the sine of something which is not an angle, yet computers blind to units would allow such
calculations. It is left to the programmer to understand the units within their calculations
and ensure that there are no errors.

2



HUMANE ALGORITHMS

Several high profile disasters and embarrassments have been due to algorithms being igno-
rant of units. In 1983, Air Canada Flight 143 ran out of fuel mid-flight because of conversion
errors between pounds, kilograms and litres [22]. In 1999, NASA lost contact with the Mars
Climate Orbiter during an orbital insertion manoeuvre after its journey from Earth to Mars
when a sensor reported data in imperial units (pound-seconds) that the algorithm wanted
in metric units (newton-seconds) [23]. In a pharmaceutical context, such unit errors can
have deadly consequences. In the United States, between 3,000 and 4,000 children need
emergency hospital treatment each year due to mistakes made by caregivers administering
drugs, some of which can be attributed to conversion errors between unit systems [24].

Such unit conversion errors are often labelled as human errors, yet the human is only
one part of the system. The Mars Climate Orbiter mishap report recommended that the
project engineers “verify the consistent use of units throughout the spacecraft design and
operations” [23, p. 7], again emphasising the human’s role in preventing future incidents.
However, the computers performing the calculations could have been aware of the units.
Instead of requiring the pilots of Flight 143 to calculate the fuel load in a unit system
that they were not familiar with, the onboard computer could have been more humane and
accepted the fuel load in either unit system.

Equally, the algorithms that we currently use often do not account for uncertainty in natural
ways. There are two types of uncertainty:

• Aleatory uncertainty caused by natural variability of a system, such as the number of
a dice after it has been rolled, and

• Epistemic uncertainty caused by a lack of knowledge.

As will be discussed within Chapter 2, aleatory uncertainty can be naturally characterised
by probability distributions, whereas intervals naturally characterise epistemic uncertainty.
These uncertainties may arise from many sources; epistemic uncertainty might arise from
measurement errors, missign data or censoring of data. Linguistics contains many nat-
ural ways of characterising uncertainty through statements such as ‘about 5’ or ‘almost
3’. Mathematical contructions allow us to formally define these uncertainties, for instance
within machine learning aleatory uncertainty is usually presented using probability esti-
mates. Epistemic uncertainty is often imagined to be covered using Bayesian methods;
however, this is debatable at best because it is challenging to represent the lack of informa-
tion using a single probability distribution [25].

A humane algorithm should be able to handle numbers in many intelligible formats, ac-
cepting quantities in any appropriate units and checking that their inputs have the correct
dimensions. For example, an input field expecting a distance should be able to correctly

3
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interpret inputs giving kilometres, miles, feet or metres without forcing a person to make
the conversion. An entry without units or non-conforming units such as grams should pre-
cipitate follow-up questions. Input fields expecting numerical quantities should be able to
accept and process expressions of uncertainty in the inputs, such as ranges or plus-or-minus
statements. Interfaces should accept inputs, including linguistic hedges such as ‘about’, ‘no
more than’, or ‘up to’ to modify numerical quantities [26]. Uncertainty in, uncertainty out
is preferable to garbage in, garbage out.

1.2 Risk Awareness

Algorithms have no idea of the significance of the calculations that they are performing.
Like Babbage’s difference engine, algorithms will take any input and thoughtlessly produce
some output. This can have severe consequences for algorithms that make decisions in
high-risk contexts.

The Therac-25 was a software-controlled radiation therapy machine produced by Atomic
Energy of Canada Limited (AECL) in the early 1980s∗. Between 1985 and 1987, at four
medical centres, at least six patients received potentially lethal doses of beta radiation. The
Therac machine had two models that could be used to treat patients. The first was an
electron therapy mode in which a low current beam of electrons at various energies (5 MeV
to 25 MeV) is directed at the treatment area. The machine could also be used for photon
therapy in which a high-current high-energy (25 MeV) electron beam collides with a target,
and the emitted X-rays are targetted at the treatment area. On six different occasions, the
high-current high-energy electron beam that should be used to produce X-rays was instead
targeted directly at the patients, delivering 100 times the intended dose of radiation, causing
radiation burns, radiation poisoning and, in three cases, death.

Several software engineering failures were directly responsible for the accidents, one of which
was that the ‘Set-Up Test’ procedure, which was supposed to check whether the machine
was positioned and programmed safely, used an 8-bit variable to store the safety value of
the machine. If the value was 0, then the machine would be ready for use. Any other value
the programme would return an error. Every time the test was performed on a not-safe
machine, the value would be incremented by 1. If the procedure was performed 256 times,
the safety value would overflow and the counter would return 0, meaning that it would
appear to the algorithm that all the safety checks had been passed when they had not been.
Other software errors caused the machine to ignore changes or corrections made by the
operator. Interestingly, the investigation into the failures found that “The error was most

∗The factual information for this discussion comes from [27–30].
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likely to occur if the operator was experienced and quick at editing the input” [27, p. 151].

Whilst an algorithmic aeon might have passed since the creation of Therac-25, there are
many important lessons from the incidents that are still pertinent today. The error messages
that appeared on the interface (“Malfunction 54” or “H-tilt”) were simple, obscure and did
not imply the potential risk the error was preventing. The user interface was confusing.
The manufacturers were overconfident in the machine’s performance and refused to consider
the possibility that the algorithm made a mistake. They even used a probabilistic risk
assessment to justify its safety.

As with the unit errors, incidents like those produced by the Therac-25 machine are often
attributed to human factors, assuming that the machine’s operators should be omniscient
about the operation of the machine and that they can understand the error messages and
respond accordingly. Most modern programming languages allow programmers to create
better error protection and messages. It is relatively simple to create error messages in-
telligible to the software’s end-users. Such processes should not be an afterthought; they
should be designed into the software itself. This is particularly important when decisions
may carry significant risk.

We see the same problem when it comes to dispensing medicines, when a nurse needs to
work out how much drug a patient can safely consume, it is often a trivial calculation. It
is also trivial for the nurse to have made a mistake in the calculation. Simply misplacing
a decimal point could result in an ineffective dosage or one that may be fatal. When such
incidents have the most dire consequences, analysis of the causes often overlook the role
that the calculator played within the incident, focusing on clinical issues and, again, human
factors [31]. The algorithms that perform the calculation are considered unlikely to have
made a mistake – ignoring the possibility of round-off, overflow, division-by-zero, or similar
errors impacting the calculation. Fortunately, it is possible to design calculators to deal
with some of these issues. Calculators can be designed that can detect and block such
simple number entry errors [32]. Context-aware algorithms can “sense check” results and
help to prevent harm being done as a result of incorrect calculations.

Within more complicated systems, algorithms need to be risk aware and fail in ways that do
not make the situation more dangerous. For example, Air France Flight 447 (AF447) was an
Airbus A330 aircraft flying between Rio De Janeiro, Brazil and Paris, France, on 1st June
2009. There were no prior mechanical faults on the aircraft, nor was the weather unusual
for the time of year, although there was some mild turbulence experienced. Midway across
the Atlantic, the aircraft experienced icing conditions, and ice began to build up inside
the pitot tubes that measure how fast the aircraft is moving. Faced with uncertain speed
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information, the autopilot disengaged, passing over control of the aircraft to the two pilots
in the cockpit. Unused to flying the aircraft at 38,000 ft, the pilots in control of the aircraft
made a series of errors that eventually put the aircraft into a stall and even with the stall
warning sounding, the pilots were unable to recognise their error until it was too late and
the aircraft crashed into the ocean killing all 228 people on board the aircraft [33].

The algorithm’s approach to dealing with the uncertain speed information was to give up,
leaving all decisions to the pilots to troubleshoot. The autopilot could have helped the
humans. Whilst the pilots did correctly identify the lack of airspeed, neither of the two
copilots called the “Unreliable Indicated Airspeed” procedure [33, p. 198]. The autopilot
could have helped them understand the situation by guiding them to the correct checklist
or by helping them understand the steps they needed to take to fly safely. Giving the
pilots contextualised information such as “Disconnect the Autothrust, Autopilot, and Flight
Director”† or “Keep the aircraft away from the low-speed and high-speed ends of the flight
envelope”‡ could have provided the pilots with helpful advice to keep the aircraft from
crashing.

Safe human-computer interaction will be a critical component of any humane algorithm.

1.3 Justice and Fairness

Humane algorithms will need to be both fair and just. Whilst providing precise definitions
for these terms can be challenging, it is obvious when algorithms are making unfair decisions
and helping to entrench injustice. There are numerous different ways in which algorithms
can propagate injustices.

Digital discrimination is a form of injustice in which algorithmic decisions treat users un-
fairly, unethically, or just differently based upon protected characteristics, including§: age,
disability and sexual orientation [35]. This discrimination may be: direct and explicit, such
as having a hiring policy that excludes young women with children; direct but implicit,
such as having a hiring policy that excludes people who have recently taken a career break
– disproportionately likely to be young women with children; or indirect, having a neutral
hiring policy that still makes it difficult for young women to be employed [36]. If the algo-
rithm in question is a black-box machine learning system such that no human is able to see

†Whilst the autopilot and autothrust systems on the aircraft automatically disconnected the Flight Di-
rector computer system stayed active. The report into the incident hypothesises that “Flight Director
indications [may have] led the crew to believe that their actions were appropriate, even though they were
not” [33, p. 200].

‡This advice is taken from SKYbrary [34].
§See https://www.equalityhumanrights.com/en/equality-act/protected-characteristics for complete list
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the created rules, it is likely to be the case that it is only possible to detect the bias after
the algorithm has been let loose in the real world.

Numerous examples of algorithms that have been accused of sexism: Apple and Goldman
Sachs were accused of systematically granting men higher credit card limits than women [37].
Female content creators have reportedly pretended to be male on Instagram to get around
community guidelines that “disproportionately affect women” [38, 39]. Music streaming
services are disproportionately likely to recommend male artists over female artists [40].
Many algorithms indirectly discriminate against women by working on a “one-size-fits-men”
approach making it difficult for women to interact with them [41, Chaper 8].

One-size-fits-men could easily be one-size-fits-white-men as there are also numerous exam-
ples of algorithmic racism: Sweeney [42] found that Google displays adverts such as “Have
you ever been arrested?” when searching for black-sounding names. Twitter has had to
apologise for a facial recognition algorithm that automatically cropped out black faces [43].
Perhaps the most notorious example of a racist algorithm is COMPAS.

COMPAS was an algorithm used within the justice system of several US states that tried
to predict the risk of recidivism; when studied, it was found to have a racial bias problem
[44, 45]. It was more likely to score black defendants as higher risk than white defendants,
even when the white defendant had a more egregious criminal history. While the overall
accuracy for both black and white defendants was similar, the algorithm misclassified more
black defendants as high-risk than white defendants and, conversely, misclassified more
white defendants as low-risk than black defendants.

The COMPAS’s racial bias problem occurred even though race was not included as a pre-
dictive feature [46]. The algorithm predictions were based upon a questionnaire with 137
questions, including: “Was one of your parents ... ever sent to jail or prison?”, “Is there
much crime in your neighborhood?” and “How many of your friends/acquaintances are tak-
ing illegal drugs regularly?”. Such questions have inherent racial bias problems, are backed
up by years of institutional police racism, and are implicitly discriminatory [47, 48]. Each
of these questions is likely to be a proxy for race, meaning race factors are likely to be
included within the algorithm implicitly.

There are numerous challenges when it comes to trying to assess the risk of bias, from the
fact that it is often difficult to define what exactly a fair algorithm would be and, therefore,
there are many different ways in which fairness can be assessed [49, 50]. COMPAS passes
some fairness tests such as predictive parity and is equally accurate for both white and black
groups [51]. Whether that accuracy should be considered good or not is a separate ethical
question. Dressel and Farid [52] found that COMPAS performs similarly to recidivism
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predictions made by humans with little or no criminal justice experience. Their study
also found that the humans were also just as likely to fall into the same racial bias as the
algorithm, yielding more false positives for black defendants than white defendants. It is
also not the case that every judicial judgement made by humans can be considered fair –
judges are prone to human error, have a long history of racial bias [53] and are more much
likely to give favourable decisions after lunch than before they have eaten [54]. Such need
for algorithmic fairness may be the result of the fact that people are far less tolerant of
mistakes made by algorithms than similar mistakes made by humans [55].

One of the problems with algorithms such as COMPAS is that there is no gold standard or
ground truth that can be used to verify the true classification. For COMPAS, in theory, it
is possible to know whether a high-risk prisoner did go on to reoffend, but, as authorities
are unwilling to release defendants on parole if the algorithm determines that they are
high risk, it would be impossible to know whether the algorithm was accurate or not. If a
defendant fails the test and thus remains imprisoned, there is no available data on whether
they would have reoffended had they been released. Similarly, credit card companies that
use algorithms that determine the creditworthiness of applicants do not like giving cards to
individuals for whom there is a perceived risk of default. Therefore it may be impossible to
say whether these cases were predicted accurately.

Algorithms that try to predict subjective data may also suffer from the fact that there is
often no gold standard. For example, a company might use an algorithm to filter applicants
for a job application. Such an algorithm may output a list of “good candidates” for the
role, but there is unlikely to be a precise definition of what a good candidate is. What one
recruiter considers a good candidate may be different to another recruiter’s definition; how
it is measured is likely to change over time and, as touched upon above, be subject to either
direct or indirect biases.

In both cases, the lack of a gold standard means that any performance statistic (accuracy,
true positive rate, false positive rate, etc.) used to justify the algorithm’s fairness is likely
to have some hidden uncertainty. Correct quantification of this uncertainty may lead to
insights into the fairness of the algorithm. For example, using such insights may reveal that
there is significant uncertainty in COMPAS’s accuracy predictions which could impact the
calculations made that Flores et al. [51] and Angwin et al. [44] use to debate the fairness
of the algorithm.

A related problem is that of feedback loops. The PredPol algorithm tries to predict areas
in which high rates of crime will occur meaning that limited police resources can be appro-
priately used [56]. Lum and Isaac [56] note that in areas where PredPol recommends that
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officers spend time on the beat, there are more likely to be arrests, meaning that such areas
are more likely to be recommended by PredPol than other areas. This feedback loop leads to
disproportionate policing of historically over-policed communities – often impoverished and
with higher black populations than areas that were not targetted – which leads to harm as
individuals living in these areas may feel oppressed. As with COMPAS, these injustices are
mirrored when a human, not an algorithm, makes the decision. The reduction of epistemic
uncertainty in areas recommended by PredPol is treated as thought it is variability and the
epistemic uncertainty in non-recommended areas is ignored.

Another sort of injustice is what Goodman and Flaxman [57] define as ‘uncertainty bias’,
a problem occurring when the following two conditions are met:

• One group is underrepresented in the sample, so there is more uncertainty associated
with predictions about that group.

• The algorithm is risk-averse, so it will – all things being equal – prefer to make
positive decisions based upon predictions about which it is more confident or have
less uncertainty and default to a negative decision otherwise.

Goodman and Flaxman then give the example of an algorithm deciding whether to give an
individual a loan. If in a population the number of white people is 95%, then there will
inevitably be a smaller sample size of non-whites for the algorithm to learn about, then,
due to the smaller sample size, the uncertainty about any prediction within that group will
be higher. This would be the case regardless of any systematic biases within the data set,
which could add another layer of injustice. This bias is artificial; it results from treating
the epistemic uncertainty caused by the lack of information about the group as though it
was aleatory uncertainty.

Such a trends are similar to the False Confidence Theorem defined by Balch et al. [58]:
that, when modelling large epistemic uncertainty using probabilities, there is a risk that
a false hypothesises receives arbitrarily large posterior probability. i.e. as the epistemic
uncertainty about a prediction increases, the probability of the event occurring appear to
decrease to zero. This effect is counterintuitive; as the uncertainty increases, the decision
should become more and more unsure, not the other way around. The false confidence
theorem can be remedied by using imprecise probabilities to model both the epistemic and
aleatory uncertainty with the calculations, as will be discussed in Section 2.6.2. Another
solution to this problem is that instead of forcing an algorithm to make a decision when
faced with significant epistemic uncertainty, it could instead simply return “I don’t know”,
although this would have to occur in a way which protects against the risk awareness issues
discussed in Section 1.2.
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Another injustice that can occur when people are forced to interact with inaccesible algo-
rithms. This is an increasingly pertinant issue as participation in today’s society depends on
access to and facility with computers and the internet. We are effectively forcing people to
engage with technology in ways that many find difficult. Such trends risk excluding those
who struggle to interact with algorithms, creating a phenomenon known as the “Digital
Divide” [59], and its severity appears to be worsening. The general public may not even
be aware of the algorithms. For example Gran et al. [60] found that 61% of the Norwe-
gian population has little to no awareness of the algorithms that increasingly mediate their
participation in public life.

Essential interactions in banking, health care, government agencies, and even restaurants
and social gatherings are mediated through automated attendants, chatbots, robocalls, and
social media. Considerable effort has been invested in making these interactions accessible
to everyone through various assistive technologies. Nevertheless, because circumstances and
public policies constantly evolve, the interfaces are often in flux, and it has proven to be
challenging to keep websites current and fully functional. This problem is severe for the
government as more and more public services are mediated over the internet.

Inputs are sometimes unnecessarily identified as required (or only needed so that the data
handler can sell it to advertisers). Declining to answer by leaving a field blank, perhaps be-
cause the correct answer is unknown, should not necessarily prevent a well-written algorithm
from using the available information. Similarly, multiple-choice input fields should accept
multiple, none-of-the-above, mixed, and uncertain information. For instance, binary gender
assignment can be unnecessarily troubling for transgender and intersex individuals. Race
information is also often improperly characterised as white/non-white or white/black/other.

For example, Osler et al. [61] present a logistic regression model to assess the risk of death
following a burn injury. The data they used within their model include binary labels for
both race (0 for “non-whites” and 1 for “whites”) and gender (females are 0 and males
are 1). Such calculations are clearly uncomfortable, but are not unique to Osler et al.
All of the example datasets in the logistic regression textbook by Hosmer Jr et al. [62,
pp. 22–33] (which does reference the Olser dataset) contain similar characterisations. Such
classifications significantly obscure the diversity of humanity. It is clearly the case that
human diversity does not neatly categorise into white, black or other.

Requiring inputs to have a particular format, or to be expressed on a particular scale or in
particular measurement units, is unnecessary and inappropriate in many situations. Such
tyranny of input boxes may lead to hermeneutic injustice: where a person is disadvantaged
because they are unable to make their experiences intelligible [63, 64]. For example, a person
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may not communicate their symptoms accurately to a medical decision support algorithm.
The algorithm might want to know how long the patient has had a cough but only accepts
precise answers, whereas the patient might only provide an estimate such as “at least three
weeks but no more than two months”. The algorithm might ask questions in medicalese
that the patient might not understand, such as “do you have arthralgia?”. Alternatively,
the patient may simply not know the answer to the question.

There will always be some form of injustice; life cannot always be fair to everyone, and
algorithms will perpetrate some injustices. This is especially true when the use of such
algorithms gives an aura of authority to the harmful decisions. However, entrenching pre-
existing injustices only makes the situation worse. Correctly identifying the risk of injustice
for a particular group would be beneficial. As would improving the accessibility of algo-
rithms by enabling natural inputs to be used and stopping forced categorisations. Humane
algorithms should not be tyrannical.

1.4 Transparency

When it comes to transparency there are two topics that are important to discuss: explain-
ability and provenance.

The European Union’s General Data Protection Regulation [65] aims to give individuals
control of their personal data and how it is processed by corporations. Articles 15(1)h and
22(1,4) place restrictions on how algorithmic decisions can be made. They give individuals
the right to “obtain meaningful information about the logic involved in a decision” made
by an algorithm and the right to object to decisions being made solely by an algorithm.
The field of explainable artificial intelligence (XAI) has arrisen in order to try to solve
this problem [57, 66, 67]. Some argue that explainability is not the remedy that is needed
to protect against malicious algorithms [68]. At the same time, explainability may not
be possible, and there are situations where a complete understanding of the algorithm is
neither desired nor required [64].

Provenance records the origin of an algorithm or dataset, what assumptions have been
made, if there have been any alterations, and who owns and administors the algorithm/-
data. Access to provenance will be an important characteristic for humane algorithms as it
will enable increased transparency about the algorithms’ decision-making process. Knowing
the provenance can also have other benefits. For instance, the provenance of information
on social networks can help to protect against the spread of misinformation on social media
websites [69]. There is more disinformation about COVID-19 than information on social
media [70] and much of this can be sourced to spurious claims made by only twelve in-
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dividuals [71, 72]. Similarly, 69% of misinformation about climate change can be traced
back to ten sources [73]. Being aware of the provenance of the claims may allow algorithms
to be created that are able to detect dangerous falsehoods when recommending content.
Of course, this depends on social media companies caring more about user welfare than
the shareholder value generated by ad revenue that online spaces colonised by hate and
misinformation make.

Due to the rise of deepfakes, among other technologies, a video of someone confessing to a
crime may not be valid evidence unless the provenance of the video is known. The lawyers
of the future may argue over where the video was created, how it has been edited, where
has it been stored, who has had access to, it in order to validate its credibility. Alibis may
be used to exonerate defendants by arguing that they could not have made the video.

In medicine, machine learning algorithms are becoming increasingly important tools to aid
diagnosis. In future regulators may ask: why a particular machine learning algorithm has
been used? Where did the training data come from? What was the data cleaning process?
Who made what assumptions and why? Assuring the safety of such algorithms may require
knowledge of the provenance.

Another area where transparancy will be critical is when it comes to the increasingly com-
plicated models that are being developed within various application areas. In engineering
there has been much hype about digital twins which are supposed to be a virtual repre-
sentation of a real world object (see [74, Sec. 2.2.3.3] or [75]). Various definitions exist
of digital twins [76, 77] but the ultimate aim is for the digital twin and its physical twin
to be indistinguishable. However, it is worth considering that most humans twins are not
identical and nor will digital twins be [78].

A digital twin will be a collection of different algorithms and other components that are
bounded up into a single system. Each of these individual models will have their own
provenance that will need to be curated. Additionally, each individual model will have some
associated assumptions that will be key to the operation of the algorithm. Transparency
will be critical in explaining why these decisions were made in the creation of the model and
a where such decisions have an impact on the identicality of the twin. It will be important
to ask the question, “how can I trust that this really is a twin?”. This will be particularly
important for digital twins of safety critical systems or those that represent difficult to access
objects. Being transparent about the provenance of the twin, what assumptions went into
the model and being able to explain why the twin is acting as it is will be cruitial.

Several assumptions fundamental to machine learning are often made without justification.
For example, assuming data is independant and identically distributed (i.i.d.) is a critical
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inbuilt assumption for many machine learning algorithms. The i.i.d. assumption is that
all instances come from the same underlying probability distribution, and all instances are
mutually independent. The i.i.d. assumption is often violated in practice. Equally, missing
data is often assumed to be missing at random or missing completely at random, even when
these justifications may not be the case.

The machine learning community implicitly assumes that such violations do not impact
the performance of algorithms or that the violations are only slight and therefore do not
impact the final analysis [79]. Taking the view that if an algorithm is well-performing,
then adhering to precise statistical definitions is not necessary. This may be suitable for
many cases, but analysts should be transparent about what assumptions they are making
when creating their algorithms and these assumptions shoukd be recorded as part of the
provenance of the algorithm.

Increasingly algorithms are being used to aid diagnosis. For example, image recognition
algorithms can be used to detect breast cancer [80–82]. No diagnostic test is perfect,
including those performed by algorithms, so they will give false positives and negatives.
The performance of the tests is often expressed using the following statistics: sensitivity (s),
also known as recall – the proportion of sick individuals correctly given a positive result;
specificity (t) – the proportion of well individuals given a negative result; and, positive
predictive value (ψ) – the likelihood of being a true positive after receiving a positive result;
accuracy (a) – the total number of individuals who received the correct result. In the
machine learning literature, sensitivity is often known as recall, and PPV is often known
as positive predictive value.

Unfortunately, the result of a test, along with these statistics, may not give an accurate
representation of the performance of the test as the prevalence (p) of the disease matters.
For example, the positive predictive value is dependent on the prevalence of the disease
through Bayes rule,

ψ =
ps

ps+ (1− p)(1− t)
.

Bayes rule means that how likely it is a positive is a true positive is dependent on how likely
it is that the subject was positive in the first place. As such, in situations where there are
not many sick individuals to begin with, it is likely to be the case that the majority of the
positive results from the test will be false positives. Being transparent about the presumed
prevalence is important for explaining why the algorithm came up with a particular decision.

AS it is often preferred that diagnostic algorithms are risk-averse, meaning that analysts
often design algorithms such that the number of false negatives is minimised even though it
results in more healthy patients being given a false positive. For instance, a medical image

13



NICHOLAS GRAY

recognition algorithm used to detect breast cancer as part of a screening programme is likely
to be optimised so that as few patients with cancer are given the all-clear, even though such
an approach means more patients get false-positive results. Since false positives are not
harmless occurrences, causing psychological distress and the risk of unnecessary medical
interventions, the fact that the PPV of the algorithm is low needs to be communicated to
patients.

It has been observed that medical practitioners struggle to communicate this information
to patients [83]. Improvements can be made by presenting information in better ways for
people to understand. Natural frequencies are a more intuitive way for people to understand
the Bayesian reasoning required to calculate the probability that someone has a disease given
they have received a positive result [84, 85]. This can be done by using statements such as
inputting the prevalence as “2 out of 1000 women have breast cancer” instead of p = 0.002

or “9 out of 98 women who test positive will have breast cancer” instead of PPV = 0.092.
Icon arrays are another approach that can be used to express information from algorithms
[86]. They show natural frequency information using pictograms that are simple for people
to understand even if they have poor numeracy skills [87].

More verbose statements could be used in addition to these giving more information to
the algorithm’s users, such as the assumption made during the calculation. For example,
instead of a recidivism algorithm outputting “high risk,” it could instead output a statement
such as:

Out of 100 defendants with this test score, between 60 and 70 will reoffend within
two years, this calculation has been made assuming that around 3 out of 10

defendants get rearrested within this period.
Such a statement expresses the likelihood of the defendant reoffending, including the asso-
ciated uncertainty about the prediction and telling the user what the assumed prevalence
of reoffending was. This output would allow an avenue for appeal since the assumed base
rate used within the prediction could be challenged.

Clearly expressing the uncertainty may also help to ensure algorithmic accountability. Imag-
ine that an algorithm used to test whether someone should get a loan gave the following
statement:

Between 5 and 95 out of 100 similar applicants who get a loan
will default on their payments.

In this case, we can see that there is considerable uncertainty about the prediction and as
a result, it would be difficult to make a definitive prediction about how likely it is that
the person will default. As such, the person who makes the final decision would know the
uncertainty about the algorithm and be able to adjust their decision accordingly. Verbose
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statements need to be carefully constructed, ensuring that the gist of the output is clear
to the users and not obstructed with unnecessary information. Expressing the uncertainty
within the output may allow for better decisions to be made and give a clear avenue to
appeal a decision made by an algorithm.

1.5 Responsibility and Accountability

There are numerous ways in which humans interact with algorithms within systems. Hu-
mans can act as supervisors – the algorithm makes initial decisions, but it is ultimately the
human responsible for the system. Alternatively, humans may be oracles that the algorithm
can query if some threshold (often based upon the uncertainty of a prediction) is met before
the algorithm makes a final decision. The reverse scenarios are also possible, humans may
be workers for algorithmic supervisors, or there may be an algorithm that a human can use
as an oracle.

Human supervisors may like to trust the algorithm because it gives them some complex
mathematical black box witchcraft that can be used to justify decisions without being ac-
countable. The injustices caused by the COMPAS and PredPol algorithms are exacerbated
by the problem that humans may just be passing the buck onto the algorithm to cover
up their idleness or incompetence. When discussing COMPAS, Richard Berk, Emeritus
Professor of Criminology and Statistics at the University of Pennsylvania, is quoted in Fry
[19, p. 64] as saying “The courts are concerned about not making mistakes – especially the
judges who are appointed by the public. The algorithm provides them with a way to do
less work while not being accountable.” A review of PredPol by Lum and Isaac [56] noted
that “Whereas before, a police chief could reasonably be expected to justify policing deci-
sions, using a computer to allocate police attention shifts accountability from departmental
decision-makers to black-box machinery that purports to be scientific, evidence-based and
race-neutral.” As we have seen, the fact that the algorithms that are used are ‘scientific’ and
‘evidence-based’ by no means ensures that it will lead to accurate, reliable, or fair decisions
[49].

This relationship needs to be adequately defined so that algorithms (and humans) can be
held responsible when there are problems. There is also the question of who should have
ultimate responsibility when an algorithm supervises human actions. This question is crit-
ical in high-risk situations, especially since supervising algorithms are not (yet) considered
omniscient.

The Smiler is a rollercoaster at Alton Towers theme park in Staffordshire, UK. On 2nd
June 2015, the ride malfunctioned, and engineers were called to come to fix the ride. After
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the fault was fixed, the engineers sent a test car onto the track. Meanwhile, the operators
added an additional car to the track. Miscommunication between the engineers and the
track operatives meant that the number of cars was miscounted, and the fact that the test
car had stalled on track was missed. The safety algorithm present within the rides control
systems did detect that there was a stalled car and triggered a block fault alarm. The
engineers then overrode the algorithm and sent a car carrying 16 passengers around the
track. The resulting crash with the stalled car caused five people serious injuries, including
two people who required leg amputations [88].

The safety algorithm was supposed to supervise the rides running so that there were no
incidents. The algorithm detects the movement of the cars by splitting the track into various
blocks and having proximity switches that are activated as the car moves around the track,
if the algorithm detects that a car has entered one zone but has not left, then it raises a block
fault alarm. Aware of the potential fallibility of the system, the designers of the algorithm
designed it to “err of the side of caution” “because [it] does not, and cannot, have eyes, the
signals from the proximity switches are a proxy for reality, and may not always accurately
reflect reality” [89, p. 17]. This erring of the side of caution caused numerous false alarms
resulting in the operators believing that the algorithm was “crying wolf”, meaning that
the operators ignored the error without justification. Preventing humane algorithms from
crying wolf will be an important task.

The 737 MAX is the latest iteration of Boeing’s long-running 737 series of passenger aircraft.
To fit the larger engines required by the 737 MAX, the engine position was moved forward
slightly, which caused the aircraft’s flight characteristics to change, making it susceptible
to stalling. So that pilots with licenses on other 737 aircraft were able to fly the new model
with only limited training, Boeing added the Manoeuvring Characteristic Augmentation
System (MCAS) to the aircraft so that the flight control system mimics the behaviour of
the older generation. This algorithm adjusts the horizontal stabiliser trim of the aircraft
to bring the aircraft nose down when it detects, using angle of attack (AoA) sensors, the
aircraft may be approaching stall [90].

Two crashes have involved the 737 MAX, and in both cases, the MCAS system has been
considered a major factor. On 29th October 2018, Lion Air Flight 610 crashed into the
Java Sea 13 minutes after takeoff from Jakarta, Indonesia killing all 189 people on board
[91]. Four months later, on 10th March 2019, Ethiopian Airlines Flight 302 crashed 6
minutes after takeoff from Addis Ababa, Ethiopia killing all 159 people on board [92]. In
particular, the fact that the pilots flying the aircraft were unable to shut the system off
completely meant that once the sensors started getting incorrect readings, the algorithm
never ceded control [93]. Boeing implicitly decided that the algorithm would never make
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an error, despite relying on a single AoA sensor, whereas the humans might fail to fly the
aircraft safely. This is clearly an inhumane policy.

The Smiler crash was, in part, caused by the algorithm ceding control to the human oper-
ators and human error causing disaster. Similarly, the crash of Air France 447 (discussed
in Section 1.2) was caused by the algorithm giving up control and human error causing
disaster. In both situations, the designers decided that the ultimate responsibility should
lie with the humans. Whereas the 737 MAX accidents were caused by the algorithm not
giving up control even when making a mistake.

The AF447 incident highlights another problem that can occur when algorithms become
commonplace. The pilots were not used to flying by hand at night at altitude because they
never needed to – the autopilot just did it – and they became reliant on it. Expecting the
overseeing humans to step in and ‘save the day’ can be dangerous, not least as there is the
possibility that they have forgotten how to do the task in the first place, a problem that
Bainbridge [94] called the irony of automation.

The transition to self-driving cars will likely be littered with similar incidents. SAE Inter-
national has defined six levels, from 0 as full human control to 5 being full automation in
all possible conditions [95]. Levels 0-2 have the human driving with increasing help from
the algorithm, and levels 4-5 have the algorithm drive the car with little to no assistance
from the humans. At level 3, the algorithm controls the vehicle with the expectation that
the human driver will respond appropriately to a request to intervene. This comes with the
risks of similar incidents to The Smiler and AF447. There is also the problem that humans
may not be paying enough attention. For instance, in 2018, Uber was testing a self-driving
car when it crashed and killed a pedestrian, the human who was supposed to be supervising
the system was looking at her phone [96].

An ethical question that is often proposed concerning self-driving cars is a restatement of
the classical trolley problem [97]. If a self-driving car is travelling along a road and a tree
falls over in front of it, a collision is inevitable, thus risking the lives of the passengers. The
car could swerve to avoid the crash, but doing so would endanger the lives of pedestrians
nearby. In essence, should your car kill a pedestrian or let you die in a crash? Philosophers
have considered this problem extensively since it was first proposed [98–104].

The traditional trolley problem assumes a level of certainty that would not be possible in
real life. There are numerous epistemic uncertainties involved in the situation that the
car might have to consider. What if the car thinks it can slow down enough to lower the
probability of a fatal accident for the pedestrian it will hit? The age of the passengers
and pedestrian affects the risks of fatal injury in a collision; should the car try to estimate
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these whilst working out whether or not to swerve? Should the car know the number of
passengers inside it, and if so, should that affect the decision-making process? It is possible
that the passengers in the car, or pedestrians, might not die in the collision. All of these
different uncertainties can lead to people making different decisions [103].

Some have argued that this uncertainty means that the trolley problem is irrelevant in
the context of autonomous vehicles (see Himmelreich [104] as an example). They argue
that there is so much epistemic uncertainty that it is impossible to discuss the problem
reasonably. However, the nuances caused by the uncertainties involved mean that the
problem becomes more interesting and relevant, not less. Just because trolley problems
cannot “handle the problem of garden-variety risk” [102] does not mean that it is not a
relevant thought experiment. Uncertainty matters when slight changes in initial conditions
mean that one would make a different decision.

Such ethical discussions of the trolley problem assume that it will be a human that will
programme what to do in such a situation. But, given that black-box machine learning
algorithms will undoubtedly form the basis of many autonomous vehicles’ self-driving ele-
ments, it is likely that no programmer will sit down and tell the algorithms to make such a
decision. There is a question about who would be ultimately responsible for the decision:
the human controller of the car? The company that made the car? The mathematics within
the black box algorithm?

These questions will almost certainly be mediated, if not entirely decided by legislation [105].
There is also the problem that we may have entered an era where algorithms have gotten
so complex that regulators and experts may not be able to certify them independently.
This might lead to a situation where there may well be algorithms certifying algorithms.
Therefore, it is vital to understand the risk associated with the decisions that the algorithms
will make. Correctly understanding the uncertainty both into and out of the algorithm will
be necessary to be able to deal with these risks [106].

1.6 Privacy

According to the Australian Bureau of Statistics [107] review of the 2011 Census, the average
Australian is a married 37-year-old woman, born in Australia to parents also both born in
Australia. She has English, Australian, Irish, or Scottish ancestry. She speaks only English
at home and belongs to a Christian religion, most likely Catholic. She is married and lives
with her husband and two children in a detached house with three bedrooms and two cars
in a suburb of one of Australia’s capital cities. Despite these broad sounding characteristics,
none of the 22 million surveyed people met all of these characteristics. Such diversity among
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Australians presents a problem when it comes to privacy.

Increasingly vast amounts of personal information are being collected about people every
day. This data is used for both the greater good and less honourable reasons, and promises
to revolutionise many industries such as medical science [108], advertising [109] and elec-
tioneering [110]. Data is collected, processed and sold with or without the consent of those
included in the datasets. Many peer-reviewed journals require authors to share datasets
used within their analysis in order to aid transparency and reproducibility [111].

Datasets that contain personal data are often anonymised by removing data thought to
identify an individual (name, address, date of birth). There is, however, a re-identification
tit for every de-identification tat [112]. This is often because defining a few characteristics
can lead to very few matching individuals, like the average Australian. For instance, Rocher
et al. [113] have shown that using only 15 demographic values, we can uniquely identify
99.98% of all Americans, and only gender, ZIP code and full date of birth can identify
around 63% of the US population [114].

To illustrate, one could imagine a study that looks at how likely an individual has received
a COVID vaccine based on socioeconomic status. It is not inconceivable that such a dataset
may contain 100,000 individuals and include personal information such as their age, gender,
race, education background and the district they live in. If Joe Bloggs agreed to take part in
the study. He a 35-year-old white male lives who is university educated, lives in city-centre
Liverpool and earns £33,000 per year. It may be possible to uniquely identify Joe even if
the data has been de-identified – this is because there is unlikely to be that many other
individuals that match Joe’s characteristics.

Uncertainty can play a crucial part in helping protect privacy. If some of Joe’s data was
intervalised, it could help protect his privacy. For example, if his data was stored as being
35 to 40 white male who lives in a city in North West England earning £30-35,000 per
year. Many more individuals could meet these criteria. Therefore, finding any particular
individual within the data set is much more unlikely. Such internalisation can be done in
such as way as not to lose the statistical information about the data set [115–117].

1.7 Discussion

Insofar as is possible, humane algorithms need to:

1. Accept control from humans, or relinquish it back to them, in ways that humans find
workable,

2. Check human inputs for errors and misconceptions,
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3. Self-diagnos problems or aberrant behaviour of the algorithms,

4. Protect privacy by securing or progressively anonymising personal information,

5. Create outcomes and situations that humans would judge as equitable or fair,

6. Recognise, accept and accommodate diversity among users,

7. Flexibly accept inputs from humans in disparate formats,

8. Does not require humans to respond to queries precisely, immediately, or at all,

9. Handle errors and unusual conditions in ways that do not result in catastrophic con-
sequences,

10. Make conservative/fail-safe assumptions,

11. Do not unnecessarily burden humans,

12. Be transparent, or at least interrogatable, about its internal functioning,

13. Help humans to understand outputs and outcomes effected by the algorithms, and

14. Complement human skills.

Obviously, solving these problems and enabling algorithms to be humane is beyond the
scope of a single thesis. There are, however, a number of the raised issues that this thesis
will explore solutions to. All of these issues are associated with the theme of enabling
algorithms to compute with imprecise information.

The first issue that is apparant from several of the examples is that uncertainties are often
ignored or assumed away often as a result of algorithms inability to handle them directly.
For instance, logistic regression is a popular supervised learning method used within a wide
variety of studies, including the COMPAS algorithm above. Within traditional logistic
regression analyses uncertainties are often reduced to a single middle-of-the-road model
value. Chapter 5 considers how this uncertainty can be included within logistic regression
models.

There is a difference between not knowing information and knowing that we do not know
information. For instance, in the case of uncertainty bias knowing that we do not have a
lot of information about a particular group of people may help alleviate against this bias.
Similarly, if the PredPol algorithm could preceive that it did not know about crime rates
where police officer were not on the beat and not implicity assume that there was no crime
there it may have produced better results. Part of problem is that the mathematical meth-
ods used to express the epistemic uncertainty do not account for the difference between the
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epistemic and aleatory uncertainty. Chapter 2 will explore this difference, with Section 2.6.2
discussing it in detail.

As discussed in Section 1.1, inputs to algorithms need to be able to handle uncertain num-
bers. Often it is the case that computer models do not include these uncertainties intrusively
and instead often rely on Monte Carlo methods to quantify the uncertainty. Chapter 3 will
consider the creation of tools that can automatically include intrusive uncertainty analysis
directly within their code.

Another issue that has been highlighted is the fact that many of the classification algorithms
used rely on flawed information to assess their performance. Quantifying the uncertainty
that is associated with this imprecision would be of great benefit for analysis using imperfect
data. This problem is explored in Chapter 4. The problem if incorrect classifications within
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Chapter 2

Probability Bounds Analysis

Preface This section is an expanded version of Nicholas Gray, Scott Ferson, Marco
De Angelis, Ander Gray, and Francis Baumont de Oliveira. Probability bounds analysis
for Python. Software Impacts, 12:100246, May 2022. ISSN 26659638. doi: 10.1016/j.simpa.
2022.100246.

This work lead to the creation of an open-source PBA library for Python, which makes
use of SciPy [118], NumPy [119] and Matplotlib [120] in order to define, store, display and
perform calculations with p-boxes and intervals within PBA [6].

Before the creation of this library, there was numerous PBA library for Python. Although
versions did exist for Risk Calc [121], MATLAB [122], R [123] and Julia [124, 125], as
Python is one of the most popular programming languages [126, 127], especially within
the field of scientific computing, many scientists and engineers who prefer to programme
using Python were unable to make use of the powerful methodology and many advantages
of probability bounds analysis. The creation of PBA for Python expands the reach of this
methodology so that it can be applied to other disciplines and sectors.

As discussed in Chapter 1, Section 1.1, two types of uncertainty, aleatory and epistemic,
appear in the numerical calculations essential to science and engineering. Aleatory uncer-
tainty arises from the natural variability in dynamical environments and material properties,
errors in manufacturing processes or inconsistencies in the realisation of systems. Aleatory
uncertainty cannot generally be reduced by empirical effort. Epistemic uncertainty is caused
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by measurement imperfections or a lack of understanding about the underlying physics or
biology of a system. This could be due to not knowing the full specification of a system
in the early phases of engineering design or simplifying the mathematics of a simulation to
save computational resources.

Probability bounds analysis (PBA) is a tool that can be used to compute with both types of
uncertainties without requiring often untenable assumptions to be made about the param-
eters involved in calculations and any subsequent dependencies between them. Probability
bounds analysis has many applications across diverse disciplines ranging from aerospace
engineering [128] to conservation biology [129]. The Wikipedia page lists many applications
to various scientific problems∗. It is particularly popular when undertaking risk or relia-
bility analyses when data is not perfectly known [130–132]. PBA objects and methods can
also be used within machine learning techniques [133, 134]. In this chapter, we discuss the
fundamental components of PBA and how calculations are performed with them.

There are three main objects used for PBA, intervals, probability distributions and prob-
ability boxes (p-boxes). An interval is a value that is imprecisely known even though it
may be fixed and unchanging, or perhaps an uncertain number representing values obeying
an unknown distribution prescribed only by a specified range [135–139]. Intervals allow for
epistemic uncertainty to be propagated through calculations.

A p-box is a generalisation of intervals and probability distributions in a single structure
that allows the propagation of both epistemic and aleatory uncertainty through calculations
in a rigorous way. A p-box can be considered as interval bounds on a probability distribution
[140–142]. Within PBA it is convenient to think of a probability distribution as a special
case of a p-box with precise parameterisation. Calculations performed with p-boxes yield
results that are guaranteed to enclose all possible distributions of the output variable if
the input p-boxes were also sure to enclose their respective distributions. The results may
be best-possible if they cannot be made narrower without excluding valid distributions.
Output p-box may also contain distributions that could not arise under any dependence
between the two input distributions. This property allows them to be used for automatic
verification of computer codes [142, 143].

As intervals embody epistemic uncertainty and probability distributions represent aleatory
uncertainty, p-boxes can be used to propagate both type of uncertainty through calculations.
Libraries that add some or all of these objects are available in C++ [144], MATLAB [122],
R [123 or 145], Julia [125] and the Python library I created [6].

There are other objects that could be used within uncertainty analysis that all have nu-
∗https://en.wikipedia.org/wiki/Applications_of_p-boxes_and_probability_bounds_analysis
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merous applications within engineering [132], including, but not limited to: second-order
distributions or meta-distributions [146, 147], fuzzy numbers [148], possibility distributions
[149], consonant structures [150] and info-gap models [151]. Only PBA will be considered
within this thesis.

2.1 Intervals

An unknown real number x can be represented by an interval [x, x], where x ≤ x ≤ x. This
implies that the true value of x, x†, can be any number within the range. Intervals do not
make any futher assumptions about which values within the range are more or less likely
than other values. In addition to expressing the intervals using the lower and upper bound
of the range, they can also be expressed [xm ±∆], where xm is the midpoint of the interval
and ∆ is the half-width of the interval.

Within the context of probability bounds analysis, it is useful to consider intervals as the
set of all possible probability distributions that lie within the endpoints of the interval,
again, with no individual distribution considered more or less accurate. This definition is
discussed further in Section 2.4. A zero-variance interval is an interval that is known or
assumed to have a single, fixed value in the range.

If a = [a, a] and b =
[
b, b
]

are intervals, then the following arithmetic operations can be
performed in PBA:

• Addition
a+ b = [a+ b, a+ b] (2.1)

• Subtraction
a− b = [a− b, a− b] (2.2)

• Multiplication

a ∗ b =
[
min

(
a ∗ b, a ∗ b, a ∗ b, a ∗ b

)
,max

(
a ∗ b, a ∗ b, a ∗ b, a ∗ b

)]
(2.3)

• Division
a

b
= a ∗

[
1

b
,
1

b

]
(2.4)

If 0 ∈ b then a/b returns a division-by-zero error. If there is dependence between two intervals
then PBA allows for this dependence to be included within the calculation. For intervals,
perfect and opposite dependence calculations are possible. Perfect dependence between a
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and b implies that larger values of a correspond to larger values of b. In this scenario the
arithmetic operations become:

a ◦ b =
[
a ◦ b, a ◦ b

]
(2.5)

where ◦ ∈ (+,−, ∗, /), whereas, under opposite dependence smaller values of a imply larger
values of b, meaning that the arithmetic operations are:

a ◦ b =
[
a ◦ b, a ◦ b

]
. (2.6)

An interval can be propagated through a function producing an interval output, f ([x, x]) =[
y, y
]

where y is the minimum possible value of f(x) for all x ∈ [x, x] and y is the maximum
possible value. This calculation is simple for monotonic functions. For instance, increasing
monotonicity implies that the end points of the input interval correspond to the end points
of the output interval, i.e.

f([a, a]) = [f(a), f(a)] . (2.7)

For more general functions alternative strategies are needed to ensure correct calculations
[152].

Comparison operations can be performed on intervals, however, the uncertainty associated
with the interval leads to uncertainty in the Boolean operations. For example, if a decision
relies on some value x being less than a fixed value a, when we know the value of x accurately
then it is easy to make such a comparison. However, if there is some uncertainty about the
value of x then this comparison may not be so easy. The comparison becomes

x < a =


1 if x < a

0 if x ≥ a

[0, 1] otherwise

(2.8)

with 0 and 1 denoting false and true respectively, and [0,1] being the Boolean equivalent of
“I don’t know”. We can call [0,1] the dunno interval. Similarly,

x > a =


1 if x > a

0 if x ≤ a

[0, 1] otherwise.

(2.9)
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For intervals it is impossible to say whether an interval is equal to a precise value,

x == a =

[0, 1] if a ∈ x

0 otherwise.
(2.10)

Two intervals can also be compared to each other. For intervals x = [x, x] and y = [y, y],
then

x < y =


1 if x < y

0 if x ≥ y

[0, 1] otherwise

(2.11)

and

x > y =


0 if x ≤ y

1 if x > y

[0, 1] otherwise.

(2.12)

This implies that we cannot say whether an uncertain value characterised by an interval is
larger or smaller than another unless the interval is entirely greater or less than the other
interval. For the equality comparison,

x == y =

[0, 1] if x ∪ y ̸= ∅

0 otherwise,
(2.13)

it is never possible to say that one value is equal to another. We can introduce a new
Boolean operator (===) to test whether two uncertain numbers are equivalent in form,

x === y =

1 if x = y and x = y

0 otherwise.
(2.14)

The dunno interval, [0, 1], can be converted into a Boolean value using adverb operators
such as always or sometimes,

always ([0, 1]) = 0 (2.15a)

sometimes ([0, 1]) = 1 (2.15b)

so that we can get

always (x < y) =

1 x < y

0 otherwise
(2.16)
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sometimes (x < y) =

1 x < y

0 otherwise.
(2.17)

2.2 Probability Distributions and Probability Boxes

A probability distribution is a mathematical function that gives the probabilities of oc-
currence for different possible values of a variable. Probability boxes (p-boxes) represent
interval bounds on probability distributions. The simplest kind of p-box can be expressed
mathematically as

F(x) = [F (x), F (x)], F (x) ≥ F (x) ∀x ∈ R (2.18)

where F (x) is the function that defines the left bound of the p-box and F (x) defines the
right bound of the p-box. Figure 2.1a shows a p-box that is defined by a normal distribution
with µ = [−1, 1] and σ = [0.5, 1.5]. In this plot F (x) is shown in red and F (x) is shown in
black.h

Naturally, precise probability distributions can be specified in PBA by defining a p-box with
precise parameters. This means that within PBA probability distributions are considered
a special case of a p-box with zero width. Consequently, all methodology that applies to p-
boxes can also be applied to probability distributions. Figure 2.1b shows a standard normal
distribution (µ = 0, σ = 1).

Distribution-free p-boxes can also be generated when the underlying distribution is unknown
but parameters such as the mean, variance or minimum/maximum bounds are known. Such
p-boxes make no assumption about the shape of the distribution and instead return bounds
enclosing all possible distributions that are permissible given the known information. Such
p-boxes can be constructed making use of Chebyshev, Markov and Cantelli inequalities
from probability theory. A p-box defined with min = −3 ,max = 3, µ = [0, 1] and σ = 1 is
shown in Figure 2.1c.

As with intervals, standard arithmetic operations can be performed on p-boxes (and there-
fore probability distributions which are special cases of p-boxes). For two p-boxes A(x) =
[A(x), A(x)] and B(x) = [B(x), B(x)],

C(x) = A(x) ◦ B(x) = [C(x), C(x)] (2.19)
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(a) Normal distribution with µ = [−1, 1] and
σ = [0.5, 1.5].
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Figure 2.1: Probability distributions and probability boxes.
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where

C(z) = inf
z=x◦y

[min (A(x) ◦B(y), 1)] (2.20a)

C(z) = sup
z=x◦y

[
max

(
A(x) ◦B(y)− 1, 0

)]
(2.20b)

if ◦ ∈ [+,×], or

C(z) = 1 + inf
z=x◦y

[
min

(
A(x) ◦B(y), 0

)]
(2.21a)

C(z) = sup
z=x◦y

[
max

(
A(x) ◦B(y), 0

)]
(2.21b)

if ◦ ∈ [−,÷] [141, p. 89]. If 0 ∈ B then the division returns a error.

2.3 Dependencies and the Repeated Variable Problem

When performing uncertainty analysis it would be ideal to always obtain best possible re-
sults that are guaranteed to bound the true value without overestimating the uncertainty.
The uncertainty can be inflated or artifactually high if careful consideration of the depen-
dence between, and repetition of, uncertain numbers is not undertaken.†

For example, if a = [1, 2], b = [−1, 1] and c = [3, 4], then

ab+ ac = [1, 2]× [−1, 1] + [1, 2]× [3, 4]

= [−2, 2] + [3, 8]

= [1, 10]

(2.22)

but

a(b+ c) = [1, 2] ([−1, 1] + [3, 4])

= [1, 2]× [2, 5]

= [2, 10].

(2.23)

Although algebraically these two expressions are equal, the uncertainty associated with
ab + ac is greater than the uncertainty about a(b + c). This is because the uncertain
variable a is repeated within the former but appears only once in the latter. In essence,
the uncertainty about a has been considered twice when performing the first calculation.
The amount of this artifactual uncertainty can be reduced by transforming the original

†Artifactual uncertainty is when the size of the outputted uncertainty is overly wide as an artifact of the
calculationand not as a result of the true uncertainty present.
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equation into a single-use expression where uncertain variables are only used once. If this
is not possible, other techniques can be used to reduce this artifactual uncertainty (e.g.
[153–156]). The repeated variable problem appears to be ubiquitous to many, if not all,
uncertainty calculi [132].

Knowledge of what the dependence is between the two p-boxes can reduce the amount
of uncertainty present within the output p-box. Figure 2.2 shows the result of adding
a normal p-box A = N([−1, 1], 1) to a uniform p-box B = U([0, 1], [2, 3]), with different
dependencies between A and B. When the dependence between A and B is unknown, the
operation defined in Equations 2.19,2.20 and 2.21 yields the most general bounds guaranteed
to enclose the true distribution of C = A + B which are called the Fréchet bounds. As
depicted in Figure 2.2, the Fréchet bounds enclose all the other dependencies. Perfect (or
comonotonic) dependence is where there is a perfect positive relationship between the two
variables, with the highest possible correlation coefficient. Opposite (or countermonotonic)
dependence creates a perfect negative relationship between the two variables with the lowest
possible correlation coefficient. Independence is where there is no dependence between the
two variables. It should not be assumed that variables are independent unless this is known
because wrongly assuming independence can lead to incorrectly reducing the amount of
uncertainty and understating tail risks.

2.4 Comparison Between Objects

As mentioned within Section 2.1, intervals can be considered as the set of all possible
distributions that lie between the endpoints of the interval. This implies that interval
objects can be converted into p-boxes by transforming the interval into a box-shaped p-
box, such an object is shown with the black lines in Figure 2.3. This property means that
arithmetic can be performed between p-boxes and intervals by casting the interval as a
p-box when performing the calculation. Conversely, many unary operations that can be
performed on intervals can be performed on p-boxes. This can be done by slicing the p-box
into intervals, performing the operation before sorting and recombining the intervals back
into a p-box.

Within PBA an interval can be considered as the most basic object, for example, if all we
know about variable x is that its value lies between -2 and 2 then all we can say is that
x = [−2, 2], this is shown as the black lines in Figure 2.3. If more information about the
variable is known then the uncertainty can be reduced, for instance, if we know that x
has mean 0.5, then we can instead use a distribution-free p-box to model the uncertainty,
this is shown with the blue lines. If we also know that the standard deviation is 1 we can
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Figure 2.2: Adding together two p-boxes with different dependencies.

32



PROBABILITY BOUNDS ANALYSIS

reduce the area of the p-box as shown with the red lines. Finally, if we know that x follows
a truncated normal distribution then we can model x as shown with the green line. As
calculations with all of these objects can be performed using PBA, analysts can compute
with what they know rather than making assumptions that may be unjustified.

2.5 Confidence Boxes

Confidence boxes (c-boxes) are imprecise generalisations of traditional confidence distri-
butions, which, like Student’s t–distribution, encode frequentist confidence intervals for
parameters of interest at every confidence level [157–159]. They are analogous to Bayesian
posterior distributions in that they characterise the inferential uncertainty about distribu-
tion parameters estimated from sparse or imprecise sample data, but they have a purely
frequentist interpretation that makes them useful in engineering because they offer a guar-
antee of statistical performance across repeated use. Unlike confidence intervals which tra-
ditionally cannot be used in mathematical calculations, c-boxes can be propagated through
mathematical expressions using the ordinary machinery of probability bounds analysis, and
this allows analysts to compute with confidence, both figuratively and literally, because
the results also have the same confidence interpretation. For instance, they can be used to
compute probability boxes for both prediction and tolerance distributions.

If C(θ, x) = [C(θ, x), C(θ, x)] is a c-box generated for an unknown parameter θ ∈ Θ from a
given dataset x ∼ F (θ0). For a desired confidence level α a confidence interval α = [α, α] ⊆
[0, 1] is created such that α− α = α. An α confidence interval for θ0 can be found using

θα ∼
[
θ, θ
]
= [C−1(α, x), C−1(α, x)]. (2.24)

Confidence intervals are usually either centered (α = [12 ±
α
2 ]) or one sided (α = [0, α] or

α = [1− α, 1]).

For a c-box to be valid, it must have the confidence interpretation. The basic definition is
that for C(·) to be a valid, all 100α% confidence intervals that are drawn from C(·) must
contain the true parameter value at least 100α% of the time. A modern definition was
composed by Schweder and Hjort [160] and Singh et al. [161] who define two requirements.
For a function C(·) = C(, ·,X) to be a valid confidence distribution for θ, then:

(i) for each xi ⊆ x, C(·) ≡ C(·, x) is a continuous cumulative distribution on Θ, and

(ii) at the true parameter value θ = θ0, C(θ0) ≡ C(θ0, xn) as a function of the sample xn

follows the uniform distribution U(0, 1).
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Figure 2.3: Comparing different PBA objects as the amount of information about x
increases. The interval contains less information about the value than the min-max-mean

p-box which in turn has less information than the min-max-mean-standard-deviation
p-box. The probability distribution with known shape contains the most information

about X.
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2.5.1 Singh Plots

This definition can be tested by making use of Singh plots which visualise the performance
of a proposed structure in terms of both coverage and aspects of conservatism [7]. A Singh
plot is generated by estimating the minimum coverage probability for a series of α levels,
using the procedure shown in Algorithm 2.1.

Algorithm 2.1: Generation of a Singh plot. Taken from Wimbush et al. [7]
Input: C∗ ←Proposed confidence procedure
F(θ)←Target distribution taking parameters θ
θ0 ←True value of parameter of interest
m number of iterations
n number of samples
for all i ∈ 1, . . . ,m do

Generate sample: x = {x1, . . . , xn} ∼ F(θ);
Calculate minimum required confidence for coverage: αi = C∗(θ0,x)

end
S(α)← ECDF of α1, . . . , αm, S
Plot S(α) and CDF of U(0, 1) for comparison
Output: Singh plot for visual assessment of confidence procedure properties

As imprecise confidence structures, a c-box will naturally produce upper and lower bounds
rather than a single plot:

S(α) =
[
S(α), S(α)

]
(2.25)

where
S(α) = Pr(C (θ, x) ≥ α) (2.26)

and
S(α) = 1− Pr(C (θ, x) ≥ α). (2.27)

For visual clarity, the following can be used as an alternative expression for S(α):

S(α) = Pr(C (θ, x) < α) (2.28)

Technically this does not portray the coverage property of the upper bound, as it effectively
treats the upper bound as if it were a lower bound for drawing confidence intervals. However,
it is generated from the same information and produces a more intuitive plot. As the intent
of a Singh plot is to rapidly convey the coverage of a confidence structure, this is deemed to
be a valuable property over technical accuracy. Here, deviations from the U(0, 1) diagonal
represent a number of limitations in the confidence structure used, including the finite samle
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of data on which that it is based, but so long as neither bound crosses this line then the
coverage requirement is satisfied. This property allows Singh plots to rapidly convey the
coverage characteristics of c-boxes.

2.5.2 Example

C-boxes can be computed in a variety of ways directly from random sample data. There are
c-boxes both for parametric problems (where the family of the underlying distribution from
which the data were randomly generated is known to be normal, lognormal, exponential,
Bernoulli, Poisson, etc.), and for nonparametric problems in which the shape of the under-
lying distribution is unknown. C-boxes account for the uncertainty about a parameter that
comes from the inference from observations, including the effect of small sample size, but
also the effects of imprecision in the data and demographic uncertainty which arises from
trying to characterise a continuous parameter from discrete data observations. Within this
thesis we shall consider k-out-of-n c-boxes, mathematically expressed as [158]:

KN(x|k, n) = [beta(k, n− k + 1), beta(k + 1, n− k)] (2.29)

These c-boxes express the uncertainty associated with the number of observations, k, of an
event given that there has been n trials. For example, a KN c-box with k = 3 and n = 10

is shown in Figure 2.4.

We can test whether Equation 2.29, does indeed return structures that have the confidence
by testing using Singh plots. We can do this by selecting various different n and p values
with k ∼ binomial(p, n), then using Algorithm 2.1 to produce the Singh plots shown in
Figure 2.5. These plots show that the method singhs (has the confidence interpretation)
for all the shown p and n. The width of the c-boxes around the diagonal represent the
conservatism of the c-box.

An alternative approach is to vary the input values to produce a global average Singh plot
(GA-Singh plot). For the KN c-box, this can be achieved by randomly sampling p ∈ [0, 1]

and n ∈ [0, 105], then k ∈ binomial(p, n) for 104 iterations and then using Algorithm 2.1
to produce the Singh plot shown in Figure 2.6. This shows that on average the method
produces confidence structures that Singh on average. It is important to note that the
GA-Singh plot does not prove that the method always produces admissable confidence
structures. As with all averages it may hide some nefarious results, especially as it may
be difficult to get to extreme values that are not likely to Singh using such an approach.
However, a GA-Singh plot that does not Singh implies that the method does not have the
confidence interpretation for the sampled values and therefore likely not be fit for purpose.
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Figure 2.4: 3-out-of-10 confidence box for a binomial rate using Equation 2.29.
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Figure 2.5: Singh plot for the k-out-of-n c-box for various values of n and p with
k ∼ binomial(p, n) for 104 iterations.
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Figure 2.6: Global average Singh plot for the k-out-of-n c-box with 104 iterations.

39



NICHOLAS GRAY

2.6 Example Calculations

In order to demonstrate the usefulness of probability bounds analysis when performing
caluclations we can consider two problems in aerospace engineering.

2.6.1 Attitude of a Satellite

The attitude of a spacecraft is the direction in which it points. It is often important
to control the attitude of a satellite as its solar panels need to be pointed at the sun,
communication antennas need to be pointed at the earth or scientific instruments need to
point at the correct target. Attitude can be controlled through reaction wheels which can
provide angular momentum to the satellite to point it in the desired direction.

The choice of how powerful a reaction wheel needs to be depends on the torque needed to
change the attitude of the satellite. The torque required depends on the moment of inertia of
the satellite. The moment of inertia depends on the size of the satellite’s solar panels which
impacts the power available to the reaction wheels, which impacts the torque available, and
so on. Therefore, whilst there is uncertainty about the design of the satellite it is useful
to make calculations using imprecise numbers. There are also additional uncertainties to
consider such as the fact that solar radiation is not constant.

The equations of motion that determine the required angular momentum from the reaction
wheel to change the attitude of a satellite within 1 dimension are as follows:

τslew =
4θslew
∆t2slew

I (2.30)

τdist = τg + τsp + τm + τa (2.31)

τg =
3µ

2(RE +H)3
|Imax + Imin| sin (2θ) (2.32)

τsp = Lsp
FS

c
As(1 + q) cos (i) (2.33)

τm =
2MDµ0

(RE +H)3
(2.34)
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τa =
1

2
LaρCdAV

2 (2.35)

V =

√
m

RE +H
(2.36)

h = ∆torbit(τslew + τdist) (2.37)

Table 2.1 gives definitions and values for all variables within these equations.

PBA for Python can be used to perform the calculation‡ using the uncertainty expressed
about the variables in Table 2.1. Figure 2.7 shows the final step in the calculation (Equa-
tion 2.37). The resultant p-box can be used to make decisions about the requirements of
the reaction wheels.

2.6.2 Satellites Crashing

Balch et al. [58] consider two satellites are on orbital trajectories that will pass close to
each other. How confident can we be that they will not collide?They consider this question
within the complicated dynamics of two satellites in orbit. However, we can simplify the
mathematics of the scenario and still demonstrate the dynamics presented in the original
paper. To simplify the dynamics, we can treat one satellite as a stationary target with a
particle (the other satellite) moving towards it.

Let there be a target of width d and the centre of the target at the origin in line with y = 0

and the particle starts at x(0) = (x0, y0) moving with velocity x′(t) = (x′(t), y′(t)), as shown
in Figure 2.8. If at time T the particle is at (r, 0), then the particle will hit the target if

|r| ≤ d

2
. (2.38)

Deterministically we can find r by solving the equations of motion, finding T and sub-
sequently r. For example, if the particle starts at x(0) = (3, 4) with velocity x′(t) =

(−t/2,−1), then we can solve the equations of motion to get the co-ordinates at time t,

x(t) =
(
−−t

2

4
+ 3,−t+ 4

)
. (2.39)

‡The code to perform this calculation can be found at https://codeocean.com/capsule/8485409/tree/v2/
code/attitude.ipynb.
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Symbol Variable Type Value Units
h Required angular momentum Calculated N m s
τtot Total required torque Calculated N m
τslew Slewing torque Calculated N m

τa
Torque due to atmospheric
resistance Calculated N m

τsp
Torque due to solar radiation
pressure Calculated N m

τg
Torque due to gravitational
gradient Calculated N m

V Velocity of satellite Calculated m s−1

Cd Drag coefficient p-box min=2, max = 4,
mean=3.13 unitless

La
Aerodynamic drag torque
moment p-box min=0, max=3.75,

mean=0.25 m

Lsp
Solar radiation torque
moment p-box min=0, max=3.75,

mean=0.25 m

D Residual dipole interval [0,1] A m2

i Sun incidence angle interval [0,90] degrees
ρ Atmospheric density interval [3.96, 99]× 10−12 kg m3

θ
Major moment axis deviation
from nadir interval [10,19] degrees

q Surface reflectivity interval [0.1,0.99] unitless
Imin Minimum moment of inertia point 4655 kg m2

Imax Maximum moment of inertia point 7315 kg m2

m Earth gravity constant point 3.98×1014 m3s−2

A Area in the direction of flight point 3.752 m2

RE Earth radius point 6378.14 km
H Orbit altitude point 340 km
FS Average solar flux point 1367 W m−2

qslew Maximum slewing angle point 38 degrees
c Speed of light point 2.9979×108 m s−1

M Earth magnetic moment point 7.96×1022 A m2

∆tslew Minimum manoeuvre time point 760 s
As Area reflecting solar radiation point 3.752 m2

∆torbit Quarter orbit period point 1370 s
µ0 Permiability of free space point 4π × 10−7 N A−2

Table 2.1: Definitions and values for Equations 2.30–2.37
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Figure 2.7: Calculation of Equation 2.37 using probability bounds analysis.
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A
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Figure 2.8: Will the particle hit the target?

This equation can then be used to calculate that T = 4 and, therefore, r = −7, meaning
we can conclude the particle will miss the target.

However, if there is uncertainty about x or x′, then it may only be possible to get an
estimate, r̂, for r. We would have to consider the probability, p, that the objects collide,

p = Pr(|r| ≤ d/2). (2.40)

If we assume that r is normally distributed with mean r̂ and variance σ2. i.e

r ∼ N
(
r̂, σ2

)
, (2.41)

then we can calculate p. Figure 2.9 shows how the probability changes for increasing values
of σ2 with different values of r̂ (with d = 1). The shape of the curves in the figure matches
Balch et al.’s Figure 1, even though dynamical simplifications have been made. The Figure
shows that as σ2 → ∞, p → 0 even when, deterministically, the objects would collide.
Hence, as the uncertainty of the estimate increases, the probability of collision decreases,
and we can be more confident that there will not be a collision.

This result is illogical as it is the equivalent of the proverbial ostrich becoming, statistically,
more confident if it is safely sticking its head in the sand, meaning its uncertainty about the
position of the predator was at its maximum, than if it found out exactly where the lion is
and running away. This problem is known as the False Confidence Theorem First explored
by Balch et al. [58], but also by Martin [162], and Carmichael and Williams [163], the false
confidence theorem refers to the problem that, due to probability dilution, it is possible
to become falsely confident about an event occurring even though the uncertainty about
the prediction is large. Principally it is a result of using objects of aleatory uncertainty to
model epistemic uncertainty. We can attempt to fix this problem by using PBA objects
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Figure 2.9: How the probability of collision, p, for two objects of diameter d = 1 changes
with increasing σ for different r̂.

better suited to characterising epistemic uncertainty.

An Interval Fix?

The most natural way of characterising epistemic uncertainty is by using intervals. For
instance, we may only know the initial position of a particle with some error in each co-
ordinate, x = (x0 ± ϵx, y0 ± ϵy), or there could also be uncertainty in the velocity of the
particle x′(t).

There are then three different scenarios:

(i) We can be confident that the particle will miss the target when the entire final interval
is missing the target, such as particle A in Figure 2.10.

(ii) We can be confident that the particle will hit the target. This can be concluded when
the entire final interval is within the target, such as particle B in Figure 2.10.

(iii) We cannot have confidence about whether the particle will hit or miss the target.
If some of the interval is hitting the target and some is missing, such as particle C
in Figure 2.10, in which case we can only say the particle might hit the target, the
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Figure 2.10: We can say with certainty that A will miss and that B will hit, whereas we
can only say that particle C might hit the target

probability of the particle hitting the target is p = [0, 1].

In high uncertainty cases, it may be the case that we are just unable to say whether it will
hit or not. This uncertainty may seem undesirable, but it is the logical result and is natural
of the admission of the epistemic uncertainty in the dynamical parameters. If we do not
know the position or trajectory of the particle with sufficient precision, then we should not
be able to infer whether it will hit the target.

A P-Box Fix?

We can also reconsider the example when, instead of using a probability distribution, we
use a probability box. A p-box is a better characterisation for the epistemic uncertainty
in the measurement, as these structures can characterise both the epistemic and aleatory
uncertainties that are present [140].

We can reconsider our estimate for the position as a p-box bounded by both the minimum
and maximum variance cases,

r = N
(
r̂,
[
0, σ2

])
. (2.42)

Such a change means that instead of p→ 0 if σ →∞, there are two different limits of the
uncertainty,

lim
σ→∞

p =

[0, 1] if |r̂| ≤ d[
0, 12
]

if |r̂| > d.
(2.43)

These differing limits provide a different interpretation of whether the particle will hit the
target. When faced with considerable uncertainty, one would never be able to conclude that
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Figure 2.11: How the probability of collision, p, for two objects of diameter d = 1 changes
with increasing σ for different distances of closest approach, r(T ), using the imprecise

probability method.
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there would be no collision. This is an appropriate and sinsible conclusion based on the
assumtions made, unlike those implied by Figure 2.9.

Discussion

This example shows the importance of distinguishing the two different types of uncertainty.
In the first case, the analysis quantifies the epistemic uncertainty through probability dis-
tributions. In effect, this treats the uncertainty as though it is aleatory uncertainty and
leads to the illogical result that as the uncertainty increases, the probability of the particle
hitting the target decreases. The problem is a result of treating epistemically uncertain
values as though they are aleatorically uncertain and using probability distributions, in a
frequentist sense, to model the uncertainty. This leads to illogical results as demonstrated
in the example above, as well as some of the examples in Chapter 1. Using objects better
suited to characterising epistemic uncertainty, such as intervals or p-boxes, alleviates these
issues. Making sure that the uncertainties are used correctly within calculations will be
important in making algorithms more humane, increasing the accessability of the algorithm
and applicability of the numbers used.
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Chapter 3

Towards an Automatic Uncertainty
Compiler

Preface A version of this text is currently due to be published by the International
Journal of Approximate Reasoning.

A pre-print version of this chapter is available as Nicholas Gray, Marco De Angelis, and Scott
Ferson. The Creation of Puffin, the Automatic Uncertainty Compiler. arXiv:2110.10153
[cs, stat], October 2021. http://arxiv.org/abs/2110.10153.

Part of this work has also been publised as Nick Gray, Marco De Angelis, and Scott Ferson.
Computing With Uncertainty: Introducing Puffin the Automatic Uncertainty Compiler. In
V. Papadopoulos M. Papadrakakis, G. Stefanou, editor, 3rd ECCOMAS Thematic Con-
ference on Uncertainty Quantification in Computational Sciences and Engineering, pages
487–497, Heraklion, Greece, 2019. doi: 10.7712/120219.6354.18702.

As discussed in Chapter 1, modern science and engineering are all about numerical calcula-
tion, and increaingly work is being done taking advantage of the power of computers. The
algorithms that are used often rely on precise, abstract numbers – without any associated
uncertainty and units. Scientists and engineers need to make calculations even when there
is uncertainty about the quantities involved, yet the tools they commonly use do not allow
this to be done intrusively. As a result, many analysts work with computer codes that do
not fully account for uncertainties.
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Because analysts are typically unwilling to rewrite their codes – due to the time constraints
or a lack of understanding of the uncertainty calculi available – various simple strategies
have been used to remedy the problem, such as elaborate sensitivity studies or wrapping
the programme in a Monte Carlo loop. This alows non-intrusive uncertainty propagation.
These approaches treat the programme like a black box because users consider it uneditable.
However, whenever it is possible to look inside the source code, it is better characterised
as a crystal box because the operations involved are clear but fixed and unchangeable in
the mind of the current user. An alternative approach is intrusive uncertainty propagation
where the uncertain variables are replaced with objects that characterise their uncertainty
(such as those described within Chapter 2) and have calculations directly performed on
them. Other changes to the code may be required to allow for optimal performance.

An uncertainty compiler is a tool that automatically translates original computer source
code lacking explicit uncertainty analysis into code containing appropriate uncertainty rep-
resentations and uncertainty propagation algorithms. It handles the specifications of input
uncertainties, and inserts calls to intrusive uncertainty quantification algorithms in the li-
brary. The uncertainty compiler can apply intrusive uncertainty propagation methods to
codes or parts of codes and, therefore, more comprehensively and flexibly address epistemic
and aleatory uncertainties.

3.1 Uncertainty Analysis: A Roll of the Dice?

The most common approach to quantify uncertainty is to wrap code within a Monte Carlo
(MC) shell. In this approach, the calculations are repeated with random values for selected
input variables. This is done for many iterations, and the distribution of resulting outputs
can be analysed. Such tools exists in many programming languages: DAKOTA for C++
[164], COSSAN [165] and UQLab [166] for MATLAB or UQpy for Python [167]. Olivier
et al. [167] give an excellent overview of many more software packages available for non-
intrusive uncertainty quantification.

Several pitfalls make MC analyses unsuitable for uncertainty propagation, especially for
epistemic uncertainty [168, 169]. To highlight these, we shall consider an example.

Suppose we have five variables, x1, x2, . . . x5, which are known to all have a value between 0
and 1, but no further information is known about the values. Suppose we need to perform
the calculation,

y = x1 + x2 + x3 + x4 + x5, (3.1)

with the knowledge that some bad thing will happen if y ≥ 4.5. Numbers can be randomly

50



TOWARDS AN AUTOMATIC UNCERTAINTY COMPILER

generated for x1, x2, . . . , and these can be used in order to calculate the value of y for
N iterations. After this is complete, we can plot a histogram to show the distribution
for y. Since we do not have any information about the distribution for x1, x2, . . . x5, it
seems sensible to assume that all values are equally likely and use a uniform distribution.
Figure 3.1 shows these histograms for various N . From this, we can see that as N → ∞,
the histogram resembles a normal distribution.

Whatever the number of replications used in the simulation, we can estimate the probability
of the bad thing happening. With 106 replications, this estimate is Pr(y ≥ 4.5) = 2.53 ×
10−4. However, it seems reasonable to consider whether we have confidence that the event
is so rare. We had no information about the distributions of the five values except that
they were between 0 and 1. Nor did we know what dependencies there might be between
the variables. From this information, we cannot rule out the possibility that each x value is
much more likely to be closer to 1 than 0. Nor can we exclude that there is some dependence
between the x values implying that if x1 is high, then all the others are also likely to be
high.

Several engineering failures were due in part to underestimating risks in ways similar to
this example [170, 171]. Before the 1986 Challenger Disaster, NASA management had
predicted the probability of failure with loss of vehicle and crew as 1 in 105 flights [172].
This turned out to be a gross underestimation of the actual risk, which after the fleet’s
retirement stood at 2 in 135. The Fukushima Daiichi nuclear disaster was due in part to
underestimating the risk of a tsunami of the magnitude that caused the disaster and failing
to understand that collocating the backup generators created dependence that destroyed
the planned engineered redundancy when the site was flooded during the event [173, p. 48].

The MC method presented in Figure 3.1 is a simplistic approaches. There are many differ-
ent approach that could have been taken to use MC to propagate the uncertainty through
Equation 3.1 that are more advanced. It is also possible to use copulas to introduce de-
pendencies between the random samples [174, 175]. There are several different sampling
techniques that could be used to generate the MC samples and offer analytical stratergies
for computing distributions

Latin Hypercube Sampling (LHS) is a popular method which aims to be representative of
the true variability of the inputted numbers [176–178]. LHS is performed by dividing the
range of each random variable into N bins with equal probability mass, where N is the
required number of samples, generating one sample per bin, and then randomly pairing the
samples. The samples generated are uniformly distributed over each marginal distribution
[167].
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Figure 3.1: Normalised histogram for the Monte Carlo simulation of Equation 3.1 for
increasing number of iterations.
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There are also stratification methods that aim to divide the parameter space into a set of
disjoint and space-filling strata that draw samples from the strata. The aim is to improve
the space filling properties of the sampling and the method allows for weighted samples
[179]. Refined stratification adaptively updates the stratification by dividing the existing
strata in order to improve convergance [179].

Aside from MC there are other probabilistic approaches that could be used for uncertainty
propagation. For instance, adaptive stochastic collocation techniques may have been better
at finding the extreme values in the above example [180]. Or polynomial chaos expansion
could have been used, although this technique would have required modifying the original
source code [181].

Depending on the needs of the analyst, it may be the case that MC simulations may be
suitable to solve their uncertainty quantification problems. After all, MC techniques are
easy, efficient, and give insights into the aleatory uncertainty that may be present within
simulations [182]. However, if there is epistemic uncertainty, since all of these different
approaches ultimately rely on treating the all the uncertainties in a probabilistic way [132,
169] and false confidence may occur (see Section 2.6.2 or [58]).

Performing uncertainty analysis by simply wrapping a simulation code in a MC loop may not
give a complete account of the uncertainties present within a simulation. The probabilities
of extreme events are difficult to correctly estimate when there is no information about the
distributions of input variables or any inter-variable dependencies.

An alternative to MC is intrusive uncertainty analysis, where the uncertainty is included
directly within the code and calculations. There are objects that could be used within an
automatic uncertainty compiler, including, but not limited to: probability bound analysis
(as discussed in Chapter 2), second-order distributions or meta-distributions [146, 147],
fuzzy numbers [148], possibility distributions [149], consonant structures [150], info-gap
models [151]. All of which have numerous applications within engineering [132]. However,
given the aim of this Chapter is to dicuss the feasibility of an automatic uncertainty compiler
we shall limit this discussion to PBA.

3.2 An Automatic Uncertainty Compiler?

Strategies are needed that automatically translate source code into code with appropri-
ate uncertainty representations and propagation algorithms. Perez et al. [183] introduced
a MATLAB toolbox to perform automatic uncertainty propagation based upon the un-
scented transform. However, more general approaches are needed. This section discusses

53



NICHOLAS GRAY

the prospect of creating an automatic uncertainty compiler to perform intrusive uncertainty
analysis with crystal box codes (when the source code can be viewed but is considered fixed
and uneditable). Such a compiler would handle the specifications of input uncertainties
and insert calls to an object-oriented library of intrusive uncertainty quantification (UQ)
algorithms. This approach could theoretically work with any computer language and any
flavour of intrusive uncertainty propagation.

Such a compiler will have to perform several tasks:

1. Read the input source code to identify the variables in any assignment operations
which may have uncertainty associated with them.

2. Replace or modify some or all of these assignments according to options and specifi-
cations provided by the user,

3. Translate the expression trees, with amended assignments, into the target language
equipped with its intrusive UQ library, and

4. Optimise the output code to ensure that code will run robustly and not be artifactually
inflated.

5. Once this trans-compilation has occurred, the output script can be run identically to
the original code. As the uncertainty quantification is included directly within the
simulation, the outputs will contain expressions of the associated uncertainty and be
guaranteed to include the correct answer.

Further details of the precise requirements for each of these steps will follow, but, at this
stage, it is helpful to consider a simple pseudocode script, as shown in the top left corner of
Figure 3.2. In this plot, the first step (represented by the blue line) requires the compiler to
read the input script and then detect and extract the assignment operations. These include
lines 1 and 2, but not those that assign a value based upon a mathematical expression (line
5), a function or directly from another variable. In theory, such variables could also be
edited by the user.

These extracted variables then need to have any required uncertainty added. These un-
certainties must then be translated to the source language and merged with the original
script to produce a new script, as shown at the bottom of Figure 3.2. This translation may
include altering any functions that depend on the amended variables. In this case, the infix
operators in the definition of d in line 5 (+,*) have been recognised and replaced with an
explicit call to the UQ library functions (add, mul) which also have as an argument the
dependence operation that is to be used. The lower panel of Figure 3.2, the value ‘f’ of
this argument corresponds to making no assumption about the intervariable dependence

54



TOWARDS AN AUTOMATIC UNCERTAINTY COMPILER

between a and b, and perfect dependence (comonotonicity) between their product and the
variable c.

3.3 Reading and Modifying

The first stage that the compiler will need to perform is to be able to read the script and
detect the assignment operators that might have some uncertainty about them. Only nu-
meric objects should be highlighted, not characters, strings or other non-numeric classes.
In strongly typed programming languages like C, FORTRAN, and Pascal, the task of dis-
tinguishing numeric from other types of objects is easy. In Python, R, Julia or any other
dynamic duck typed language, the object type is not detectable until runtime and can even
change during execution. This means that it may be difficult for the reader to detect∗.

Objects that are collections of numeric values, such as arrays, lists and dictionaries, will
require special attention. It may be necessary to look at what is inside the lists and highlight
those with numeric objects within to allow the individual objects to have any uncertainties
added. Alternatively, it could be the case that the list represents a vector within which all
elements have the same uncertainty, something which should be possible.

Once these objects have been extracted, they should be expressed within a language that
enables users to specify the uncertainties associated with the extracted variables. This
language should be simple and independent of the source language and does not need to
be a textual programming language; instead, it could be a visual language as part of a
graphical user interface. Every type of uncertainty that is expressible within this language
must be supported by an object constructor in the uncertainty library written in the source
language.

Additionally, if there is any dependency between any two variables, then the language needs
a way for users to specify what these are. A natural way to do this is for the reader to
produce a matrix of all linked variables and their associated dependencies. For example,
as line 3 of Figure 3.2 specified that c = 3 * a the compiler could detect that there
is perfect dependence between them. The user can then edit this matrix to specify any
known dependencies, as shown in Table 3.1. Fréchet would be used for calculations between
variables that do not have specified or detectable dependencies.

In general, dependence between uncertain quantities can be expressed through the use of
correlation coefficients or copulas or bounds on copulas more generally [175, 184–186]. This
can include named copulas such as independence, opposite and perfect, as discussed in Sec-

∗However, when it comes to translating and writing duck typed languages are easier to implement.
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[1] a = 2
[2] b = 5
[3] c = 3 * a + 1
[4]
[5] d = a * b + c
[6] print(d)

[1] a = 2
[2] b = 5
3
4
5
6

[1] a = normal(2,[0.1,0.2])
[2] b = about 5
3
4
5
6

[1] a = normal(2,I(0.1,0.2))
[2] b = I(4.5,5.5)
[3] c = 3 * a + 1
[4]
[5] d = add(mul(a,b,method='f'),c,method='f')
[6] print(d)

Figure 3.2: The steps that an uncertainty compiler needs to take in order to take the
simple pseudocode script in the top left, extract the assignments (blue line), add in the

user-specified uncertainty (red line), translate the uncertainties into the original language
(pink line) and then merge into the original script (green line), making appropriate

additional changes so that the code runs optimally.
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tion 2.3 and shown in Figure 2.2, or other copula families parameterised by a numerical
correlation coefficient. Independence implies the correlation is zero, although zero correla-
tion does not imply independence. Likewise, a correlation of one implies perfect dependence,
but, depending on the copula family, perfect dependence may not imply correlation one.
The symbol ≡ can be used to indicate that the variables are equal in value, i.e., equal in
distribution and perfectly positively correlated.

a b c d e
a i ≡ f o
b i i f 0
c ≡ i f o
d f f f f
e o 0 o f

Table 3.1: Matrix showing dependencies between several variables. (f - Fréchet, i -
Independence, o - Opposite, ≡ - Equal in value, 0 - implies that there is no correlation

between the two variables.)

The dependency matrix can be checked for feasibility by asserting that it is positive semi-
definite and that there are no conflicting dependencies within the table. For example,
the matrix shown in Table 3.2 is not logically consistent for continuous variables. This is
because a high value of x implies a high value of z, since they are positively dependent
on each other. Meanwhile, a high value of z implies the value of y must be low due to
their opposite dependence. Hence, there must also be dependence between x and y, not the
independence specified in the table.

x y z
x i p
y i o
z p o

Table 3.2: Dependency matrix that does not make logical sense. (i - Independence, p -
Perfect, o - Opposite)

In order to make specifying the uncertainty as simple as possible, users should be able to
input their uncertainties using natural language expressions such as about or almost. As
discussed in Chapter 1, Sections 1.1 and 1.3, humans are more likely to express their uncer-
tainties in terms of hedged expressions around a round number rather than as a percentage
or probability. Table 3.3 lists some hedge words and their possible interpretations. Hedge
words can be interpreted as intervals or p-boxes [26, 187].

Often it is the case that all code is not contained within one script. For example, classes
and functions are often placed in other files to improve readability or avoid repetitions.
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Hedged Numerical Expression Possible Interpretation
about(x) [x± 2× 10−d]

around(x) [x± 10× 10−d]
count(x) [x±

√
x]

almost(x) [x− 0.5× 10−d, x]
over(x) [x, x+ 0.5× 10−d]

above(x) [x, x+ 2× 10−d]
below(x) [x− 2× 10−d, x]

at most(x) [0, x]
at least(x) [x,∞]

order(x) [x/2, 5x]
between x and y [x, y]

k-out-of-n KN(k, n)

Table 3.3: Hedge expressions and their mathematical equivalent. Note: d is the number of
significant figures of x.

Ideally, the compiler would be able to read several scripts simultaneously and allow users
to express the uncertainty whilst remembering the context for all the individual objects.
It is also often the case that scripts read data from other files when running. Under this
scenario, it would be difficult to express the uncertainty directly within the script, although
import functions could be modified to add in the uncertainties. For instance, anytime a
floating-point number is read from the file, its significant digits could be interpreted to
specify an interval around the value. So, for example, the value ‘3.56’ would be understood
as the interval [3.555, 3.565]. Another approach might be to parse the data file and add the
uncertainties into the file directly. Doing so would require changing the import function to
be able to handle uncertain data files.

It is also possible to completely automate the uncertainty compilation. Under default
settings, this would replace floating-point constants with intervals interpreted from the
significant figures used in the source code assignments and use that information as a proxy
for the uncertainty (for an example, see Figure 3.3). In this mode, each individual task
happens concurrently without requiring any further input from an end-user. When using
this mode, the compiler must tread carefully around mathematical constants such as π or e
for which there is no uncertainty. In the example, the compiler has printed a warning above
c = 3.14 to highlight the assumption that has been made. The compiler, it would allow
users to specify what values are precise constants. It is also worth noting that since c has
no uncertainty the addition operation does not need to be replaced with a function with
specified dependence arithmetic and Fréchet has been used for the dependence between a
and b.
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[1] a = 1
[2] b = 2.5
[3] c = 3.14
[4]
[5] d=a*b+c
[6] print(d)

[1] a = I(0.5,1.5)
[2] b = I(2.45,2.55)
[3] #! WARNING: 3.14 assumed to be mathematical
constant pi
[4] c = 3.14
[5]
[6] d= mul(a,b,'f') + c
[7] print(d)

Figure 3.3: Result of using the automatic uncertainty compiler on a simple pseudocode
script.
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For-loops and functions are potential stumbling blocks for any uncertainty compiler. Fig-
ure 3.4 shows a simple pseudocode script with a function and a for-loop. Within fir first
for-loop, each i is simply a control variable with a start and end variable. The individual
value of i is irrelevant and, as such, would have no uncertainty about it. The second for-loop
is a foreach-loop, implying that the code needs to do something for each value within some
iterable object. Under this scenario, it may be the case that there is uncertainty about the
object within the list. In Figure 3.4, the code is setting the value of initial_velocity
as each value within the list for each iteration of the for-loop. It may be the case that there
is uncertainty within the object, ergo the compiler should recognise this and allow users to
change the code such that the objects within the list can have uncertainty added to them.

Local variables within functions will also have to be handled. For example, the function
in Figure 3.4 has two local variables, s for the distance that the object travels and g for
the acceleration due to gravity. It is conceivable that both of these variables have some
uncertainty associated with them, and the compiler needs to be able to detect the variables
and offer the ability to edit them so that uncertainty is handled.

[ 1] def calculateVelocity(u):
[ 2] s = 10
[ 2] g = 9.81
[ 3] v = sqrt(u^2 + 2*g*s)
[ 4] return v
[ 5]
[ 6] x = 1
[ 7] for i in (1:10):
[ 8] x = x + 1
[ 9]
[10] for initial_velocity in (0.3,0.4,1.1,2.3,3.7):
[11] final_velocity = calculateVelocity(initial_velocity)
[12] print(final_velocity)
[13]
[14] a = 1
[15] b = 0.5
[16] if a < b:
[17] c = 1
[18] else:
[19] c = 2
[20]

Figure 3.4: Pseudocode script with functions, if-statements and for-loops.

If-statements and other logical control structures may also pose issues for such an uncer-
tainty compiler. In line 16 of Figure 3.4, the logical operators within the statement would
need to change to ensure that the statement runs as expected (see Sections 2.1 and 2.2).
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Ideally, the analyst would decide what should happen if the statement a < b returned a
[0,1] result by using the adverb operators discussed in Section 2.1. This may require addi-
tional editing to deal with situations where an uncertain result should be handled differently
from a certain true or false or when p-boxes return probabilities for the comparison.

3.4 Translating and Optimising

Once the uncertainty has been specified, it will need to be translated into the target lan-
guage. Assuming that there exist appropriate uncertainty objects within the source lan-
guage, this need not be difficult. The more difficult task is modifying the code such that it
runs optimally and the amount of artifactual uncertainty is reduced. For instance, amend-
ments to the code will be needed to ensure that dependencies are handled correctly. There
are a couple of approaches that could be used.

The simplest approach is to replace the infix operators with the function calls that take as
an argument the dependency calculi needed for the operation. For instance, in Figure 3.2,
the calculation

d = a * b + c

has been replaced by the compiler to

d = add(mul(a, b, method = 'f'), c, method = 'f')

where the add and mul contain keyword arguments that tell the code what arithmetic to
use. In this approach care has to be taken to make sure that precedence, left recursion and
associativity of the operators is handled correctly [188, pp.69–72].

Any dependence between a and b would have to be initialised. This could be done by
adding a function after both a and b have been assigned or by modifying the assignment
for b. In this case, as no dependence is known to the compiler, Fréchet has been used.

Smart dependency tracking – where the varible themselves workout how to handle the
uncertainty arithmetic with other uncertain objects at runtime – would be the zenith when
wrangling the issue. Whilst initial dependencies would still have to be specified, under
smart dependency tracking, no other changes would need to be made to the code by the
user or compiler for the dependencies to be handled optimally. In the output script of Fig-
ure 3.2, line 5 would not need to be changed as the variables would remember which other
variables they depend on and, when the calculations are performed, know what dependency
calculus to use. This knowledge would have the be included within the class definitions for
the uncertain objects and requires all objects to store the ancestry of themselves, knowing
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the dependence between themselves and their ancestors and be able to access the depen-
dencies between the initial variables. This approach would have demands on memory and
computational time. The result of a * b would know that it depends on a and b. When c
is added to the product, it would be detected that a * b and c both have a as a common
ancestor and therefore use the appropriate addition methodology would be ascertained and
used.

Another major consideration for a uncertainty compiler will be mitigating against the re-
peated variable problem (see Section 2.3). The compiler will need to be able to rearrange
equations such that repeated variables are removed whenever possible. The most basic ap-
proach will require having a directory of multiuse to single-use expressions. Another smarter
approach would be to have a symbolic algebra system that can rearrange to a single-use
expression on the fly. The simplest version of this is for it to happen just across one line,
for instance, replacing

d = ab+ ac (3.2)

with
d = a(b+ c). (3.3)

These rearrangements are often not obvious and may require algebraic tricks, i.e.

w =
x+ y

1− xy
(3.4)

can be rearranged into the single-use expression

d = tan (arctan(x) + arctan(y)) . (3.5)

This problem is made more difficult if there are repetitions across multiple lines. In Fig-
ure 3.2, c = 3 * a + 1 is used in the calculation d = a * b + c. This equation could
be rewritten as

d = a * b + 3 * a + 1

and the reduced to the single use equation

d = a * (b + 3) + 1.

Care would need to be taken to ensure that the right variable gets the rearrangement. Take
the following kinematics equation to find the position s of a particle at time t,

s = ut+
1

2
at2, (3.6)
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where u is the initial velocity and a is the acceleration of the particle. This equation has a
single repetition for both u and a but t is repeated. If there is uncertainty associated with
t then this equation can be rearranged into a single-use expression

s =

(√
a

2
t+

u√
2a

)2

− u2

2a
. (3.7)

This equation contains repetitions of a and u and, as such, may only be preferred if there is
no uncertainty associated with either a or u. If there is uncertainty associated with either,
then it may be best not to perform the rearrangement or to intersect possible rearrangements
to obtain the best possible expression.

There are additional issues that the compiler could arise when rearranging equations. For
example in Equation 3.7, if the uncertainty about a includes negative numbers, then

√
2a is

likely to be problematic. Additionally, there could be problems if a straddles 0 because this
would result in a division by zero. A strategy for dealing with this may be to perform the
calculations using both Equation 3.6 and 3.7 and intersect them to remove any artifactual
uncertainty.

Many computer languages that are not purely functional support functions that specify
their parameters with “call by reference” or “call by object reference”, meaning the mem-
ory location of a value is passed to the function rather than a copy of the actual value.
This convention can allow the function to change the values of those parameters in the
calling routine, not just locally within the function. For example, Python passes the object
reference to functions for all non-primitive objects, such as lists, data frames and NumPy
arrays. Primitive objects in Python are: integers, floating-point numbers, Boolean, and
strings. Handling languages that use the call-by-reference method of passing arguments
will require care when translating.

In Figure 3.5, the simple python function takes as an input a numerical value, adds 1 to
it using the inplace += operator and then returns the addition. In the case where x is a
primitive object (an integer), the value passes to the function and returns the calculation
without modifying the original x value.

If the code was translated using an uncertainty compiler then this may cause an issue. In
Translation #1, since x is now a (non-primitive) interval object then the objects reference
gets passed to the function. This means that it may† be the case that as the local variable
a gets modified the global variable x also gets modified. This behaviour can be seen within

†In my PBA for Python library this behaviour is not observed. This is because PBA for Python’s Interval
class’ addition method returns a new Interval instance rather than modifying the interval inplace.
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the example, the function has returned the addition but x has also been changed because
the object is not copied or cloned—its reference has been shared. This issue has been fixed
in Translation #2 by the compiler recognising that a += 1 may pose a particular problem
and replacing it with a = a + 1 as this reassigns a new object to the variable rather than
to the location it references‡.

3.4.1 Hermeneutic Problems

Several problems could occur when translating a script because it can be difficult to under-
stand a programmer’s intent from the code. An example would be the assignment c = a
as there are a several different interpretations as to what such a command implies when it
comes to the uncertainty:

1. a and c are the same object but have been given different names for some reason.
Under this scenario, they should be considered equivalent to each other, and therefore
the calculation a + c could be rearranged to the single-use expression 2 * a.

2. c = a could have been written as c = 1 * a and the 1 has been dropped as it
would have had no mathematical impact on the calculation, this implies that they
are perfectly dependent on each other in the same way that c = -1 * a implies
negative dependence. Therefore, the calculation a + c would need to be performed
using perfect dependence.

3. c is a copy of a; they have the same uncertainty, but their realisations are not neces-
sarily related to each other whilst having the same distribution shape. This leads to
two more distinct possibilities:

(a) a and c are independent of each other and a + c should be convolved using
independence.

(b) No assumption is made about the dependence between a and c so a + c should
be convolved using Fr‘echet.

Knowledge of which of these scenarios is correct depends on the context of the script,
something a compiler should not make an assumption about by itself.

‡It is worth noting that this may not always be desired behaviour. In Python foo = foo + bar is
interpreted as foo.__add__(bar) whereas foo += bar is interpreted as foo.__iadd__(bar).
There may be difference between these two functions and it is not unimaginable the two functions have
different outputs (although I struggle to imagine this impacting the numerical operations that an uncertainty
compiler would be modifying). It is likely to be the case that this difference would impact the overhead of
the calculation – which itself may have lead to the analyst prefering one form over the other (especially for
NumPy objects).
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Source Code
[1] def add1(a):
[2] a += 1
[3] return a
[4] x = 1
[5] add1(x)
>>> 2
[6] print(x)
>>> 1

Translation #1
[1] def add1(a):
[2] a += 1
[3] return a
[4] x = Interval(1,2)
[5] add1(x)
>>> Interval [2,3]
[6] print(x)
>>> Interval [2,3]

Translation #2
[1] def add1(a):
[2] a = a + 1
[3] return a
[4] x = Interval(1,2)
[5] add1(x)
>>> Interval [2,3]
[6] print(x)
>>> Interval [1,2]

Figure 3.5: Simple Python script modified by the uncertainty compiler. In Translation #1
the compiler has modified a += 1 to a = a + 1 to guard against errors caused by call by

object reference.
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Another potential interpretation problem can occur because people naturally favour making
their code readable when creating code. For example, the equation of motion for a damped
harmonic oscillator can be given by

x′′(t) +
b

m
x′(t) +

k

m
x(t) = 0 (3.8)

where b is a damping constant, m is the mass of the oscillator, and k is the spring constant.
This equation can be solved analytically to find

x(t) = A exp
(
−bt
2m

)
cos
(
t

√
k

m
− b2

4m2
+ ϕ0

)
(3.9)

where A is a constant and ϕ0 is the initial angle. In Figure 3.6 the equation has been coded
in two different ways. In 3.6a the equation has been coded on a single line. As the equation
is quite complicated, the programmer coding the equation would likely want to split it into
multiple parts, as has been done in 3.6b. There are no mathematical differences between the
two approaches as they will lead to the same value. Care would have to be taken breaking
up equations in such a way that strategies would be needed to ensure that breaking the
lines up would not have a detrimental effect on how the code operated. The dependency
tracking throughout the split equation must also be assessed correctly. For example, if
there were uncertainty about the damping constant b, it would be difficult to assess the
dependence between lines 4 and 5, especially since the cosine function is not monotonic. It
may be better to use other techniques to solve the ODE (Equation 3.8) such as VSPODE
or VNODE [189–193]. Making such a change would again require knowledge of what the
calculation is and what exactly it is doing, something unlikely to be obvious from parsing
the code.
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[1] x = A*exp((-1*b*t)/(2
[:] *m))*cos(t*sqrt((k/m
[:] )-(b^2)/(4*m^2))+phi0)

(a) Coded in a single line

[1] a1 = (-1*b*t)/(2*m)
[2] w0 = sqrt((k/m)-(b^2)/(4*m^2))
[3] a2 = t*w0+phi0
[4] x1 = exp(a1)
[5] x2 = cos(a2)
[6] x = A*x1*x2

(b) Coded across multiple lines

Figure 3.6: Two different ways in which Equation 3.9 might be coded.

3.5 Writing and Running

Once the transcompilation has been performed, a new source code will have been created
which can be compiled or run in the same way as the original script. Running this code may
take longer and require more computational resources. However, it may still be beneficial
in terms of computational cost over Monte Carlo as it only needs to be run once and not
many times.

Once the code has been run, any outputs will themselves be uncertain. There are numer-
ous ways in which this uncertainty can be expressed depending on the exact requirements
specified by the analyst. Outputs could be the most likely value if this is sufficient for the
analysis. Another simple approach would be to use the most appropriate hedged expression.
For instance, it could return about 3.2 if that is the best expression. This hedge would
have to be the closest possible to the actual range without understating the uncertainty,
whilst not being so large that it overstates the uncertainty.

For distributions, a simple approach would be to present the range or a 95% range (2.5th
and 97.5th percentiles) of the output. This could go alongside other statistics about the
distribution to present, for example, a five-number output that characterises the distribution
(min, first quartile, median, third quartile, max). If the distribution family is known, it
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might be helpful to output the range, mean and variance.

Another way of characterising the distribution is to provide a verbose statement presenting
a sentence or paragraph to describe the uncertainty. For instance, the output could be
expressed as “a normal probability distribution p-box between -1.7 and 11 with a mean
of 4.5 and a variance between 4 and 5” or “an uncertain number with unspecified shape
between 0 and 10 with a median of at most 2.4, a mean of 1.2 and a variance of at most
10.6” Additionally, these statements could also come with a graphical representation of the
output, such as shown in Chapter 2.

3.6 Conclusion

The idea of an automated uncertainty compiler is unlikely to be realised. Many codes are
not simply single-line equations, and uncertainty propagation is not as simple as replacing
every elementary operation with an interval or p-box equivalent. Numerous wrinkles have
to be addressed, including:

• input specification (shapes and details),

• computational burden,

• repeated variables,

• dependencies,

• programmer intent, and

• suitable output.

It is also likely to be the case that no automatic uncertainty compiler would introduce perfect
uncertainty translations. Manually editing code or creating a new uncertainty-aware script
from scratch will likely outperform the automatic changes since, in general, hand-coding is
always likely to outperform source-to-source translation [194]. It is, therefore, evident that
any uncertainty compiler will likely be semi-automatic at best.

Perhapse the greatest challenge is that rearrangements will need to be made to equations
to prevent artifactual inflation of the uncertainty. The compiler will also need strategies
to handle inputs from other files, non-standard inputs, and code that spans multiple inter-
connected lines. The repeated variable problem and, more generally, incorrect handling of
dependencies can artifactually inflate the uncertainty of complex computation. Even if the
calculations are technically correct in the sense that they enclose the true uncertainty, the
naive application of intrusive uncertainty quantification can sometimes yield results with
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massively inflated uncertainty that renders them practically useless. Having massive un-
certainty is not the problem itself; the true uncertainty may actually be considerable. The
problem is when the uncertainty artifactually depends on how the analysis was structured
and does not reflect the features of the underlying computational problem.

An uncertainty compiler is perhaps the exact opposite of an optimising compiler, which
aims to minimise a programmes execution time and memory requirements. Both of these
will almost certainly increase by replacing objects with uncertain equivalents. For instance,
if intervalising calculations increases the computational time five-fold,§ a simulation limited
by computational time may need to be scaled back. Distributions or p-boxes would be still
more burdensome. Of course, efficiency is not always a critical issue, and this extra com-
putational effort does pay for global uncertainty propagation and what computer scientists
call automatic result verification [195]. Moreover, implementing modern uncertainty quan-
tification techniques could be more efficient and comprehensive than simply embedding a
deterministic computation inside a Monte Carlo shell with millions of replications.

Despite this, it is important to work towards the goal of an automatic uncertainty compiler.
It is worth remembering that the analysts who will need one most may not be sure what
normal distributions or intervals are and have probably never heard of a p-box. Nor do
they have the time to sift through hundreds or thousands of lines of code to extract and
manipulate the various parameters and make the changes required to enable the code handle
the uncertainty optimally. For such analysts, a software tool that can hand-hold them
through making the appropriate edits will be of enormous value, and even partial solutions
will be beneficial.

The general problem of uncertainty analysis is hard, and it is difficult to create software that
comprehensively solves all these problems. The development of an uncertainty compiler is
likely to be difficult. However, many practical problems are more straightforward than the
most general problem, and when this is the case, it will be extremely useful to use a tool
which is able to handle uncertainty analysis intrusively within code.

§These numbers are for entirely illustrative purposes and should not prime readers’ expectations for the
increased computational burden PBA methods introduce.
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Chapter 4

Difficulties in Quantifying the
Uncertainty of Classification
without Gold Standards

Preface Material from N. Gray, D. Calleja, A. Wimbush, E. Miralles-Dolz, A. Gray,
M. De Angelis, E. Derrer-Merk, B.U. Oparaji, V. Stepanov, L. Clearkin, and S. Ferson. Is
“no test better than a bad test”? Impact of diagnostic uncertainty in mass testing on the
spread of COVID-19. PLoS ONE, 15(10), 2020. doi: 10.1371/journal.pone.0240775 is used
within Section 4.1.

Material from Nick Gray, Marco De Angelis, Dominic Calleja, and Scott Ferson. A Problem
in the Bayesian Analysis of Data without Gold Standards. In 29th European Safety and
Reliability Conference, pages 2628–2634, Hanover, Germany, 2019 is used within Section 4.1
and 4.2.

Binary classification tests occur in many fields, from structural health in engineering to
supervised learning in computer science or patient diagnosis in medicine. No tests are
perfect, as they yield false positives and negatives. For instance, medical practitioners
commonly diagnose a patient’s health condition based on a diagnostic test, which in isolation
is not definitive. The diagnostic result has some statistical uncertainty associated with
detecting the true health state. Naively interpreting the result of a medical test can lead
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to an incorrect assessment of a patient’s true health condition. The same is true for many
binary classification systems. For the remainder of this chapter we shall refer to all binary
classifcations as tests.

Tests can be evaluated by comparing the results of the test to the ground truth (the true
classification). From this information, various statistics can be generated to assess the test’s
performance. However, in many instances, there is no gold standard test that can infallibly
determine the ground truth. In medicine, there are many diseases for which there is no
way to determine whether a patient has a particular disease conclusively. For instance, for
patients with Giant Cell Arteritis, even after a biopsy has been undertaken, there is still
uncertainty about the actual health state [196]. In machine learning, humans are often
imagined as omnipotent oracles able to provide a correct classification, though they are
usually imperfect [197–199].

In some situations gold standard information can only be gathered from some classes, yet
for others it is unknown. For example, some prison authorities use classification algorithms
to assess whether a prisoner is likely to reoffend when released from prison on parole (see
Section 1.3). As authorities are unwilling to release prisoners if the test says they are
likely to return to crime, it would be impossible to know whether the recidivism test was
accurate. If a prisoner tested positive and thus remains imprisoned, there is no available
data on whether they would have reoffended had they been released. Therefore, we could
never know if it was a true positive or a false positive.

There is debate within the literature about whether the gold standard should be considered
as the test that can accurately determine the true classification [200], or simply the best
available test [201]. The latter definition is helpful in situations where the gold standard
test changes over time as diagnostic technology improves. In medicine, there is also the
question about whether it is valid for a disease not to have a gold standard [202]. What
does it mean to test positive for a disease if there is no way to say definitively whether one
has a disease? Is it necessarily the case that a positive gold standard result always implies
some adverse pathological condition? [203] For the present analysis, we shall consider a
gold standard to be the test that can identify the ground truth with perfect accuracy.

Numerous authors have made attempts to characterise binary classification tests without a
gold standard; however, there is no widely accepted approach to dealing with this problem
[204]. Rutjes et al. [205] conducted a literature review and found that these methods fall
under four basic categories:

1. Correct imperfect gold standard. In this case, the gold standard is known to
be imperfect, but no better test is available or accessible. In this instance the test

72



UNCERTAINTY IN CLASSIFICATION WITHOUT GOLD STANDARDS

is better described as a pyrite standard. Adjustments are made to the test to esti-
mate test statistics or perform a sensitivity analysis. These adjustments require prior
information to be known about the performance of the gold standard test.

2. Impute for missing data about the gold standard. This is used when there
is a true gold standard that is not used for whatever reason; the cost might be too
high, the test too destructive to perform, or it is practically unobservable for some
other reason. Imputation requires assuming that the missing values are missing at
random or missing completely at random to be made and the fraction of the missing
gold standard results to be small compared to the overall sample size.

3. Construct gold standard. Multiple none gold standard tests are combined to find
the ground truth. This construction can be performed by expert elicitation, latent
class analysis or other deterministic rules.

4. Validate index test result. The confusion matrix paradigm is abandoned, with
the test results validated against other relevant characteristics, and different statistics
are calculated, including event rates, relative risks and other correlation statistics.
For example, in a medical context, the test may be validated by assessing whether it
can predict who will benefit from an intervention even if the actual condition remains
unconfirmed.

Walsh [206] and Umemneku Chikere et al. [207] made similar categorisations in their re-
spective literature reviews.

The literature reviews of Umemneku Chikere et al. [207, 208] highlight a number of different
approaches that have been suggested to correct for no gold standard. Since the methods
presented by Staquet et al. [209] and Gart and Buck [210] are equivalent and shown to
produce senstivity and specificity estimates greater than 1, they are not considered here.
We will then consider several methods that attempt to calculate sensitivity, specificity and
positive predictive value where there is an imperfect gold standard before suggesting a new
method that makes use of imprecise probabilities to characterise the uncertainty.

This chapter continues as follows: first the statistics that are used to assess the performance
of binary classification tests are reviewed. Section 4.2 explores an approach suggested by
Winkler and Smith [211] that presents a method to characterise the performance of a test
on a specific individual. Section 4.3 presents a novel method using imprecise probabilities
to characterise the uncertainty. Sections 4.5 and 4.6 review methods presented within the
literature. Finally there is a short discussion of the problem and the approaches explored
within this chapter.
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4.1 What Makes a ‘Good’ Test?

Let T be a test for condition D. To assess whether T is good at classifying between those
with D and those without D (¬D), there are two important statistics that can be used:

• Sensitivity (s) - Out of those who actually have D, the fraction that received a
positive test result (NT+):

s =
Number of True Positive

Total Number of Positives . (4.1)

• Specificity (t) - Out of those who did not have D (¬D), the fraction that received a
negative test result (NT−):

t =
Number of True Negative

Total Number of Negatives . (4.2)

In order to obtain these values, we need to use the test on a population for which the actual
classifications are known. Suppose we have N samples, of which X have D, and Y do
not. We can use T on these N samples, returning a true positives, b false positives, c false
negatives and d true negatives as shown in Figure 4.1. These values can be tabulated into
a confusion matrix as shown in Table 4.1.

N People

X Y

a = sX c = (1− s)X b = (1− t)Y d = tY

D ¬D

T+ T− T+ T−

Figure 4.1: Testing for condition D using test T .

D ¬D Total
Tested Positive a b a+ b = NT+

Tested Negative c d c+ d = NT−
Total a+ c = X b+ d = Y N

Table 4.1: Confusion matrix
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From this confusion matrix, the sensitivity can be calculated as

s =
a

X
=

a

a+ c
(4.3)

and the specificity as
t =

d

Y
=

d

b+ d
. (4.4)

Importantly, these statistics depend only on the test itself and are presumed to not depend
on the population the test is to be used upon. As shown in Figure 4.1, if we exclude
the impact of any inferential uncertainty, we would expect that a = sX, b = (1 − t)Y ,
c = (1− s)Y and d = tY .

We can also define the positive probability of the test as the ratio of positive tests out of
the total number tested:

h =
NT+

N
=

a+ b

a+ b+ c+ d
. (4.5)

When the test is used for diagnostic or classification purposes, the population’s character-
istics become essential for interpreting the test results. To interpret the value of a positive
or negative test result, the following statistics must be used:

• Prevalence (p): the proportion of people in the target population that have D:

p =
X

N
=

a+ b

a+ b+ c+ d
(4.6)

In a Bayesian context, this is the prior probability of having D before being tested.

• Positive Predictive Value (ψ): the probability that one has D given they have
received a positive test result:

ψ = Pr(D|T+) (4.7)

• Negative Predictive Value (η): the probability that one does not have D given
they have received a negative test result:

η = Pr(¬D|T−) (4.8)

ψ and η depend on the prevalence of D within the population tested. Thus, it is more often
than not inappropriate to use Equations 4.7 and 4.8. It is instead better to calculate ψ and
η using Bayes’ rule [212, 213]:

ψ = Pr(D|T+, p, s, t) = ps

ps+ (1− p)(1− t)
, (4.9)
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η = Pr(¬D|T−, p, s, t) = t(1− p)
t(1− p) + (1− s)p

. (4.10)

To illustrate the impact of prevalence on ψ, we can look at Figure 4.2. For a test with
s = t = 0.90, if prevalence p = 0.05, then the ψ ≈ 0.32, implying under a third of positive
results are true positives. Figure 4.2a shows that for 1000 test subjects, there will be many
more false positives than true positives even with a relatively high sensitivity and specificity
of 90%. In contrast, using the same tests on a sample with equal numbers of cases with and
without D (p = 0.5), we find that ψ = η = 0.9, see Figure 4.2b. Similarly, the η is lower
when the prevalence is higher, as shown in Figure 4.2c.

Tests are often repeated to improve the diagnostic performance, or multiple tests are used
concurrently to increase the aggregate ψ or η, assuming that the repeated tests are inde-
pendent of each other. In such a situation, the ψ of the second test can be calculated using
Equation 4.9 but using the ψ of the first test instead of the prevalence.

In a machine learning or information retrieval context, sensitivity is referred to as recall, and
the positive predictive value is known as the precision (and calculated using Equation 4.7).

In the medical domain, the values of p, s and t are often published independently and come
from separate clinical trials. In this case, the following notation can also be used:

p =
pk
pn

(4.11a)

s =
sk
sn

(4.11b)

t =
tk
tn

(4.11c)

where is the number of people in the study and pk is the number of people who are actually
postive. sn is the number of people with the disease that the test was used on and sk

the number of true results, et cetera for tn and tk. From the confusion matrix paradigm:
pk = a+ b, pn = a+ b+ c+ d, sk = a, sn = 1 + c, tk = d and tn = b+ d.
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1000 People

50 950

45 5 95 855

D ¬D

T+ T− T+ T−

(a) p = 0.05 −→ ψ = 0.32, η = 0.99

1000 People

500 500

450 50 50 450

D ¬D

T+ T− T+ T−

(b) p = 0.5 −→ ψ = 0.9, η = 0.9

1000 People

750 250

675 75 25 225

D ¬D

T+ T− T+ T−

(c) p = 0.75 −→ ψ = 0.96, η = 0.75

Figure 4.2: Testing different populations with different prevalences for D using test T with
s = t = 0.90
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4.1.1 Uncertainty About Test Statisitcs

Whilst it is often the case that these diagnostic statistics are presented as precise values
there can be uncertainty associated with p, s and t. Mossman and Berger [214] consider
the following hypothetical situation:

Mr Smith has tested positive for disorder D, he asks his doctor the following:
“Given the published estimates for prevalence, sensitivity and specificity, what is
the 95% confidence interval for my probability of having D given my positive test

results and the imprecision in the estimates?”

When there is uncertainty about the values of p, s and t, they can be described by dis-
tributions [207, 210, 215, 216]. There are a couple of ways ψ can be determined, and the
simplest is to estimate it using Equation 4.9 but replacing p, s and t with their expected
values:

ψ̂ =
E(p)E(s)

E(p)E(s) + (1− E(p))(1− E(t))
. (4.12)

In order to obtain a distribution for ψ, Mossman-Berger use a convolution of the distribu-
tions of p, s and t within Equation 4.9. In their numerical calculation, they use Monte Carlo
and sample random variables from the distributions of p, s and t and use Equation 4.9 to
find the distribution of ψ making use of Jeffreys prior to,

fj(x|k, n) = beta(x|k + 1/2, n− k + 1/2), (4.13)

to calculate p, s and t:

p(x) = fj(x|pk, pn) (4.14a)

s(x) = fj(x|sk, sn) (4.14b)

t(x) = fj(x|tk, tn). (4.14c)

They use Jeffreys prior as a non-informative prior distribution for the variables. Other
prior distributions could be used [217]. An imprecise probability approach uses k-out-of-n
c-boxes to characterise the uncertainty (Section 2.5, Equation 2.29). In this instance,

p(x) = KN(x|a+ c, a+ b+ c+ d) or KN(x|pk, pn) (4.15a)

s(x) = KN(x|a, a+ c) or KN(x|sk, sn) (4.15b)

t(x) = KN(x|d, b+ d) or KN(x|tk, tn). (4.15c)
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Calculating ψ and η using c-boxes is facilitated by the following single-use expressions:

ψ =
1

1 +

(
1

s

)
(1− t)

(
1

p
− 1

) (4.16)

and
η =

1

1 + (1− s)

 1

t

(
1

p
− 1

)

. (4.17)

If pk = 5, pn = 100, sk = 9, sn = 10, tk = 9 and tn = 10, where the values of p, s and t

have come from independent trials, Figure 4.3 shows the distributions the Mossman-Berger
(blue) and the c-box method (red/black) estimates for the ψ and η. As expected the c-
box appracoh bounds the Mossman-Berger method. From these plots confidence levels can
be drawn. The Mossman-Berger method gives the centered 95% confidence interval for
ψ = [0.07, 0.86] and η = [0.97, 1.00] and the c-box based approach gives ψ = [0.05, 0.97] and
η = [0.96, 1.00].

4.2 The Winkler-Smith Approach

Winkler and Smith [211] argue that the traditional application of Bayes’ rule in medical
counselling is inappropriate and represents a “confusion in the medical decision-making
literature”. They propose in its place a radically different formulation that makes special
use of the information about the test results for new patients, although not their actual
disease status. Winkler and Smith [211] diverges from Mossman and Berger [214] and the
textbook method, see [213] as an example. They argue that the outcome of a patient’s test
should be used to update the distribution.

As there is no gold standard and the ground truth cannot be immediately established,
Winkler and Smith construct two new confusion matrices; one based on the assumption that
the test is a true positive and the other assuming the test is a false positive (Table 4.2a and
Table 4.2b respectively). They then use these alternatives to update the test’s sensitivity,
specificity and underlying prevalence. This reducing the test’s uncertainty slightly.

Winkler and Smith assert that the positive predictive value of a positive medical test for a
disease is not any of Equations 4.9, 4.12 or the Mossman and Berger [214] method (Equa-
tion 4.14). Instead, it should be computed as a weighted average of the values calculated
using the two new confusion matrices.
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Mossman-Berger C-box

Figure 4.3: Mossman-Berger confidence distribution and c-box method for calculating η
and ψ with pk = 5, pn = 100, sk = 9, sn = 10, tk = 9 and tn = 10.
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D ¬D Total
T+ a+ 1 b NT+

T− c d NT−
Total X + 1 Y N

(a) New confusion matrix assuming
true positive

D ¬D Total
T+ a b+ 1 NT+

T− c d NT−
Total X Y + 1 N

(b) New confusion matrix assuming
false positive.

Table 4.2: Two new confusion matrices created in the Winkler-Smith method.

Assuming a true positive; the prevalence, sensitivity and specificity become:

p′+ =
X + 1

N + 1
(4.18a)

s′+ =
a+ 1

X + 1
(4.18b)

t′+ = t. (4.18c)

Similarly, assuming a false positive gives:

p′− =
X

N + 1
(4.19a)

s′− = s (4.19b)

t′− =
d+ 1

Y + 1
. (4.19c)

They then say to construct a weighted average of the new confusion matrices using

ψ̂WS = f(p′+, s
′
+, t

′
+)ψ̂ + f(p′−, s

′
−, t

′
−)(1− ψ̂), (4.20)

where f(p, s, t) is a convolution of the Jeffreys prior distributions (Eq 4.13) for p, s and t:

f(p, s, t) = fj(p|pk, pn)fj(s|sk, sn)fj(t|tk, tn), (4.21)

and ψ̂ is calculated using Equation 4.12.

Returning to the numerical example at the end of 4.1.1 (pk = 5, pn = 100, sk = 9, sn = 10,
tk = 9 and tn = 10), we find that the 95% confidence interval is [0.062, 0.741]. Notice
that the width of this confidence interval is smaller than that of the Mossman and Berger
method (ψMB = [0.07, 0.86] and ηMB = [0.97, 1.00])
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4.2.1 The Logical Inconsistency with the Winkler-Smith Method

To demonstrate that the Winkler and Smith method is flawed, we will explore the situation
in which one conducts multiple tests and show that it leads to a reductio ad absurdum.

If we consider performing x tests using the Winkler and Smith method, we would have the
following two confusion matrices: Table 4.3a and Table 4.3b.

D ¬D Total
T+ a+ x b NT+

T− c d NT−
Total X + x Y N + x

(a) New confusion matrix assuming true
positive

D ¬D Total
T+ a b+ x NT+

T− c d NT−
Total X Y + x N + x

(b) New confusion matrix assuming false
positive.

Table 4.3: Two new confusion matrices created in the Winkler-Smith method with x new
results

In the assumed true positive case, the prevalence, sensitivity and specificity become:

p′+ =
X + x

N + x
(4.22a)

s′+ =
a+ x

X + x
(4.22b)

t′+ = t, (4.22c)

and in the assumed false positive case:

p′− =
X

N + x
(4.23a)

s′− = s (4.23b)

t′− =
d+ x

Y + x
. (4.23c)

We will now consider what happens to p′+, s′+, t′+, p′−, s′− and t′− as x→∞. We find

lim
x→∞

p′+ = 1 (4.24a)

lim
x→∞

s′+ = 1 (4.24b)

lim
x→∞

t′+ = t, (4.24c)

lim
x→∞

p′− = 0 (4.25a)

lim
x→∞

s′− = s (4.25b)

lim
x→∞

t′− = 1. (4.25c)

Hence, using Equation 4.9 we get
lim
x→∞

ψ̂WS = 1 (4.26)
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which implies that Pr(¬D|+) = 0. If one were to naively interpret this result at face value,
they would conclude that any positive test at this limit is a true positive. Winkler and
Smith do not say to use this result though their would use Equation 4.20. In this limit, this
gives the following:

ψ̂WS = beta(p|X + x,N + x)× fβ(s|a+ x, a+ c+ x)× fβ(t|d, b+ d). (4.27)

As

lim
a,b→∞

beta(x | a, b) =

∞ x = 1/2

0 x ̸= 1/2
(4.28)

and ∫ ∞

−∞
Pr(x)dx = 1 (4.29)

then the cumulative distribution for ψ̂WS becomes

ψ̂WS =

0 ψ0 < 1/2

1 ψ0 ≥ 1/2
. (4.30)

Figure 4.4 shows this migration from the first test, x = 1 towards the result in Equation 4.30
starting from the Section 4.1 example data set. These results amount to a logical flaw in
the Winkler and Smith method. We have not added any new information (apart from
the number of tests), and the uncertainty has been reduced. It should be noted that this
asymptote is due to the choice of prior. Interestingly, and perhaps worryingly, different
priors would give different values in the limit x→∞.

4.2.2 Imprecise Probability Fix

It is possible to reconsider the argument made by Winkler and Smith using a framework
provided by the theory of imprecise probabilities [140, 218–220]. Under this perspective, the
prevalence, sensitivity, and specificity can each be updated as prescribed by Winkler and
Smith to yield a distribution for the PPV assuming the patient is actually sick (in which
case the test was a true positive), and a distribution for the PPV assuming the patient is
not sick (in which case the test was a false positive). However, the appropriate synthesis of
these two contingent estimates of the PPV is not a weighted mixture as Winkler and Smith
conceive it. Instead, because whether the patient is sick or not is what is not known in this
problem, an envelope of the two distributions would be more appropriate.

Returning to the numerical example, the envelope of the two contingent distributions yields
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Figure 4.4: Plot of the CDF for the first 104 tests using the Winkler and Smith method.

a rather wide p-box, shown as the outer bounds in blue in Figure 4.5. The leftmost edge
corresponds to the distribution that assumes the positive test result was a false positive,
incrementing p and t according to Table 4.2b. The rightmost edge corresponds to the
distribution that assumes the test result was a true positive, incrementing p and s according
to Table 4.2a. This enveloping calculation is equivalent to a mixture with unknown weights
characterised by the vacuous interval [0, 1] for both distributions.

In contrast, the traditional Bayesian result and the Winkler-Smith method are also shown in
the figure. The envelope encloses both the traditional and the Winkler and Smith distribu-
tions. The 95% confidence interval using imprecise probabilities is [0.057, 0.848], which, as
expected, encompasses the interval for both the traditional Bayesian result and the Winkler
and Smith result. This envelope is reminiscent of the probabilistic dilation of uncertainty
that sometimes accompanies the addition of weakly informative data in probabilistic calcu-
lations [221].

As we said that the Winkler and Smith methods become logically inconsistent when we
consider it in the extreme scenario, we will now show that using imprecise probabilities
leads to at least a logical result in the limit. What the imprecise probability confusion
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Figure 4.5: P-box showing the distribution envelope for the PPV.

matrix would be after X tests are shown in Table 4.4.

Has Problem No Problem Total
Positive

Test a+ [0, x] b+ [0, x] NT+ + x

Negative
Test c d NT−

Total X + [0, x] Y + [0, x] N +X

Table 4.4: New imprecise probability confusion matrix after X positive tests.

The new prevalence would be
p′ =

α+ γ +X[0, 1]

TN +X
, (4.31)

new sensitivity
s′ =

α+X[0, 1]

α+ γ +X[0, 1]
, (4.32)

and new specificity
t′ =

δ

β + δ +X[0, 1]
. (4.33)
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Now at the X →∞ limit:
lim

X→∞
p′ = [0, 1] (4.34)

lim
X→∞

s′ = 1 (4.35)

lim
X→∞

t′ = 0. (4.36)

Using these results along with Equation 4.9 gives:

ψ̂WS = [0, 1] (4.37)

as the final value for the PPV Figure 4.6 shows the migration to the vacuous p-box using
the imprecise probability method starting from the numerical example.
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Figure 4.6: Plot of the p-boxes for first 1000 tests using the imprecise probability method.

Let us first consider the difference between the Winkler and Smith method and the imprecise
probability method. Figure 4.4 shows that as the number of tests increases, the uncertainty
of PPV decreases. This amounts to a reductio ad absurdum, thus proving their method
untenable. This uncertainty reduction happens even after one test, as demonstrated in the
numerical example where the 95% confidence interval from the Winkler-Smith method is
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narrower than the interval from the Mossman-Berger method.

In the imprecise version, we have also given the test no information, but the uncertainty
has increased, which we argue is reasonable. Although at the infinity limit, the vacuous
p-box result is not useful when assessing the test’s performance, it at least makes logical
sense. It is perfectly reasonable to say “I don’t know” when one does not know.

4.3 A Novel IP Approach

For confusion matrices to be computed, a gold standard test, G, that must be able to
distinguish between the two classifications perfectly. Without such a test, it would be
impossible to know the true classification. In this scenario, only the number of positive
and negative tests (NT+ and NT−) would be known and it would be useful to estimate the
number of individuals with D and ¬D, X̂ and Ŷ respectively.

Let ϕ+ be a measure of how good the positive predictions from the test are, and ϕ− a
measure of how good the negative predictions of the test are (ϕ+, ϕ− ∈ [0, 1]). Several
constraints need to be considered:

C1 – The estimated values must be equal to the total number tested. i.e.

X̂ + Ŷ = N. (4.38)

This constraint implies that X̂ and Ŷ are oppositely dependent on each other. As the
value of Ŷ increases, the value of B̂ must decrease.

C2 – As the performance of the test decreases, then the estimates should improve. i.e. If

ϕ+ → 1 and ϕ− → 1 (4.39)

then

X̂ → X (4.40)

Ŷ → Y. (4.41)

C3 – As the performance of the test decreases, then the estimates should swap. i.e. If

ϕ+ → 0 and ϕ− → 0 (4.42)
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then

X̂ → Y (4.43)

Ŷ → X. (4.44)

C4 – (C2) and (C3) imply that the maximum uncertainty occurs when

ϕ+ = ϕ− =
1

2
. (4.45)

At this limit
E
[
X̂
]
= E

[
Ŷ
]
=
N

2
. (4.46)

C5 – If ϕ+ → 1 but ϕ− → 0 then

X̂ → N (4.47)

Ŷ → 0 (4.48)

and vice versa.

Using these constraints, we can then construct a function that can gild NT+ and NT− to
produce estimates for X̂ and Ŷ from ϕ+ and ϕ−.

X̂ = g (NT+, NT−, ϕ+, ϕ−) = NT+KN(NT+ϕ+, NT+) +NT−KN(NT−ϕ−, NT−), (4.49)

similarly
Ŷ = g (NT−, NT+, ϕ−, ϕ+) . (4.50)

Where KN is the k-out-of-n confidence box [158]:

KN(k, n) = [beta(k + 1, n− k), beta(k, n− k + 1)] . (4.51)

4.3.1 Example

If we have a sample of 100 people that have been tested using test T , of which 70 have
tested positive and 30, have received a negative result (NT+ = 70 and NT− = 30). The test
has ϕ+ = 0.85 and ϕ− = 0.95. These values can be gilded to produce the c-boxes shown in
Figure 4.7. It is useful to compare these c-boxes to the gold standard counts, X = 62 and
Y = 38, which are shown with the blue lines on Figures 4.7a and 4.7b.
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Figure 4.7: Gilding c-boxes with NT+ = 70 and NT− = 30 with ϕ+ = 0.85 and ϕ− = 0.95.
The blue lines represents the gold standard count X = 62 and Y = 38.
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Figure 4.8: GA-Singh plots for X̂ and Ŷ from Figure 4.7.

In order to assess whether this method performs correctly, it is helpful to consider GA-Singh
plots (Section 2.5.1). Figure 4.8 shows the Singh plots for the c-boxes in Figure 4.7. From
these plots, we can see that the methodology produces c-boxes that have the confidence
interpretation. However, they are conservative, meaning that confidence intervals produced
from this methodology are wider than they need for the confidence interpretation to hold.

4.3.2 Finding the ϕ Values

So far, no attention has been paid to what ϕ+ and ϕ− represent, only that they are a
measure of the performance of the test. This section discusses various ways they can be
found depending on the amount of information known. If the sensitivity and specificity
of T are known, as is the prevalence of the population, then ϕ+ can be calculated as ψ
(Equation 4.9) and ϕ− as η (Equation 4.10).

If there is uncertainty about the prevalence, it is possible to provide interval p values (and
therefore interval ϕ values). In Figure 4.9, the test returns X = 40 and Y = 60 and has
s = 0.85 and t = 0.95, but there is uncertainty about the prevalence. Table 4.5 shows
the prevalence values used within the figure, the resulting ϕ+ and ϕ− values, and the 95%
confidence intervals. If the sensitivity and specificity are unknown, then it is possible to
estimate the ϕ values directly.
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Figure 4.9: Various gilded X values with increasingly wide interval prevalences.

p ϕ+ ϕ− 95% CI
[0.75, 0.75] [0.98, 0.98] [0.68, 0.68] [46, 68]
[0.65, 0.85] [0.97, 0.99] [0.53, 0.77] [41, 77]
[0.55, 0.95] [0.95, 1.00] [0.25, 0.84] [37, 91]
[0.45, 1.00] [0.93, 1.00] [0.00, 0.89] [34, 100]
[0.35, 1.00] [0.90, 1.00] [0.00, 0.92] [32, 100]

Table 4.5: Prvelence, ϕ and 95% confidence intervals for X̂ values shown in Figure 4.9.
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Algorithm 4.1: Algorithm for generating the Singh plots shown in Figure 4.8. R is
a random number drawn from the uniform distribution U(0, 1).

Input: N , many
for many iterations do

p← R
ϕ+ ← R
ϕ− ← R
for all N people do

TestResult ← {NT+, NT−} (Pr(NT+) = p)
Status ← {X,¬X} (If NT+ then Pr(X) = ϕ+ else Pr(¬X) = ϕ−)

NX ← Total X
Y ← Total ¬X
NNT+

← Total NT+

NNT− ← Total NT−

X̂ = g
(
NNT+

, NNT− , ϕ+, ϕ−
)

Ŷ = g
(
NNT− , NNT+

, ϕ−, ϕ+
)

Store NX , Y,NNT+
, NNT− , X̂, Ŷ

Compare all X̂ and X and produce Singh plot;
Compare all Ŷ and Y and produce Singh plot;

4.4 Pyrite Standards

A potential use of this method is in situations where the performance of a test is mea-
sured against an imperfect gold standard (pyrite-standard) test, P . In order to find the
performance of T , we can construct the confusion matrix shown in Table 4.6. Since test
P is imperfect, the values of a, b, c and d and thus s and t calculated from Table 4.6 are
incorrect. The true number of true positives, α, false positives, β, false negatives, γ, and
true negatives, δ are shown in Table 4.9. The true sensitivity and specificity would need to
be calculated from this table (σ and τ).

In order to find true the performance of T , we have to construct the confusion matrix
shown in Table 4.9. Since test P is imperfect, this confusion matrix can be split into two
separate matrices, one for those individuals that have result T+ (Table 4.7) and one for
those individuals that have result T− (Table 4.8), as shown in Figure 4.10. The elements of
these confusion matrices are unknowable without there being an accessible gold standard.

We can treat Tables 4.7 and 4.8 as two separate instances of the problem described in
Section 4.3 and use the method to estimate the values within Table 4.9. These estimates
are
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P+ P− Total
T+ a b NT+

T− c d NT−

Total NP+ NP− N

Table 4.6: Confusion Matrix
for imperfect gold standard

test P and test T .

D ¬D Total
P+ aT+ bT+ a

P− cT+ dT+ b

Total α β NT+

Table 4.7: Confusion Matrix
for those with D for

imperfect gold standard test
P and test T .

D ¬D Total
P+ aT− bT− c

P− cT− dT− d

Total γ δ NT−

Table 4.8: Confusion Matrix
for those that do not have D
for imperfect gold standard

test P and test T .

D ¬D Total
T+ α β NT+

T− γ δ NT−

Total NX N¬X N

Table 4.9: Ground truth
confusion matrix for test T .

T+ T−

Gild

Figure 4.10: Breaking the P–T confusion matrix (Table 4.6) into two confusion matrices
based upon the result of test T then recombining into the D–T confusion matrix

(Table 4.9).
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P+ P− Total
T+ 93 17 110
T− 12 128 140

Total 105 145 250

Table 4.10: Example 1 confusion matrix

α̂ = g(a, b, ϕ++, ϕ+−) (4.52a)

β̂ = g(b, a, ϕ+−, ϕ++) (4.52b)

γ̂ = g(c, d, ϕ−+, ϕ−−) (4.52c)

δ̂ = g(d, c, ϕ−−, ϕ−+) (4.52d)

with g(. . . ) from Equation 4.49. The sensitivity and specificity of T can then be calculated
from the gilded confusion matrix to produce gilded estimates σ̂ and τ̂ .

In this case four ϕ values need to be found:

• ϕ++ – A measure of how good the positive predictions of the pyrite test are given that
the sample received a positive new test result.

• ϕ+− – A measure of how good the negative predictions of the pyrite test are given
that the sample received a positive new test result.

• ϕ−+ – A measure of how good the positive predictions of the pyrite test are given that
the sample received a negative new test result.

• ϕ−− – A measure of how good the negative predictions of the pyrite test are given
that the sample received a negative new test result.

ϕ++ and ϕ+− need to be calculated for Table 4.7, similarly ϕ−+ and ϕ−− need to be
calculated for Table 4.8. For the moment, we shall abstain from commenting on the precise
nature of these calculations.

4.4.1 Example

In the example 1 confusion matrix shown in Table 4.10, test T has been compared to a
pyrite standard test P . If we know that P has ϕ++ = ϕ−+ = 0.9 and ϕ+− = ϕ−− = 0.75,
then we can gild each element to produce the gilded confusion matrix shown in Table 4.11.

We can use the c-boxes from the gilded confusion matrix to produce c-box estimates for the
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X̂ ¬̂X Total

T+

70 80 90 100

0

0.5

1

10 20 30 40

0

0.5

1

110

T−

20 40 60

0

0.5

1

80 100 120

0

0.5

1

140

Total

100 120 140 160

0

0.5

1

80 100 120 140 160

0

0.5

1

250

Table 4.11: Result of gilding the confusion matrix shown in Table 4.10. The axis labels
have been removed from the plots for clarity.
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Figure 4.12: Gilding c-boxes for σ̂ and τ̂ calculated from Table 4.11.

sensitivity, ŝ, and specificity, t̂. These are shown in Figure 4.12.

As before, it is helpful to test whether the estimated values have the confidence interpreta-
tion using GA-Singh plots. These plots are generated by creating a confusion matrix and
randomly sampling ϕ values. These plots for α̂, β̂, γ̂, δ̂, σ̂ and τ̂ are shown in Figure 4.13.
These Singh plots suggest that the presented method, in principle, works when the ϕ values
are known.

4.4.2 The Issue with Prevalence and ϕ Values.

In order to produce accurate estimates for α̂, β̂, γ̂ and δ̂, it is critical to know the correct ϕ
values for use within the gilding function. As stated above, when gilding the values within
a confusion matrix, 4 ϕ values need to be found: ϕ++, ϕ+−, ϕ−+ and ϕ−−.

ϕ++ and ϕ+− are ideally the ψ and η of the test for those samples within Table 4.7, similarly
for ϕ−+ and ϕ−− within Table 4.8. In order to calculate this, we need to find the prevalence
of D within Tables 4.7 and 4.8, these are Pr(D|T+) and Pr(D|T−) (ψ and η of test T )
respectively. This requires knowledge of σ and τ , which we are trying to find.

If assumptions can be made about σ and τ , then it may be possible to perform these
calculations. For instance, if it is pre-established that the sensitivity and specificity of the
new test are at least greater than 0.5 (i.e. the test has some diagnostic value) and the
sample prevalence then Pr(D|T+) and Pr(D|T−) can be estimated using σ = τ = [0.5, 1],
and thus estimated for the prevalence within Tables 4.7 and 4.8. These values can then
be used to calculate the appropriate ϕ values. For example, starting from the example 2
confusion matrix (Table 4.12), if we know that p = 0.59, sP = 0.95 and tP = 0.85 then we
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Figure 4.13: GA-Singh plots for α̂, β̂, γ̂, δ̂, σ̂ and τ̂ .

97



NICHOLAS GRAY

0.6 0.7 0.8 0.9 1

0

0.5

1

σ

α
-le

ve
l

(a) σ̂

0.4 0.6 0.8 1

0

0.5

1

τ

α
-le

ve
l

(b) τ̂

Figure 4.15: Gilding c-boxes for σ̂ and τ̂ calculated from Table 4.13.

can create the gilded confusion matrix shown in Table 4.13.

P+ P− Total
T+ 53 6 59
T− 16 25 41

Total 69 31 100

Table 4.12: Confusion matrix for example 2.

Again we can use GA-Singh plots to test whether the method maintains the confidence
interpretation. These plots show that the method shows considerable conservatism, espe-
cially about σ̂ and τ̂ . If we look at the 95% confidence interval for σ̂ and τ̂ we find [0.64, 1]

and [0.51, 1] respectively – almost the values that we started with. This shows that the
presented method may be ineffectual unless there is a significant appetite to guess prior
values.

4.5 The Emerson Approach

Emerson et al. [222] present a method for estimating the sensitivity and specificity of the
new test, T , from an imperfect gold standard (pyrite standard) test with known sensitivity,
and specificity. Their method only works if T and P are not conditionally independent.
From the known t and s, they calculate the PPV and NPV of the pyrite test using

ψP =
ps

hP
(4.53)
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X̂ ¬̂X Total

T+

40 50 60

0

0.5

1

0 10 20

0

0.5

1

59

T−

0 10 20

0

0.5

1

20 30 40

0

0.5

1

41

Total

40 60 80

0

0.5

1

20 40 60

0

0.5

1

100

Table 4.13: Result of gilding the confusion matrix shown in Table 4.12.
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Figure 4.16: GA-Singh plots for α̂, β̂, γ̂, δ̂, σ̂ and τ̂ .
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and
ηP =

(1− p)t
1− hP

, (4.54)

where hP is the probability of testing positive on test P , and the prevalence is calculated
using

p =
h+ t− 1

s+ t− 1
. (4.55)

They then calculate the apparent sensitivity, σ′, and specificity, τ ′ of test T (i.e. the values
that are calcualted using Table 4.6).

They estimate the true sensitivity and specificity of T as

σ̂E =
ζ+hP + (1− ηP − τ ′ + ζ−)(1− hP )

p
(4.56)

and
τ̂E =

(1− ψP − σ′ + ζ+)hP + ζ−(1− hP )
1− p

, (4.57)

where ζ+/− are the positive/negative concordance parameters for which interval bounds can
be found

ζ+ = Pr(D,T + |P+) = [max([0, ψ + σ′ − 1]),min([ψ, σ′])] (4.58)

ζ− = Pr(¬D,T − |P−) = [max([0, η + τ ′ − 1]),min([η, τ ′])]. (4.59)

Starting with the example 2 confusion matrix (Table 4.12), we can use Equations 4.3, 4.4 and 4.5
to calculate σ′ = 0.786, τ ′ = 0.806 and hP = 0.690. Equation 4.55 can then be used to
calculate p = 0.675 and thus Equations 4.53 and 4.54 give ψP = 0.929 and ηP = 0.891,
hence ζ+ = [0.697, 0.768] and ζ− = [0.698, 0.806]. Finally, giving

σ̂E = [0.713, 0.835]

and
τ̂E = [0.665, 0.919].

Neither of these intervals contain the true values (σ = 0.672 and τ = 0.578) used to create
the sample within the confusion matrix. This is likely because their method does not
account for the significant inferential uncertainty associated with the samples.

We can assess the general performance of this method by testing it against a larger number
of confusion matrices. If we simulate 106 different confusion matrices for a test with random
σ ∈ [0.5, 0.95] and τ ∈ [0.5, 0.85], verified against a pyrite standard test with s = 0.95 and
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t = 0.85, with the prevalence being a random number in [0.05, 0.95]. We find that

#(σ̂E ∋ σ)
106

= 0.925

and
#(τ̂E ∋ τ)

106
= 0.884

.

4.5.1 Derivation of σ̂E and τ̂E

Emerson et al. did not provide derivation of their equations for σ̂E and τ̂E . These values are
rederived within this section. Instead of breaking the P -T confusion matrix (Table 4.6) into
two confusion matrices based upon the result of test T , Emerson breaks it into confusion
matrices based upon the results of test P , as shown in Figure 4.17. We can derive σ̂E and
τ̂E from these two tables.

Derivation of σ̂E Now

σ = Pr(T + |D)

=
Pr(T + ∩D)

Pr(D)
,

(4.60)

where Pr(D) is defined as the prevelence (p) and

Pr(T + ∩D) = Pr(D ∩ T + ∩P+) + Pr(D ∩ T + ∩P−). (4.61)

Since there is conditional dependence between D, P and T ,

Pr(D ∩ T + ∩P+) = Pr(D ∩ T + |P+)Pr(P+) + Pr(D ∩ T + |P−)Pr(P−). (4.62)

From Equations 4.5, Pr(P+) = hP and Pr(P−) = 1−hP . Pr(D∩T + |P+) = ζ+ as defined
in Equation 4.58.

In order to find Pr(D ∩ T + |P−) we need to consider that

Pr(D∩T + |P−)+Pr(D∩T − |P−)+Pr(¬D∩T + |P−)+Pr(¬D∩T − |P−) = 1 (4.63)
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P+ P− Total
T+ a b NT+

T− c d NT−

Total NP+ NP− N

Table 4.6: Confusion matrix
for imperfect gold standard
test P and test T .

D ¬D Total
T+ ζ+πP (σ′ − ζ+)πP σ′(πP )

T− (ψP − ζ+)πP (1− ψP − σ′ + ζ+)πP 1− σ′(πP )

Total ψPπP (1− ψP )πP Nπp

Table 4.14: Confusion matrix
for those with X for

imperfect gold standard test
P and test T .

D ¬D Total
T+ (1− ηP − τ ′ + ζ−)(1− πP ) (ηp − ζ−)(1− πP ) (1− τ ′)(1− πP )
T− (τ ′ − ζ−)(1− πP ) ζ−(1− πP ) τ ′(1− πP )

Total (1− ηP )(1− πP ) ηP (1− πP ) N(1− πP )
Table 4.15: Confusion matrix
for those that do not have X
for imperfect gold standard

test P and test T .

P+

P−

Figure 4.17: Breaking the PvT confusion matrix (Table 4.6) into two confusion matrices
based upon the result of test P .

103



NICHOLAS GRAY

and by definition Pr(¬D∩T −|P−) = ζ−. These values are shown within Table 4.14. Now,

ηP = Pr(¬D|P−)

= Pr(¬D ∩ T + |P−) + Pr(¬D ∩ T − |P−)

= Pr(¬D ∩ T + |P−) + ζ−,

(4.64)

hence
Pr(¬D ∩ T + |P−) = ηP − ζ−. (4.65)

Similarly,

τ ′ = Pr(T − |P−)

= Pr(D ∩ T − |P−) + Pr(¬D ∩ T − |P−)

= Pr(D ∩ T − |P−) + ζ−,

(4.66)

hence
Pr(D ∩ T − |P−) = τ ′ − ζ−. (4.67)

Returning to Equation 4.63 we get

Pr(D ∩ T + |P−) = 1− (τ ′ − ζ−)− (ηP − ζ−)− ζ−
= (1− ηP − τ ′ + ζ−).

(4.68)

Putting these terms into Equation 4.60 gives:

σ̂E =
ζ+hP + (1− ηP − τ ′ + ζ−)(1− hP )

p
. (4.56 ■)

Derivation of τ̂E Now

τ = Pr(T − |¬D)

=
Pr(T − ∩¬D)

Pr(¬D)
,

(4.69)

where Pr(¬D) is (1− p) and

Pr(T − ∩¬D) = Pr(¬D ∩ T − ∩P+) + Pr(¬D ∩ T − ∩P−). (4.70)

Since there is conditional dependence between D, P and T ,

Pr(¬D ∩ T − ∩P+) = Pr(¬D ∩ T − |P+)Pr(P+) + Pr(¬D ∩ T − |P−)Pr(P−). (4.71)
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From Equations 4.5, Pr(P+) = hP and Pr(P−) = 1 − hP . Pr(¬D ∩ T − |P−) = ζ− as
defined in Equation 4.59.

In order to find Pr(¬D ∩ T − |P+) we need to consider that

Pr(D∩T + |P+)+Pr(D∩T −|P+)+Pr(¬D∩T + |P+)+Pr(¬D∩T −|P+) = 1, (4.72)

and Pr(D ∩ T + |P+) = ζ+. These values are shown within Table 4.15. Now,

ψP = Pr(D|P+)

= Pr(D ∩ T + |P+) + Pr(¬D ∩ T − |P+)

= Pr(D ∩ T + |P+) + ζ−

(4.73)

hence
Pr(¬D ∩ T − |P+) = ψP − ζ+. (4.74)

Similarly,

σ′ = Pr(T + |P+)

= Pr(D ∩ T + |P+) + Pr(¬D ∩ T + |P+)

= Pr(D ∩ T + |P+) + ζ+,

(4.75)

hence
Pr(D ∩ T + |P+) = σ′ − ζ+. (4.76)

Returning to Equation 4.72 we get

Pr(¬D ∩ T − |P+) = 1− (σ′ − ζ+)− (ψP − ζ+)− ζ+
= (1− ψP − σ′ + ζ+).

(4.77)

Putting these terms into Equation 4.69 gives:

τ̂E =
(1− ψP − σ′ + ζ+)hP + ζ−(1− hP )

1− p
. (4.57 ■)

4.5.2 Another Imprecise Probability Fix?

In order to account for the inferential uncertainty associated with the sample, it would
be useful to use confidence boxes. It would be natural to compute KN c-boxes for σ′, τ ′

and hP . These values could then be used with Emerson’s method. Unfortunately, due to
a large number of repeated variables, it is impossible to rearrange Equations 4.56 or 4.57
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into single-use expressions, as ψP , ηP and ζ+/− are all dependent on the prevalence. If we
assume that the prevalence of the sample is known, then the only c-boxes are σ′ and τ ′.

The artifactual uncertainty can be reduced by reconsidering the values of Pr(D ∩ T + |P−)
and Pr(¬D ∩ T − |P+) used within the derivations.

If we consider the two confusion matrices that Emerson uses within their definitions (Ta-
bles 4.14 and 4.15 in Figure 4.17). In each of these tables, the extreme values occur when
one of the matrix elements is equal to zero. For instance, in Table 4.15 the extreme value
of Pr(¬D ∩ T − |P+) will occur when either:

• Pr(D ∩ T + |P+) = ζ+ = 0 =⇒ Pr(¬D ∩ T − |P+) = 1− σ′ − ψP ,

• Pr(D ∩ T − |P+) = σ′ − ζ+ = 0 =⇒ Pr(¬D ∩ T − |P+) = 1− ψP ,

• Pr(¬D ∩ T + |P+) = ψ − ζ+ = 0 =⇒ Pr(¬D ∩ T − |P+) = 1− σ′, or,

• Pr(¬D ∩ T − |P+) = 0.

Hence, because there are imprecise values for σ′ and τ ′,

Pr(¬D ∩ T − |P+) = env (max(0, 1− σ′ − ψP ),min(1− ψP , 1− σ′)) (4.78)

and
Pr(D ∩ T + |P−) = env (max(0, 1− τ ′ − ηP ),min(1− ηP , 1− τ ′)) . (4.79)

We can use these values to produce new c-boxes for σ̂E and τ̂E , which are shown in Fig-
ure 4.18. As can be seen from the plots, this method produces extreme uncertainty about
the values. The 95% confidence intervals are σ̂E = [0.02, 1.00] and τ̂E = [0.12, 0.99]. These
nearly vacuous intervals imply that there is almost no information that can be gleamed to
determine whether the test is good or not. Given the puffiness of the c-boxes, Singh plots
have not been created out as such wide confidence intervals would always Singh.

4.6 The Brenner Approach

Brenner [223] presents two methods for correcting the sensitivity and specificity with a
pyrite standard. Their first method assumes that the two tests are independent, producing:

σ̂i
B =

psσ′ + (1− p)(1− t)(1− τ ′)
ps+ (1− p)(1− t)

(4.80)

and
τ̂ iB =

p(1− s)(1− σ′) + (1− p)tτ ′

p(1− s) + (1− p)t
. (4.81)
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Figure 4.18: C-boxes produced from the imprecise Emerson method for σ̂E and τ̂E
calculated from Table 4.11.

Using these Equations on Table 4.12 (with p = 0.59, sP = 0.95 and tP = 0.85) returns
σ̂i
B = 0.711, τ̂ iB = 0.762. For the comparison σ = 0.672 and τ = 0.578. Therefore, whilst
σ̂i
B is not dissimilar to the correct value, then τ̂ iB does not appear to be a good estimate.

This singular example does not help assess the method’s overall performance. To better
understand, it is helpful to simulate 1000 P -T confusion matrices, calculate the true values,
and use the Brenner method to produce estimates. The empirical cumulative distribution
function (ECDF) of these samples can be plotted for both σ and τ , as shown in Figure 4.19.
From these plots, it is clear that there is a significant difference between the estimates and
the true values.

We can then use two-sided two-sample Kolmogorov-Smirnov tests to statistically confirm
the lack of similarity between the true values and the estimates. For both of these plots,
we find p ≃ 0∗ hence it is almost certain that they do not represent the same distribution,
and therefore they are poor estimates of the true sensitivity and specificity.

As with the imprecise Emerson case, we can use KN c-boxes to try to improve this method.
In this case, replacing σ′ and τ ′ with their c-box equivalents is relatively straightforward.
Doing this for the confusion matrix in Table 4.12 gives the c-boxes shown in Figure 4.20.
Once again, it is important to test whether these c-boxes maintain the confidence interpre-
tation using GA-Singh plots. Doing this gives the plots shown in Figure 4.21, which clearly
shows that the method does not Singh and, therefore, the c-boxes produced do not have
the confidence interpretation.

∗For σ (Figure 4.19a), p ∼ 10−15 and for τ (Figure 4.19b) p ∼ 10−30.
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Figure 4.19: ECDF for the simulation to test the Brenner approach.
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Figure 4.20: C-boxes for the imprecise Brenner method.
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4.6.1 Positive Dependence

Brenner also presents a method for if the two tests are positively correlated. This correlation
implies that if the pyrite standard has incorrectly classified an individual, then test T will
not correctly classify them. In this scenario, the estimates are:

σ̂+
B =

pσ′ + (1− p)(1− t)
ps+ (1− p)(1− t)

(4.82)

and
τ̂+B =

p(1− s) + (1− p)tτ ′

p(1− s) + (1− p)t
. (4.83)

If we consider the confusion matrix in Table 4.16, then using Equations 4.82 and 4.83 we
get σ̂+

B = 0.98 and τ̂+B = 0.88. These values are significantly different to the gold standard
values of σ = 0.743 and τ = 0.721. Simulating this for 1000 different c-boxes gives the
ECDFs shown in Figure 4.22. These two plots differ between the gold standard and the
estimates. Therefore the estimates are significantly different to the true values and should
be discounted as a way to correct for a pyrite standard test.

4.7 Discussion

The methods described in this chapter show that it is difficult to quantify the epistemic
and aleatory uncertainty associated with classification when no gold standard test exists.
This is evident as all of the approaches presented struggle to logically, accurately and/or
concisely bound the true values. This is a significant problem. Many classification tools are
used on data where there is not a gold standard test, as such, the published statistics of
these tests may be inaccurate due to errors in the gold standard test that they are compared
to.

Winkler-Smith suggested a method to correct the positive predictive value for an individual
when there is no gold standard. We have shown that their method is inappropriate, as it
leads to the illogical result of the test becoming less uncertain after more trials even though
no new information is added. We have shown that it is possible to reimagine their method
using imprecise probabilities to create logically consistent results.

The independent and positive correlation approaches suggested by Brenner fail to estimate
the actual sensitivity and specificity values and should, therefore, not be used. A c-box
based version of their method fails to maintain the confidence interpretation and should
equally not be used.

The Emerson method aims to produce interval bounds for the sensitivity and specificity
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Figure 4.21: GA-Singh plots from the imprecise Brenner approach.

P+ P− Total
T+ 36 10 46
T− 7 47 54

Total 43 57 100

Table 4.16: Confusion matrix for the positively dependent example.
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Figure 4.22: ECDF for the simulation to test the Brenner approach.
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of the test. These bounds were found to contain the true value approximately 90% of
the time. Therefore, these intervals have reasonably good coverage of the true value and
may be good enough in many scenarios. The imprecise Emerson method produces almost
vacuous confidence boxes, unlikely to benefit analysts. Some of this puffiness may result
from repeated variables that cannot be reduced within the calculation.

The novel method presented in Section 4.3 produces conservative estimates of the values
within the confusion matrix and, therefore, the sensitivity and specificity. The conservatism
of the structures shown do not imply that they are necessarily uninformative. For instance,
it may be the case that a conservative result can be used to justify that the test is good
enough for whatever the use case is.

The issue with the method is that it requires quantifying how good the pyrite test’s predic-
tions are at classifying the positive and negative predictions from the new test. The issue
with this is that it requires knowledge of the prevalence among those that test positive and
negative, which requires producing an estimate of how good the test is.

An alternative approach is to estimate the ϕ values via another approach (e.g. by expert
elicitation). Or, the method could also be used with various ϕ values (or inflating intervals)
to see how bad the pyrite test would have to be before the test is deemed unsuitable. One
would then use this information to make decisions on the performance of the test.

To conclude, this chapter has shown that finding the true performance of a binary classifier
is difficult when there is only a pyrite standard test to verify against.
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Chapter 5

Interval Uncertainty in Logistic
Regression

Preface

A pre-print version of this chapter is availible as Nicholas Gray and Scott Ferson. Logistic
Regression Through the Veil of Imprecise Data. arXiv:2106.00492 [stat], June 2021. http:
//arxiv.org/abs/2106.00492.

Logistic regression is used to predict the probability of a binary outcome as a function
of some predictive variable. In medicine, for example, logistic regression can be used to
predict the probability of an individual having a disease where the values of risk factors are
known. While logistic regression is most commonly used for binary outcomes, multinomial
logistic regression extends this into events with any number of labels [224]. However, many
decisions and events are binary (yes/no, passed/failed, alive/dead, sick/healthy etc.), and
for the sake of simplicity, we will restrict our discussion and examples to binary outcome
logistic regression. Additionally, unlike discriminant function analysis, logistic regression
does not require predictor variables to be normally distributed, linearly related or have
equal variance [225].

There are many practical applications for logistic regression across various different fields.
For example, in the medical domain, risk factors in the form of continuous data – such
as age – or categorical data – such as gender – may be used to fit a model to predict the
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probability of a patient surviving an operation [226, 227]. In engineering systems, logistic
regression can be used to determine whether a mineshaft is safe [228]; and to predict the
risk of lightning strikes [229], or landslides [230]. Sports results can be predicted using
logistic regression [231]. It was also the method used within the COMPAS recidivism
test described in Section 1.3. Due to its wide range of applications, logistic regression
is considered a fundamental machine learning algorithm with many modern programming
languages having packages for users to dabble with, such as scikit-learn in Python [232],
which has been used for the analysis within this chapter.

Traditionally it has been assumed that all of the values of the features and labels used in
logistic regression are precisely known. However, in practice, there can be considerable im-
precision in the features and labels used in the regression analysis and the application of the
regression model. Analyses using data from combined studies with inconsistent measure-
ment methods can even result in datasets with varying degrees of uncertainty. Likewise, the
outcome data can be uncertain if there is ambiguity in the classification scheme (good/bad).
Moreover, even relatively straightforward classifications (alive/dead) can yield uncertainty
when a subject leaves a study, and the outcome is unknown. Within statistics, censored
data is sometimes of this form [233, 234]. Imprecision might have also been introduced as
a way of preserving privacy as discussed in Section 1.6. In the case of continuous variables,
the interval reflects the measurement uncertainty, while in the binary outcome, the interval
is the vacuous [0, 1] because the correct classification is unclear.

There are multiple methods have been suggested for dealing with interval data with the
features of a logistic regression model. This problem may also be considered a subprob-
lem within symbolic data analysis [235–237]. These methods often require approximations
to be made to simplify the process and allow the use of standard logistic regression tech-
niques. The most straightforward approach is to neglect the interval data, assuming that
the epistemic uncertainty that the intervals represent is small compared to the sampling un-
certainty or natural variability in the data, or that values are missing at random or missing
completely at random [62, 152, 238, 239]. These assumptions are likely to be untenable in
practice. Another approach is to treat interval data as uniform distributions based on the
“equidistribution hypothesis” that assumes each possible value to be equally likely; thus,
the intervals are modelled as a uniform distribution [237, 240–242]. This idea has its roots
in the principle of insufficient reason, first described by both Bernoulli and Laplace, and
more recently known as the principle of indifference [243]. Alternatively, the interval is
commonly represented by the interval’s midpoint, which represents the mean and median
of a uniform distribution or a random value from within the interval [61]. While these
approaches are computationally expedient, Section 5.2.3 will show, they underrepresent the
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imprecision by presenting a single middle-of-the-road logistic regression.

Other methods include performing a conjoint logistic regression using the interval endpoints
or averaging separate regressions performed on the endpoints of the intervals [244, 245].
While these various methods make different assumptions about the data within the interval
ranges, ultimately, they still transform interval data such that the final results can be
represented by a single binary logistic regression [245].

The approach proposed within this chapter for dealing with interval data in logistic re-
gression is based on imprecise probabilities and considers a set possible of models rather
than a single one [218, 239, 246, 247]. This is similar to approaches proposed for dealing
with interval uncertainty within linear regression [248–251]. These approaches, alongside
other methods for interval linear regression [136, 251, 252] are not directly translatable to
logistic regression as they require the use of least squares methods ill-suited to dichotomous
problems [62].

If separate logistic regressions are generated via maximum likelihood estimation from the
interval data and displayed graphically, the envelope of these models can be considered as
an imprecise logistic regression model. The ‘true’ model – the model that would have been
fitted if there were no epistemic uncertainty associated with the sample – would always be
contained within the bounds of the best possible imprecise model. The primary benefit
of such an approach is that it represents the epistemic uncertainty removed by traditional
methods. Additionally, this method can also handle the case of intervals in discrete risk
factors. This imprecise approach makes the fewest assumptions but can be computationally
challenging for large datasets [152, 239, 253].

In the case of uncertainty in the outcome status used within logistic regression, traditionally
there is little that can be done but to discard these data points as they cannot be used as part
of the analysis or to use a semi-supervised learning methodology [254–256]. This approach
can lead to strongly biased results when the data is not missing at random. However, the
proposed imprecise logistic regression technique can be used to include unlabelled examples
within the dataset. Again the imprecise approach does not require making the assumptions
required by other methods to fit a model.

This chapter continues as follows: in Section 5.1, tradiaitonal precise logistic regression
is reviewed. Sections 5.2 and 5.3 introduce the imprecise logistic regression for data with
intervals within the features and labels respectively; in both these sections, a 1-dimensional
synthetic dataset is used to demonstrate the methodology before it is compared to alterna-
tive methods on both the synthetic data and a real-world example. Finally, in Section 5.4
the method is used on a dataset which contains intervals in both the features and labels
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and is contrasted against a dataset from the literature.

5.1 Precise Logistic Regression

Let x be a m-dimensional covariate with a binary label, y ∈ {1, 0}. Logistic regression can
be used to model the probability that y = 1 using:

Pr(y = 1|x) = π(x) = 1

1 + exp (− (β0 + β1x1 + · · ·+ βmxm))
(5.1)

where β0, β1, . . . are a set of unknown regression coefficients. Dataset D contains n samples:

D =



(
(x

(1)
1 x

(1)
2 · · ·x

(1)
m ), y1

)(
(x

(2)
1 x

(2)
2 · · ·x

(2)
m ), y2

)
...(

(x
(n)
1 x

(n)
2 · · ·x

(n)
m ), yn

)


. (5.2)

Let LR(D) be a logistic regression model fitted on D. This fitting is acheived be finding
the optimal values of β0, β1, . . . , βm such that LR(D) best fits the data in D. This is often
done using maximum likelihood estimation [224, 257], although other techniques exist, for
instance through Bayesian analysis [258, 259].

A classification, ŷ, can be made from the logistic regression model by selecting a threshold
value, C, and then defining

ŷ =

1 if π(x) ≥ C

0 if π(x) < C
. (5.3)

The simplest case is when C = 0.5, implying ŷ is more likely to be true than false. However,
this value could be different depending on the use of the model and the risk appetite of the
analyst. For example, in medicine, a small threshold value may be used in order to produce a
conservative classification and therefore reduce the number of false negative results. Where
predictions are made within this chapter, C = 0.5 unless otherwise stated.

5.1.1 Demonstration

To demonstrate, a synthetic 1-dimensional dataset (D1) with a sample size of fifty was used
to train a logistic regression model, LR(D1), as shown in Figure 5.1. After training the
model, it is useful to ask the question, “how good is the model?” For logistic regression
there are several ways in which that can be done, see Hosmer Jr et al. [62, pp. 157–169]
or Kleinbaum and Klein [260, pp.318–326]. For the analysis in this paper, we will consider
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1 0 Total
Predicted 1 34 14 48
Predicted 0 10 42 52

Total 44 56 100

Table 5.1: Confusion matrix for 100 test data points using predictions from LR(X) shown
in Figure 5.1.

the receiver operating characteristic graph and area under curve statistic, discriminatory
performance visualisations [261], as well as the sensitivity and specificity of the classifications
made by the algorithm.

Royston and Altman [261] introduced visualisations to assess the discriminatory perfor-
mance of the model by considering a scatter plot of the true outcome (jittered for clarity)
versus the estimated probability. Such a plot is shown in Figure 5.2a. A perfectly discrim-
inating model would have two singularities with all the points with outcome 1 at (1,1) and
all the points with outcome 0 at (0,0). In general, the better the classifier, the more clus-
tered the points would be towards these values, with the points on the upper band having
larger probabilities and the points on the lower band having smaller probabilities. From
Figure 5.2a we can see that there is significant clustering towards the endpoints, showing
that the model has excellent discriminatory performance.

We can make and compare the predictions made from the logistic regression model using
a larger dataset that has been generated using the same method as above. Tabulating
these results in a confusion matrix for the base predictions is shown in Table 5.1. There are
numerous statistics than can be derived from confusion matrices to express the performance
of classifiers. For this analysis, we shall consider the sensitivity, s, and specificity, t (See
Chapter 4, Section 4.1).

From Table 5.1 we can calculate that s = 0.773 and t = 0.750. As confusion matrices
and statistics are calculated from them depending on the cutoff value chosen (C from
Equation 5.3), a complete way of determining the classification performance of models is by
considering the receiver operating characteristic (ROC) curve of the model [62, 260]. The
ROC can be plotted by calculating how the sensitivity and specificity change for various
threshold values and then plotting a graph of the false positive rate, fpr = 1 − t, against
s for all C values. For the example, the ROC curve for LR(D) is shown in Figure 5.2b.
The more upper-left a curve is, the better the classification. The worst performing model’s
ROC curve would match the black dotted line (s = fpr), corresponding to the ROC curve
for a random classifier. If a model had a ROC curve down-right of this line, this implies
that the performance would be improved by switching the outcome classes of the model,
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Figure 5.1: Logistic regression curve, LR (D1), created by fitting the model on dataset D1
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Figure 5.2: Two plots showing the discriminatory performance of the logistic regression
model shown in Figure 5.1.
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as if it predicted true, then it is more likely to be false and vice versa. ROC curves can
be compared graphically and by considering the area under the curve (AUC). The better
the model is, the closer the AUC would be to 1. The worst possible AUC would be 0.5, as
again, anything lower than that would be improved by simply switching the classification.
For the ROC curve shown in Figure 5.2b, AUC = 0.887.

5.2 Uncertainty in Features

If there is interval uncertainty within dataset D,

D =
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, (5.4)

and we have no more information about the true value, x(i)†j , nor we are willing to make
further assumptions about the true value, only that x(i)†j ∈

[
x
(i)
j , x

(i)
j

]
. Then, it is only

possible to partially identify an imprecise logistic regression model for the data, ILR(D):

ILR(D) =

LR (D′) : ∀D′ ∈
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 (5.5)

i.e. ILR(D) is the set of all possible logistic regression models that can be created from all
possible datasets that can be constructed from the interval data. This ensures that the true
logistic regression model, LR†, is contained within the set. As the set is infinitely large for
continuous data, estimates must be used to find the set.

Predictions can be made by sampling all the possible models within ILR(D) and creating
an interval containing the maximum and minimum values, π(x) =

[
π(x), π(x)

]
. When

calculating the probability of a value being 1 under the imprecise model, there is an interval
probability

[
π(x), π(x)

]
, where π(x) and π(x) are the maximum and minimum values of

π(x) calculated from models within the set. As such, when using ILR (D) to perform
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classifications, this interval makes Equation 5.3:

ŷ =


1 if π(x) > C

0 if π(x) < C

[0, 1] if C
[
π(x), π(x)

] . (5.6)

The final line of this equation returns the dunno interval, meaning there is uncertainty in
determining whether the datum should be predicted 0 or 1, and the model should therefore
abstain from providing a classification. It is left up to the analyst to decide what to do with
such a result.

Under such a scenario, there are two approaches to characterising the classifier using a
confusion matrix. The first is to consider the intervals directly within the confusion matrix.
Calculating statistics derived from the confusion matrix requires careful handling for interval
calculations (see Section 2.3). To demonstrate, let a be the number of true positives, b be
the number of false positives, c be the number of false negatives, and d be the number of
true negatives, where a, b, c and d are all intervals. Since the number of positive cases is
fixed, a and c are oppositely dependent on each other (as a → a then c → c), as are b
and d. These dependencies imply that care must be taken when calculating sensitivity and
specificity. Sensitivity needs to be calculated as

s =
a

a+ c
, (5.7)

and specificity as
t =

d

b+ d
. (5.8)

In this instance, the s and t would themselves both be intervals (s = [s, s] and t =
[
t, t
]
).

s and t would be the sensitivity and specificity of a system that perfectly classified all the
uncertain predictions.

Of course, analysts could use various alternative statistics to describe the classifier’s per-
formance, some of which require special care when using imprecise numbers. For instance,
precision and recall are often used within the machine learning literature to assess classifiers.
Precision is the fraction of positive predictions that are true positives,

precision =
True Positive

Total Number of Positive Predictions , (5.9)

and recall is analogous to sensitivity. Often quoted alongside these statistics is the F1 score,

120



INTERVAL UNCERTAINTY IN LOGISTIC REGRESSION

which is the harmonic mean of these values,

F1 = 2
precision · recall
precision + recall . (5.10)

With intervals, precision needs to be calculated using a single-use expression to ensure that
there is no artifactual uncertainty within the calculation,

precision =
1

1 + b
a

, (5.11)

and recall calculated using Equation 5.7.

The F1 score is again best calculated through a single-use expression,

F1 = 2
1

TP+b
a + 1

, (5.12)

where TP is the total number of positive predictions (TP = a+ c).

An alternative approach to constructing a confusion matrix with uncertain predictions is to
tabulate the dunno predictions in a separate row. If the model returned u true positives, v
false positives, w false negatives and x true negatives, but did not make a prediction for y
positives and z negatives, then the confusion matrix shown in Table 5.2 can be created.

From this confusion matrix, some useful statistics can be calculated to account for the
uncertainty produced by these uncertain classifications. The traditional definitions of sen-
sitivity and specificity can be re-imagined by defining what the predictive sensitivity s′ as
the sensitivity out of the points for which a prediction was made,

s′ =
u

u+ w
, (5.13)

and similarly, the predictive specificity t′ as the specificity for which a prediction was made,

t′ =
x

v + x
. (5.14)

Two other statistics are useful to describe the data in Table 5.2. We can define the positive
incertitude σ to be the fraction of positive cases for which the model could not make a
prediction,

σ =
y

u+ w + y
. (5.15)

Similarly, the negative incertitude τ can be defined as the total number of negative cases
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1 0 Total
Predicted 1 u v P+

Predicted 0 w x P−
No Prediction y z P×

Total T+ T− N

Table 5.2: Alternative confusion matrix where uncertain predictions are tabulated
separately.

for which the model could not make a prediction,

τ =
z

v + x+ z
. (5.16)

5.2.1 Algorithms to Estimate the Set

As the set described in Equation 5.5 is infinitely large, approaches need to be taken to
estimate it. Since any analysis of ILR(D) only requires knowledge of the maximum and
minimum π(x) values

([
π(x), π(x)

])
, the best-possible model would only need to contain

the models that produce extreme π(x) values.

Systematic Search

The ideal method of estimating the set is to search values from within the intervals system-
atically. This approach requires specifying P as the number of steps within the intervals,
then producing a logistic regression model as shown in Algorithm F0. This approach would
have complexity O(NP ) where P is the number of intervals within the set. So, whilst it
would be the method most accurate to the best-possible method of computing ILR (D) for
large datasets, this algorithm would be exceedingly time expensive and thus impractical.

Method of Minimum and Maximum Coefficients

Since it is only necessary to find the logistic regression models that correspond to extreme
values of π(x) for all π(x), it is possible to reduce the number of models that need to be
contained within ILR (D) to only those that make up the envelope of the set. These lines
can be estimated as

ILR(D) =
{
LR

(
D′

βi

)
,LR

(
D′

βi

)
∀i = 0, 1, . . . ,m

}
∪
{
LR (D) ,LR

(
D
)} , (5.17)

where D′
β0

is the dataset constructed from points within the intervals such that the value of
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β0 is minimised, D′
β0

is the dataset constructed from points within the intervals such that
the value of β0 is maximised, and so on. D corresponds to the dataset created by taking
the lower bound of every interval within D, similarly for D. For a dataset with m features,
there are 2m+2m models that are needed to find the bounds of the set. Algorithm F1 can
be used to find this set.

To illustrate, it is useful to first consider a linear regression model with intervals in the
dependent variables. Consider the two interval datapoints shown in Figure 5.3, (x1, y1) =
([1, 2], 2) and (x2, y2) = ([3, 4], 3).
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Figure 5.3: Intervals points (x1, y1) = ([1, 2], 2) and (x2, y2) = ([3, 4], 3).

Whilst there are infinitely many linear regression models (y = β0+β1x) that could be drawn
by selecting points from x1 and x2 there are four extreme values as shown in 5.4. In this
instance, the four regression lines (shown in Figure 5.4) are:

y = x (5.18a)

y =
1

3
x+

5

3
(5.18b)

y = x− 2 (5.18c)

y =
1

2
x+

3

2
(5.18d)

If we consider these four lines as a set and consider the imprecise regression model as the
envelope of this set, then we get the band shown in Figure 5.5. Six segments make up this
band (AB, BC, CD, EF , FG, GH). These lines correspond to lines with the minimum
and maximum β0 and β1 values plus the line drawn with the left-most and right-most values
from within the intervals.
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Algorithm F0: Systematic search to find ILR (D) if D has interval uncertainty
within its features.

Input: D =
{(([

x
(i)
j , x

(i)
j

]
∀i = 0, . . . ,m

)
, yj

)
∀j = 0, . . . , n

}
, Q steps

ILR (D)← {};
∆←

{
i−1
Q−1 ∀i = 1, . . . , Q

}
;

for all combinations
{
δ
(i)
j

}
∈ ∆ do

D′ ← D;
for all i ∈ {0, . . . ,m} do

for all j ∈ {0, . . . , n} do
D

′(i)
j ←

{
x
(i)
j + δ

(i)
j

(
x
(i)
j − x

(i)
j

)}
end

end
ILR (D)← ILR (D) ∪ {LR (D′)};

end
Output: ILR (D)

Algorithm F1: Method to find ILR (D) if D has interval uncertainty within its
features by calculating the minimum and maximum intercept and coefficients.

Input: D =
{(([

x
(i)
j , x

(i)
j

]
∀i = 0, . . . ,m

)
, yj

)
∀j = 0, . . . , n

}
D =

{((
x
(i)
j ∀i = 0, . . . ,m

)
, yj

)
∀j = 0, . . . , n

}
;

D =
{((

x
(i)
j ∀i = 0, . . . ,m

)
, yj

)
∀j = 0, . . . , n

}
;

ILR (D)←
{
LR (D) ,LR

(
D
)}

;
for i← 0 to m do

Using stochastic optimisation find D′
βi

such that LR
(
D′

βi

)
has the minimum

value of βi;
ILR (D)← ILR (D) ∪ {LR (D′)};
Using stochastic optimisation find D′

βi
such that LR

(
D′

βi

)
has the maximum

value of βi;
ILR (D)← ILR (D) ∪ {LR (D′)};

end
Output: ILR (D)
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Figure 5.4: Four extreme regression models that can be fitted from the two intervals.
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Figure 5.5: Envelope of the extreme lines shown in Figure 5.4.
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In theory, there are six possible models; it just so happens to be the case that the line which
contains β0 also has β1 and vice versa. Figure 5.6 shows 100 regression models fitted using
100 Monte Carlo samples for values within the intervals. The whole band between the black
lines would have been filled with enough samples or systematic sampling.
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Figure 5.6: One hundred regression models (shown in grey) fitted on Monte Carlo samples
for values within the intervals.

If we have four intervals instead of two, we can test how well the method finds the minimum
and maximum coefficient values alongside the all-left bound and all-right bound models.
Figure 5.7 shows four intervals and the band bounded by the six lines suggested to be
plotted. As before, we can sample values from within the intervals to check the performance
of the band.
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Figure 5.7: Imprecise linear regression model for the 4 intervals shown.
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Again we can test whether this imprecise model bounds all possible regression models for
values within the intervals. If we do a systematic sample of points within the four intervals,
we can find all valid linear regression models consistent with the intervals. The envelope of
these models is shown with the grey band in Figure 5.8. As can be seen, this band is not
entirely within the black lines. To measure how good an of estimate the method is, we can
let A be the area of the systematic bounds that are outside the bounds produced by the
proposed algorithm as a fraction of the total area found systematically. Ideally, we would
see A = 0, implying that the set perfectly covered the systematic bounds. For the model
shown in Figure 5.8, doing this gives a value A = 0.0311.

0 1 2 3 4 5
0

1

2

3

4

5

x

y

Figure 5.8: Comparison between the imprecise linear regression and bounds produced by a
systematic search.
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Figure 5.8a: Zoomed in version of Figure 5.8.
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Moving to logistic regression, Equation 5.1 can be written as

π(x) =
1

1 + exp−r(x) = σ(r(x)) (5.19)

where r(x) = β0+β1x and σ is the sigmoid function. Since we know that the 6-line method
is suitable for estimating the envelope of r(x) and the sigmoid function is monotonic, we can
use this method for logistic regression. The is the set represented by Equation 5.5 produced
by Algorithm F1.

If we consider two intervals with opposite binary labels, (x1, y1) = ([1, 2], 0) and (x2, y2) =

([3, 4], 1), shown in Figure 5.9, we can see that the endpoints of the intervals will produce
the minimum and maximum logistic regression models, as shown in Figure 5.10. As before,
these lines represent the minimum and maximum coefficient values.
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Figure 5.9: Two intervals with binary labels

Again we can test whether the envelope of these four models (in this case, just the two lines
that represent the models fitted on the endpoints of the intervals) will contain all possible
models for values within the intervals via systematic sampling. This is shown in Figure 5.11.
Figure 5.12 shows all six lines for the intervals shown compared to the systematic method,
with the black dashed lines representing the envelope of the set, with A = 0.0160.
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Figure 5.10: 4 extreme regression models that can be fitted from the two intervals.
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Figure 5.11: Envelope of the logistic regression models shown in Figure 5.10 and models
produced by systematically sampling the intervals (grey).
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Figure 5.12: Comparison of systematic approach against Algorithm F1.
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Minimum and Maximum Spread Approach

If the dataset contains a large number of intervals, then due to the increasing complexity
of the optimisation, Algorithm F1 may take a prohibitively long time to compute. In such
a situation, Algorithm F2 can be used to find the imprecise model. This algorithm uses
the heuristic that the extreme bounds are likely to be associated with the minimum and
maximum spread of points around particular values. The complexity of this approach is
O(2(1 + P )).

Algorithm F2: Minimum and Maximum spread approach to estimate ILR (D) if D
has interval uncertainty within its features. The procedures for finding the minimum
and maximum spread of points around a particular value can be found in Proce-
dures 5.1 and 5.2.

Input: D =
{(([

x
(i)
j , x

(i)
j

]
∀i = 0, . . . ,m

)
, yj

)
∀j = 0, . . . , n

}
D =

{((
x
(i)
j ∀i = 0, . . . ,m

)
, yj

)
∀j = 0, . . . , n

}
;

D =
{((

x
(i)
j ∀i = 0, . . . ,m

)
, yj

)
∀j = 0, . . . , n

}
;

ILR (D)←
{
LR (D) ,LR

(
D
)}

;
for all k = 1, . . . , P do

Find T such that πLR(D)(T ) =
k

P+1 ;
Find T such that πLR(D)(T ) =

k
P+1 ;

dmin ← minimum spread of points around T ;
dmax ← maximum spread of points around T ;
ILR (D)← ILR (D) ∪ {LR (dmin) ,LR (dmax)};

end
Output: ILR (D)

To illustrate this method, we need to reconsider Figure 5.10. Instead of considering that
the four lines correspond to the minimum and maximum intercept and coefficient values,
note that, as shown in Figure 5.13, the lines produced also represent the minimum and
maximum spread of values around x = 1, x = 2.5 and x = 4.
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Figure 5.13: Repoduction of Figure 5.10 showing that the extreme models can be
considered as the lines that correspond to the minimum and maximum spread of values

around x = 1, x = 2.5 and x = 4 (shown with grey lines).

This leads to another way of approximating Equation 5.5. If we x = 1 and x = 4 are
the minimum and maximum values from within the dataset, the minimum and maximum
spread around these points represent the all-left and all-right bound models. The x = 2.5

corresponds to the minimum and maximum slope of the logistic regression curve. Finding
the x value that corresponds to this extreme case is trivial when there are only two intervals,
however, is challenging for more complicated datasets.

One approach is to select P points from within the range of the dataset and the minimum
and maximum values themselves, giving 2 + P values to sample. For a dataset with m

features, this leads to (2 + P )m models that would need to be found.

An alternative approach is to first fit the all-left and all-right models (LR (D) and LR
(
D
)
),

then select P π values (π =
{

p
P+1 ∀p = 1, . . . , P

}
). For each of these P values we can find T ,

such that πLR(D)(T ) = P and T , such that πLR(D)(T ) = P . We can then find the datasets
that correspond to the minimum and maximum spread of values using Algorithm 5.1 and 5.2
respectively. This approach has complexity 2(1 + P ) and is the approach described within
Algorithm F2.

The bounds produced by this method for the same six intervals from Figure 5.12 are shown
in Figure 5.14. This plot has A = 0.0351 compared to the systematic search method.
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Algorithm 5.1: Procedure to find the minimum spread of the intervals in D around
T .

Data: D, T
for all Intervals (I =

[
i, i
]
) in D do

if T ∈ P then
Dmin(I) = T ;

else if T < P then
Dmin(I) = i;

else
Dmin(I) = i;

Output: Dmin

Algorithm 5.2: Procedure to find the maximum spread of the intervals in D around
T .

Data: D, T
for all Intervals (I =

[
i, i
]
) in D do

if T ∈ P then
if |i− T | > |i− T | then

Dmax(I) = i;
else

Dmax(I) = i

else if T < P then
Dmax(I) = i;

else
Dmax(I) = i;

Output: Dmax

133



NICHOLAS GRAY

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

x

π
(x
)

Systematic
Algorithm F2

Figure 5.14: Comparison of systematic approach against Algorithm F2 with P = 100.
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Monte Carlo

A straightforward and computationally expedient way of estimating the set is to use Monte
Carlo to find valid models. This approach, as shown in Algorithm F3, requires the analyst
to specify a desired number of iterations, then, for every iteration, make a new dataset by
sampling a random value from all intervals within the dataset, and then fit a model on this
new dataset. Often this sampling assumes the equidistribution hypothesis and thus models
the intervals as a uniform distribution. This approach is likely to underestimate the bounds
as Monte Carlo methods are unlikely to find the extreme models [168].

Figure 5.15 shows a comparison between a Monte Carlo search with 106 iterations and a
systematic search for the six intervals shown. As expected, the bounds from the Monte
Carlo method fail to enclose the total area revealed by the systematic search. In this case,
A = 0.166. A higher number of iterations would have led to a smaller A value.

5.2.2 Alternative Methods

Several authors have suggested different approaches to compute logistic regression models
with interval uncertainty. This section will consider three methods to compare with the
methods presented in this paper.

Midpoint

The most straightforward approach to dealing with interval data is to produce a precise
dataset by replacing the intervals with their midpoints and then fitting a dataset with this
midpoint data. i.e.

Dm =



x(i)j + x

(i)
j

2

 , yj

 ∀ [x(i)j , x
(i)
j

]
∈ D

 , (5.20)

then
LRm (D) = LR (Dm) . (5.21)

This dataset can then be used as a precise logistic regression model described in Section 5.1.

de Souza

de Souza et al. [244, 245] introduce several methods for characterising the uncertainty
with interval features. They conclude that the best method is to perform two separate
logistic regressions on the lower and upper bounds of the intervals and average the posterior
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Algorithm F3: Monte Carlo search to find ILR (D) if D has interval uncertainty
within its features.

Input: D =
{(([

x
(i)
j , x

(i)
j

]
∀i = 0, . . . ,m

)
, yj

)
∀j = 0, . . . , n

}
, P steps

ILR (D)← {};
for P iterations do

D′ ← D;
D

′(i)
j ← random value in

[
x
(i)
j , x

(i)
j

]
;

ILR (D)← ILR (D) ∪ {LR (D′)};
end
Output: ILR (D)
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Figure 5.15: Comparison of systematic approach against a Monte Carlo sample with 106

iterations.
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probabilities to obtain a pooled posterior probability. They find

LRdS (D) =
{
LR (D) ,LR

(
D
)}
, (5.22)

and then reduce this to a single logistic regression model based on the average of the
outputted probabilities:

πLRdS(D)(x) =
πLR(D)(x) + πLR(D)(x)

2
. (5.23)

Billard-Diday

Billard and Diday [241] propose a method, based upon Bertrand [240], for characterising
interval uncertainties within linear regression that they suggest can be easily extended to
logistic regression. Their method assumes that each value from within the interval is equally
likely, and therefore constructs the logistic regression models as the uniform mixture of N
logistic regression models that are fitted from random samples,

LRBD (D) =
{
LR (Dk) : Dk =

{{(
(r

(i)
j ), yj

)}
r
′(i)
j ∈

[
x
(i)
j , x

(i)
j

]}
k = 0, . . . , N

}
. (5.24)

Like de Souza, they then average the probability from all models,

πLRBD(D)(x) =
1

N

∑
∀l∈LRBD(D)

πl(x). (5.25)

This method is computationally the same as Algorithm F3 but takes the average of the
found models to produce a precise final model instead of taking the envelope to produce an
imprecise model.

5.2.3 Comparison of Methods

Dataset D1 from 5.1 has been intervalised into dataset D2 using the following transforma-
tion:

x′i = [m− ϵ,m+ ϵ]

where m is a number drawn from the triangular distribution T(xi − ϵ, xi + ϵ
6 , xi + ϵ) with

ϵ = 0.375 for all xi ∈ X. With this dataset we can use Algorithms F1, F2 and F3 to
construct ILR (D2), as is shown in Figure 5.16. It would have been too computationally
expensive to perform a systematic search using Algorithm F0.
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Figure 5.16 shows that Algorithm F1 produces the most comprehensive bounds and is
therefore most likely to represent the entire set described by Equation 5.5. The Monte
Carlo approach in Algorithm F3 produces the narrowest bounds with Algorithm F2.

For comparison, logistic regression models have been fitted using the methods described in
Section 5.2.2; these models are shown in Figure 5.17. Whilst there are subtle differences
between the different approaches, it is clear that they are all approximately equal. This
equivelence is unsurprising as they all implicitly make the equidistribution assumption that
a uniform distribution can represent the intervals.

It is also possible to consider situations where data is intervalised differently. Figure 5.18
shows four different intervalisations of dataset X as described in Table 5.3. In plot (a),
the intervalisation has occurred by placing the true value at the left edge of the interval;
similarly, in (b), the true value is at the right edge of the interval. In (c), the value of
x impacts the interval’s width, and in (d), the label impacts the intervalisation. In this
figure, imprecise models have been fitted on the datasets using Algorithms F1 F2 and F3
alongside the ‘true’ model (from Figure 5.1) and the midpoint model. The de Souza and
Billard-Diday methods are not shown due to their similarity with the midpoint model.

Looking at all these figures, we see that the imprecise model produced by Algorithms F1 and F2
always bounds the base model. As a result, any interval regression analysis performed would
be guaranteed to bound the true model. The model produced by Algorithm F3 fails to do
so in (a), (b) and (d). In (a) and (b) the fact that ILRF1 (D2◦) ̸⊆ ILRF2 (D2◦) and
ILRF2 (D2◦) ̸⊆ ILRF1 (D2◦) suggests neither Algorithm F1 nor Algorithm F2 is superior
to the other.

The figure also shows that there can be significant differences between the base and midpoint
models. The alternative approaches provide a good approximation of the true value if the
equidistribution hypothesis can be justified, as in plot (c). If the intervalisation depends on
the outcome, then the approaches appear inadequate, as is shown in plot (d). This implies
that the alternative approaches, and Algorithm F3, should only be used in cases within
which one can assume that the data has been intervalised independent of either the true
underlying value or the outcome status and each value within the interval is equally likely.

In many real-world datasets, the assumptions that the alternative methods rely on may
be unjustified or untennable, and in those scenarios, only the complete imprecise method
would guarantee coverage of the true model.
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Figure 5.16: Imprecise logistic regression models fitted using Algorithms F3 (with 104

iterations), F1 and F2 for the interval data (jittered for clarity). LR (D1) represents the
‘true’ model from Figure 5.1.
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Figure 5.17: Imprecise logistic regression model fitted using Algorithm F1 and logistic
regression models fitted using the alternative methods in Section 5.2.2 for the interval

dataset (jittered for clarity).

139



NICHOLAS GRAY

0

0.2

0.4

0.6

0.8

1
(a)

LR (D1) LRm (D2◦)

Algorithm F1 Algorithm F2 Algorithm F3
(b)

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1
(c)

0 2 4 6 8 10

(d)

Figure 5.18: Logistic Regression models fitted on interval data that has been intervalised
in the biased ways shown in Table 5.3. In all plots, LR (D1) is the precise model shown in

Figure 5.1.

Plot Intervalisation
(a) D2a = {([xi, xi + 2], yi) ∀(xi, yi) ∈ X}
(b) D2b = {([xi − 2, xi], yi) ∀(xi, yi) ∈ X}

(c) D2c =



xi if xi < 2.5

[m− 0.25,m+ 0.25] , m ∈ U(xi ± 0.25) if 2.5 ≤ xi < 5.0

[m− 0.75,m+ 0.75] , m ∈ U(xi ± 0.75) if 5.0 ≤ xi < 7.5

[xi, xi + 1.5], if 7.5 < xi

, yi

 ∀(xi, yi) ∈ X


(d) D2d =

{({
[xi, xi + 1.5] if yi = 1

[xi − 1.5, xi] otherwise
, yi

)
∀(xi, yi) ∈ X

}

Table 5.3: Intervalisations used in Figure 5.18.

140



INTERVAL UNCERTAINTY IN LOGISTIC REGRESSION

5.2.4 Red Wine Example

In order to demonstrate the methodology on a real-world dataset, we can use the red wine
dataset from [262]. This dataset contains 11 covariates∗ that can be used to predict the
quality of the wine sample based on a scale from 0 to 10. In order to provide a binary
classification, we define wine as ‘good’ if it has quality ≥ 6. The dataset contains 1599
samples, of which 855 have been classified as good wine. Let R be the dataset with added
uncertainties and R† be the original (true) dataset.

In order to fit the logistic regression model, the dataset has been split into training and test
subsets containing half the data in each. To intervalise the data, values have been turned
into intervals based on the number of significant figures within the model (for example, 0.5
would become [0.45, 0.55]). An imprecise model can then be fitted on the dataset using
Algorithm F2.

It is helpful to consider visualisations when discussing the classifier’s performance (Fig-
ure 5.19). The simplest of these is the scatter plot shown in Figure 5.19a. From the plot,
most of the wines rated as good were given a high π value, and vice versa for the bad
wines–although no wine was given a very low π. There is, however, substantial overlap
between the two groups. The plot also shows that some wines have a wide interval π. The
plot also shows the size of the intervals for π. In this instance, all intervals are reasonably
consistent and not overly wide.

We can also construct ROC plots and calculate their AUCs, as shown in Figure 5.19b. In
this plot, we can see that the LR

(
R†) and LRm (R) curves are only subtly distinguishable

from each other. The same is also true of LRdS (R) and LRBD (R). The imprecise model
bounds all of these. Additionally, for the imprecise model, we can plot a ROC curve for
when the model abstains from making a prediction. In this instance s′ is plotted against
fpr′(= 1− t′). This ROC curve outperforms the others.

The AUC for the curves are:

AUC [ILR (R)] = [0.742, 0.872],

AUC [ILR (R)(Abstain)] = 0.834,

AUC[LR
(
R†)] ≈ AUC [LRm (R)] = 0.818,

and
AUC[LRdS (R)] ≈ AUC[LRBD (R)] = 0.813.

∗Fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur dioxide,
density, pH, sulphates and alcohol.
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Good Wine Bad Wine Total
Predicted Good [279,329] [68,109] [347,438]
Predicted Bad [99,149] [263,304] [362,453]

Total 428 372 800
(a) Tabulating inconclusive results as [0,1] intervals.

Good Wine Bad Wine Total
Predicted Good 279 68 347
Predicted Bad 99 263 362
No Prediction 50 41 91

Total 428 372 800
(b) Tabulating inconclusive results separately.

Table 5.4: Two possible confusion matrices for 100 test samples from the imprecise logistic
regression model shown in Figure 5.12.

Classifications about whether a wine is good or not can be made. Selecting a threshold value
of 0.5 gives the confusion matrices shown in Table 5.4. There are two possible interpretations
of how the intervals can be expressed within the confusion matrices shown in Table 5.4a.
The intervals are plotted directly within the matrix giving the following statistics: s =

[0.652, 0.769] and t = [0.707, 0.817]. Allowing the model to abstain as in Table 5.4b implies
that there are 91 wines for which a prediction could not be made solely as a result of the
imprecision of the model. The summary statistics from this confusion matrix are: s′ = 0.738,
t′ = 0.795, σ = 0.117 and τ = 0.110.

5.3 Uncertainty in Labels

This set-based approach can be extended to the situation where there is uncertainty about
the outcome status meaning there are some points for which we do not know the binary
classification and can be represented as the dunno interval [0, 1]. In this situation the
dataset D contains p variables with corresponding labels (x1, y1), (x2, y2), · · · , (xp, yp) but
also q variables for which the label is unknown (xp+1, ), (xp+2, ), · · · , (xp+q, ). For simplicity,
we shall refer to the points with labels as being in set d and those without labels in set u,
D = d ∪ u.

It is important to note that, whilst formally, all possible unobserved – and therefore unla-
belled – x values could be considered to be in set u, this should not be considered the case.
The datapoints that are in u only contain x values that have been observed, but for which
the label is unidentified for some reason. This may be due to a participant dropping out of a
medical trial before it concludes or there if there are disagreement between expert labellers
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(a) Scatter plots of probability vs outcome for ILR (R).
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(b) Receiver operating characteristic curve for the simple example with added uncertain
classifications.

Figure 5.19: Plots to show the discriminatory performance of the logistic regression
models for the red wine example.
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about the true clasification. Thus, it is not the case that one can increase the number of
points in u by introducing arbitrary new x values.

Traditional analysis may ignore all the points in u. However, they can be included within the
analysis by considering the set of logistic regression models trained on all possible datasets
that are valid based upon the uncertainty. This set of datasets can be created by setting all
unlabelled values to 0, then setting all unlabelled values to 1, and all combinations thereof,
i.e.

ILR =


LR(D′) ∀D′ ∈



d ∪ {(xp+1, 0), · · · , (xp+q, 0)}
d ∪ {(xp+1, 0), · · · , (xp+q, 1)}

...
d ∪ {(xp+1, 1), · · · , (xp+q, 0)}
d ∪ {(xp+1, 1), · · · , (xp+q, 1)}




. (5.26)

There are 2q possible logistic regression models within this set. An imprecise logistic regres-
sion model can then be created by finding the envelope of the set, as shown in Algorithm L1.
As the computational time for this algorithm increases as O(2q), then as q increases finding
the bounds by calculating the envelope for all possible combinations can become computa-
tionally expensive.

Algorithm L2 reduces the number of models that need to be fitted to find an estimate for
the imprecise bounds. This algorithm first finds the logistic regression model assuming all
uncertain labels are 0 and the logistic regression model assuming all uncertain labels are
1. The uncertain points are then split into three groups: G1 contains points which have a
low π value† with both models, G2 contains points which have a high π value‡ with both
models, and all other points are in G3

§. The algorithm assumes that the most extreme
models can be found by giving all the points in G1 the same label, all the points in G2 the
same label and only finding all possible combinations of labels for the points within G3.
This algorithm reduces the number of logistic regression models fitted to 2+ 22+q′ where q′

is the number of points in G3.

5.3.1 Alternative Methods

Exclude Uncertain Results

The most straightforward approach to dealing with this is to remove the uncertain results
from D to produce D× and a precise logistic regression model LR× (D). This approach may

†always(π ≤ 0.5).
‡always(π > 0.5).
§0.5 ∈ π.
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Algorithm L1: Algorithm to find ILR (D) if D has interval uncertainty within its
labels.

Input: d = {(xi, yi) ∀i = 0, . . . , p}; u = {(xj , [0, 1]) ∀j = 0, . . . , q}; D = d ∪ u
ILR (D)← {};
for all combinations C ∈ {(0, . . . , 0), (0, . . . , 1), (1, . . . , 0), (1, . . . , 1), · · · } do

D′ ← d ∪ {(xj , Cj) ∀xj ∈ u};
ILR (D)← ILR (D) ∪ LR (D′);

end
Output: ILR (D)

Algorithm L2: Algorithm to find ILR (D) if D has interval uncertainty within its
labels using heuristics to reduce the number of iterations needed.

Input: d = {(xi, yi) ∀i = 0, . . . , p}; u = {(xj , yj = [0, 1]) ∀j = 0, . . . , q}; D = d ∪ u
D(1,...,1) ← d ∪ {(xj , 1) ∀xj ∈ u};
D(0,...,0) ← d ∪ {(xj , 0) ∀xj ∈ u};
Find LR

(
D(1,...,1)

)
and LR

(
D(0,...,0)

)
;

G1 ← {}; G2 ← {}; G3 ← {};
for all uj = (xj , yj) ∈ u do

if πLR(D1,...,1)(xi) < 0.5 and πLR(D0,...,0)(xi) < 0.5 then
G1 ← G1 ∪ {uj}

else if πLR(D1,...,1)(xi) > 0.5 and πLR(D0,...,0)(xi) > 0.5 then
G2 ← G2 ∪ {uj}

else
G3 ← G3 ∪ {uj}

end
end
for all A in {0, 1} do

for all B in {0, 1} do
for all combinations C ∈ {(0, . . . , 0), (0, . . . , 1), (1, . . . , 0), (1, . . . , 1), · · · } do

D′ ← d ∪ {(xj , A) ∀(xj , yj) ∈ G1} ∪ {(xj , B) ∀(xj , yj) ∈ G2} ∪
{(xj , Cj) ∀(xj , yj) ∈ G3};
ILR (D)← ILR (D) ∪ LR (D′);

end
end

end
Output: ILR (D)
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be valid if the missing data is small compared to the total dataset size and if it is missing
(completely) at random.

Semi-Supervised Logistic Regression

Semi-supervised learning methods extend supervised learning techniques to cope with addi-
tional unlabelled data. Numerous authors present semi-supervised logistic regression meth-
ods based on a variety of different methods: Amini and Gallinari [254] use Classification
Expectation Maximisation; Krishnapuram et al. [263] and Chi et al. [256] use Bayesian
methods; Bzdok et al. [264] use an autoencoder and a factored logistic regression model;
Chai et al. [265] combine active learning and semi-supervised learning to “ achieve better
performances compared to the widely used semi-supervised learning and active learning
methods.” In all cases, it is important that the smoothness, clustering and manifold as-
sumptions are valid to use semi-supervised learning techniques [255].

For this analysis, we have used the scikit-learn’s semi-supervised learning algorithm, which
uses Yarowsky’s algorithm to enable the logistic regression to learn from the unlabelled data
[232, 266].

5.3.2 Demonstration

Dataset D3 has been created from dataset D1 by replacing five labels from the dataset with
the [0, 1] interval. The labels that have been changed are around the point at which the data
goes from 0 to 1. This dataset is shown in Figure 5.20, with the uncertain labels plotted as
vertical lines. The figure shows all the logistic regression models that have been fitted using
both Algorithms L1 (grey lines) and the boounds produced by Algorithm L2 (blue lines).
Since the blue lines always correspond to the extremum of the grey lines, Algorithm L2 has
correctly estimated the imprecise bounds, and any interval π value found from imprecise
models is guaranteed to contain the true value.

Figure 5.21 shows the imprecise logistic regression model that is trained on this uncertain
dataset, and for comparison, the model trained on the dataset with the dunno labels re-
moved, LR× (D3), and the semi-supervised model, LRss (D3). From the figure, it is notable
that LR× (D3) and LRss (D3) are similar.

As in Section 5.2.3, it is helpful to consider different scenarios within which the labels
have been removed. Figure 5.22 shows four different scenarios within which the data has
been made uncertain, and the imprecise logistic regression models have been fitted using
Algorithm L2. Using this algorithm allowed plot (b) to be computed since Algorithm L1
would have required 220 models to be fitted and have been computationally prohibitive.
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Figure 5.20: Imprecise logistic regression model with the uncertain labels represented by
the vertical lines. The grey lines represent all possible models found using Algorithm L1.

The blue lines are the bounds found using Algorithm L2.
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Figure 5.21: Bounds for the imprecise logistic regression or all 50 points with 5 points
made uncertain. Compared with LR× (D3) and LRss (D3).
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In all four plots, the imprecise model bounds the base model. It is also notable that the
semi-supervised and discarded data approaches are similar in all the plots.

This plot demonstrates that if it can be assumed that the labels are missing (completely) at
random, as in (a) and (b), the two alternative approaches are reasonably close to the true
model. However, if this is not the case, then there are significant differences between the
approaches and the imprecise method must be used to obtain a model that is guaranteed
to bound the true model.
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Figure 5.22: Four different scenarios within which dataset D1 has had labels removed. D3a

has five labels missing at random. D3b has ten labels missing at random. D3c has eight 1
labels missing. D3d has eight 0 labels missing.
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5.3.3 White Wine Example

As in Section 5.2.4 it is useful to consider this methodology on a real dataset. In this
instance, we will use the white wine dataset from Cortez et al. [262, 267]. This dataset
contains the same covariates as the red wine dataset used in Section 5.2.4 but contains many
more samples (4898). Again ‘good’ wine has been defined as having a quality ≥ 6. This
data has been split into training and test samples, with 1618 and 3281 samples, respectively.
In order to simulate sommeliers being unsure about the classification of marginally good
wine, 100 samples with quality = 6 have had their labels removed. Let W be the uncertain
dataset and W † is the original dataset. Algorithm L2 can be used to fit the imprecise
logistic regression model on this dataset. For comparison, LRss (W ) and LR× (W ) have
also been found.

The discrimination plots for these models are shown in Figure 5.23. Figure 5.23a shows that
very few points have been given a low probability of being bad wine. Most of the bad wine
has π ≈ 0.5 whereas good wine has a high probability (π ≈ 0.9). This plot suggests that
when making classifications from the model, selecting a threshold value of C = 0.7 would
be an appropriate choice to distinguish between the two classes. ROC curves can also be
plotted. As with the previous examples, the precise models all have very similar curves and
AUC values which the abstaining model ‘beats’. In this case:

AUC [ILR (W )] = [0.716, 0.826],

AUC [ILR (W )(Abstain)] = 0.794,

and
AUC[LRss (W )] ≈ AUC[LR× (W )] ≈ AUC[LR

(
W †)] = 0.774.
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(a) Scatter plots of probability vs outcome for ILR (W ).
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(b) Receiver operating characteristic curve for the simple example with added uncertain
classifications.

Figure 5.23: Plots to show the discriminatory performance of the logistic regression
models for the white wine example.
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5.4 Uncertainty in Both Features and Labels

The imprecise approach can be used when there is uncertainty about both the features and
the labels. Such situations are present in numerous real-world datasets. An imprecise logis-
tic regression model can be found in this scenario through a combination of the algorithms
in Sections 5.2 and 5.3.

5.4.1 Example

Osler et al. [61] use a logistic regression model to predict the probability of death for a
patient after a burn injury. The model they use is based upon a subset of data from the
American Burn Association’s National Burn Database¶. The dataset has a mix of discrete
(gender, race, flame involved in injury, inhalation injury) and continuous variables (age,
percentage burn surface area) that can be used to model the probability that a person dies
(outcome 1) after suffering a burn injury. Osler et al. excluded some patients from the
dataset before training their model. They removed patients if their age or ‘presence of
inhalation injury’ was not recorded. Additionally, as patients older than 89 were assigned
to a single age category in the original dataset, they gave them a random age between 90
and 100 years.

Osler et al. did not need to exclude these patients merely because of epistemic uncertainty
about the values. The methods proposed within this chapter can be used with the original
imprecise data. For instance, patients for which the outcome was unknown could have
been included within their analysis as described in Section 5.3. Similarly, patients whose
inhalation injury or age was unknown could have been included with the method described
in Section 5.2. Patients with unknown inhalation injury could have been included as the
[0, 1] interval. Patients whose age was completely unknown could have been replaced by an
interval between the minimum and maximum age, whereas if there was uncertainty because
they were over 90 years old, then they could be intervalised as [90, 100].

Other interval uncertainties may be present within the dataset. It is unlikely to be the case
that all the people used within the study fit neatly into the discrete variables given, for
instance the variable race is valued at 0 for “non-whites” and 1 for “whites”. However, it
goes without saying that the diversity of humanity does not fall into such overly simplified
categories; there are likely to be many people who could not be given a value of 0 or 1 and
should instead have a [0, 1] value. The same is true for gender. Not everyone can be defined
as male or female. Also, there is almost certainly some measurement uncertainty associated
with calculating the burn surface area that may also be best expressed as intervals. For

¶http://ameriburn.org/research/burn-dataset/.
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simplicity, these uncertainties have not been addressed below.

For this analysis, the subsample of the dataset used by Osler et al. made available by
Hosmer Jr et al. [62, p. 27] has been used. This version of the dataset includes 1000
patients from the 40,000 within the entire study and has a much higher prevalence of death
than the original dataset. Because access to the original data is prohibitively expensive, the
values in this dataset have been re-intervalised to replicate some of the removed uncertainty
to create a hypothetical dataset, B, for this exposition. As there are no individuals older
than 90 within the dataset, that particular re-intervalisation has not been possible, so all
patients older than 80 have had their ages intervalised as [80,90]. Similarly, for 20 patients,
the censored inhalation injury has been restored to dunno interval. Ten patients, who had
been dropped because their outcome status was unknown, have been restored with status
represented as [0,1].

There are two possible routes for an analyst to proceed when faced with such a dataset.
They could follow the original methodology of Osler et al. and randomly assign patients
with interval ages a precise value and then discard all other patients for which there is some
uncertainty. Alternatively, the analyst could include the uncertainty within the model
by creating an imprecise logistic regression model. As there is uncertainty within both
the features and the labels, the model can be estimated by finding the values within the
intervals that correspond to the minimum and maximum for β0, β1, etc. ILR(B) is the
imprecise logistic regression fitted from this burn data. For comparison, LR(B×) has also
been fitted based on removing the uncertainty in B using the same methodology as Osler.

Regarding the performance of the two models, we can again turn to visualisations, as
shown in Figures 5.24 and 5.25. Firstly, looking at Figure 5.25 we can see that the vast
majority of patients who were given a low probability of death (π) did indeed survive, and
patients who were given a high probability of death died. The ROC plots are shown in
Figure 5.24; Figure 5.24a shows the upper right corner of the plot in more detail. ILR(B)

has AUC = [0.955, 0.974], the no prediction model has AUC = 0.972 and LR(B) has
AUC = 0.966.

It is pertinent to consider how a model is likely to be used and how uncertainty about the
predicted probability of death impacts the classification. One method of dealing with this
uncertainty that arises in Sections 5.2 and 5.3 is not making a prediction when the interval
for π straddles C. This method may not be appropriate in this example. What should
happen when the model is unable to make a prediction should depend on what the result of
deciding a patient has a high-risk of death means clinically. If the model was being used to
triage patients that need to go to a major trauma centre because the probability of death is
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Figure 5.24: Receiver operating characteristic curves for the burn dataset example.
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Figure 5.24a: Zoomed version of 5.24
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Figure 5.25: Scatter plots of probability vs outcome. The two outcomes have been
separated into different plots for clarity.
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considered high, then – out of an abundance of caution – one might prefer that if any part of
the interval probability was greater than some threshold, the patient should be considered
high-risk. This is equivalent to taking the probabilities from the upper bound of the range,

high-risk =

1, if π ≥ C

0, otherwise.
(5.27)

However, if patients who are considered high-risk then undergo some life-altering treatment
that is perhaps only preferable to death, then under the foundational medical aphorism of
“first do no harm”, it may be preferable to consider a patient high-risk only if the whole
interval is greater than the decision threshold, this is equivalent of taking the probabilities
from the lower bound of the range,

high-risk =

1, if π ≥ C

0, otherwise.
(5.28)

Using the imprecise model in these scenarios would lead to better outcomes as the epistemic
uncertainty would not be ignored. It is also the case that if a patient that has a wide interval
(as is the case for some in Figure 5.25), implying that there is large epistemic uncertainty
about the prediction, the medics would be aware of the uncertainty associated with the
model and therefore may prefer to decide another way.

5.5 Discussion

Analysts face uncertainties in the measurement values of their data. Often this uncertainty
is either assumed away or just completely ignored. However, it may be better to compute
with what we know rather than to make assumptions that may need to be revised later.
Many uncertainties are naturally expressed as intervals arising from measurement errors
and missing or censored values. In the case of logistic regression, when faced with interval
uncertainties, samples are often dropped from analyses – assuming that they are missing
(completely) at random – or arbitarily replaced by a single value. Analysts should not
simply throw this uncertainty away to make subsequent calculations easier.

Interval uncertainties can be included within logistic regression models by considering the
set of possible models as an imprecise structure, including in situations where there is
uncertainty about the binary outcome status. The present analysis showed that it is not
reasonable to throw away data when the status is unknown if the reason the data has gone
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missing is dependent on the value or status of the missing samples. The case studies showed
that previous methods used to handle interval uncertainties are ill-suited to situations where
the narrow assumptions that they rely upon are untenable or unjustified. The methods
based upon imprecise probabilities described in this chapter work whenever there are interval
uncertainties in the data, regardless of how they happened to arise.

The imprecise approach presented within this chapter introduces two distinct uncertainties
within logistic regression models. The first is the uncertainty about what the expected
label for a particular x should be, expressed in an aleatoric way by considering π(x) as a
probability. The second type of uncertainty, added by imprecise logistic regression models,
is the epistemic uncertainty expressed by the interval π(x) values.

Some may think that, in the case of label uncertainty, it seems counterintuitive that adding
unlabelled examples yields an important uncertainty, despite the fact that the unlabelled
examples appear uninformative and thus useless. However, it is essential to consider that
there is a critical distinction between not knowing a label for some arbitrary value and
knowing that we do not know a label for a directly observed value. In the latter case,
there is information in the fact that it is known that the label is unknown. As shown
by Figure 5.22, if an analyst can not assume that the labels are missing (completely) at
random, they cannot say that they are uninformative.

Additionally, it is not the case that these uncertain points are being ‘added’. They are not
being removed or assumed away, as would have been the case in traditional analyses. Pre-
viously, analysts did not have methods to characterise this epistemic uncertainty, whereas
the presented methods enable analysts to keep their interval data and not neglect them.
The situation may occur when one dataset contains precisely known values and another
dataset with interval data. Whilst it may seem obvious to pool this data into a big dataset,
it may not be the case that bigger data is better data, especially if there is more uncertainty
in the pooled dataset. For a full discussion about combining datasets with different levels
of imprecision, see Tretiak and Ferson [268].

If the uncertainty within the dataset can be assumed to be missing (completely) at random,
the intervals are small compared to the underlying size of the data, or the equidistribution
hypothesis holds, analysts may be justified in not performing an imprecise logistic regression
and using one of the alternative methods reviewed in this chapter. However, if there is doubt
about whether these assumptions hold, then the methods like those presented within here
should be used to characterise this uncertainty. It has always been easy to get wrong
answers; thus, whilst the algorithms presented within this chapter are computationally
expensive, only they will account for the full uncertainty within the dataset.
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When using the new approach to classify, each new sample gets an interval probability of
belonging to one of the binary classifications. Therefore, there are likely to be samples for
which a definitive prediction cannot be made. If an analyst is happy to accept a don’t know
result, then the regression’s performance as a classifier may be improved for the samples
for which a prediction is made. It may seem counterproductive or unhelpful for a model to
return a don’t know result. However, this can be desirable behaviour; saying “I don’t know”
is perfectly valid in situations where the uncertainty is large enough that a different decision
could have been reached. As dicussed in Chapter 1, uncertainty in the output can allow
for decisions made by algorithms to be more humane by requiring further interrogation
to make a classification. Alternatively, depending on the use case, other ways of making
decisions based on uncertain predictions could be made, such as being conservative or cost-
minimising. Although deciding indeterminate predictions at random would be capricious.

Within many active learning systems, the model is already forced to abstain from predicting
labels for samples when the probability is close to the decision boundary (π(x) ≈ C) so that
a human can provide a classification [265, 269]. If the imprecise logistic regression model
presented in this chapter were used in such a system, it would have the advantage of clearly
providing a criteria for which abstentions are prefered, as opposed to a post-hoc decision
based upon an arbitrary definition of how close to the boundary is too close. Additionally,
this method exposes samples for which the model returns broad interval probabilities even
if their centre is not close to the decision boundary and would have been considered a
clear decision previously. If an abstention region is provided, then any interval probability
produced from the model that straddles the region would be indeterminate.

This work has shown that it is possible to include interval uncertainty in both outcome
status and predictor variables within logistic regression analysis by considering the set of
possible models as an imprecise structure. Such a method clearly can express the epis-
temic uncertainties within the dataset that are removed by traditional methods. Future
work should be invested in finding improved algorithms to make them less computationally
expensive for large-scale datasets.
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Chapter 6

Impact of Testing Uncertainty in
COVID

Preface This chapter is a modified version of N. Gray, D. Calleja, A. Wimbush, E. Miralles-
Dolz, A. Gray, M. De Angelis, E. Derrer-Merk, B.U. Oparaji, V. Stepanov, L. Clearkin, and
S. Ferson. Is “no test better than a bad test”? Impact of diagnostic uncertainty in mass
testing on the spread of COVID-19. PLoS ONE, 15(10), 2020. doi: 10.1371/journal.pone.
0240775.

The model used in this chapter is a new agent-based SIR model instead of the bino-
mial SIR model used within the original paper. The new model is better able to char-
acterise the dynamics of the mass testing strategies employed in the United Kingdom.

At the start of the COVID-19 pandemic in the United Kingdom, the government’s epidemic
management strategy was influenced by epidemiological modelling conducted by several re-
search groups [270, 271]. The analysis of possible mitigation and suppression strategies
influenced the government’s approach throughout the pandemic. In March 2020, the lock-
down of large parts of society, including school closures, quarantining of infected individuals
(self-isolation) and social distancing of the entire population, was considered the “only vi-
able strategy” to suppress the pandemic [272, 273]. Similar analyses in other countries led
to over half the worlds population in some form of lockdown by April 2020, and over 90%
of global schools closed [274, 275].

When these measures were introduced, it was apparent that the eventual relaxation of
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lockdown measures was going to be problematic [272]. It was also evident at the time of the
first lockdown that the risk of a second wave was significant without a considered cessation
of the suppression strategies. Moreover, this wave would possibly be of greater magnitude
than the first as the SARS-CoV-2 virus would be endemic in the population [276, 277]. This
eventually turned out to be accurate, with further full lockdowns in November 2020 and
January 2021, with the end of all restrictions finally occurring in February 2022 [278].

Throughout the pandemic, testing was a key pillar employed by governments to help guide
public policy. During the pandemic’s initial stages, much attention was focused on the
number of tests being conducted [279, 280]. With the direction of the World Health Or-
ganisation declaring the need to “test, test, test” [281]. Governments strived to increase
the number of tests they could perform rapidly. For instance, on 2nd April 2020, the then
Secretary of State for Health, now reality TV ‘star’, Matt Hancock, announced that the
UK would increase the number of daily tests to 100,000 per day by the end of that month
and that “No test is better than a bad test” [282, 283]. In this chapter, the validity of this
claim is explored.

As discussed in Chapter 4, all tests are imperfect, including those for COVID-19. With the
hysteria about countries not performing enough tests early in the pandemic, not enough
attention was given to the issues of imperfect testing, despite evidence suggesting they are
epidemiologically significant [284–287]. The failure to detect the virus in infected patients
can be a significant problem in high-throughput settings operating under severe pressure
[288].

Several tests were used during the pandemic, but they fall into two distinct classes: ‘have you
got it?’ tests for detecting active cases, and the ‘have you had it?’ tests for the presence of
antibodies, which imply some immunity to COVID-19. Within the UK, two different testing
technologies were used for active viral testing: lab-based reverse transcription polymerase
chain reaction (PCR) tests and at-home lateral flow tests [289, 290]. Although much hyped
when first suggested [291, 292], there was never a widespread antibody testing programme
within the UK.

These two classes of tests need to maximise different test characteristics. Active viral tests
need to maximise the sensitivity to help control pandemics. High sensitivity reduces the
chance of missing people who have the virus, who may then go on to infect others. There is
an additional risk that an infected person who has been incorrectly told they do not have
the disease, when in fact they do, may behave in a more less conservative manner than if
their disease status were uncertain.

The second testing approach, seeking to detect the presence of antibodies to identify those
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who have had the disease, would be used in a different strategy. This strategy would involve
detecting those who have successfully overcome the virus and are likely to have some level
of immunity (or at least reduced susceptibility to severe illness if they are infected again),
so they are relatively safe to relax their personal social distancing measures. This strategy
would require a high test specificity, aiming to minimise how often the test tells someone
they have had the disease when they have not [293]. A false positive tells people they have
immunity when they do not, which is even worse than when people are uncertain about
their viral history. Although not implemented using antibody tests during the COVID-19
pandemic, the immunity passport idea did reappear in discussions about vaccine passports
[294, 295], especially for international travel [296].

6.1 Evidence COVID-19 Tests Were Imperfect

The early success in 2020 of South Korea, Singapore, Taiwan and Hong Kong in limiting
the impact of the SARS-CoV-2 virus was attributed to their ability to deploy widespread
testing, with digital surveillance, and impose targeted quarantines in some cases [288]. This
testing was predominantly based on the use of PCR tests. During the 2009 H1N1 pandemic,
the rapid development of high-sensitivity PCR assayes was employed early with some success
in that global pandemic [297]. When well-targeted, these tests provide a valuable tool for
managing and tracking pandemics.

Early PCR tests formed the basis of much of the research into the incidence, dynamics
and comorbidities of SARS-CoV-2, but few, if any, of these studies considered the impact
of false test results [298–302]. It may be that false test results contributed to some of the
counter-intuitive disease dynamics observed early in the pandemic [303].

There was evidence that both PCR tests [304–308] and antibody [309–311] tests lacked
perfect sensitivity and specificity even in best-case scenarios. Alternative screening methods
such as chest x-rays may be found to have high sensitivity based on biased data [312] or
may perform poorly even compared to imperfect RT-PCR tests [307]. The Foundation for
Innovative New Diagnostics (FIND) evaluated five RT-PCR tests, scoring highly out of
17 candidate tests on criteria such as regulatory status and availability [313]. Even ideal
laboratory conditions can produce a specificity which could be as low as 90%, and the
real-world specificity is likely to be lower still.

PCR tests for COVID-19 were considered the gold standard active virus test but, as they
required laboratory analysis, were expensive and took several days to return a result to an
individual suspected of having COVID. As a result, there was a desire to introduce lateral
flow tests that could provide results in as little as 15 minutes. These tests were known when
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first introduced to be imperfect [314]. Whilst there was debate about the efficacy of mass
testing [315–317], at various points over 1 million of these tests were performed daily in the
UK [318].

6.2 SIR Modelling

SIR models offer one approach to explore infection dynamics, and the prevalence of a
communicable disease. In the generic SIR model, there are S people susceptible to the
illness, I people infected, and R people who are recovered with immunity. Infected people
are able to infect susceptible people at rate β and they recover from the disease at rate γ
[319]. Once infected persons have recovered from the disease they are unable to become
infected again or infect others. This may be because they now have immunity to the disease
or because they have unfortunately died. Within this basic SIR model, the assumption
appears to be incorrect for COVID-19 [320].

Deterministically, at time t the number of individuals in each of the states is given by:

St = St−1 −∆S,I (6.1)

It = It−1 +∆S,I −∆I,R (6.2)

Rt = Rt−1 +∆I,R (6.3)

where St−1 is the number of suseptable individuals at the previous time set and

∆S,I =
βSt−1It−1

St−1 + It−1 +Rt−1
(6.4)

∆I,R =
γIt−1

St−1 + It−1 +Rt−1
. (6.5)

Figure 6.1 shows a schematic of the generic model formulation, and how people move be-
tween the states.

The SIR model has two ways in which the number of new infections falls to zero. Either
the number of susceptible people reduces to a point at which the disease can no longer
propagate, perhaps because of a vaccine or natural immunity, or the epidemic stops if the
basic reproduction rate, R0, of the disease falls below 1 due to social distancing or effective
viral suppression:

R0 =
β

γ
. (6.6)

Figure 6.2 demonstrates the typical disease dynamics.
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S I R∆S,I ∆I,R

Figure 6.1: Diagram for a basic SIR model. The black arrows show how people move
between the different states.
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Figure 6.2: Generic SIR model run with I(t = 0) = 0.0001, β = 0.3 and γ = 0.1.
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6.2.1 SIR Model with Testing

To explore the effect of imperfect testing on the disease dynamics when strategies are
employed to relax the current social distancing measures the classic SIR model has been
modified. Three new classes were added to the model: the first is a quarantined susceptible
state, QS, the second is a quarantined infected state, QI, and the third is people who have
recovered but are in quarantine, QR.

To model lockdown scenarios, the evaluations begin with a majority of the population in
the QS state. Whilst in this state the transmission rate of the disease is totally suppressed.
The model evaluates each day’s average population-level state transitions. There are two
possible tests that can be performed:

• An active virus infection test that is able to determine whether or not someone is
currently infectious. This test is performed on some proportion of the unquarantined
population (S + I +R). It has a sensitivity of sA and a specificity of tA.

• An antibody test that determines whether or not someone has had the infection in
the past. This is used on the fraction of the population that is currently in quarantine
but not infected (QS +QR) to test whether they have had the disease or not. This
test has a sensitivity of sB and a specificity of tB.

These two tests are used on some of those eligible for testing each day, Π infectious people
and Φ susceptible people, up to a total number of tests that can be performed, C. A
person (in any category) who tests positive in an active virus test transitions into the
(corresponding) quarantine state, where they are unable to infect anyone else. A person,
in QS or QR, who tests positive in an antibody test transitions to S and R respectively.
There is no transition R to or from QR for active virus tests as this would have no impact
on the dynamics of the model.

For this parameterisation the impact of being QS makes an individual insusceptible to being
infected. Similarly, individuals in QI are unable to infect anyone else and remain in that
state until they recover from the virus. In reality adherence to full self-isolation was only
42.5% [321], but for the sake of exploring the impact of testing uncertainty these effects
are neglected from the model. The participation in infection propagation of individuals in
either quarantine state are idiosyncratic, and on average are assumed to be negligibly small
for the sake of this analysis.
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The deterministic equations for this system are:

St = St−1 −∆S,QS +∆QS,S −∆S,I , (6.7)

QSt = QSt−1 +∆S,QS −∆QS,S , (6.8)

It = It−1 +∆S,I −∆I,QI −∆I,R, (6.9)

QIt = QIt−1 +∆I,QI −∆QI,R, (6.10)

Rt = Rt−1 +∆I,R +∆QI,R +∆QR,R. (6.11)

If the tests were almost perfect, then we can imagine how the epidemic would die out very
quickly by either widespread infection or antibody testing with a coherent management
strategy. A positive test on the former, and the person is removed from the population; a
positive test on the latter and the person, now unable to contract the disease again, can
rejoin the population.

More interesting are the effects of incorrect test results on the disease dynamics. If someone
falsely tests positive in the antibody test, they enter the susceptible state. Similarly, if an
infected person receives a false negative for the disease they remain active in the infected
state and hence can infect further people.

S

QS

I

QI

R

QR

∆S,I

∆QS,S ∆S,QS ∆I,QI
∆QI,R

∆I,R

∆QR,R

Figure 6.3: SIR Model used to simulated the effect of mass testing to leave quarantine.

6.2.2 Agent Based Model

To more realistically model the effect of testing and quarantining within the simulation,
an agent based simulation has been used. Within this N people are individually modelled.
Each person is either susceptible, infectious or recovered and may be quarantined. On
each day within the simulation there is a probability that each susceptible person becomes
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infectious,
βIt−1

St−1 + It−1 +Rt−1
. (6.12)

The probability that an infectious person recovers is γ.

On each day, infectious people have a probability Π of wanting a test and susceptible people
have a probability Φ of wanting a test. If the number of people that want a test is greater
than the testing capacity C then the tests can be targeted. T is the targeting parameter:
if T = 1 then all tests on infectious people are performed before any on susceptible people,
if T = 0 then the tests are performed on infectious and suseptable people at random.
Algorithm 6.2 specifies how this targeting happens.

If a person is eligible for a test, depending on the test type and result, they may move
between the quarantine and active states. If a person receives a positive active virus test
then they move to the respective quarantine state, S −→ QS or R −→ QR, until their
test result expires after X+ days. If they receive a negative test result they stay in their
current state and are not eligible to be tested again for X− days. For antibody tests if a
person receives a positive result they leave their quarantine state, QS −→ S etc. Positive
antibody tests are valid forever, people with a negative result can retest for antibodies after
X− days.

The full simulation is described in Algorithm 6.1. Figure 6.4 shows a simulated pandemic
with β = 0.3, γ = 0.1, that starts with S0 = 980, I0 = 20 (all other states empty). There
is an active virus test with s = t = 0.9, C = 50, Π = 0.5, Φ = 0.01 and no targeting. Test
results expire after X+ = 7 and X− = 3 days.

6.3 Using Testing to Relax Lockdown Restrictions

In order to explore the possible impact of testing strategies on the relaxation of lockdown
measures several scenarios have been analysed. Two scenarios are considered:

• Immediate end to lockdown scenario: This baseline scenario is characterised by
a sudden relaxation of lockdown measures, followed by active virus testing to try to
control the spread of the virus.

• Immunity passports scenario: Using antibody based testing to identify those who
have some level of natural immunity and making those individuals exempt from all
personal social distancing rules. This policy was discussed in the media at the start
of the pandemic [322–324] but never implemented. The concept is similar to the
concept of vaccine passports which were introduced later in the pandemic, especially
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Figure 6.4: A simulated pandemic using the SIRQ model. β = 0.3, γ = 0.1, that starts
with S0 = 980, I0 = 20 (all other states empty) that has a active virus test with

s = t = 0.9, C = 50, Π = 0.5, Φ = 0.01 and no targeting.
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Algorithm 6.1: Population update
Input: Number of days, β, γ
Input: Population: S0, I0, R0, QS0, QI0, QR0

Input: Test Parameters: C, s, t, Π, Ψ, X+, X−, T
foreach day do

∆S,I =
βSt−1It−1

St−1 + It−1 +Rt−1
;

for all people (P ) ∈ population do
if P ∈ S then

if R ≤ ∆I then P −→ I;
if P ∈ I or QI then

if R ≤ γ then P −→ R;
if P has +ve test result then

if days since test > X+ then P leaves quarantine;
if P has -ve test result then

if days since test > X− then P leaves quarantine;

Using Algorithm 6.2 to get population eligible for test;
Count number of people in S0, I0, R0, QS0, QI0, QR0

Algorithm 6.2: Selecting which individuals to test
Input: Population, C, Φ, Π
for all untested people (P ) ∈ population do

if P ∈ S then
if R ≤ Φ then

P wants test;

if P ∈ I then
if R ≤ Π then

P wants test;

Select T × I infectious people to go to front of the queue;
First C people are eligible for a test;
Output: Population to be tested
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Algorithm 6.3: Performing Active Virus test with sensitivity s and specificity t on
an individual (P ). R is a random number in U(0, 1)

Input: Test Parameters: s, t
if P ∈ S then

if R > t then
P ← +ve result;
P −→ QS

else
P ← −ve result;

if P ∈ I then
if R ≤ s then

P ← +ve result;
P −→ QI

else
P ← −ve result;

if P ∈ R then
if R > t then

P ← +ve result;
P −→ QR

else
P ← −ve result;

Algorithm 6.4: Performing Antibody test with sensitivity s and specificity t on an
individual (P ). R is a random number in U(0, 1)

Input: Test Parameters: s, t
if P ∈ QS then

if R > t then
P ← +ve result;
P −→ S

else
P ← −ve result;

if P ∈ QR then
if R ≤ s then

P ← +ve result;
P −→ R

else
P ← −ve result;
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for international travel.

These scenarios are illustrative of the type of impact, and the likely efficacy of a range of
different testing configurations. There are significant sociological and ethical considerations
associated with any of these approaches and the analysis presented is purely on the question
of efficacy.

For the purpose of the analysis we have selected a population similar in size to the United
Kingdom, 67 million people. β and γ were set to 0.32 and 0.1 respectively, to ensure that
the R0 value of the model was broadly in line with other models [325, 326].

6.3.1 Immediate End to Lockdown Scenario

Under the baseline scenario, characterised by the sudden and complete cessation of lockdown
measures, we explored the impact of infection testing. Under this formulation the initial
conditions of the model in this scenario are that the all of the people in QS transition to
S in the first iteration. The impact of infection testing under this scenario was analysed in
Figure 6.5 using the parameters shown in Table 6.1.

These scenarios consider the impact of attempts to control the disease through increased
testing capacity and a more sensitive test. A test capacity range between 0.001 and 0.05 as
a fraction of the population per day were considered. For comparion, the highest number of
tests performed on an individual day within the UK was ≈ 0.035 (2.35 million) on the 5th
January 2022 [318]. 0.001 would be representative of the number of tests performed during
the initial lockdown in April 2020. To illustrate the sensitivity of the model to testing
scenarios an evaluation was conducted with a range of infection test sensitivities, from 0.50
(i.e of no diagnostic value) to 0.98.

As would be expected, the model indicates that an exponential increase in cases is an
inevitability and as many as 30% of the population could become infected within 30 days.
At higher capacities this pattern remains, though peak infection counts are reduced. This
comes with increasing numbers of people being forced to quarantine. Overall it is clear
that reliance on infection testing, even with a highly sensitive test and high capacities, is
not enough to prevent widespread infection. The initial spike of the number of people in
quarantine in the high capacity cases (C = 0.01 and C = 0.05) are due to people entering
quarantine but nobody being released from quarantine since nobody has spent X+ days in
quarantine.

The specificity of these tests has a negligible impact on the total number of infections as
can be seen in Figure 6.5. A false positive would mean people are unnecessarily removed
from the susceptible population, but the benefit of a reduction in susceptible population is
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Figure 6.5: A comparison of different test sensitivities s and capabilities C. Top: The
number of infected individuals (I +QI). Bottom: The proportion of the population that
is quarantined (QS +QI +QR population). Model parameters are shown in Table 6.1.
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Epidemic Parameters
β = 0.32 γ = 0.1

Active Virus Test Parameters
C s t Π Ψ X+ X− T

varies varies 0.8 0.5 0.01 10 3 0
Initial Population split

N S I R QS QI QR
106 0.99 0.01 0 0 0 0

Table 6.1: Fixed parameters used for Figure 6.5 analysis. Antibody tests were disabled for
this analysis.
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Figure 6.6: A comparison of different test specificities t. Model parameters shown in
Table 6.2.

Epidemic Parameters
β = 0.32 γ = 0.1

Active Virus Test Parameters
C s t Π Ψ X+ X− T

varies 0.8 varies 0.5 0.01 10 3 0
Initial Population split

N S I R QS QI QR
106 0.99 0.01 0 0 0 0

Table 6.2: Fixed parameters used for Figure 6.6 analysis. Antibody tests were disabled for
this analysis.
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negligibly small. In this case a test with a worse specificity reduces the number of infections
the most, this is a result of there being more people quarantined.

Figure 6.7 explores the effect of test targeting. This shows that with a small capacity
(C = 0.001) targeting has a limited impact on the total number of infections. As there are
not enough tests to go around and, therefore, even if all tests go to infectious individuals,
too many infectious people go undiagnosed and unquarantined. Equally, targeting has a
limited impact when the capacity is high (C = 0.05), as every person who wants a test can
get one (i.e. the capacity is de facto unlimited).

The C = 0.005 and C = 0.01 plots demonstrate that, if there are more individuals wanting
a test than the capacity allows, targeting can have a large impact of the total number of
infections. The C = 0.005/T = 1, C = 0.01/T > 0.5 cases all have similar case numbers
to each other, suggesting that there is a threshold at which, if authorities can target tests
accurately, increased testing may not be needed to reduce infections and may even be
unhelpful as large numbers have to quarantine unnecessarily.

6.3.2 Immunity Passport Scenario

The immunity passport is an idiom describing an approach to the relaxation of lockdown
measures that focuses heavily on antibody testing. The efficacy of this strategy, however,
is far more dependent on the prevalence of antibodies (seroprevalence) in the general popu-
lation. Presumably, only people who test positive for antibodies would be allowed to leave
quarantine. The more people in the population with antibodies, the more that will get a
true positive and so would be correctly allowed to leave quarantine (under the paradigms
of an immunity passport).

The danger of such an approach are false positives. We demonstrate the impact of people
reentering the susceptible population who have no immunity. We assume their propensity
to contract the infection is the same as those without the false sense of security a positive
test may engender. On an individual basis, and even at the population level, behavioural
differences between those with false security from a positive antibody test, versus those who
are uncertain about their viral history could be significant. The model parameterisation
here does not include this additional confounding effect.

To simulate the seroprevalence in the general population the model is preconditioned with
different proportions of the population in the QS and QR states. This is analogous to the
proportion of people that are currently in quarantine who have either had the virus and
developed some immunity, and the proportion of the population who have not contracted
the virus and have no immunity. Of course the individuals in these groups do not really
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Figure 6.7: A comparison of different test targeting strategies T . Model parameters shown
in Table 6.2.
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know their viral history, and hence would not know which state they begin in. The model
evaluations explore a range of capacities, specificities and seroprevalences for the antibody
testing. These capacities and specificities, along with the capacity for testing, govern the
transition of individuals from QR −→ R (true positive tests), and from QS −→ S (false
positive tests). The sensitivity of the antibody test has little impact on the disease dynamics.

Figures 6.8 and 6.9 show the results of the model evaluations comparing the testing capac-
ities and the specificities of the antibody test, the parameters for these runs are shown in
Tables 6.3 and 6.4. The top row of each figure corresponds to the number of infections in
time, the bottom row is the proportion of the population that are released from quarantine
and hence are now in the working population. The steps in the plot with C = 0.05 are
due to the model reaching a point at which everyone who wants a test can gets a test, and
therefore there is a waiting period before more people become eligible.

Ultimately, the size of the subsequent peak depends on the rate at which people leave
quarantine. In the plots with C = 0.001 and C = 0.005, with t = 0.98 the number of
infections eventually decreases to zero, however, this is ultimately the impact of very few
people being released. The models with C = 0.001 and C = 0.005, demonstrate that it is
possible to keep the number of infections relatively stable for long periods of time, which
may be beneficial if that level does not overwhelm healthcare services. Maximising the rate
of reentry into the population is of course desirable, and it is widely appreciated that some
increase in the numbers of infections is unavoidable. The desirable threshold in the trade-off
between societal activity and number of infections is open to debate.

Each of the plots in Figure 6.9, show the effect of different seroprevalence in the population.
To be clear, this is the proportion of the population that has contracted the virus and
recovered but are in quarantine. The analysis has explored a range of seroprevalence from
0.05 to 0.95. These plots indicate that at high seroprevalence there is little benefit to better
performing tests. For tests with high specificity the effect of the specificity is reduced. Once
again the rates at which people leave quarantine has the largest impact on the subsequent
size of the waves.
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Figure 6.8: A comparison of different antibody test specificities with varying different test
capacities. Top: The number of infected individuals (I +QI population) over one year.

Bottom: The proportion of the population that has been released from quarantine
(S + I +R population) over one year. Model parameters are shown in Table 6.3.
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Figure 6.9: A comparison of different antibody test specificities with varying levels of
seroprevalence (sp). Top: The number of infected individuals (I +QI population) over

one year. Bottom: The proportion of the population that has been released from
quarantine (S + I +R population) over one year. Model parameters are shown in

Table 6.4.
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Epidemic Parameters
β = 0.32 γ = 0.1

Antibody Test Parameters
C s t Π Ψ X+ X− T

varies 0.9 varies 1 1 ∞ 10 0
Initial Population split

N S I R QS QI QR
106 0.5 0.01 0.04 0.8 0 0.1

Table 6.3: Fixed parameters used for Figure 6.8 analysis. Antibody tests were disabled for
this analysis.

Epidemic Parameters
β = 0.32 γ = 0.1

Antibody Test Parameters
C s t Π Ψ X+ X− T

0.005 0.9 varies 1 1 ∞ 10 0
Initial Population split

N S I R QS QI QR
106 0.05 0.01 0.04 0.9(1− sp) 0 0.9sp

Table 6.4: Fixed parameters used for Figure 6.9 analysis. Infection tests were disabled for
this analysis. sp is the seroprevalence of antibodies in the population.
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6.4 Discussion

This analysis supports the assertion that a bad test is potentially worse than no test, but
a good test is only effective in a carefully designed strategy. More is not necessarily better
and over estimation of the test accuracy could be extremely detrimental.

This analysis is not a prediction; the numbers used are estimates and the SIRQ model is
unlikely to be detailed enough to inform policy decisions. As such, the the analysis presented
is not suited for drawing firm conclusions about the absolute necessary capacity of tests,
nor the necessary sensitivity or specificity of tests or the recommended rate of release from
quarantine. The analysis does, however, propose some conclusions that would broadly apply
when testing and quarantining regimes are used to suppress epidemics:

• Diagnostic uncertainty can have a large effect on the dynamics of an epidemic, and
sensitivity, specificity, and the capacity for testing alone are not sufficient to design
effective testing procedures. Policy makers need to be aware of the accuracy of the
tests, the prevelence of the disease at increased granularity and the characteristics of
the target population when deciding on testing strategies.

• For infection screening to be used to relax quarantine measures the capacity needs to
be sufficiently large but also well targeted to be effective. For example, this could be
achieved through effective contact tracing.

• Mass screenings at large capacities may negate some of the need to effectively target
tests. This occurs when the testing capacity is larger than the number of people who
want to be tested, thus making the capacity de facto unlimited. This situatio n is
broadly what occured within the UK in 2021.

• Caution should be exercised in the use of antibody testing. Assuming that the preva-
lence of antibodies is low, it is unlikely antibody testing at any scale will support the
end of lockdown measures. And, untargeted antibody screening at population level
could cause more harm than good.

• Antibody testing with a high specificity may be useful on an individual basis and has
scientific value, which could reduce risk for key workers. But any belief that these
tests would be useful to relax lockdown measures for the majority of the population
is misguided.

• The analysis of antibody-test-based immunity passports would be broadly the same
as those for vaccination-based immunity passports.

• As the prevelence of the disease is suppressed in different regions, it may be the
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case that small spikes in cases could be the result of false positives. This problem is
potentially exacerbated by increased testing in localities in response to small increases
in positive tests. Policy decisions that depend on small changes in the number of
positive tests may, therefore, be flawed.

Epidemiological models used for policy making in real time will need to take into account
the impact of diagnostic uncertainty of testing. The dynamical behaviour of modelled
parameters in an appropriately complex model would need to include: quarantining; contact
tracing and other surveillance strategies; test availability and targeting; and multiple sub-
populations of susceptible, infected and recovered categories.
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Conclusions

This thesis has explored problems associated with enabling algorithms to compute with
imprecise knowledge. This has been motivated by the discussion in Chapter 1 about is-
sues related to an ever-increasing presence of algorithms within daily life. In particular,
when faced with high-risk decisions, it is crucial to compute what is known rather than
make assumptions that could have adverse outcomes leading from annoyance to injustice
to catastrophe.

Chapter 2 introduced probability bounds analysis as a way of computing with epistemic
and aleatory uncertainties. Intervals, p-boxes and c-boxes are explored, and example calcu-
lations were used to demonstrate how algorithms can use these objects to propagate both
types of uncertainty.

Chapter 3 discussed the possibility of creating an automatic uncertainty compiler that
would be able to introduce probability bounds analysis as a way of add uncertainty into
pre-existing code. The chapter explored the components required to create such a compiler
and discussed the difficulties associated with creating such a compiler. Whilst it is unlikely
to be the case that such a compiler could be perfectly realised, a software tool that is able
to help analysts who are unable to introduce uncertainty analysis into their codes would be
extremely beneficial.

Chapter 4 discussed ways of correcting the performance statistics for binary classification
tests when there is an imperfect gold standard. Several approaches were explored, including
a novel method based on confidence boxes. However, it was concluded that finding a binary
classifier’s true performance is difficult when the ground truth is uncertain.

Chapter 5 considered the problem of imprecise information in logistic regression models.
It was shown that it is possible to include interval uncertainty in both outcome status
and predictor variables within logistic regression analysis by considering the set of possible
models as an imprecise structure. Such a method expresses the epistemic uncertainties
within the dataset that traditional methods have neglected. The imprecise bounds have the
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advantage of always containing the true model even when the data has been intervalised in
biased or non-random ways. The outputs of the imprecise model prevent overly confident
decisions being made where the confidence is a result of neglecting the imprecision. This
has the potential to improve decisions in high risk situations.

Chapter 6 discussed how imperfect COVID tests may have impacted the spread of disease. It
was shown how imprecision within a testing programme can affect the number of infections
and the number of people quarantined, and that the sensitivity, specificity and how well the
tests are targeted have significant effects. It is possible that including and communicating
this imprecision may have lead to different public health decisions during the COVID-19
pandemic.

Ultimately, the tyranny of inhumane algorithms will be a significant risk for the foreseeable
future. This thesis has argued that better handing of uncertainty will be an important part
of understanding and mitigating this risk. This work is offered as practical steps towards
to the aim of creating humane algorithms.
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