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Abstract

We introduce the random graph P(n, q) which results from taking the union of
two paths of length n ⩾ 1, where the vertices of one of the paths have been relabelled
according to a Mallows permutation with real parameter 0 < q(n) ⩽ 1. This random
graph model, the tangled path, goes through an evolution: if q is close to 0 the graph
bears resemblance to a path, and as q tends to 1 it becomes an expander. In an effort
to understand the evolution of P(n, q) we determine the treewidth and cutwidth of
P(n, q) up to log factors for all q. We also show that the property of having a separator
of size one has a sharp threshold. In addition, we prove bounds on the diameter, and
vertex isoperimetric number for specific values of q.
DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-000

Introduction
Given two graphs G,H on a common vertex set [n] = {1, . . . , n}, and a permutation σ on
[n], it is natural to consider the following graph

layer(G, σ(H)) = ([n], E(G) ∪ {σ(x)σ(y) : xy ∈ E(H)}) ,

which is the union of two graphs where the second graph has been relabelled by a permuta-
tion σ. This general and powerful construction has featured previously in the literature in
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1 2 3 4 5 6

layer (P6, r6(P6))

n vn rn
1 1 1
2 2 12
3 1 312
4 3 3142
5 2 35142
6 5 351462

Figure 1: The table on the left gives the sequences of permutations (rn) generated by the
sequence (vn) for i = 1, . . . , 6. On the right we have a tangled path generated by r6, where
the edges of r6(P6) are dotted.

the contexts of constructions and decompositions of graphs [1, 4, 22]. Let Pn be the path on
[n] and Sn be the set of all permutations on [n]. Consider the following scenario: one must
choose a permutation σ ∈ Sn with the goal of making layer(Pn, σ(Pn)) as different from a
path as possible. There are several parameters one may use to measure the difference be-
tween a connected graph G and a path; for example one may look at the diameter diam(G)
or the vertex isoperimetric number i(G), as the path is extremal for these parameters. The
treewidth tw(G) which, broadly speaking, measures how far (globally) the graph is from
being a tree [14], is another natural candidate. It is fairly easy to see that given two or
more paths one can build a grid-like graph (see [7, Lemma 8] for more details), and such a
graph would have treewidth and diameter Θ(

√
n). If we choose a permutation uniformly

at random, then as a consequence of a result of Kim & Wormald [12, Theorem 1], with
high probability the resulting graph is a bounded degree expander. Thus, in this case, the
graph layer(Pn, σ(Pn)) has treewidth Θ(n) and diameter Θ(log n), so by these parameters
it is essentially as far from a path as a sparse graph can be.

The example above shows that even restricting the input graphs to paths can produce
rich classes of graphs. Having seen what happens for a uniformly random permutation,
one may ask about the structure of layer(Pn, σ(Pn)) when σ is drawn from a distribution
on Sn that is not uniform. One of the most well known non-uniform distributions on Sn

is the Mallows distribution, introduced by Mallows [17] in the late 1950’s in the context
of statistical ranking theory. Recently it has been the subject of renewed interest for
other settings [6, 3, 11], and as an interesting and natural model to study in its own right
[2, 10, 20]. The distribution has a parameter q which, roughly speaking, controls the
amount of disorder in the permutation.

Mallows Permutations. For real q > 0 and integer n ⩾ 1, the (n, q)-Mallows measure
µn,q on Sn is given by

µn,q(σ) =
qInv(σ)

Zn,q

for any σ ∈ Sn,
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where Inv(σ) = |{(i, j) : i < j and σ(i) > σ(j)}| is the number of inversions in the per-
mutation σ and Zn,q is given explicitly by the following formula [2, Equation (2)]:

Zn,q =
n∏

i=1

(
1 + q + · · ·+ qi−1

)
=

n∏
i=1

1− qi

1− q
.

When q → 0, the distribution µn,q converges weakly to the degenerate distribution on
the identity permutation. We extend µn,q to q = 0 by setting µn,0 to be the probability
measure assigning 1 to the identity permutation. On the other hand if q = 1 then µn,1

is the uniform measure on Sn. One can see that σ ∼ µn,q has distribution µn,1/q when
reversed.

A key feature of Mallows permutations is that they can be constructed by a simple
procedure from a sequence of independent random variables. For any q > 0, the Mallows
Process gives a sequence (rn) such that rn ∼ µn,1/q, for each n ⩾ 1. Furthermore each rn is
constructed from rn−1 by inserting n at a position in rn−1 sampled via a simple distribution
that is independent from r1, . . . , rn−1. Several desirable properties of Mallows permutations
can be deduced from this construction, see [10, Sec. 2] for more details.

The Tangled Paths Model. We study the random graph distribution induced by
layer(Pn, σ(Pn)), where σ ∼ µn,q and 0 ⩽ q := q(n) ⩽ 1. From now on we call this
graph distribution the tangled path model and denote it by P(n, q). Thus a random graph
P(n, q) has vertex set [n] and (random) edge set E(Pn) ∪ {σ(i)σ(i + 1) : i ∈ [n − 1]},
where σ ∼ µn,q. We restrict to q ∈ [0, 1] as reversing the permutation does not affect our
construction (up to a relabelling). We also identify any multi-edges created as one edge,
however this detail is not important for any of our results. This paper will focus on P(n, q);
as we have seen already combining paths can give rise to interesting and varied graphs, and
the Mallows permutation gives our model a parameter q which, roughly speaking, increases
the ‘tangled-ness’ of the graph.

We see, from above, that P(n, 0) is a path and P(n, 1) is an expander with high
probability by [12, Theorem 1]. Our ultimate aim is to understand the structure of P(n, q)
for intermediate values of q, and this paper takes the first steps in this direction. Informally,
one aspect of this is knowing when P(n, q) stops looking ‘path-like’; we show that if q < 1
is fixed the diameter is linear (Theorem 3), and there is a sharp threshold for having a
single vertex cut at qc = 1− π2

6 logn
(Theorem 2). For q → 1 sufficiently fast, it makes more

sense to measure the complexity of the internal structure of P(n, q) by how much it differs
from a tree. In this direction we show that, up to logarithmic factors, the treewidth [14] of
P(n, q) grows at rate (1−q)−1 (Theorem 4) until the graph becomes an expander at around
q = 1− 1

n logn
(Theorem 1), indicating that, in the sense of treewidth, the complexity of the

structure grows smoothly with q. This behaviour contrasts with the binomial/Erdős-Rényi
random graph [8] where the treewidth increases rapidly from being bounded by a constant,
to Θ(n) as the average degree rises from below one to above one [15].

Aside from this model being natural, motivation for this line of study comes from
practical algorithmic applications. Many real-world systems – including social, biological
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q

0 11− ε 1− (log logn)2

logn
1− π2

6 logn
1− 1

100n logn

tw, cw = Θ
(

logn
log(1/q)

)
tw, cw = Θ̃

(
1

1−q

)
tw, cw = Θ(n)

Contains an (1, α)-separator
for any 1/2 < α < 1

Has no (1, α)-separator
for any 1/2 < α < 1

diam = Θ(n) Expander

Figure 2: The diagram above gives a pictorial representation of our results. All re-
sults above hold with high probability, and we say that f(n) = Θ̃(g(n)) if f(n) =
O(g(n) log g(n)) and f(n) = Ω(g(n)/ log g(n)).

and transport networks – involve qualitatively different types of edges, where each type
of edge generates a “layer” with specific structural properties [13, 19]. For example, when
modelling the spread of disease in livestock, one layer of interest arises from physical
adjacency of farms, and so is determined entirely by geography. A second epidemiologically-
relevant layer could describe the pairs of farms which share equipment: this is no longer
fully determined by geography, but will nevertheless be influenced by the location of farms,
as those that are geographically close are more likely to cooperate in this way. It is known
that algorithmically useful structure in individual layers of a graph is typically lost when
the layers are combined adversarially [7]. The present work can be seen as an attempt
to understand the structure of graphs generated from two simple layers which are both
influenced to some extent by a shared underlying “geography”. In this setting the treewidth
tw is a natural parameter as many NP-hard problems become tractable when parametrised
by tw [5, Ch. 7].

Our Results
In what follows, the integer n ⩾ 1 denotes the number of vertices in the graph (or elements
in a permutation) and q := q(n), the parameter of the Mallows permutation (or related
tangled path), is a real valued function of n taking values in [0, 1]. We say a sequence of
events En occurs with high probability (w.h.p.) if P( En ) → 1 as n → ∞. Throughout log
is base e. See Figure 2 for a summary of our results.

A graph G is a vertex-expander if there exists a fixed real c > 0 such that any set S ⊆ V
with |S| ⩽ ⌈n/2⌉ is adjacent to at least c|S| vertices in V \S. As mentioned above, when
q = 1 the permutation is uniform, and so the fact that P(n, 1) is an expander follows from
[12, Theorem 1]. Our first result shows that for q sufficiently close to 1, this still holds.

Theorem 1. If q ⩾ 1− 1
100n logn

, then w.h.p. P(n, q) is a bounded degree vertex-expander.
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For an integer s ⩾ 1 and real 1/2 ⩽ α < 1 we say G has an (s, α)-separator if there is a
vertex subset S with |S| ⩽ s such that G\S can be partitioned into two disjoint sets of at
most α|V | vertices with no crossing edges. Balanced separators (e.g. α = 2/3) are useful
for designing divide and conquer algorithms, in particular for problems on planar graphs
[16]. Balanced separators have intimate connections to notions of sparsity for graphs [18].

Observe that, for any fixed 1/2 < α < 1, if G is a vertex expander then there exists
a c > 0 such that G has no (cn, α)-separator. At the other extreme, the path has an
(1, α)-separator. We show that for P(n, q) this ‘path-like’ property disappears around
qc = 1− π2

6 logn
.

Theorem 2. For any fixed real 1/2 < α < 1 we have

lim
n→∞

P(P(n, q) has a (1, α)-separator ) =

{
0 if π2

6(1−q)
− log n+ log logn

2
→ ∞

1 if π2

6(1−q)
− log n+ 5 log logn

2
→ −∞

.

We say that q0 is sharp threshold for a graph property P if for any ε > 0 w.h.p.
P(n, p) /∈ P for any p ⩽ q0(1 − ε), and P(n, r) ∈ P for any r ⩾ q0(1 + ε), see [9].
Theorem 2 is quite precise as it determines the second order term in the threshold up to a
constant, showing that the property of having a cut vertex has a sharp threshold of width
O
(

log logn
(logn)2

)
. Theorem 2 is established by finding first and second moment thresholds for

the property. Positive correlation between cuts suggests this result cannot be significantly
improved using standard methods alone.

The diameter diam(G) of a graph G is the greatest distance between any pair of vertices.
Theorem 1 implies that diam(P(n, q)) = O(log n) when q is close to 1. On the other hand
diam(P(n, 0)) = n − 1 as it is a path; by applying bounds on the number of cut vertices,
we show this holds (up to a constant) for any fixed q < 1.

Theorem 3. Let 0 ⩽ q < 1 be any function of n bounded away from 1. Then there exists
a constant c > 0 such that w.h.p., diam(P(n, q)) ⩾ cn.

The treewidth tw(G) of a graph G is the minimum size (minus one) of the largest vertex
subset (i.e. bag) in a tree decomposition of G, minimised over all such decompositions
[14]. The cutwidth cw(G) is the greatest number of edges crossing any real point under
an injective function φ : V → Z, minimised over all φ. It is known that for any graph G
we have tw(G) ⩽ cw(G), however there may a multiplicative discrepancy of order up to n.
We show there is at most only a constant factor discrepancy for P(n, q) for certain ranges
of q and give bounds for all q which are tight up to log factors.

Theorem 4. If there exists a real constant κ > 0 such that 0 ⩽ q ⩽ 1− κ · (log logn)2

logn
, then

there exist constants 0 < c1, C2 < ∞ such that w.h.p.

c1 ·

(√
log n

log(1/q)
+ 1

)
⩽ tw(P(n, q)) ⩽ C2 ·

(√
log n

log(1/q)
+ 1

)
. (1)
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Furthermore, there exists some c3 > 0 such that if 1 − (log logn)2

logn
⩽ q ⩽ 1 − 1

100n logn
, then

w.h.p.

c3
1− q

· log
(

1

1− q

)−1

⩽ tw(P(n, q)) ⩽ min

{
5

1− q
· log

(
1

1− q

)
, 2n

}
. (2)

In addition, if q ⩾ 1− 1
100n logn

then w.h.p.

n

50
⩽ tw(P(n, q)) ⩽ 2n. (3)

The same upper and lower bounds in (1), (2), and (3) also hold for the cutwidth cw(P(n, q)).

Observe that if q → 1 then log(1/q) ≈ 1− q and so when q = 1−Θ((log log n)2/ log n)
we have

√
log(n)/ log(1/q) ≈ − log(1− q)/(1− q). Therefore, the first two upper bounds

for cutwidth are equal up to constants for this value of q. Thus, for this q, the upper
bound for the cutwidth given in (2) is tight and the lower bound for treewidth is off by a
multiplicative factor of order (log log n)2.

Proof Sketch of Theorem 4. The rough strategy for the lower bounds in (1) and (2)
is as follows:

(i) relate containing a k-vertex expander as a minor in P(n, q), and thus Ω(k)-treewidth,
to a property of the underlying Mallows permutation or the random sequence gener-
ating it,

(ii) show this property holds, for a suitable k, with high probability by utilising the
(asymptotic) independence of elements in a Mallows permutation or the sequence
generating it.

However, the properties sought and method for controlling the probabilities in (1) and (2)
differ slightly.

For Step (i), of the lower bound in (1), we show that if rk and rn are generated by
sequences x = x1, . . . , xk and y = y1, . . . , yn respectively via the Mallows process, and x is
contained in y as a consecutive sub-sequence, then Pn ∪ rn(Pn) contains Pk ∪ rk(Pk) as a
minor. To prove (2) we instead show that if a permutation π ∈ Sn contains a permutation
σ ∈ Sk as a consecutive pattern then Pn ∪ π(Pn) contains Pk ∪ σ(Pk) as a minor. In
particular, both relations hold in the case where Pk ∪σ(Pk) and Pk ∪ rk(Pk) are expanders.

For Step (ii), the lower bound in (1) is shown using the second moment method to a
given consecutive sub-sequence of k inputs occur w.h.p., whereas for (2) we use indepen-
dence of permutations induced by disjoint intervals of elements in a Mallows permutation
to show a given consecutive pattern occurs.

We now give a proof sketch for the upper bounds on cw (P(n, q)) in (1) and (2). To
begin, we fix the ordering φ : [n] → [n] in the definition of cutwidth to be the identity map.



Tangled Paths: A Random Graph Model from Mallows Permutations 7

That is, we order the vertices of P(n, q) along the line with respect to the ordering of the
vertices given by the un-permuted path Pn. We then bound the number of edges crossing
any vertex i by showing that not too many elements with values j > i are inserted next
to elements with values less than i by the Mallows process. To do this we show that, for
b = Θ( logn

1−q
) and some suitable L ⩾ ℓ, within any consecutive sequence of L steps of the

Mallows process (with generating inputs vi) the following events hold with high probability:

(i) no insert position vi has value greater than b,

(ii) after L steps the leftmost b places will each contain an element added added at most
L steps ago,

(iii) there are at most ℓ values of vi greater than ℓ.

The events (i) and (iii) ensure that not too many long edges are created from new
entries being added far away from the left-hand end of the process. The event (ii) is a little
bit more subtle but key to the success of our approach as it ensures that the left-hand end
of the permutation grown by the Mallows process cannot retain entries that were inserted
long ago, again preventing long edges caused by new elements lying next to old ones. If
these three events hold then we can show that the number of edges crossing any vertex
under the identity map is O(ℓ). Optimising the choice of L and ℓ then gives the upper
bounds in (1) and (2).

Open Problems
One could study the effect of q in P(n, q) on almost any graph property of interest for sparse
graphs. One fundamental problem is to determine the number of edges in P(n, q) (recall
that we disregard multi-edges). This deceptively non-trivial problem is related to clustering
of consecutive numbers in Mallows permutations [21]. It would also be interesting to close
the gap for treewidth by obtaining tight bounds for all q.

Theorem 2 proves that q = 1 − π2/(6 log n) is a sharp threshold for containing a
single vertex whose removal separates the graph into two macroscopic components. A
key open problem is to determine if there is a notion of monotone property in the setting
of tangled paths which guarantees the existence of a threshold (or even a sharp threshold).
One candidate feature (for a property to be monotone with respect to) is the number of
inversions in the permutation generating P(n, q). However, one issue with parameterizing
by the number of inversions is the fact that the tangled paths generated by σ = (σ1, . . . , σn)
and its reverse σR = (σn, . . . , σ1) are isomorphic, but the number of inversions may differ
greatly as Inv(σR) =

(
n
2

)
− Inv(σ).
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