
Can process mining help in anomaly-based
intrusion detection?

Yinzheng Zhong[0000−0001−8477−3956] and Alexei Lisitsa[0000−0002−3820−643X]

Department of Computer Science, University of Liverpool, UK
y.zhong10@liverpool.ac.uk, a.lisitsa@liverpool.ac.uk

Abstract. In this paper, we consider the naive applications of process
mining in network traffic comprehension, traffic anomaly detection, and
intrusion detection. We standardise the procedure of transforming packet
data into an event log. We mine multiple process models and analyse the
process models mined with the inductive miner using ProM [19] and
the fuzzy miner using Disco [7]. We compare the two types of process
models extracted from event logs of differing sizes. We contrast the pro-
cess models with the RFC TCP state transition diagram [14] and the
diagram [3] by Bishop et al. We analyse the issues and challenges asso-
ciated with process mining in intrusion detection and explain why naive
process mining with network data is ineffective.

Keywords: Anomaly detection · Intrusion detection · Process mining ·
Cyber security.

1 Introduction

This paper contains some of our earlier works prior to [21]. Our objective is
to create an intrusion detection system using process mining (PM) and process
models. The models can then be utilised for analytics [2, 18]. Network intrusion
detection systems (NIDS) are typically based on the following methodologies.
First, the features are extracted from the flow-level or connection-level data,
and then the features are generated from statistical data, such as the number of
packets and the average payload size [9,10]. For classification, these approaches
frequently employ data mining, machine learning, and other statistical methods.
Second, audit trail methods examine the network’s activities, such as the payload
content, flag set, or numerical values [15, 20]. The issue with the majority of
existing techniques is that they are unable to observe the global process structure
of a communication.

The paper by Van der Aalst and de Medeiros [1] proposed to use process
mining on audit trails and conformance checking for anomaly detection; how-
ever, additional research for NIDS is required. Our experiment is predicated on
the premise that the process models can be mined from event logs using PM
techniques, and then new cases will be validated using conformance checking.
The anomaly will then be identified based on the conformance score. We com-
plied with the directive by converting network packet data to event logs, which
may facilitate PM adaptation.

ar
X

iv
:2

20
6.

10
37

9v
1

 [
cs

.C
R

]
 2

1
Ju

n
20

22

2 Yinzheng Zhong and Alexei Lisitsa

We employ ProM for inductive mining algorithm, which is related to [1]. The
inductive miner will mine models in the form of Petri nets. The extracted models
will then be utilised for additional analysis, such as conformance checking. In
contrast, we will compare fuzzy mining as an alternative PM algorithm [8].

The paper is structured as follows. First, we will look at related works that
use similar approaches; second, we will demonstrate the dataset we use and
how the packet data are converted into the event log; then, we will discuss the
experimental setups and compare the models. After that, we show the result of
conformance checking and discuss the reason for the inefficiency of PM for IDS.
Finally, we introduce a novel design of a preprocessing technique that can be
used in NIDS which is inspired by PM.

2 Related Works

The technique introduced in [13] is used on industrial control systems (ICS)
that identifies anomalous behaviours and cyber-attacks using ICS data logs and
the conformance checking analysis technique. The paper demonstrated the pre-
processing of ICS data logs for PM and the result of anomaly detection. The
inductive mining algorithm discovers their process model, and as a result, the
average F-score for detecting attacks across two datasets is 0.81. A case is cate-
gorised as an anomaly if it does not produce a fitness score of 1. The paper [13]
is not focused on NIDS.

On top of [1], papers [11, 12] provide expanded discussions on PM for IDS,
discussing potential benefits of using PM for IDS, comparing different mining
algorithms (such as the heuristic miner and the α-algorithm), and displaying
cyber-attacks detected in various industrial sectors, etc. Nonetheless, the precise
method for implementing PM for IDS remains undetermined.

The paper [4] uses Inductive Miner Infrequent algorithm to detect anoma-
lous behaviors on the e-commerce platform. The data is processed based on the
log recorded from the ModSecurity, which is a open source web application fire-
wall, for the purpose of adapting PM. The events are mainly consist of URLs
and activated ModSecurity rules. The provided average fitness scores show that
anomalies have lower scores, however, they do not have a clear measurement for
F-score or accuracy.

The methodology described in [5] is based on PM and employs social network
analysis metrics to identify anomalous behaviour. Instead of performing confor-
mance testing, this method analyses social network metrics to identify anomalies.
The log of normal traces is extracted from the process model using the work-
flow Petri net designer (WoPeD) process modelling tool [6]; the role-trace access
control matrix, which is based on the normal traces and the role-activity access
control matrix, is then created; and finally, the social network is constructed
using the role-trace access control matrix and all logs. The experiment’s F-score
is greater than 0.92, per the outcome.

In general, PM applications in intrusion detection are not well established.

Can process mining help in anomaly-based intrusion detection? 3

3 Data Prepossessing

Table 1. The event log segment. The three zeros in flags are the reserved bits.

Case ID Timestamp Src IP Dst IP Scr port Dst port Flags Side

151043 2017/07/04 14:00:35.190179000 192.168.10.5 68.67.178.110 52892 80 000.SYN. C

151043 2017/07/04 14:00:35.222535000 68.67.178.110 192.168.10.5 80 52892 000.ACK.SYN. S

151043 2017/07/04 14:00:35.222586000 192.168.10.5 68.67.178.110 52892 80 000.ACK. C

151043 2017/07/04 14:00:35.237412000 192.168.10.5 68.67.178.110 52892 80 000.ACK.PSH. C

151043 2017/07/04 14:00:35.270301000 68.67.178.110 192.168.10.5 80 52892 000.ACK. S

151043 2017/07/04 14:00:35.270305000 68.67.178.110 192.168.10.5 80 52892 000.ACK. S

151043 2017/07/04 14:00:35.467062000 68.67.178.110 192.168.10.5 80 52892 000.ACK. S

151043 2017/07/04 14:00:35.467285000 68.67.178.110 192.168.10.5 80 52892 000.ACK.PSH. S

151043 2017/07/04 14:00:35.467347000 192.168.10.5 68.67.178.110 52892 80 000.ACK. C

151043 2017/07/04 14:00:35.467352000 68.67.178.110 192.168.10.5 80 52892 000.ACK.PSH. S

151043 2017/07/04 14:00:35.511515000 192.168.10.5 68.67.178.110 52892 80 000.ACK. C

151043 2017/07/04 14:00:45.461285000 192.168.10.5 68.67.178.110 52892 80 000.ACK. C

151043 2017/07/04 14:00:45.466144000 68.67.178.110 192.168.10.5 80 52892 000.ACK.FIN. S

151043 2017/07/04 14:00:45.466173000 192.168.10.5 68.67.178.110 52892 80 000.ACK. C

151043 2017/07/04 14:00:45.466198000 192.168.10.5 68.67.178.110 52892 80 000.ACK.FIN. C

151043 2017/07/04 14:00:45.493763000 68.67.178.110 192.168.10.5 80 52892 000.ACK. S

151043 2017/07/04 14:00:45.498542000 68.67.178.110 192.168.10.5 80 52892 000.ACK. S

281008 2017/07/05 17:03:45.498235000 192.168.10.16 23.194.141.47 51226 443 000.SYN. C

281008 2017/07/05 17:03:45.521284000 23.194.141.47 192.168.10.16 443 51226 000.ACK.SYN. S

281008 2017/07/05 17:03:45.521360000 192.168.10.16 23.194.141.47 51226 443 000.ACK. C

281008 2017/07/05 17:03:45.521561000 192.168.10.16 23.194.141.47 51226 443 000.ACK.PSH. C

281008 2017/07/05 17:03:45.544708000 23.194.141.47 192.168.10.16 443 51226 000.ACK. S

281008 2017/07/05 17:03:45.545025000 23.194.141.47 192.168.10.16 443 51226 000.ACK.PSH. S

281008 2017/07/05 17:03:45.545073000 192.168.10.16 23.194.141.47 51226 443 000.ACK. C

281008 2017/07/05 17:03:45.561805000 192.168.10.16 23.194.141.47 51226 443 000.ACK.PSH. C

281008 2017/07/05 17:03:45.624241000 23.194.141.47 192.168.10.16 443 51226 000.ACK. S

281008 2017/07/05 17:03:45.820846000 192.168.10.16 23.194.141.47 51226 443 000.ACK.PSH. C

281008 2017/07/05 17:03:45.843822000 23.194.141.47 192.168.10.16 443 51226 000.ACK. S

281008 2017/07/05 17:03:45.921777000 23.194.141.47 192.168.10.16 443 51226 000.ACK.PSH. S

281008 2017/07/05 17:03:45.964684000 192.168.10.16 23.194.141.47 51226 443 000.ACK. C

281008 2017/07/05 17:03:46.802581000 192.168.10.16 23.194.141.47 51226 443 000.ACK.PSH. C

281008 2017/07/05 17:03:46.825827000 23.194.141.47 192.168.10.16 443 51226 000.ACK. S

281008 2017/07/05 17:03:46.827025000 23.194.141.47 192.168.10.16 443 51226 000.ACK.PSH. S

281008 2017/07/05 17:03:46.827041000 192.168.10.16 23.194.141.47 51226 443 000.ACK. C

281008 2017/07/05 17:03:53.457141000 192.168.10.16 23.194.141.47 51226 443 000.ACK.FIN. C

281008 2017/07/05 17:03:53.480155000 23.194.141.47 192.168.10.16 443 51226 000.ACK.PSH. S

281008 2017/07/05 17:03:53.480156000 23.194.141.47 192.168.10.16 443 51226 000.ACK.FIN. S

281008 2017/07/05 17:03:53.480264000 192.168.10.16 23.194.141.47 51226 443 000.RST. C

281008 2017/07/05 17:03:53.480268000 192.168.10.16 23.194.141.47 51226 443 000.RST. C

In our experiment, we utilised the IDS2017 dataset [17]. The dataset contains
common attacks including Bruteforce, DoS, and Botnet, among others. The
dataset includes PCAP packet data as well as CSV data sheets with analyti-
cal features that have been preprocessed. Focusing on packet-level detection, we
will only utilise binary packet data and extract necessary data from this dataset
using TShark. The processed and transformed data must then be applied to
PM as event logs. In this paper, we only consider TCP data. We will keep two
attributes for the event logs, the first attribute is the packet flags information;

4 Yinzheng Zhong and Alexei Lisitsa

the second will be the are labels which indicate whether a packet is sent from
the server (S) or the client (C).

First, we filtered out invalid packets that do not use the TCP protocol or were
missing data in part. Second, we reconstructed each case based on the socket pair
(source IP Port and destination IP Port) and assigned a unique case ID to each
flow. A case in PM is essentially an instance of a series of actions/activities. In
network traffic, we define it as a series of packets within a connection; therefore,
in subsequent contexts, we may refer to the case as the network flow. The TCP
header flags will then be converted into human-readable strings, such as ACK
(for ACK flag sets) or ACK.FIN (for ACK and FIN flags set). We define a
complete flow as one in which the SYN flag is set at the beginning and the RST
or FIN flag is set at the end; thus, all cases that do not begin with SYN or do
not contain RST/FIN will be discarded.

The IDS2017 dataset includes numerous PCAP binary files, each of which
stores packets from a specific host. Some files only contain normal traffic data, so
we combine the processed event logs from these files to create a comprehensive
normal event log (the complete-log). Flows involved in attacks are also trans-
formed separately into anomalous event logs. All normal and anomalous event
logs are saved as CSV data sheets. These files will constitute our final datasets,
which can be fed directly into the PM tools.

Table 1 shows an example of a segment of the event log. Note that IPs and
Ports are not used in PM as they are used for determine the case ID only. The
data columns used in the experiment are case IDs, timestamps, header flags and
side labels. We select header flags and side labels as our attributes as they are
non-numerical and the transitional information can be constructed with these
data, which is suitable for PM. The transition here is defined as (a, b) where a
and b are consecutive events within a case.

4 Experiment Setups

We retained every hyperparameter as default in both ProM and Disco in PM.
The first reason is that understanding the problems is more important than
looking through different mining hyperparameters. Second, we want to mine
authentic models from the event logs we provide because rare cases are not
necessarily anomalies; also we know these rare cases are normal as they come
from the normal event log.

For the purpose of comparison and comprehension, we sub-sampled the complete-
log into different smaller-sized datasets and mined the process model from these
subsets with both process discovery algorithms. Here are the setups for inductive
miner in ProM.

1. Process model with 5 flows #1.
2. Process model with 5 flows #2.
3. Process model with 100 flows #1.
4. Process model with 100 flows #2.

Can process mining help in anomaly-based intrusion detection? 5

5. Process model with 20k flows #1.
6. Process model with 20k flows #2.
7. Process model with 100k flows #1.
8. Process model with 100k flows #2.
9. Process model of complete set.

Similar setups are used for fuzzy miner with Disco; however, Disco is limited
to 50k cases. Subsets with fewer than 50k cases are identical to inductive miner
subsets. The details are presented below.

1. Process model with 5 flows #1.
2. Process model with 5 flows #2.
3. Process model with 100 flows #1.
4. Process model with 100 flows #2.
5. Process model with 20k flows #1.
6. Process model with 20k flows #2.
7. Process model with 50k flows #1.
8. Process model with 50k flows #2.

5 Model Comparisons

5.1 Process Models

Now, let us compare process models mined using inductive miner for setups 1),
3) and 5) in Fig. 1, Fig. 2 and Fig. 3 respectively. These setups represent the
small, medium and large event logs. Event logs that are larger than 20k cases
do not show significant difference in our experiment.

Fig. 1. The Petri net mined with 5 cases.

The model mined with 5 cases is a small-log instance for testing how the
number of cases impacts the generality and accuracy of the model. Nine different
event classes are observed from these 5 cases, and the model mined from 20k
cases contains 19 observed event classes. An event class is essentially the name
of an observed event; in our process model, it is the concatenated strings of both
attributes from a case, for example, 000.SYN|C.

6 Yinzheng Zhong and Alexei Lisitsa

Fig. 2. The Petri nets mined with 100 cases.

Fig. 3. The Petri nets mined with 20k cases.

From these two models, we see better accuracy on the model mined with
5 cases and better generality on the model mined with 20k cases. The model
mined with 20k cases discovers the trace which terminates after the first packet
of the three-way handshake (000.SYN|C); however, the same model also permits
impossible transitions, such as entering the data-transmission stage without a
three-way handshake. The model mined with 100 cases has a good trade-off
between the models mined with 5 cases and 20k cases. We compare the process
models mined with fuzzy miner with the same event logs from setup 1), 3) and
5) in Fig. 4, Fig. 5 and Fig. 6 respectively.

In our case, the fuzzy models provide a better balance between precision and
generality for network traffic data. We evaluate the generality of small models
and the precision of large models. The model mined with 5 cases is still quite
accurate, similar to the inductive model; however, the differences between the
models mined with 20,000 cases are greater. For instance, the model mined
with 20,000 cases of Disco does not suffer from the handshake skipping issue.
The fuzzy mining algorithm theoretically does not generate an edge unless the
transition is observed in the event log. In other words, the large fuzzy model
achieves greater generality, but retains a good accuracy.

5.2 Diagrams

Now we compare all process models with two state diagrams, the RFC TCP
state transition diagram provided in [14] and the improved diagram produces by
Bishop et al. in [3]. We use this comparison for a better understanding of how

Can process mining help in anomaly-based intrusion detection? 7

1

1

5

3

1

1

1

9

20

17

10

2

19

1

16

9

1

2

1

3

1

5

14

10

12

2

25

3

2

7

5

3

1

1

000.SYN.-C

6

000.ACK.SYN.-S

6

000.ACK.-C

61

000.ACK.PSH.-C

38

000.ACK.-S

47

000.ACK.PSH.-S

38

000.ACK.FIN.-C

6

000.ACK.FIN.-S

6

000.ACK.RST.-C

1

Fig. 4. The fuzzy models mined with 5 cases.

TCP works, what PM can observe, and how the results of process mining are
comparable with the common descriptions of TCP protocol by state diagrams.

The RFC TCP state transition diagram describes a TCP flow in general
terms. The diagram depicted the establishing, established, and closing stages of a
TCP flow. This diagram depicts the establishing stage as a three-way handshake.
The diagram lacks information regarding the established stage. The closing stage
consists of two states on each side of communication (sending out FIN and
waiting for ACK). This diagram has a much higher abstraction than any of the
models mined, and all we can compare are the handshake and closing phases. In
the diagram, cases such as disconnecting during a handshake are not permitted.

The information shown by the state diagram of Bishop et al. is closer to
the real traffic data as the analysis is based on real network traffic observed on
the system calls. Transitions with RST set are coloured orange; transitions that
have SYN set are coloured green; transitions that have FIN set are coloured blue;
others are coloured black. We have flags in the diagram such as ‘Arsf’, where ‘A’
stands for ACK set, and ‘a’ stands for ACK clear; ‘R’ stands for RST set, and
‘r’ stands for RST clear;‘S’ stands for SYN set, and ‘s’ stands for SYN clear; ‘F’
stands for FIN set, and ‘f’ stands for FIN clear. We refer readers to the original
report in [3] for more details.

This state diagram has significantly more detail than the original RFC dia-
gram. It displays additional traces and information about event classes contain-
ing the RST flag. START is not directly connected to PSH or END, similar to

8 Yinzheng Zhong and Alexei Lisitsa

7

99

1

60

10

7

2

6

8

1

477

30

219

293

15

21

2

4

1

2

4

6

100

1

2

2

469

71

16

160

5

27

4

3

2

158

465

489

71

28

2

1

3

1

10

1

3

36

20

7

39

1

1

155

311

209

44

1

1

100

52

20

2

8

8

3

7

000.SYN.-C

107

000.ACK.SYN.-S

107

000.ACK.-C

1,269

000.ACK.PSH.-C

722

000.ACK.-S

1,081

000.ACK.PSH.-S

755

000.ACK.FIN.-C

106

000.ACK.FIN.-S

96

000.ACK.RST.-C

12

000.RST.-C

22

000.RST.-S

3

000.ACK.RST.-S

14

Fig. 5. The fuzzy models mined with 100 cases.

783

19,623

238

93

1

13

229

22

22

13

1

203

163

18

242

18

685

19,989

197

2

23

5

1111

2

158

37

5

30

14

439

2

80

4

30

21

2

12

1

357

4

529

30,264

54,175

27,227

6,553

12,145

171,919

248

56

35

187

1,639

1,283

1,108

38

48

131

931

1

440

46

1

1

1,409

1

92

866

21,984

24,351

8,618

40,575

1

107

100

18 47

14

79

3

1

8

119

4

9

12

65,717

12,085

26,490

758

438

6,546

23

415

1

588

87

1

5,258

8

1

310

36

483

3

1

145514

90

1

2,426

752

9,338

43

215

71

6,854 929

503 29

6

69

465

74

120

41

1,874

31

1

171,106

8,030

37,805

4

2,247

1

105,573

296

263

3,819

14

96

1,249

2

22

1

19,97327

3

8,946

18

8

5,671

696

1,522

571

744

9

1,809

3

000.SYN.-C

20,873

000.ACK.SYN.-S

20,935

000.ACK.-C

301,315

000.ACK.PSH.-C

96,834

000.ACK.PSH.-S

118,668

000.ACK.FIN.-C

20,718

000.ACK.-S

336,174

000.ACK.RST.-S

1,464

000.ACK.RST.-C

2,402

000.ACK.FIN.-S

18,620

000.RST.-S

918

000.ACK.PSH.FIN.-S

752

000.RST.-C

5,516

000.CWR.ECN.SYN.-C

27

000.ECN.ACK.SYN.-S

23

000.ACK.PSH.FIN.-C

413

000.CWR.ACK.PSH.-C

1

000.CWR.ACK.RST.-C

3

000.CWR.ACK.PSH.-S

1

Fig. 6. The fuzzy models mined with 20k cases.

the process models discovered using Disco. Event names in our process models
contain the labels S and C, which indicate whether a packet was sent upstream
or downstream; however, the state diagram preserves the states of the RFC TCP
state diagram, and it does not reflect where a packet was sent from.

Based on our understanding of the the diagram, we make the transition
matrix in Table 2 that describe possible transitions and possible traces. For
example, row 1 column 2 shows that after a packet with SYN set, we can possibly
get a packet with ACK set next.

Can process mining help in anomaly-based intrusion detection? 9

September 1981
 Transmission Control Protocol
 Functional Specification

 +---------+ ---------\ active OPEN
 | CLOSED | \ -----------
 +---------+<---------\ \ create TCB
 | ^ \ \ snd SYN
 passive OPEN | | CLOSE \ \
 ------------ | | ---------- \ \
 create TCB | | delete TCB \ \
 V | \ \
 +---------+ CLOSE | \
 | LISTEN | ---------- | |
 +---------+ delete TCB | |
 rcv SYN | | SEND | |
 ----------- | | ------- | V
 +---------+ snd SYN,ACK / \ snd SYN +---------+
	<----------------- ------------------>	
SYN	rcv SYN	SYN
RCVD	<---	SENT
	snd ACK	
	------------------ -------------------	
+---------+ rcv ACK of SYN \ / rcv SYN,ACK +---------+		
--------------		-----------
x		snd ACK
V V		
CLOSE +---------+		
-------	ESTAB	
snd FIN +---------+		
CLOSE		rcv FIN
V -------		-------
+---------+ snd FIN / \ snd ACK +---------+		
FIN	<----------------- ------------------>	CLOSE
WAIT-1	------------------	WAIT
+---------+ rcv FIN \ +---------+		
rcv ACK of FIN -------	CLOSE	
-------------- snd ACK	-------	
V x V snd FIN V		
+---------+ +---------+ +---------+		
FINWAIT-2		CLOSING
+---------+ +---------+ +---------+		
rcv ACK of FIN	rcv ACK of FIN	
rcv FIN --------------	Timeout=2MSL --------------	
------- x V ------------ x V		
 \ snd ACK +---------+delete TCB +---------+
 ------------------------>|TIME WAIT|------------------>| CLOSED |
 +---------+ +---------+

 TCP Connection State Diagram
 Figure 6.

 [Page 23]

Fig. 7. RFC TCP state transition diagram [14].

Table 2. The adjacency matrix of state diagram by Bishop et al.

SYN. ACK. ACK.SYN. ACK.RST. FIN. DATA ACK.FIN. RST. START END

SYN. 1 1 1 1 1 1

ACK. 1 1

ACK.SYN. 1 1 1 1 1

ACK.RST. 1

FIN. 1 1 1 1 1

DATA 1 1 1 1 1 1

ACK.FIN. 1 1 1

RST. 1 1

START 1 1 1

END

5.3 Overall Comparison

In Table 3, we compare the level of generality of various discussed models. A
general model should permit normal, unobserved behaviours to pass compliance
testing. Compared are only rare normal flows that exist in actual network traffic
data. The examples illustrate some infrequent flows. The table columns display
models, such as an inductive model mined with five traces, a fuzzy model mined
with one hundred traces, etc. The row illustrates rare cases that we anticipate
being observed in the models. If the case is observed in any process model or

10 Yinzheng Zhong and Alexei Lisitsa

Fig. 8. State diagram by Bishop et al. [3].

diagram, the cell is marked Y(es); otherwise, the cell is marked N(o). Follow-
ing the inductive model in terms of generality is the fuzzy model. This result
is anticipated due to the algorithmic design, in which an inductive miner ex-
plores patterns such as concurrencies, yielding a large number of possible traces
that are not present in the event log. Alternatively, RFC diagrams are general
descriptions of TCP states, and both diagrams are limited to predefined stages
such as LISTEN, SYN-SENT, and ESTABLISHED, among others.

Table 3. Generality Comparison.

Ind. 5t Fuzzy 5t Ind. 100t Fuzzy 100t Ind. 20kt Fuzzy 20k RFC Diag. Bishop
PSH in established stage. Y Y Y Y Y Y N N

Duplicate pakages. Y Y Y Y Y Y N Y
Reset during handskake. N N Y Y Y Y N Y

Send of receive SYN after estanblished. N N N N Y Y N N
Reset during closing Y N Y N Y Y N Y

Table 4. Accuracy Comparison.

Ind. 5t Fuzzy 5t Ind. 100t Fuzzy 100t Ind. 20kt Fuzzy 20k RFC Diag. Bishop
Data transmission without handshake N N Y N Y N N N

RST or FIN before handshake N N Y N Y N N N
Loop through Close and Established stages N N Y Y Y Y N N

Sending same packets infinitely without
response from the other side

Y Y Y Y Y Y N N

Can process mining help in anomaly-based intrusion detection? 11

Fig. 9. Stage comparison between process model and diagram.

We contrast accuracy in Table 4. An accurate model that depicts normal
behaviours should not allow abnormal traces to pass the compliance checking.
We assume a trace is abnormal based on typical use cases because the behaviour
of a flow can vary depending on the implementation of an application. In contrast
to Table 3, we DO NOT anticipate any of the cases in Table 4 to fit any process
model or diagram. We achieve greater accuracy with fuzzy models, and the
diagrams are the most accurate. Cases involving infinite loops are a common
issue with process models. Because diagrams adhere to predefined stages, looping
through the close stage and the established stage cannot occur. Due to the fact

12 Yinzheng Zhong and Alexei Lisitsa

that ACK typically occurs after receiving any packet, a link will be created
between this packet and the ACK packet, causing loops between stages. To better
illustrate this limitation of process models, we colour the process model in Fig. 1
into three stages; thus, we can directly compare it with the diagrams at the level
of stages. Fig. 9 depicts the coloured process model. The yellow nodes correspond
to events from the three-way handshake stage; the green nodes correspond to
events from the data transmission stage; and the uncoloured nodes correspond
to events from the termination stage.

The event class ”000.ACK|C” occurs in all three stages of this example,
whereas ”000.ACK|S” occurs in the established and closing stages. This is the
reason for the loops between stages being created, and the fuzzy model has the
same problem. We label each packet with C or S to ensure that the information
regarding which side of the terminals sent a particular packet will not be lost
in PM, and by adding this information, we have also prevented the creation
of additional loops. Although this information is not directly present in the
packet data, it should be added to event logs by processing the raw packet data.
Therefore, our experiment can also be improved by including information about
the stages.

On the basis of this observation, the question can be posed: what exactly can
PM extract from event logs? In our case, without prior knowledge of the TCP
protocol and preprocessing the packet data prior to adding them to the event
log, the information of C/S and stages will be lost, resulting in a greater number
of loops in mined modesl and a greater degree of difficulty for the analysis.

6 Conformance Checking

Table 5. Fitness scores of conformance checking.

Normal BruteForce DoS Heartbleed CoolDisk Dropbox PortscanNmap Web Botnet ARES Port Scan DDos

1 1 1 1 1 1 1 1 1 1

Using the inductive models which is mined with a 20k event log (the same
event log from setup 5), we performed conformance checking and calculate the
fitness score with ProM. A score of 1 indicates that all cases perfectly match
the process model; otherwise, the score will be less than 1. The method for
performing conformance testing is described in detail in [16]. The average fitness
scores for multiple setups are displayed in Table 5. Using a 20k-case event log, we
mine the normal process model; then, we perform conformance checking with
various categories including another normal log and all attacks. The normal
column represents the fitness score of an additional subset distinct from the one
used to generate the model. On Zenodo, all preprocessed data will be accessible1.

1 https://doi.org/10.5281/zenodo.6646875

Can process mining help in anomaly-based intrusion detection? 13

As all cases exhibit perfect model fit, it is impossible to identify the anomaly.
Observable traces are a limitation of related works that mine the normal model
from only a few dozens or hundreds of cases, resulting in a relatively accurate
model. However, network flows can be significantly more complex; therefore,
mining a process model from deviated flows will result in a significantly more
general model. As long as the flows are being routed on the network, regardless
of whether they are attacks or normal traffic, they always comply with TCP,
and attacks typically do not exploit the protocol itself. We believe that the
frequency distribution of transitions is more crucial for anomaly detection in
IDS. An anomaly may not be viewed as a particular transitional change, but
rather as the global frequency structure.

7 Conclusion

We believe that using PM and conformance checking directly for network intru-
sion detection is ineffective. We compare models, and based on our observations,
we know that it is difficult to detect anomalies due to the generality of the pro-
cess model. In addition, we explained why using PM for network traffic anomaly
detection is ineffective. A benefit of PM is that it encodes the global process
structure, allowing parallelism to be discovered. This may be important for de-
tecting distributed denial of service (DDoS), Botnet, and brute force attacks.

References

1. Van der Aalst, W.M., de Medeiros, A.K.A.: Process mining and security: Detecting
anomalous process executions and checking process conformance. Electronic Notes
in Theoretical Computer Science 121, 3–21 (2005)

2. Van der Aalst, W.M., Weijters, A.J.: Process mining: a research agenda (2004)
3. Bishop, S., Fairbairn, M., Norrish, M., Sewell, P., Smith, M., Wansbrough, K.: Tcp,

udp, and sockets: rigorous and experimentally-validated behavioural specification:
Volume 1: Overview. Tech. rep., University of Cambridge, Computer Laboratory
(2005)

4. Bruno, M., Ibañez, P., Techera, T., Calegari, D., Betarte, G.: Exploring the appli-
cation of process mining techniques to improve web application security. In: 2021
XLVII Latin American Computing Conference (CLEI). pp. 1–10 (2021)

5. Ebrahim, M., Golpayegani, S.A.H.: Anomaly detection in business processes logs
using social network analysis. Journal of Computer Virology and Hacking Tech-
niques 18(2), 127–139 (2022)

6. Eckleder, A., Freytag, T.: Woped a tool for teaching, analyzing and visualizing
workflow nets. Petri Net Newsletter 75, 3–8 (2008)

7. Günther, C.W., Rozinat, A.: Disco: Discover your processes. In: BPM (2012)
8. Günther, C.W., Van Der Aalst, W.M.: Fuzzy mining–adaptive process simplifica-

tion based on multi-perspective metrics. In: International conference on business
process management. pp. 328–343. Springer (2007)

9. Hsu, Y.F., He, Z., Tarutani, Y., Matsuoka, M.: Toward an online network intrusion
detection system based on ensemble learning. In: 2019 IEEE 12th international
conference on cloud computing (CLOUD). pp. 174–178. IEEE (2019)

14 Yinzheng Zhong and Alexei Lisitsa

10. Lee, W., Stolfo, S.: Data mining approaches for intrusion detection (1998)
11. Mishra, V.P., Dsouza, J., Elizabeth, L.: Analysis and comparison of process min-

ing algorithms with application of process mining in intrusion detection system. In:
2018 7th International Conference on Reliability, Infocom Technologies and Opti-
mization (Trends and Future Directions)(ICRITO). pp. 613–617. IEEE (2018)

12. Mishra, V.P., Shukla, B.: Process mining in intrusion detection-the need of current
digital world. In: International Conference on Advanced Informatics for Computing
Research. pp. 238–246. Springer (2017)

13. Myers, D., Suriadi, S., Radke, K., Foo, E.: Anomaly detection for industrial control
systems using process mining. Computers & Security 78, 103–125 (2018)

14. Postel, J.: Transmission control protocol (1981)
15. Roesch, M., et al.: Snort: Lightweight intrusion detection for networks. In: Lisa.

vol. 99, pp. 229–238 (1999)
16. Rozinat, A., Van der Aalst, W.M.: Conformance checking of processes based on

monitoring real behavior. Information Systems 33(1), 64–95 (2008)
17. UNB: Ids 2017 dataset. https://www.unb.ca/cic/datasets/ids-2017.html
18. Van Der Aalst, W.: Process mining: discovery, conformance and enhancement of

business processes, vol. 2. Springer (2011)
19. Verbeek, H., Buijs, J., Van Dongen, B., van der Aalst, W.M.: Prom 6: The process

mining toolkit. Proc. of BPM Demonstration Track 615, 34–39 (2010)
20. Wespi, A., Dacier, M., Debar, H.: Intrusion detection using variable-length audit

trail patterns. In: International Workshop on Recent Advances in Intrusion Detec-
tion. pp. 110–129. Springer (2000)

21. Zhong, Y., Goulermas, J.Y., Lisitsa, A.: Process mining algorithm for online in-
trusion detection system. arXiv preprint arXiv:2205.12064, Also to appear in pro-
ceeding: 2021 International Conference on Software Testing, Machine Learning and
Complex Process Analysis (2022)

	Can process mining help in anomaly-based intrusion detection?

