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Abstract
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Process Mining and Machine Learning for Intrusion Detection

by Yinzheng Zhong

With the increasing volume of internet traffic and the growth of the variety of inter-
net services, the amount of cyber-attacks has increased vastly in recent years. Meth-
ods used to detect and prevent cyber-attacks are called intrusion detection systems.
These systems prevent damage or compromise to the integrity, availability and con-
fidentiality of infrastructures. However, the continuously increasing amount of data
poses problems to the current intrusion detection methods. An intrusion detection
system may suffer from a lack of efficiency, a lack of the ability to work with en-
crypted data and unable to find causal relationships between the cyber-attack and
concurrent internet connections.

The thesis introduces a novel algorithm that is developed to address some of the
existing issues of current intrusion detection systems. This technique takes advan-
tage of process mining in the encoding of event data. Process mining is designed to
discover the process model from the event log automatically and analyse the gen-
erated model. The performance of using process mining for intrusion detection has
been verified and analysed at the early stage of this research. Then the process min-
ing algorithm was modified with the combination of online processing capabilities.
The resulting algorithm is a feature generator that takes the event log as the input
and outputs a sequence of matrices that is suitable for machine learning and other
processing.

The performance and efficiency of the feature generator have been verified with
different datasets and machine learning algorithms. Results show that all the machine-
learning algorithms that have been tested in classification yield accuracy that proves
the generated feature can be used for intrusion detection. Verification has also been
taken on anomaly detection approaches with various unsupervised machine learn-
ing algorithms, which further illustrate that the generated feature contains a higher
abstraction of information of intrusions. The generation processing is efficient, and
the processing speed is able to handle bandwidth in practical use.
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Chapter 1

Introduction

1.1 Overview

Process mining [1] is a method for discovering process models from event logs,
analysing the generated process models, and updating the existing process mod-
els with newly discovered processes. A system for detecting intrusions checks for
unauthorised behaviours or patterns that compromise the system’s integrity and
availability. Initially, the fundamental principles of process mining and intrusion
detection will be introduced. Then, the thesis’s motivation, scope, and structure will
be presented.

1.2 Process Mining

Generally speaking, process mining is a two-step method. The first step is the pro-
cess discovery step, during which event log data is used to construct process mod-
els. Analyzing the mind process models is the second step. Our generic feature
generator derives its conceptual underpinnings from process mining algorithms. A
process can be thought of as either a procedure or a series of actions followed in
order to achieve a specific goal. There are procedures involved in every facet of our
day-to-day lives, from the operations of well-established businesses to the running
of private households. Both the production process for automobiles and the process
for completing an order placed by a customer can be found in the industrial sector.
When carried out in one’s own home, the procedure is analogous to the series of
actions required to cook a meal or switch on the television.

1.2.1 Business Process Management

Businesses tend to break down the process in a manageable way to decrease the
chance of errors being created. Considering an online retail business selling gro-
ceries to local customers on its website. Usually, the way the orders are processed
will be the following. The customer needs to add items to the shopping cart and
go to checkout; at this stage, the order status will be Pending. Later the customer
makes the payment, and the status of this order will be changed to Processing once
the payment is confirmed. The warehouse then picks items for orders that are in
the Processing stage, and the driver will be ready when the items are fully picked.
The driver gets the order and marks the status as Delivering, and once the customer
receives the order, the order status is Completed. A simple process model can be
created to demonstrate the process in Fig. 1.1. The process starts from the left circle
and then follows the direction of the arrows until the end place (right circle).
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FIGURE 1.1: A simple business process model and notation (BPMN)
for the online retailer example.

The business owner designs the model and instructs employees to adhere to it to
prevent errors. Obviously, the employees do not wish to ship the goods before re-
ceiving payment. The idea behind breaking down a process is that it can be divided
into sub-processes in a divide-and-conquer fashion. Also, a step can be a process; for
instance, the Delivering step in order processing can be a process consisting of the
following sub-steps: the driver receives the order, loads it onto the vehicle, drives
to the destination, contacts the customer, and has the customer sign the delivery
receipt.

1.2.2 Process Discovery

The order processing procedure depicted in Figure 1.1 is intended for a scenario in
which everything runs smoothly and without exceptions; however, this is not the
case in practice. The following are some common order processing exceptions.

1. Payment never received.

2. Request to cancel during processing/delivering.

3. Missing items during picking.

4. Item damaged during delivery.

To address these four concerns, it is necessary to modify the model so that it
looks like Figure 1.2. Similarly, the process starts from the left circle. After the order
has been submitted by the customer, the system will wait for the payment for a time
period, and the payment will either be successful or timed out. In the case of a
successful payment, the customer can amend the order before it is processed. The
model is significantly more complicated than it was before, despite the fact that only
four of the possible exceptions have been taken into consideration.

FIGURE 1.2: The updated BPMN for the online retailer example.

In practice, these order processing steps can be extremely complex, making the
design of the model challenging. The model’s complexity is also dependent on the
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level of detail and the manner in which each step is defined. On the basis of work-
flow patterns, it is proposed to construct the model using system event logs and
process discovery techniques [2].

Even with a well-defined process model, humans still make mistakes, which is
another obstacle. Human error is not entirely preventable, and sometimes people
simply disregard the defined model; as a result, the process definition is permitted
to evolve during practice, with certain constraints. The changes in the mined pro-
cess model are discussed in [3] using various criteria. Techniques that generate the
process models from event logs and update the pre-mined models with unforeseen
traces are based on process discovery. Process discovery is a crucial aspect of process
mining [4], and we will delve into the specifics in Chapter 2.

1.3 Intrusion Detection

1.3.1 Cybersecurity Concerns

The Cisco Virtual Network Index [5] estimates that the global Internet traffic has in-
creased from 73.1 Exabytes per month in 2016 to approximately 235.7 Exabytes per
month in 2021. This is due to the fact that the amount of data that is transferred
through network cables has significantly increased each year. This equates to an in-
crease of over 220 per cent in just five years or a growth rate of 26 per cent on an
annual basis. There has also been a considerable amount of horizontal growth. A
great number of services, such as finance, streaming, online gaming, and Internet
video, have shifted from using conventional methods to utilising the Internet. Here,
horizontal growth refers to the growth of the type of Internet services, whereas ver-
tical growth refers to the data volume growth.

Cybersecurity becomes a significant concern as the value of information trans-
ferred online. For instance, the emerging threat exploits system vulnerabilities to
steal valuable data. An estimated 33 billion personal records will be stolen in 2023,
containing information such as addresses, credit card numbers, and identities [6].
In addition to the emerging threat, denial of service (DoS) attacks are a major issue-
causing threat. Although this type of attack does not cause direct property damage,
it renders services inoperable, resulting in a loss of revenue. Since 2016, the num-
ber of distributed denial of service (DDoS) attacks exceeding 1Gbps has increased
by 150 per cent, as reported by [5] and [7]. In the fourth quarter of 2021, Cloudflare
mitigated dozens of terabit-scale DDoS attacks. A few-minute DDoS attack has the
potential to cause losses in the millions of dollars.

1.3.2 Intrusion Detection Systems

Utilizing an intrusion detection system, also known as an IDS, allows for the identi-
fication and classification of policy violations as well as attacks against the system’s
security. There are two main types of IDS: the network-based intrusion detection
system (NIDS) and the host-based intrusion detection system (HIDS), and their dis-
tinction comes down to the initial purpose of the IDS.

The NIDS is typically installed on infrastructures such as routers and switches
to monitor network activity and detect breaches. The NIDS solution is designed
to monitor the entire network. It has access to all network traffic and takes deci-
sions depending on the contents of packets or other analytical data. This broader
perspective gives additional context for intrusion detection and the capability to de-
tect widespread threats, yet, these systems lack access to the inner workings of the
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endpoints they defend. On the other hand, the HIDS is installed on a specific end-
point and is intended to defend it from both internal and external threats. It looks
for file alterations, unusual network traffic, and any other suspicious behaviour on
each unique system. A good example of HIDS is anti-virus software. This thesis
will mostly examine network-based intrusion detection systems for detecting cyber
attacks, such as DoS, botnets, and port scans.

Intrusion detection systems can also be categorised into two different types de-
pending on the way they detect threats. These two types of IDSs are signature-based
intrusion detection systems and anomaly-based intrusion detection systems. The
signature-based IDS uses patterns to detect the intrusion or the machine learning
algorithms that are trained with labelled attack data and used to classify whether
there is an intrusion or not. An example of traditional signature-based well-known
IDS is Snort [8], which detects intrusions based on predefined rules. The anomaly-
based intrusion detection methods measure the similarity of giving activities to the
known normal activities. The data can be identified as intrusions if the difference is
larger than a threshold. Unlike signature-based intrusion detection systems, we are
unaware of any anomaly-based intrusion detection systems running in a production
environment or any predefined rules for the Snort framework that describes normal
network behaviour. Nonetheless, the paper [9] introduces a variety of anomaly-
based IDS techniques.

1.4 Problem Domains

There are a large number of existing techniques used in intrusion detection. Such
as approaches that use data mining [10]–[12], machine learning [13]–[17] and other
statistical methods [18]–[20] for the designing of intrusion detection systems. This
section will discuss the problems that have been discovered in the area of IDS.

1.4.1 Level of Detection

Online or offline detection of network intrusion is available. Online detection mon-
itors network activity in real-time in order to detect threats as quickly as possible.
Offline detection typically examines the data logged and is executed manually by
the administrator or at a predetermined interval. When discussing methods for de-
tecting online intrusions, it is for this reason that we take into account detection at
the packet level. A packet-level IDS analyse each incoming packet and will detect
the threat as soon as a pattern appears; therefore, it can detect the intrusion before
the connection terminates.

A large number of methods that employ commonly used datasets, regardless of
whether they employ data mining or machine learning, are unable to detect intru-
sions at the packet level. It would appear that the datasets, like the well-known
KDDCup’99 [21] and NSL-KDD [22] datasets, do not provide packet-level data that
can be accessed in a straightforward manner. The NSL-KDD dataset is an improved
version of the KDDCup’99 dataset, with enhancements such as the removal of du-
plicate records and the adjustment of the sizes of the train and test sets, respectively.
The statistical values that are provided by these datasets are at the flow level. This
means the data will not be generated until a connection is terminated or allowed to
time out. For instance, the feature "Destination Bytes" indicates the total number of
bytes transferred from the source to the destination in a single connection; obviously,
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this feature cannot be extracted before the connection closes or terminates. [23] pro-
vides specific information on all of the features that are a part of the KDD dataset.
The concept of network flows will be introduced in Chapter 2.

1.4.2 Data Encryption

Some datasets include binary packet data in PCAP format in addition to feature sets
that are formatted in a similar fashion to KDD datasets and are presented in CSV
datasheet format. The CIC-IDS2017 dataset [24] and the CSE-CIC-IDS2018 dataset
[25] are two examples. The packet data can be extracted from the binary format of
these datasets; however, the difficulty in applying the packet data for classification
is that if the extracted feature is from a single most recent packet, the information
that can be obtained is insufficient. That is because a single packet may not correlate
to attacks, and the majority of packets have encrypted or obfuscated content.

Some feature generation methods that are used in available datasets, such as
ISCX 2012 [26] and the already mentioned datasets above, are based on flow-level
analytical data, as the manner in which packets have been sent within a flow and the
amount of data they have transferred are irrelevant to whether packets are encrypted
or not. This is one of the solutions for intrusion detection with encrypted data.

1.4.3 Computational Cost

Packet-level detection is not always superior. As just discussed, techniques such
as deep packet inspection (DPI) [27] that look for the contents or headers of pack-
ets do not work well if the packets are encrypted or obfuscated. Detection at the
packet level also requires more resources than other methods. For example, some
techniques use recurrent neural networks (RNN) as the detector by providing each
packet as a time step [28]. If the time-series approaches are used, the dimension
of the feature data may pose a problem with efficiency. Here is a comparison ta-
ble (Table 1.1) that is obtained from [29]. The host-pair-level detection relies on the
statistical data of all flows between two hosts at a given time, whereas flow-level
detection is dependent on data generated from individual flows.

Levels Pros Cons

Packet-level
1. Real-time detection.
2. Allow pattern matching in payload content.
3. More information is extractable.

1. Slowest and not suitable for high-bandwidth networks.
2. Hard to apply on the encrypted payload.

Flow-level

1. Independent of the encrypted payload.
2. Faster than packet-level detection and are
able to handle high-bandwidth networks.
3. Well-understood feature extraction methods

1. Some delay in detection.
2. Not the fasted way.

Host-pair-level

1. Provide global information on traffic
between two hosts.
2. Good detection performance when used
with other levels of data

1. Greater delay in detection.

TABLE 1.1: Pros & Cons for different levels of detection.

In general, detecting data at a higher level requires fewer computational re-
sources because the total amount of data is smaller. Consequently, it is necessary
to identify an algorithm that can be applied to packet-level detection and is efficient
enough to be implemented onto consumer hardware. Additionally, we should at-
tempt to address the concerns listed in Table 1.1.
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1.4.4 Extensibility

When constructing something, one may consider whether or not it can be improved
in the future. A similar principle can be applied to the design of intrusion detection
systems, and it is anticipated that the system can be expanded or that additional
research can be conducted on it. The majority of data mining and machine learning
techniques employ similar extracted features and machine learning algorithms with
modifications. The feature extractor may not be sufficiently general for use in other
domains. CICFlowMeter [30] generates features based on properties such as the total
number of forward packets, the total number of bytes transferred, and the number
of particular flags in a flow, among others. This feature generator is inapplicable to
HIDS that monitor system calls.

1.4.5 Concurrency Discovery Capability

Clearly, there exist methods that employ packet-level detection and are capable of
handling encrypted data. For example, existing pattern-based IDSs examine audit
trails for network data [8], [31]. In general, this type of IDS searches for specific
activities or a sequence of activities, and then a determination is made based on the
defined patterns.

Snort [8] employs a rule-based system that enables the creation of user-defined
rules. Several options can be utilised during the development of rules, and some of
them are listed below:

• content: Search the packet payload for the specified pattern.

• flags: Test the TCP flags for specified settings.

• ttl: Check the IP header’s time-to-live (TTL) field.

• minfrag: Set the threshold value for IP fragment size.

• ack: Look for a specific TCP header acknowledgement number.

• msg: Sets the message to be sent when a packet generates an event.

A simple rule below will check all inbound traffic to the 10.10.1.0 subnet, if the
payload of the content matches "/cgi-bin/phf", a message of "PHF probe!" will be
sent. This rule does not appear to work on encrypted data; however, other attributes,
such as flags and TTL, can be used to detect intrusions in encrypted data.

alert tcp any any -> 10.10.1.0/24 80 (content: "/cgi -bin/phf"; \
msg: "PHF probe !";)

The Variable-Length Audit Trail Pattern method proposed by Wespi et al. [31]
is designed for HIDS. It translates system commands such as file-open and file-
close into sequences of characters using the translation table. The translation table
is essentially a mapping between system call names and specific keys. Using the
Teiresias algorithm [32], a sequence of keys will be separated into subsequences of
variable length. Comparing the subsequences to the training sequences in order to
compute the boundary coverage. The algorithm will then identify the intrusion with
the longest sequence of undetected events. Utilizing this algorithm with a newly de-
signed translation table, it is possible to map packet headers to sequences of keys for
NIDS; thus, the same technique can be extended to NIDS.

In [17], the damped incremental statistics is used to generate feature vectors at
the packet level in real-time. This technique has been further explored in [33] at a



1.5. Motivation 7

later time with a different deep-learning model. The new value can be updated in-
crementally with the new packet data by keeping the previous statistical value. The
previous values are also updated with the decay function, so older data have less
weight. By implementing the 2-D statistics, statistical information between RX and
TX is also extracted. Here, TX and RX are abbreviations for Transmit and Receive.
The algorithm from [17] has a reasonable computational complexity so that the per-
formance is not a key issue. By retaining statistical data, this algorithm is able to
function with encrypted traffic.

There also exist numerous studies that employ audit trails for intrusion detec-
tion. Unfortunately, the majority of them are limited to a single network flow and
disregard the global process structure. Therefore, they are unable to interpret par-
allelism information, which is crucial for detecting DDoS and botnet attacks. The
global process structure, also called the global flow structure in this thesis, is the
characteristic of all network flows observed on a cable, whereas the individual flow’s
characteristics are not disregarded. A further issue is that some of them do not work
well with encrypted data. Data encryption is used extensively in modern Internet
traffic. In addition, the majority of these techniques were published in the early
2000s or even the previous century, and there is a dearth of new research utilising
these techniques.

1.5 Motivation

According to the study of existing intrusion detection methods mentioned in 1.4,
three main issues are observed with some of the techniques used for intrusion detec-
tion. The first is the lack of ability to perform online detection efficiently; the second
is that some packet-level detection techniques have difficulty applying to encrypted
data; third, most techniques lack the ability to detect the global process structures.
The presumption is to employ a technique that has not been widely explored in the
field of NIDS, preferably one suitable for identifying the global process structure. In
addition, we seek a method for extracting features that are not necessarily limited
to numeric values; for instance, we can generate features based on relations or pat-
terns across packets, which are not limited to a single packet or a single flow but also
across different flows.

Process mining is a great technique that encodes global process structure and
considers precedence relationships in model generation instead of numerical values.
Also, considering the lack of existing research which utilises process mining for in-
trusion, process mining has the potential to be the alternative approach to intrusion
detection. However, process mining is not designed to perform online execution.
The motivation of this research is to cooperate with process mining and intrusion
detection to test the performance of process mining-based intrusion detection and
to modify process mining to perform online feature generation. This topic will be
discussed in depth in Chapter 4.

1.6 Research Question

At the beginning of this research, there does not exist literature that covers the ex-
periments of applying process mining to network intrusion detection. Due to the
fact that this area is rarely explored, the following questions can be asked to aid the
research.
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1. How may process mining be applied to network intrusion detection?

2. How does process mining perform for network traffic data in anomaly detec-
tion?

3. How to execute process mining online, and can the technique be generalised?

4. How do the generalised algorithms function in different contexts, such as host-
level intrusion detection?

1.7 Contributions

Some of the contributions of this thesis and the development of the process mining
feature generation technique are listed below.

1. Standardised method for transforming network packet data to event logs.
To combine process mining techniques with an intrusion detection system, it
is necessary to convert network flows to event logs. The network packets are
filtered, and only the required fields are exported and treated as attributes.

2. Verification of the feasibility of process mining on network packet data.
Different process mining algorithms has been tested with the event logs that
are converted from network traffic data. The generated process models have
been compared and verified. The result provides valuable information in the
development of the novel online feature generation algorithm.

3. A novel algorithm for generating features for network intrusion detection
systems.
A novel algorithm based on process mining is developed and evaluated for
generating online features. The algorithm is initially evaluated using con-
verted network data event logs. Then it is generalised and tested using the
event log generated by the kernel call at the host level.

4. A open-source Python package based on the feature generator.
The novel feature generator is implemented as a python package. The program
reads the event logs and produce data for machine learning. This package aids
in the future research and development of the feature generator.

1.8 Publications

1. Zhong, Yinzheng, John Y. Goulermas, and Alexei Lisitsa. "Process Mining
Algorithm for Online Intrusion Detection System." In proceeding of the In-
ternational Conference on Software Testing, Machine Learning and Com-
plex Process Analysis (2021)
In this paper, the technique of process mining in intrusion detection is pre-
sented. A novel process mining-inspired algorithm is proposed to be used
to preprocess data in intrusion detection systems (IDS). The algorithm is de-
signed to process the network packet data, and it works well in online mode
for online intrusion detection. To test this algorithm, the CSE-CIC-IDS2018
dataset is used, which contains several common attacks. The packet data was
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preprocessed with this algorithm and then fed into the detectors. The experi-
ments use the algorithm with different machine learning (ML) models as clas-
sifiers to verify that the algorithm works as expected is reported. The content
of this paper is presented in Chapter 4.

2. Zhong, Yinzheng, and Alexei Lisitsa. "Can process mining help in anomaly-
based intrusion detection?." arXiv preprint arXiv:2206.10379 (2022)
In this paper, the naive applications of process mining in network traffic com-
prehension, traffic anomaly detection, and intrusion detection are considered.
The procedure of transforming packet data into an event log was standard-
ised. Multiple process models are mined, and the process models mined with
the inductive miner using ProM and the fuzzy miner using Disco are analysed.
These two types of process models extracted from event logs of differing sizes
are compared. The content of this paper is presented in Chapter 2 and Chapter
3.

3. Zhong, Yinzheng, and Alexei Lisitsa. "Online Transition-Based Feature Gen-
eration for Anomaly Detection in Concurrent Data Streams." 9th Interna-
tional Conference on Information Systems Security and Privacy - ICISSP
(2023), ISBN 978-989-758-624-8; ISSN 2184-4356, pages 576-582
In this paper, the transition-based feature generator (TFGen) technique is intro-
duced, which reads general activity data with attributes and generates step-by-
step generated data. The activity data may consist of network activity from
packets, system calls from processes or classified activity from surveillance
cameras. TFGen processes data online and will generate data with encoded
historical data for each incoming activity with high computational efficiency.
The input activities may concurrently originate from distinct traces or chan-
nels. The technique aims to address issues such as domain-independent ap-
plicability, the ability to discover global process structures, the encoding of
time-series data, and online processing capability. The content of this paper is
presented in Chapter 5.

1.9 Thesis Organisation

In Chapter 2, the detailed concepts of process mining and transmission control pro-
tocols will be discussed. These concepts are required to proceed to the next step,
which is the application of process mining to network traffic data. The process min-
ing techniques for intrusion detection systems will be examined in general, and the
method of converting network traffic data to event logs will be proposed.

In Chapter 3, state diagrams are compared to process models that have been
mined using different process mining algorithms. The result of the conformance
checking based on process models and anomalous traces is not promising. However,
there is a detailed explanation of why the naive approach of applying process mining
to network data is not effective.

In Chapter 4, an algorithm for online process mining that is based on observa-
tions and studies from earlier chapters is proposed. This chapter begins by intro-
ducing the issues with existing network intrusion detection approaches and process
mining, as well as the techniques used to address these problems. Then, the result
using multiple machine learning techniques was verified and compared to a com-
monly used existing feature generator.
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In the 5th and final chapter, the feature generator in a generic form is presented,
including the development of a Python package that aids future research. Based
on the fact that any standard event log can serve as the input of the technique, it is
explored further with a host-level dataset, demonstrating that it has the potential to
function with host-level data as well.
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Chapter 2

Process Mining on Network Traffic
Data

2.1 Overview

Following a naive approach to applying process mining to IDS, this chapter dis-
cusses which process models can be mined using process mining from the network
traffic data. As a summary of the previous chapter, the observed problems are listed
as well as the expectations for new feature generation techniques that solve the re-
lated problems from the problem domain section (Section 1.4) are shown in Table
2.1. In general, an algorithm with the characteristics listed in Table 2.1 is expected.
The first two of these capabilities are provided by process mining. A large number
of techniques have some of these capabilities, but not all of them.

No. Capabilities Importance

1 A generic approach.
Can be applied on different
areas.

2
Discovering the global structure
of the network traffic.

Discovers the concurrency from the
data stream and may benefit DDoS
detection.

3
Extract features at the packet
level.

Needed for real-time detection.

4 Encoding the historical information.
For handling encrypted data and the
behaviour of an entire flow.

5
Having a reasonable computation
complexity.

Better performance for packet-level
detections.

TABLE 2.1: Capabilities required for our algorithm.

The belief that process mining can be used for intrusion detection is derived from
[34]. Similar concepts are also discussed in [35], [36]. According to [34], it is possi-
ble to discover process models, after which conformance checking can be used to
identify anomalies. However, there is a lack of further research based on [34]–[36].
The intuition is that process mining is capable of identifying features of the global
structure and can therefore detect parallelism patterns. Even though process mining
is incapable of packet-level extraction, the experiment can still be conducted at the
flow level. It is a relatively unexplored field, so understanding how process mining
operates on network data is essential for the development of new techniques. The
naive strategy will be based on flow-level detection, which is simple because each
flow can be converted into a case in process mining. The efficiency of process mining
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and the challenges associated with its use for network intrusion detection needs to
be evaluated.

The early experiments are concentrated on the transmission control protocol
(TCP) because it is more prevalent in datasets and in general TCP is the most used
protocol. Additionally, TCP packets within a flow adhere to a sequential order so
that the flow can be interpreted as a process. TCP and process mining concepts per-
tinent to this thesis are introduced first, followed by a discussion of related works
that employ process mining for anomaly detection in various fields. The method for
converting network data to event logs is then standardised. Then, two well-known
process mining algorithms, the inductive mining algorithm and the fuzzy mining
algorithm are employed to mine process models from processed event logs.

2.2 Process Mining

2.2.1 Event Log

An event log is often known in similar forms such as workflow log, transaction log,
audit trail, etc. [37]. An event log contains historical process executions that were
recorded as streams of events. Each event refers to an activity that has been executed
by any entity such as a system, personnel or other resources at some timestamp.
Table 2.2 shows an example of a fraction of the event log that comes from the order
processing logs of the online grocery store we mentioned in Chapter 1.

Case ID Event ID Timestamp Properties

Stage Handling Supervisor ...

1 1 2022-02-23T10:48:55 Pending System Anne ...
1 2 2022-02-23T10:49:15 Processing James Sara ...
2 3 2022-02-23T10:49:23 Pending System Sara ...
1 4 2022-02-23T11:12:24 Delivering Alex Sara ...
2 5 2022-02-23T11:14:41 Processing George Sara ...
3 6 2022-02-23T11:27:39 Pending System Sara ...
2 7 2022-02-23T11:30:17 Delivering Alex Anne ...
1 8 2022-02-23T11:36:07 Complete System Anne ...
2 9 2022-02-23T11:42:40 Complete System Anne ...
4 10 2022-02-23T11:43:06 Pending Anne Sara ...
3 11 2022-02-23T11:45:18 Processing George Sara ...
4 12 2022-02-23T11:49:52 Processing James Sara ...
4 13 2022-02-23T12:01:05 Delivering Alex Anne ...
... ... ... ... ... ... ...

TABLE 2.2: A fragment of the event log.

The event log can be divided into cases; from the table, one can see that cases
1 through 4 correspond to four distinct order-placing customers. Each case is com-
prised of multiple events, each of which has a number of properties. For instance,
one of the properties of the events is the order stage, whose values include Pending,
Processing, Delivering, and Complete, recalling the example in Figure 1.1. Accord-
ing to the last two properties, properties such as the personnel involved are also
present. These properties are known as attributes. Note that events occur at differ-
ent timestamps; therefore, each event is unique even if some of its attributes have
identical values. Some observable facts are listed in Table 2.2.
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• An event log consists of more than one case.

• A case consists of one or more events.

• Each event must relate to one case.

• Events may have properties.

• Events are arranged chronologically and that affects mining outcome.

Process Case 1

Case 2

Event 1

Event 4

Event 5

Event 8

Attributes

Attributes

Attributes

Attributes

......

... ...

... ...
FIGURE 2.1: The structure of event logs.

Figure 2.1 illustrates the structure of an event log in a hierarchical manner. Based
on the literature from [1], [38], [39], the formal definition of the event log will be
examined now and the concept of traces and event classes will be introduced.

Definition 2.1 (Seq()). Giving a set A, Seq(A) is the set of all finite sequences over A.

For example, if A = {a, b, c}, Seq(A) = {⟨a⟩, ⟨b⟩, ⟨c⟩, ⟨a, b⟩, ⟨b, a⟩, ⟨a, c⟩, ..., ⟨a, b, c⟩,
⟨a, c, b⟩, ⟨b, a, c⟩...}

Definition 2.2 (Event, case). Let E be the universe of events. A universe is a collection of
all the entities to be considered in a given circumstance. A case c ∈ Sec(E) is a sequence
of events e ∈ E . C = Sec(E) is the universe of cases.

For example, ⟨a, b, c, d⟩ ∈ C is a case that has 4 events.

Definition 2.3 (Trace). Each case c ∈ C has a respective trace Trace(c) = t such that t ∈
T where T is the universe of traces, i.e., a case can be seen as an instance of a corresponding
trace.

Definition 2.4 (Event class). An event class ec maps one or more events to itself, i.e., an
event is an instance of a corresponding event class. Let EC(c) be the set of event classes
observed in case c, and ec(e) be the mapped event class of e where e ∈ E , then EC(t) =
{ec(e)|e ∈ Set(c)}.

For example, the trace ⟨a, b, c, d, b, d⟩ has 6 events and 4 event classes a, b, c and
d. i.e. EC(⟨a, b, c, d, b, d⟩) = {a, b, c, d}.
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Definition 2.5 (Event log). Let L be the universe of event logs. An event log L ∈ L
is a finite multiset of observed traces. T(L) is the set of observed traces in L. i.e. T(L) =
{t ∈ L} ⊆ T . On the other hand, T(L) is the unobserved traces in L such that T(L) =
T − T(L). Therefore, the observed event classes for L is EC(L) = ⋃

L∈L EC(L) according
to Definition 2.4. Simply put, unobserved objects are potential objects that have not yet been
seen and recorded, whereas observed objects are those that are present in the event log.

According to the definition, the event log 2.1 can be demonstrated below. The
superscripts are the number of cases derived from that trace (the base) or the number
of instances of that trace.

L = {⟨a, b, c⟩4, ⟨b, c, d⟩3, ⟨a, b, d⟩2, ⟨b, c, d, e⟩} (2.1)

From this event log, all properties about events, traces, event classes, cases, and
event logs are listed here.

• Traces. We have 4 traces in total, i.e., t1 = ⟨a, b, c⟩, t2 = ⟨b, c, d⟩, t3 = ⟨a, b, d⟩,
and t4 = ⟨b, c, d, e⟩.

• Cases. Each case has its respective trace. In this example, we have four cases
of the first trace t1, three cases of the second trace t2, two cases of trace t3 and
1 case of t4; therefore, the number of cases in L is 10.

• Event Classes. Five event classes appears in L, where EC(L) = {a, b, c, d, e}
and |EC(L)| = 5.

• Events. Each event has its respective event class. As timestamp is not present
in L, we assume the case will only start when the previous case finishes; hence,
we rewrite the event log L in 2.2 by expending L, and we get 31 events.

L =⟨a, b, c, a, b, c, a, b, c, a, b, c, b, c, d, b,
c, d, b, c, d, a, b, d, a, b, d, b, c, d, e⟩

(2.2)

Some literature, such as [1], defines a trace as a sequence of activities rather than
a sequence of event classes. Since the distinction between events and activities is
unclear, so are the definitions of traces and cases. Therefore, the activity will not
be defined in this thesis and only definitions 2.1 - 2.5 in the subsequent context are
referred to be readers. These concepts may be confusing so here are more examples.
A trace is, for a real-life instance, a predefined procedure for producing a toy. Nu-
merous toys can be manufactured, so this process will be repeated numerous times.
Each instance of the execution is a case. The trace consists of a series of event classes
(event names or action names) and each execution of these classes is an event. An
event log is essentially a finite set of different cases (executed traces).

2.2.2 Inductive Miner

The inductive miner (IM) [40]–[42] is a popular process mining algorithm that di-
vides the event log into smaller sub-logs using the divide-and-conquer method. The
inductive miner can detect alternatives, concurrency, and loops in event logs and
much broader classes than the α-algorithm [43] can. Typically, IM generates process
models in the form of workflow nets (WF-nets), i.e. Petri nets [44] with a single be-
ginning and ending point. α-algorithm [43] is the first process discovering algorithm



2.2. Process Mining 15

developed, which is limited to detecting sequential and concurrent patterns based
on the directly-follows graph (DFG). The DFG will be introduced in this section later.

The algorithm of the inductive miner is demonstrated here. In order to produce
the process model, the inductive miner will first discover the process tree, which
consists of actions and operators ⊕. The WF-nets consist of the nodes of event classes
and the silent action τ /∈ EC. Note that τ is a different symbol from the set of traces
T and the trace universe T . The operators connect sub-trees, and any process tree
can be converted to equivalent WF-nets. There are four different operators,

• → denotes the sequential operator;

• ∧ denotes the concurrent operator;

• × denotes the exclusive-selection operator;

• ⟲ denotes the loop operator.

Definition 2.6 (Process tree). Let
⊕

= {→,∧,×,⟲} be the set of operators and ⊕ ∈ ⊕
.

Let EC ⊆ EC be a finite set of event classes where τ /∈ EC. Let Q be the process tree. Each
operator allows the connection of multiple sub-trees.

1. If a ∈ EC ∪ {τ}, then Q = a is a process tree.

2. If Q1, Q2, ..., Qn−1, Qn (n ≧ 1) are process trees and ⊕ = {→,∧,×}, then Q =
⊕(Q1, Q2, ..., Qn−1, Qn) is a process tree.

3. If Q1, Q2, ..., Qn−1, Qn (n ≧ 2) are process trees and ⊕ = {→,∧,× ⟲}, then Q =
⊕(Q1, Q2, ..., Qn−1, Qn) is a process tree.

Basically, IM uses the directly-follows graph [45], and other components such
as the dependency and frequency measurement components. The definition shows
that the ⟲ operator requires at least two sub-trees.

Let us look at the trace t = ⟨a, b, c, b, a⟩ as an example. For better generality, it is
assumed that each trace starts with a start event class ecstart and an end event class
ecend. Therefore, t = ⟨ecstart, a, b, c, b, a, ecend⟩. ecstart is directly followed by a and a is
directly followed by b. These relations are denoted as ecstart 7→ a and a 7→ b etc.

Definition 2.7 (Directly-follows graph). Let L be an event log, the directly-follows graph
of L is G(L) = (EC(L), 7→L, ecstart

L , ecend
L ) where EC(L) is the set of observed event classes

in L.

L = {⟨a, b, c, d, e, g⟩, ⟨a, b, c, d, f , g⟩, ⟨a, c, d, b, f , g⟩, ⟨a, b, d, c, e, g⟩, ⟨a, d, c, b, f , g⟩}
(2.3)

Equation 2.3 is an event log that has 5 traces, 7 event classes (a, b, c, d, e, f , g) and
25 events. Based on this event log, the DFG is generated in Figure 2.2.
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FIGURE 2.2: The DFG for event log 2.3

The left graph in Figure 2.2 is the initial graph. By ignoring ecstart
L and ecend

L for
now, the first event of all cases is a and the last event of all cases is g; therefore, event
classes a and g form a sequential pattern (i.e. we must start with a and end with g).
The IM recursively cut the DFG into sub-graphs, so in this case, a smaller graph by
cutting off a and g is created. It forms the graph on the right as the result. Nodes b,
c and d form the concurrent pattern, i.e., one can choose to go either b, c or d after a
and without any constraint of the order. For example, ⟨a, b, c, d⟩ or ⟨a, c, d, b⟩. After
the concurrent pattern, one can either choose to go to node f or e. Therefore, e and f
can be cut off, and then the loop between c, b and b can be cut until no further cutting
is possible. The last two steps are not shown in Figure 2.2.

Mining Process Model 

The process model was mined from normal traces using the inductive miner and later the model 

was used to audit the anomalous data. First, let us see how inductive miner discovers the 

process model from the even log. Assume we have five traces in the event log as below. 

<a, b, c, d, e, g> 

<a, b, c, d, f, g> 

<a, c, d, b, f, g> 

<a, b, d, c, e, g> 

<a, d, c, b, f, g> 

This process model can be divided recursively, and we can get the following process tree. 

Here the ˄ means parallel and × means that either one child can be chosen. Then the process 

model can be gotten. 

 

All data from five working days was concatenated together as a single CSV file and a subset 

was picked from this file randomly, considering the RAM usage. Also, a testing set was also 

randomly picked from the file but with another seed. 

The process model is available at 

https://drive.google.com/open?id=1tDA3d8Nd2vwUcX9nyIfqCgu91mcB8upF 

 

From the model we can see that a normal trace example from the dataset like  

Flags S/C 

000.SYN. C 

000.SYN. C 

000.ACK.SYN. S 

000.ACK.SYN. S 

000.ACK. C 

000.ACK. C 

000.ACK.PSH. C 

x a ˄ g 

b c d e f 

a τ τ 

b 

c 

d 

e 

f 
g 

FIGURE 2.3: The process tree for event log 2.3

After the cutting process, the process tree can be created in Figure 2.3. This pro-
cess tree consists of three operators: sequential, concurrent, and exclusive-selection
operators. The concurrent operator connects b, c and d which are single-node sub-
trees; the exclusive-selection operator connects e and f and finally, the sequential
operator connects all sub-trees. The equivalent process model is shown in Figure
2.4.

FIGURE 2.4: The WF-net for event log 2.3
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Note in Fig. 2.4, τ has been used to connect the concurrent sub-tree with other
trees because the concurrent tree cannot be directly connected to the exclusive-selection
tree; therefore, τ actions are attached to both sides of the concurrent pattern. The in-
ductive miner can generate a robust model from noisy and incomplete data, typically
in the form of workflow nets, BPMN models, event-driven process chains (EPCs), or
Yet Another Workflow Language (YAWL) models.

2.2.3 Fuzzy Miner

In the experiments, the fuzzy mining (FM) [46] process mining algorithm is also
employed. By utilising the adaptive approach, which is a higher-level abstracted
and aggregated model, the FM is able to solve process models that resemble a pile
of spaghetti. Abstraction and aggregation are both made possible in FM by taking
into account the significance and correlation of the various event classes. Maps intu-
itively serve as an example of such abstraction. A comparable illustration with maps
of the University of Liverpool campus (Figure 2.5) is provided.

FIGURE 2.5: The campus maps. The map on the left has more details
but less abstraction. The map on the right has better abstraction but

fewer details.

These two maps allow the identification of layers such as buildings, parks, and
roads. Depending on their functions, the buildings are typically painted in light
yellow, pink, or grey. The parks are coloured green, whereas the roads are orange.
Three identical points were marked on both sides of the map using three different
colours to facilitate a comparison between them.

• Aggregation: The left-side map provides a detailed view of the shape of each
individual building, while the right-side map displays a large grey area be-
tween the red and purple markers that denotes a cluster of campus buildings.
This is called aggregation, and the purpose of such is to limit the amount of
information displayed.

• Abstraction: Smaller roads are visible on the left-side map but are absent from
the right-side map. For example, there are some roads that are parallel to each
other between the purple and green markers on the left map; however, these
roads cannot be seen on the right side. This is called abstraction, where in-
significant information gets omitted.
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• Emphasis: For better visualisation, objects on maps are highlighted. Build-
ings are coloured differently, and parks are coloured green; also highways are
coloured orange to distinguish them from minor roads.

• Customization: Various types of maps serve distinct purposes. In addition to
the maps depicted in Figure 2.5, topographic maps display the elevation of ter-
rains, while geological maps illustrate the various types of rocks and materials
in a specific area.

The processes of map generalisation and selection utilise the concepts discussed
previously [47], [48]. There is no implication that spaghetti models are inadequate in
every circumstance. Typically, these models contain additional information regard-
ing the process they represent. When there is no need for extremely detailed data
and a quick understanding of information is desired, it is beneficial to decrease the
amount of data incorporated in models. Let us return for a moment to fuzzy min-
ing and discuss the concepts of significance and correlation metrics used in fuzzy
mining.

The significance is employed for abstracting event classes and binary precedence
relations. On a graph, the event classes represent the nodes and the binary prece-
dence relation represents the edges. During abstraction, insignificant nodes and
edges are expected to be filtered out. Calculating the frequency of certain events
or relationships is one example of measuring significance.

Correlation in FM only applies to binary precedence relations. It indicates the sim-
ilarity between two event classes which share such a precedence relation. This can
be done by comparing the attributes or event names between two relevant events.
For example, there are three events that have three attributes each where precedence
relations exist between any two of them. The first event is (A, B,C), the second
one is (A, B,A) and the third event is (D, E,F) where {A, . . . ,F}, {A, . . . , F} and
{A, . . . ,F} are attributes. Typically, correlation is measured by counting the num-
ber of identical attributes. For instance, the correlation between the first and second
events is 2; the correlation between the first and third events is 1. The first and
second events exhibit a stronger correlation compared to the first and third events
as they possess similar attributes. Higher correlation denotes higher importance of
nodes.

One of the scenarios for the abstraction is that nodes with high significance will
be preserved, nodes with low significance but high correlation will be aggregated,
and nodes with low significance and correlation will be eliminated from the abstract
model.

2.3 Transmission Control Protocol

The transmission control protocol, whose initial concept was introduced in [49], is a
robust network communication protocol that is widely employed for Internet com-
munication. The TCP segment is a layered protocol that runs on the Internet Protocol
(IP) [50], and then applications at a higher level run on the TCP layer. Consequently,
TCP is frequently referred to as TCP/IP. The RFC 793 document outlined the TCP
implementation for IPv4 [51]. TCP is a connection-oriented protocol that transmits
data over an IP network, and the transmitted data are ordered and include a check-
sum for error detection. Before data can be transmitted, the TCP connection must be
established through a three-way handshake (or a four-way handshake for simulta-
neous opening). TCP facilities the following.
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• Basic Data Transfer
TCP is able to transmit streams of octets (bytes) between hosts in both ways
where a certain number of octets are contained in a segment.

• Reliability
Due to the lossy nature of the communication network, data transmission on
the network is not reliable. TCP is capable of handling damaged data, data
that was sent out of order, duplicate data and lost data. These are archived by
using checksum, sequence ID and timestamps.

• Flow Control
By indicating the acceptable data amount (window size) in ACK packets, the
receiver has the ability to exercise control over the number of octets that are
sent from the sender.

• Multiplexing
TCP makes it possible for multiple connections to be established simultane-
ously between multiple hosts as well as between two hosts that share a single
physical connection. Each host possesses a one-of-a-kind IP address as well as
several ports.

• Connection
An individual connection is denoted by its information, which includes sock-
ets, sequence ID numbers, and flow control. In order to begin the data trans-
mission, the connection must first be established.

• Precedence & Security
At the application level, the precedence and security measures can be imple-
mented in a variety of ways, including the utilisation of encryption on the
payload, the implementation of additional error correction mechanisms, and
the utilisation of higher-level protocols.

2.3.1 Packet Format

TCP/IP packets transmit via IP and consist of an IP header and an IP data segment.
The TCP segment is the IP data, which is further subdivided into the TCP header
and the payload data (Figure 2.6). Due to the fact that each TCP header contains 20
bytes of information, followed by a variable length of options that can range any-
where from 0 to 40 bytes, the total size of a TCP header can range anywhere from
20 bytes all the way up to 60 bytes. Both hosts have the ability to send a packet
even if the options field is empty because it is not required. Table 2.3 provides an
illustration of the format of the TCP header field. The table is organised with four
primary columns, each of which represents an octet. These primary columns have
been further subdivided into eight bits each.

TCP/IP Packet

IP Header

IP Data

TCP Header

TCP Data

TCP Segment

FIGURE 2.6: The TCP/IP packet.
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Octets 0 1 2 3

Octets Bits 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0 0 Source port Destination port

4 32 Sequence number

8 64 Acknowledgment number (if ACK set)

12 96 Data offset
Reserved

bits

N

S

C
W
R

E
C
E

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window size

16 128 Checksum Urgent pointer (if URG set)

20 160
Options (up to 40 bytes)... ...

60 480

TABLE 2.3: The structure of a TCP header.

• Source & Destination Ports
The port number is represented as a 16-bit binary value, which can take on any
value between 0 and 65535.

• Sequence Number
The sequence number allows one to determine which of the packets has al-
ready been received. This number is also helpful for identifying the packet
that is missing or for reordering the packets that are out of order.

• Acknowledgment Number
The ACK flag typically accompanies the acknowledgement number. In an on-
going communication, the receiver will set the number to indicate the expected
arrival of the next packet. For instance, if a packet is received by the receiver
with the sequence number set to 10, the receiver will respond with an acknowl-
edgement number 11 along with the ACK flag set.

• Data Offset
The total size of the header is indicated by the data offset using four bits, and it
is expressed in terms of the size of words. A TCP header must have a minimum
size of 20 bytes, which is equivalent to five words; in this circumstance, the
data offset is set to 5. The number can go as high as 15, which is the maximum
amount of data that the header can store (60 bytes). The data will be padded
with 0-bits if necessary, where normally the options filed is padded to the 32-
bit (4 byte) boundary.

• Flags
Each TCP segment has 12 bits of flag information. The first 3 bits are reserved
bits, and the rest 9 bits encode the status of 9 flags.
NS flag is the nonce sum of ECN-Nonce. ECN stands for Explicit Congestion
Notification, which is introduced in RFC 3168 document [52]. The CWR is the
Congestion Window Reduced, and ECE is the ECN-echo flag.
URG is set if data is present in the urgent pointer field of the header. ACK
indicates an ongoing conversation when it is set, and the number in the ac-
knowledgement number field is the expected number for the next packet.
PSH is set by the sender, and the receiver is asked to process data from the
buffer immediately even if the buffer is not filled.
The RST is set when the connection must be reset due to any reason that makes
the connection invalid.
The synchronise flag (SYN) is used in the three-way handshake to synchronise
the acknowledgement number, which we will look at later.
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FIN is set when the packet is the last packet from the sender, i.e., the connection
should be finished.

• Window Size
A 16-bit binary value is stored in the window size field and is used for flow
control. It gives an indication of how much free space there is in the receiver’s
buffers. This field will be communicated to the sender so that it can make any
necessary adjustments to the rate at which it transmits packets to the receiver.
If the window size is 0, the sender should refrain from sending any more pack-
ets.

• Checksum
The 16-bit checksum is utilised to determine if the TCP header, payload, or IP
header data contains an error.

• Urgent Pointer
The urgent pointer field specifies the location of the urgent data within the data
field. The sender is responsible for setting the urgent pointer, which is valid
when the URG flag is set.

• Options
The options field is a variable-length field that stores the data type and ap-
plication payload. The data offset field determines the range of 0 to 40 bytes
for the size of the payload. This field consists of three sections: the first octet,
Option-kind, indicates the type of data; the second octet, Option-length, in-
dicates the length of the options, including the lengths of the first two octets;
and the final section, Option-data, contains the option’s data. As padding is
used, the length indication in Option-length could be shorter than the indica-
tion in the data offset field. Options are optional in the segment, but if they are
present, Option-kind must be present and Option-presence length’s depends
on Option-kind.

2.3.2 TCP States

Prior to establishing a connection, the local user will listen on the port for any incom-
ing connection requests. Assuming the user listening on the port is on the server
side, the client TCP will send the connection request to the server and initiate the
three-way handshake to establish the connection. Knowing the IP addresses and
ports from the IP header and TCP header enables packet transfer. The tuple of ad-
dress and port from a host is referred to as a socket, and a unique connection can
be established by pairing with another socket from another host; therefore, multiple
connections are possible between two hosts by using different ports.

Once the connection has been established, data transmission will commence.
When the transmission is complete and the FIN flag is set, or when the connec-
tion is interrupted, the connection will close. The transmission control block (TCB)
is a data structure that stores information about local and remote ports, buffer size,
sequence numbers, and other variables. Continuous communication is dependent
on this data structure. Typically, a connection will pass through multiple states from
the beginning to the end. These states are LISTEN, SYN-SENT, SYN-RECEIVED, ES-
TABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, and
TIME-WAIT, with CLOSED not actually being part of the connection itself. Figure
2.7 depicts the state diagram from the RFC 793 document [51]. Also, additional in-
formation for each state is presented below.
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September 1981
                                           Transmission Control Protocol
                                                Functional Specification
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                              +---------+<---------\   \   create TCB
                                |     ^              \   \  snd SYN
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   |           --------------   |     |   -----------
   |                  x         |     |     snd ACK
   |                            V     V
   |  CLOSE                   +---------+
   | -------                  |  ESTAB  |
   | snd FIN                  +---------+
   |                   CLOSE    |     |    rcv FIN
   V                  -------   |     |    -------
 +---------+          snd FIN  /       \   snd ACK          +---------+
 |  FIN    |<-----------------           ------------------>|  CLOSE  |
 | WAIT-1  |------------------                              |   WAIT  |
 +---------+          rcv FIN  \                            +---------+
   | rcv ACK of FIN   -------   |                            CLOSE  |
   | --------------   snd ACK   |                           ------- |
   V        x                   V                           snd FIN V
 +---------+                  +---------+                   +---------+
 |FINWAIT-2|                  | CLOSING |                   | LAST-ACK|
 +---------+                  +---------+                   +---------+
   |                rcv ACK of FIN |                 rcv ACK of FIN |
   |  rcv FIN       -------------- |    Timeout=2MSL -------------- |
   |  -------              x       V    ------------        x       V
    \ snd ACK                 +---------+delete TCB         +---------+
     ------------------------>|TIME WAIT|------------------>| CLOSED  |
                              +---------+                   +---------+

                      TCP Connection State Diagram
                               Figure 6.
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FIGURE 2.7: The state transition diagram from the RFC 793 document
[51].

• LISTEN (Server) - The user on the server-side requests to listen to a port for
any incoming connection request (SYN) from remote hosts.

• SYN-SENT (Client) - The client sends connection requests (SYN) and waits
for a matching connection request (SYN) and the confirmation (ACK).

• SYN-RECEIVED (Server) - Received the connection request from the client
TCP, so the local TCP also transmitted a matching connection request (SYN)
and a connection request ACK to confirm the connection.

• ESTABLISHED (Both) - The connection is established and confirmed. This is
the data transmission state.

• FIN-WAIT-1 (Either) - First connection termination request (FIN) sent from A
and awaiting confirmation (ACK) from B.

• FIN-WAIT-2 (Either) - Side A has received the confirmation (ACK) from B of
its first FIN sent now side A waits for the second B from B. This state can be
"skipped" so side A can go from FIN-WAIT-1 to TIME-WAIT if side B sends
the second FIN and ACK of the first FIN at once.

• CLOSE-WAIT (Either) - Side B received the first connection termination re-
quest (FIN) from A and now waiting for a connection termination request from
the local user.
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• TIME-WAIT (Either) - Side A received the second FIN form B, so it sends out
the last ACK. Now side A waits for enough time to pass to be sure side B
received the acknowledgement of the ACK of its second FIN.

• LAST-ACK (Either) - Side B ends out the second FIN and now waiting for the
last ACK from A.

• CLOSING (Both) - Simultaneous close on both sides.

• CLOSED (Both) - No connection.

2.3.3 Connection Establishment

The TCP connection is established using the three-way handshake, and data trans-
mission cannot begin until the connection is established. The server will initially
verify that the service is active and listening on a port. This is the stage of passive-
opening. The client will send the initial packet containing the local and remote ad-
dresses in the IP header, as well as the destination port and local port that the server
is using for this specific service. The SYN flag is set to 1 in the TCP header, indi-
cating a connection request. The initial sequence number (ISN) is initialised to the
"random" number #seq(C1), where C represents the client.

The server receives the request and responds with the next packet that has ACK
and SYN set, together with a new "random" sequence number #seq(S1) and an ac-
knowledgement number #ack(S1) = #seq(C1) + 1 that is set to the next expected se-
quence number from the client. Obviously, the source and destination addresses and
ports are swapped in this packet.

The client receives the server’s confirmation and sends back a packet with the
ACK flag set to notify the server of the received confirmation; at this point, the con-
nection is established. In addition, the client sets #seq(C2) = #seq(C1) + 1 for the
sequence number and #ack(C1) = #seq(S1) + 1 for the acknowledgement number.
Figure 2.8 depicts this process.

Client Server

LISTEN - passive open

SYN_SENT - active open

SYN_RCVD

ESTANBLISHED
ESTANBLISHED

SYN

ACK

ACK.SYN.

FIGURE 2.8: The three-way handshake.

The simultaneous open is a particular case of the connection establishment stage.
Both hosts send connection requests simultaneously and return ACKs simultane-
ously, or we can say that the host sends the request before receiving the request from
the other host. In this instance, both sides are active open.

This "random" ISN is not truly random; according to the RFC 793 document [51],
the ISN is selected from a 32-bit counter whose value increases by one approximately
every 4 microseconds. The purpose of this mechanism is to prevent confusion be-
tween a new packet and a delayed packet belonging to another connection. The
full cycle of such a counter is approximately 4.55 hours. Additionally, SYN-marked
packets carry the maximum segment size (MSS). The IP header and TCP header sizes
are measured in MSS, and the greater the MSS, the greater the amount of data that
can be transmitted in a single segment. The MSS field in SYN packets is used by
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both the client and server to declare the segment size they expect to receive. In the
event that this option is missing, the default value of 536 bytes is assumed. The MSS
can theoretically reach the maximum transmission unit (MTU) size [50], and a larger
size may result in fragmentation.

2.3.4 Data Transmission

After the handshake, the connection continues based on the same principles of up-
dating corresponding fields and enters the data transmission phase. Observing nor-
mal traffic patterns has revealed that the majority of bytes transferred through the
cable are used for data transmission. The data is divided into smaller chunks that fit
within an MSS-restricted segment. During data transmission, it is not necessary for
recipients to acknowledge each and every packet they receive, and a single packet
can sometimes be acknowledged twice. This may be associated with the network
condition and host window sizes.

Assuming the client sends data to the server, Figure 2.9 illustrates typical data
transmission procedures. The figure on the left depicts the client sending data to
the server with packets 1 through 3 at the beginning, and the server acknowledging
all three packets only once. Packet 4 precisely set the ACK number to #ack(S4) =
#seq(C3) + 1. Occasionally, the server will acknowledge multiple consecutive pack-
ets, such as packets 8 and 9.
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ACK of 8; WS=0
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FIGURE 2.9: Data transmission.

Figure 2.9’s right side depicts a faster client sending data to a slower server.
Packet 4 informs the client via an ACK (#ack(S4) = #seq(C3) + 1) that its buffer is
full with window size set to 0, so the sender stops PSH and awaits the next ACK.
Later, packet 5 acknowledges the sender with the same acknowledgement number
as packet 4, #ack(S5) = #ack(S4), but with a larger window size than 0. After receiving
this ACK, the sender resumes data transmission.

This sending process is being monitored using the sender’s sliding window. The
receiver and sender announce their window sizes in each packet they send; in this
instance, the receiver’s window size is relevant. The sender receives the window size
from the receiver and then creates a sliding window with the announced size that
encompasses the total amount of data the receiver expects the sender to transmit.
According to the size announced by the receiver, the sliding window closes spaces
on the left and opens more spaces on the right each time the receiver acknowledges
certain packets.

Table 2.4, which is based on the left-hand side of Figure 2.9, depicts the sliding
window highlighted in green to demonstrate this concept. It is assumed that the
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total amount of data to be transmitted is 8kB, that each packet can carry 1kB, and
that the receiver’s buffer size is 4kB. During the handshake, the receiver announced
a 4kB window, so the sender set the sliding window to 4kB, which covers the first
four packets. The receiver acknowledges all three packets while announcing the
new 3kB window size in packet 4, so the sender closes the sliding window on the
left, which the receiver has already acknowledged, and opens new slots on the right
so that the sliding window’s size matches the new announcement. The sender and
receiver continue until data transmission is complete and the connection is severed.

kB 1 2 3 4 5 6 7 8
ACKs Announced in Handshake

4 Closed Announced in 4
8 Closed Announced in 8
9 Closed Announced in 9

12 Closed Announced in 12

TABLE 2.4: The sliding window in data transmission.

2.3.5 Connection Termination

The TCP termination procedure is similar to the connection establishment proce-
dure. The termination is normally done in four-way or three-way handshakes. Fig-
ure 2.10 shows these scenarios assuming the client is the initiator.
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ESTABLISHED

FIN_WAIT_1
active close

ESTABLISHED

CLOSE_WAIT
passive close

ACK.FIN

ACK

CLOSED

TIME_WAIT

CLOSED

FIGURE 2.10: The connection termination stage. The four-way hand-
shake is on the left and the three-way handshake is on the right.

The initiator will wait for 2MSL on the TIME_WAIT state. The MSL stands for
maximum segment lifetime, which needs to be defined for each implementation.
The MSL is the maximum amount of time the TCP segment is assumed to last during
transmission. The reason for using MSL during termination is that the last ACK
might be lost during transmission; therefore, the client waits long enough to make
sure the receiver receives the ACK. If the server somehow did not receive the last
ACK, it might resend the last FIN. The last ACK sent through the connection will be
one trip, and the resend of FIN through the connection is another trip, so a round-trip
is assumed to last as long as 2MSL. The 2MSL wait state prevents delayed packets
in termination from being interpreted as a new connection.

The term "half-close" refers to a particular and unusual circumstance. For exam-
ple, when the data transmission is complete, the client will initiate termination with
the server by sending the FIN signal, and the server will respond by sending the
ACK flag. The server is able to keep transmitting data to the client in an unbroken
stream right up until the point when the server makes the decision to close the con-
nection as well and sends the final FIN. [53] demonstrates how to use the half-close
functionality that is available through the rsh command in Unix. The half-close sce-
nario is discussed in RFC 5382 [54], despite the fact that it was not specified in RFC
793 [51]:
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"The closing phase begins when both endpoints have terminated their half of the connec-
tion by sending a FIN packet."

The above statement can be understood as implying that when transitioning to
the closing phase, it is expected that both parties will cease communication. More-
over, certain modern network implementations only allow for a brief time-out fol-
lowing the detection of the initial FIN, making the half-close feature impractical.

Another termination scenario is a simultaneous close, which occurs when both
the server and client decide to terminate at the same time (Figure 2.11). This circum-
stance is comparable to the simultaneous open. The client and server simultaneously
transmit FIN and enter the FIN_WAIT_1 state, then transition to TIME_WAIT upon
receiving the ACK from the other side.

Client Server

FIN

ESTABLISHED

FIN_WAIT_1
active close

ESTABLISHED

ACK

CLOSED

TIME_WAIT

CLOSED

FIN_WAIT_1
active close

TIME_WAIT

FIN

ACK

FIGURE 2.11: The simultaneous close.

2.3.6 Handling Packet Loss

When one or more packets fail to reach their destination or are significantly delayed
during transmission, packet loss occurs. This may be the result of an unreliable net-
work device, network congestion, or an attack involving packet-dropping [55]. Loss
of packets has a direct effect on the network’s throughput and delays the transfer of
data. TCP is dependable in that it detects packet loss with time-out and retransmits
the lost packet.

Every time the sender transmits a packet, a retransmission timer is initiated and
a copy of the packet is placed in the retransmission queue. Each TCP segment in
the queue has its own retransmission timer, which is currently counting down. If
the ACK for a sent segment has not arrived when the timer expires, that packet is
deemed lost. This can occur when either the data packet from the sender or the ACK
of the received data packet is lost. In either case, the packet will be resent. Packet
duplication is possible due to retransmission, and the receiver will simply discard
the duplicated packet.

2.3.7 Handling Packet Out of Order

Out-of-order (OOO) packets are those that arrive at their destination in a different
order than when they were sent. Typically, the sequence number is incremented
by 1 for each packet sent in succession. OOO packets typically occur when packets
are routed through a slower path, when packets are lost and resent by the sender,
or when packets are routed through unreliable devices. Depending on the ACK
number from the recipient, the OOO packets are either reassembled by the recipient
or retransmitted by the sender.
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2.3.8 Handling Damaged Data

The noise on the network wires and memory errors on network devices etc., can all
cause packet data corruption. TCP is unable to recover data from corruption un-
less the corrupted packets are retransmitted. Corrupted packets are detected by the
checksum in the TCP header. The checksum itself can be damaged, which cause false
positive. All packets that have any damage are retransmitted as a result of lower
throughput. Several higher-level implementations employ forward error correction
(FEC) to recover data using redundancy [56]–[58], instead of retransmission, but
these techniques are beyond the scope of our current discussion.

2.3.9 Handling Congestion

The explicit congestion notification (ECN) is introduced in the RFC 3168 document
[52] as an extension of the earlier TCP/IP. For network devices, instead of dropping
packets if congestion is experienced, they can mark the congestion in the ECN field
in the IP header. The ECN field in the IP header is a 2-bit field that encodes four
options,

• Non-ECT: The Non-ECN-Capable Transport when nothing is set in the ECN
field (both bits are 0),

• ECT(0): The ECN-Capable Transport,

• ECT(1): The ECN-Capable Transport. Equivalent to ECT(0),

• CE: Congestion Encountered.

If the sender or the receiver supports ECN, they will set ECT(0) or ECT(1) in their
IP header for outgoing packets. The congested router changes this field to CE in the
IP header. Once the receiver received the packet marked with CE, the receiver set
the ECE flag in the TCP header for all subsequent ACK packets to echo back the
congestion mark. The sender will receive ECE from the receiver at some point and
react by reducing the sending rate if any lost packet is detected. Once the sender
reacts to the ECE, it will set the CWR flag in the TCP header, and the receiver stops
sending ECE if CWR is received. Note that ECE stands for ECN-echo and CWR
stands for congestion window reduced, which is mentioned in Section 2.3.1.

Later, the RFC 3540 document [59] specifies a new congestion signalling mecha-
nism known as ECN-nonce, which is an extension of the current ECE and CWR. The
ECN-nonce is utilised to prevent the receiver from concealing the congestion mark
by not setting the ECE field from the returned ACK packet. As previously stated, the
ECT can be either ECT(0) or ECT(1), corresponding to bit values 0 or 1, and it is set
arbitrarily in the IP header. In addition, if congestion is encountered, the ECN field
will be rewritten by the router, so the receiver will be unaware of the ECT value set
by the sender. A flag in the TCP header, the nonce sum (NS) is a one-bit sum (XOR)
of ECT values of both ends.

Assuming the sender sets ECT(1) in the IP header and there is no congestion, the
receiver will receive ECT(1) from the sender because the router does not overwrite
it. The receiver may set ECT to 0 (ECT(0)) and NS to 1, where 1 is the sum of ECT(1)
set by the sender and ECT(0) set by the receiver; or the receiver may set ECT to 1
(ECT(1)) and NS to 0, where both sides set ECT to 1 so that the one-bit sum is 0. By
checking the NS, the sender is aware that there is in fact no congestion. If congestion
occurs, the receiver can either echo the ECE flag truthfully or conceal the congestion
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by attempting to guess the ECT value. The receiver cannot retrieve the ECT value
set by the sender because the ECT has been overwritten; therefore, there is a 50 per
cent chance that the NS will be incorrect. In other words, the sender can identify the
issue and refuse to continue sending ECN-capable packets if the receiver incorrectly
guesses the ECT value.

2.3.10 Handling Half-open

According to RFC793, a half-open TCP connection occurs when one side of an estab-
lished connection has crashed and has not sent a notification (FIN) that the connec-
tion is closing. This is no longer a frequent practice. Today, half-open often refers to
a situation in which the last ACK of the three-way handshake is not received from
the initiator. The receiver will reset the half-open TCP connection.

2.4 Related Works

Prior to standardising the approach for converting network packet data into event
logs, it is worth examining a few related studies that utilize process mining and con-
formance checking to identify anomalies. It is important to note that these studies
are not exclusive to NIDS.

The technique introduced in [60] is used on industrial control systems (ICS) that
identify anomalous behaviours and cyber-attacks using ICS data logs and the con-
formance checking analysis technique. The paper demonstrated the preprocessing
of ICS data logs for PM and the result of anomaly detection. The inductive mining
algorithm discovers their process model, and as a result, the average F-score for de-
tecting attacks across two datasets is 0.81 with a recall of 0.71 and a precision of 0.93.
A case is categorised as an anomaly if it does not produce a fitness score of 1.

On top of [34], papers [35], [36] provide expanded discussions on PM for IDS,
discussing potential benefits of using PM for IDS, comparing different mining al-
gorithms (such as the heuristic miner and the α-algorithm) that can be used for IDS,
and displaying cyber-attacks detected in various industrial sectors, etc. Nonetheless,
the precise method for implementing PM for IDS remains undetermined. Heuristic
[61] miner improves the α-algorithm, which is capable of discovering short-loops
patterns and skipping-activity patterns.

The paper [62] uses the Inductive Miner Infrequent algorithm to detect anoma-
lous behaviours on the e-commerce platform. The data is processed based on the log
recorded from ModSecurity, which is an open-source web application firewall, for
the purpose of adapting PM. The events mainly consist of URLs and activated Mod-
Security rules. The provided average fitness scores show that anomalies have lower
scores, however, they do not have a clear measurement for F-score or accuracy.

The methodology described in [63] is based on PM and employs social network
analysis metrics to identify anomalous behaviour. Instead of performing confor-
mance testing, this method analyses social network metrics to identify anomalies.
The log of normal traces is extracted from the process model using the workflow
Petri net designer (WoPeD) process modelling tool [64]; the role-trace access control
matrix, which is based on the normal traces and the role-activity access control ma-
trix, is then created; and finally, the social network is constructed using the role-trace
access control matrix and all logs. The experiment’s F-score is greater than 0.92, per
the outcome.
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In general, PM applications in intrusion detection are not well established. There
are discussions regarding the use of process mining for intrusion detection or for
purposes other than intrusion detection. However, the experimental results of using
process mining for intrusion detection are not well documented. This is the primary
motivation for using process mining as an intrusion detection method in this thesis.

2.5 Data Preprocessing

2.5.1 Dataset

The dataset employed for process mining in this study is the CIC-IDS2017 dataset
(abbreviated as IDS2017), as described in [24]. The IDS2017 dataset is the newest
dataset of the time of the experiment which contains real-world benign and common
attacks. The dataset consists of PCAP data and CSV data sheets. The PCAPs data is
the binary packet data captured on the wire, while the CSV data sheets are extracted
features from the captured PCAP data.

The B-profile system is used to generate the traffic that is included in the IDS2017
dataset [65]. The B-profile system makes use of profiles to generate both normal and
attack traffic that is realistically modelled after human behaviour. This dataset is in-
tended for use in performing intrusion detection. The purpose of the B-profile is to
provide benign background traffic by extracting the abstract behaviour of a group of
human users. It attempts to capture user-generated network events using machine
learning and statistical analysis methods. Protocol request time, payload patterns,
payload sizes, and protocol packet sizes are some of the encapsulating characteris-
tics. B-Profiles can be used by an agent (CIC-BenignGenerator) or a human operator
to create plausible benign events on the network. Organizations and academics can
quickly produce realistic datasets using this method, doing away with the need to
anonymise them.

The data was processed using the CICFlowMeter [30], which produces the CSV
data that can be used in machine learning for intrusion detection after the traf-
fic was generated and captured. The CICFlowMeter analyses each network flow
and determines the statistical value for each flow, such as the total forward packet
count and the count of FIN flags, which are characteristics akin to those of the KDD
datasets previously mentioned. From Monday through Friday, IDS2017 generated
and collected data using various profiles for each data set. The victims, attackers,
and specifics of daily attacks are listed below.

1. Monday 2017.07.03
Normal traffic only.

2. Tuesday 2017.07.04
Brute force attacks including

• FTP-Patator (09:20 – 10:20);

• SSH-Patator (14:00 – 15:00).
Attacker: 172.16.0.1
Victim: 192.168.10.50

3. Wednesday 2017.07.05
DoS/DDoS attacks including

• DoS Slowloris (09:47 – 10:10);
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• DoS Slowhttptest (10:14 – 10:35);
• DoS Hulk (10:43 – 11:00);
• DoS GoldenEye (11:10 – 11:23).

Attacker: 172.16.0.1
Victim: 192.168.10.50

Heartbleed attacks on port 444 (15:12 - 15:32).

Attacker: 172.16.0.1

Victim: 192.168.10.51

4. Thursday 2017.07.06
Web attacks including

• Force attacks (09:20 – 10:00);
• XSS (10:15 – 10:35);
• SQL Injection (10:40 – 10:42).

Attacker: 172.16.0.1
Victim: 192.168.10.50

Infiltration including

• Dropbox Download (14:19, 14:20-14:21, 14:33 -14:35);
Attacker: 205.174.165.73
Victim: 192.168.10.8

• Cool Disk (14:53 – 15:00).
Attacker: 205.174.165.73
Victim: 192.168.10.25

Port Scan + Nmap (15:04 – 15:45)

Attacker: 192.168.10.8

Victim: All IPs

5. Friday 2017.07.07
Botnet ARES (10:02 – 11:02)

Attacker: 205.174.165.73

Victims: 192.168.10.15, 192.168.10.9, 192.168.10.14, 192.168.10.5,
192.168.10.8

Port Scan (Multiple windows)

Attacker: 172.16.0.1

Victims: 192.168.10.50

DDoS LOIT (15:56 – 16:16)

Attacker: 172.16.0.1

Victims: 192.168.10.50

The IP addresses listed above were obtained from local PCAP records. The first
attack time and the last attack time are crucial; there are no benign or other types of
attacks in between. Some attacks take place between the same hosts over a number
of time periods so multiple time periods are provided. The infiltration via Dropbox
download consists of two steps: first, the victim, who is running Metasploit, down-
loads the malicious file from Dropbox, and then the attacker uses the backdoor to
run Nmap and port scan on the entire victim network.
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2.5.2 Data Extraction

The required data is extracted directly from PCAP files instead of utilizing the pre-
processed CSV data from the IDS2017 dataset. The reason for this is that the pre-
processed CSV data sheets only provide flow-level statistical data, not packet-level
data, and therefore cannot be used for process mining.

The naturally occurring sequential order of packets within a network flow en-
ables the flow to be treated as a process. The attributes that can be utilized for
process mining must be determined. The number of event classes and define their
specific characteristics must be restricted. As with business process management
(BPM), the first step is to define each atomic activity and subsequently record them
in a precedence-based order. The recorded data can serve as the event log and is
essential for process mining.

TCP flags are the most obvious field that can be converted into one of the at-
tributes based on the structure of the TCP segment. Fields with arbitrary values,
such as sequence numbers and IP addresses, cannot be used as attributes. Numer-
ical information such as packet sizes and payload sizes cannot be used directly in
the PM. This statement does not imply that these values cannot be converted to at-
tributes; to convert numerical values to attributes, the value can be mapped into
a discrete space. For instance, if the maximum size of a packet is 1500 Bytes, the
packet size attribute can be defined with 10 buckets, and each bucket spans a range
of 150 Bytes. However, adding a single attribute with 10 possible values multiplies
the number of event classes by 10. In other words, the number of event classes will
increase exponentially, and attribute sizes are difficult to regulate. At present, nu-
merical values have been excluded from the event log due to their complexity and
practicality.

Wireshark is a well-known, cross-platform, open-source network protocol ana-
lyzer with a graphical user interface (GUI). Wireshark offers features such as filter-
ing, visualisation, and capturing, among others. Wireshark is used to divide and
filter the PCAP dataset in the initial stage. All other packets are filtered out because
only need TCP packets are needed. Using the filtering functionality based on the
listed information of attacker IP addresses, victim IP addresses, and attack times, it
is possible to divide the data into normal PCAP data and attack PCAP data. The
example below uses Wireshark to filter out Botnet attack packets from Friday’s data.
One needs to highlight the packets in the GUI for the purpose of selecting the time
period.

(((ip.src == 205.174.165.73) && (ip.dst == 192.168.10.15)) || \
((ip.dst == 205.174.165.73) && (ip.src == 192.168.10.15))|| \
((ip.src == 205.174.165.73) && (ip.dst == 192.168.10.9)) || \
((ip.dst == 205.174.165.73) && (ip.src == 192.168.10.9))|| \
((ip.src == 205.174.165.73) && (ip.dst == 192.168.10.14)) || \
((ip.dst == 205.174.165.73) && (ip.src == 192.168.10.14))|| \
((ip.src == 205.174.165.73) && (ip.dst == 192.168.10.5)) || \
((ip.dst == 205.174.165.73) && (ip.src == 192.168.10.5))|| \
((ip.src == 205.174.165.73) && (ip.dst == 192.168.10.8)) || \
((ip.dst == 205.174.165.73) && (ip.src == 192.168.10.8)))

The same procedure will be applied to all necessary files because IDS2017 con-
tains a number of PCAP files that are related to various days and hosts. All PCAP
files containing attacks are necessary, and some PCAP files containing only normal
traffic are chosen from Monday’s data. Due to the large size of the dataset, only a
few PCAP files containing normal traffic are selected. The filtering process yields a
number of new PCAP files that can be processed further. Case IDs and timestamps
are required for process mining in addition to TCP flags. Each network flow must
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be identified based on the socket pairs in order to construct cases. The extraction of
sockets, timestamps, and flags from each packet is necessary for this step. The re-
quired data is extracted into the CSV datasheet using TShark, a non-GUI version of
Wireshark. Using TShark at this moment will be more efficient as all files can be pro-
cessed in batch using the shell. CSV datasheets with the necessary feature columns
are then obtained. Table 2.5 contains an example of a portion of the extracted data,
and the example command line used in this step is shown below.

tshark -r ’[dump PCAP path]’ -T fields -J tcp -E separator=, \
-e frame.time -e ip.src -e ip.dst -e tcp.srcport -e tcp.dstport \
-e tcp.flags > ’[output ].csv ’

... ... ... ... ... ... ...
Mar 2 2018 12:47:29.525978000 GMT 172.31.69.30 172.31.0.2
Mar 2 2018 12:47:29.527139000 GMT 172.31.0.2 172.31.69.30
Mar 2 2018 12:47:29.691028000 GMT 172.31.69.30 23.15.8.131 49684 80 0x000000c2
Mar 2 2018 12:47:29.711902000 GMT 23.15.8.131 172.31.69.30 80 49684 0x00000012
Mar 2 2018 12:47:29.711920000 GMT 172.31.69.30 23.15.8.131 49684 80 0x00000010
Mar 2 2018 12:47:29.712753000 GMT 172.31.69.30 23.15.8.131 49684 80 0x00000018
Mar 2 2018 12:47:29.716608000 GMT 172.31.69.30 172.31.0.2
Mar 2 2018 12:47:29.716925000 GMT 172.31.69.30 172.31.0.2
Mar 2 2018 12:47:29.718048000 GMT 172.31.0.2 172.31.69.30
Mar 2 2018 12:47:29.718196000 GMT 172.31.0.2 172.31.69.30
Mar 2 2018 12:47:29.719513000 GMT 172.31.69.30 13.33.81.58 49685 443 0x000000c2
Mar 2 2018 12:47:29.719681000 GMT 172.31.69.30 13.33.81.58 49686 443 0x000000c2
Mar 2 2018 12:47:29.725779000 GMT 172.31.69.30 172.31.0.2
Mar 2 2018 12:47:29.726065000 GMT 172.31.0.2 172.31.69.30
Mar 2 2018 12:47:29.726187000 GMT 172.31.69.30 67.227.156.183 49687 443 0x000000c2
Mar 2 2018 12:47:29.726679000 GMT 172.31.69.30 172.31.0.2
Mar 2 2018 12:47:29.726895000 GMT 172.31.0.2 172.31.69.30
Mar 2 2018 12:47:29.727225000 GMT 172.31.69.30 172.31.0.2
Mar 2 2018 12:47:29.727483000 GMT 172.31.0.2 172.31.69.30
Mar 2 2018 12:47:29.727627000 GMT 172.31.69.30 172.31.0.2
Mar 2 2018 12:47:29.727993000 GMT 172.31.69.30 172.31.0.2
Mar 2 2018 12:47:29.728242000 GMT 172.31.0.2 172.31.69.30
Mar 2 2018 12:47:29.728487000 GMT 172.31.69.30 172.31.0.2
Mar 2 2018 12:47:29.728629000 GMT 172.31.0.2 172.31.69.30
Mar 2 2018 12:47:29.729349000 GMT 172.31.0.2 172.31.69.30
Mar 2 2018 12:47:29.733559000 GMT 23.15.8.131 172.31.69.30 80 49684 0x00000010
Mar 2 2018 12:47:29.733782000 GMT 23.15.8.131 172.31.69.30 80 49684 0x00000018
Mar 2 2018 12:47:29.735968000 GMT 13.33.81.58 172.31.69.30 443 49685 0x00000012
Mar 2 2018 12:47:29.735994000 GMT 172.31.69.30 13.33.81.58 49685 443 0x00000010
Mar 2 2018 12:47:29.736145000 GMT 13.33.81.58 172.31.69.30 443 49686 0x00000012
Mar 2 2018 12:47:29.736162000 GMT 172.31.69.30 13.33.81.58 49686 443 0x00000010
Mar 2 2018 12:47:29.736638000 GMT 172.31.69.30 13.33.81.58 49685 443 0x00000018
Mar 2 2018 12:47:29.736776000 GMT 172.31.69.30 13.33.81.58 49686 443 0x00000018
Mar 2 2018 12:47:29.742864000 GMT 67.227.156.183 172.31.69.30 443 49687 0x00000012

... ... ... ... ... ... ...

TABLE 2.5: Data extracted with TShark.

Timestamps, source IP addresses, destination IP addresses, source ports, desti-
nation ports, and flags are displayed in the first to last columns. Some samples are
removed from the datasheet due to the existence of missing information. Recon-
structing cases and transforming datasheets into event logs is the next step, which
will be discussed in the following section.

2.5.3 Event Log Construction

The event log requires at least timestamps and events that contain several attributes.
The observed packets are in the sequence P = ⟨pi⟩n

i=1, where pi is each individual
packet. A packet can be considered as an event e in process mining where attributes
form event classes. The hexadecimal flags are converted to human-readable strings,
which makes the analysis easier, e.g., 0x000000c2 is equivalent to 0000 1100 0010 in
binary, and it is 000.CWR.ECE.SYN according to the flag field in the TCP segment.
The leading 000. is the reserved bits which are unnecessary.

The observed packets from the entire PCAP can also form a set of TCP flows
T = {ti}m

i=1, where each flow ti can be constructed according to the IP addresses
and ports of two hosts (T can also be considered as the event log L = T from the
perspective of process mining). Please note that in process mining, a flow would
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correspond to a case, and both of these terms may be used in the future context
interchangeably.

The start of a new TCP flow is defined as the reception of a packet with the
SYN flag set but not the ACK flag (i.e., the first packet of the three-way handshake).
In addition, the IP addresses and ports of two hosts are determined by this initial
packet. To build each case, it is possible to search for SYN flags within the extracted
data. Once a SYN flag is detected, a unique case ID is assigned to this new flow.
Using the source and destination sockets contained in the initial packet, it is possible
to track the flow to its final destination. For instance, the source IP is IPclient and the
source port is Portclient, indicating that the packet originated from the client, and the
destination IP is IPserver and the destination port is Portserver. The bidirectional flows
may be reconstructed using the client socket (IPclient, Portclient) and the server socket
(IPserver, Portserver). If a pair of sockets exist in either source or destination, packets
are considered to belong to the same flow.

A TCP flow is deemed complete once a packet with either the FIN or RST flag is
detected, and any incomplete flows are filtered out. The statement does not indicate
that all other packet information is discarded after FIN or RST is set. Therefore, any
ongoing packets during the termination stage after the first FIN or RST are retained.
Incomplete flow occurs when the packet-capturing process is stopped before the
flow is complete. The timestamps are formatted. At this point, the event log consists
of case IDs, timestamps, and a solitary attribute for flags.

An extra attribute labelled S or C is included with each packet to maintain ad-
ditional flow data for process mining. S denotes that the packet was sent from the
server, while C denotes that it was sent from the client. This feature prevents a num-
ber of loops from taking place in process models, and the phenomenon will be dis-
cussed further later. The event log after reconstruction is depicted in Table 2.6. Keep
in mind that Tables 2.5 and Table 2.6 were taken from two distinct data segments.
Each row was assigned either the type of attack or normal based on the provided
IP addresses of the attackers and victims. The IP addresses and ports are discarded
from Table 2.6 as they are used to reconstruct the flows and are not needed in process
mining.

Case_ID Timestamp Flags Host
151043 2017/07/04 14:00:35.190179000 000.SYN. C
151043 2017/07/04 14:00:35.222535000 000.ACK.SYN. S
151043 2017/07/04 14:00:35.222586000 000.ACK. C
151043 2017/07/04 14:00:35.237412000 000.ACK.PSH. C
151043 2017/07/04 14:00:35.270301000 000.ACK. S
151043 2017/07/04 14:00:35.270305000 000.ACK. S
151043 2017/07/04 14:00:35.467062000 000.ACK. S
151043 2017/07/04 14:00:35.467285000 000.ACK.PSH. S
151043 2017/07/04 14:00:35.467347000 000.ACK. C
151043 2017/07/04 14:00:35.467352000 000.ACK.PSH. S
151043 2017/07/04 14:00:35.511515000 000.ACK. C
151043 2017/07/04 14:00:45.461285000 000.ACK. C
151043 2017/07/04 14:00:45.466144000 000.ACK.FIN. S
151043 2017/07/04 14:00:45.466173000 000.ACK. C
151043 2017/07/04 14:00:45.466198000 000.ACK.FIN. C
151043 2017/07/04 14:00:45.493763000 000.ACK. S
151043 2017/07/04 14:00:45.498542000 000.ACK. S
281008 2017/07/05 17:03:45.498235000 000.SYN. C
281008 2017/07/05 17:03:45.521284000 000.ACK.SYN. S
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281008 2017/07/05 17:03:45.521360000 000.ACK. C
281008 2017/07/05 17:03:45.521561000 000.ACK.PSH. C
281008 2017/07/05 17:03:45.544708000 000.ACK. S
281008 2017/07/05 17:03:45.545025000 000.ACK.PSH. S
281008 2017/07/05 17:03:45.545073000 000.ACK. C
281008 2017/07/05 17:03:45.561805000 000.ACK.PSH. C
281008 2017/07/05 17:03:45.624241000 000.ACK. S
281008 2017/07/05 17:03:45.820846000 000.ACK.PSH. C
281008 2017/07/05 17:03:45.843822000 000.ACK. S
281008 2017/07/05 17:03:45.921777000 000.ACK.PSH. S
281008 2017/07/05 17:03:45.964684000 000.ACK. C
281008 2017/07/05 17:03:46.802581000 000.ACK.PSH. C
281008 2017/07/05 17:03:46.825827000 000.ACK. S
281008 2017/07/05 17:03:46.827025000 000.ACK.PSH. S
281008 2017/07/05 17:03:46.827041000 000.ACK. C
281008 2017/07/05 17:03:53.457141000 000.ACK.FIN. C
281008 2017/07/05 17:03:53.480155000 000.ACK.PSH. S
281008 2017/07/05 17:03:53.480156000 000.ACK.FIN. S
281008 2017/07/05 17:03:53.480264000 000.RST. C

... ... ... ...

TABLE 2.6: The constructed event log from packets.

There are several datasheets that need to be converted separately where each
containing different attacks and normal traffic, as was previously mentioned. Upon
conversion, the datasets containing attacks are segregated, and only the datasets
comprising normal traffic are merged to generate a consolidated log.

2.6 Summary

This chapter recalls the first research question. This chapter aims to demonstrate
an understanding of process mining and transmission control protocol before devel-
oping a method for translating network packets into event logs for future research.
Process mining concepts such as event logs, DFGs, and process model abstractions
were introduced in depth. DFG is fundamental to the majority of process-discovery
methods, including the method that will be presented in this thesis. Internet commu-
nication relies heavily on the transmission control protocol. Relevant TCP concepts,
including the TCP stages, flags, and error handling, are introduced in depth. To bet-
ter comprehend how data are converted into event logs, relevant studies are exam-
ined. The IDS 2017 dataset was chosen for the experiment because it is the most re-
cent available dataset at the time of the experiment and contains unprocessed PCAP
data. After preparation, Tshark and Wireshake are used to extract and filter packet
data; the packets are then processed and stored in CSV datasheets. CSV datasheets
are equivalent to standard event logs and can be utilised directly for process mining.
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Chapter 3

Mined Process Models

Chapter 2 discussed how to create event logs from network packets. Case ID, times-
tamps, header flags, and S/C labels are the data columns used in the subsequent
experiment. These columns were chosen because they are not numerical and pro-
cess mining can extract transitional information from the data.

Every parameter was retained as default and did not apply any abstraction in
both ProM [66] and Disco [67] in process mining. Thus, the fuzzy model will be
equivalent to the initial process model or DFG. However, the initial model will still
be referred to as fuzzy in a later context. The primary reason for not using abstrac-
tion is that it is more important to comprehend the problems than to examine various
mining hyperparameters. In other words, the intention is to determine how net-
work packets behave in real-world scenarios and how closely they match the state
diagrams. Secondly, the aim is to mine authentic models from the event logs pro-
vided, as rare cases are not always anomalies. Although [45] mentions that lowering
the thresholds will cause the process models to resemble DFGs and that there are
limitations to this, the decision is to keep these rare traces because they are known
to be normal traces. Thirdly, although process mining is capable of discovering the
global data structure, it cannot perform real-time detection with the fuzzy miner or
inductive miner. The initial goal of our research is to design a packet-level intrusion
detection system, but this naive approach may fail.

This chapter shows the experiment of using ProM and Disco to mine several
process models using normal cases. The process table, which is the Petri net’s equiv-
alent representation, is then presented. The process table is a novel way of represent-
ing the process model for better readability. The findings from these process model
studies are presented and contrasted. Finally, the normal inductive model is used to
check conformance for anomaly-based intrusion detection. It must be noted that a
typo exists in some charts in the following sections where ECE has been written as
ECN. Note that the correct spelling is ECE in all cases.

3.1 Inductive Miner - ProM

ProM is an open-source process mining framework that is written in Java and pro-
vides a graphical user interface. The framework allows plugins that provide various
functionalities to be built such as process discovery algorithms, exporting tools and
data filtering tools [68]–[70]. The default event log format for ProM is XES files which
are similar to the XML format; however, the import plugin allows event logs with
CSV or XML format to be imported. During process mining, the attribute strings of
events will be concatenated with the pipe symbol "|" to create the event classes. For
example, the flag attribute for an event is 000.SYN. and the host attribute is C, the
event class name for this event will be 000.SYN.|C.
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First, for comparisons, several process models are mined with normal cases only.
Nine models are derived from normal datasets of varying sizes. One of the process
models is mined from the complete log, while the others are mined from sub-logs
of the complete log. Cases for the sub-logs are selected at random from the com-
plete log. For each size, two models are mined from two distinct sub-logs. In this
section, the focus is on displaying each of these models and discussing the observa-
tions made from them. The following is a list of all process models mined using an
inductive miner.

1. Process model mined with 5 traces 1st.

2. Process model mined with 5 traces 2rd.

3. Process model mined with 100 traces 1st.

4. Process model mined with 100 traces 2rd.

5. Process model mined with 20k traces 1st.

6. Process model mined with 20k traces 2rd.

7. Process model mined with 100k traces 1st.

8. Process model mined with 100k traces 2rd.

9. Process model mined with the complete-log.

The process models mined with ProM are in the form of Petri nets. An illustra-
tion of a process model discovered using the inductive miner is shown in Figure 3.1.
The Petri net consists of three different types of components: places, actions, and
silent actions τ. Tokens are kept in places, which are represented in the Petri net as
circles. Rectangles with corresponding event class names are used to represent ac-
tions. Silent actions can consume and fire tokens without evoking any actual events;
they are represented as rectangles without event class names.

FIGURE 3.1: process model example.

The left-most place is a special place that is not connected to any output of any
action. It stores the initial token that the Petri net can use to start replaying. The
initial token can be consumed by action 000.SYN|C, and the action will produce four
tokens for four places that are connected to its outputs. The newly produced tokens
can then be consumed by other actions. In each step, an action can only consume
one token from a place and produce one token in a place. If the action has multiple
inputs or outputs places, it will consume or produce one and only one token for each
connected place. The action can not fire if there is not one token in all input places,
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i.e., if an action has two input places, each place needs to have one token for this
action to fire. A place can hold multiple tokens, and the action may fire multiple
times. The right-most place is also a special place that stores the end token.

For enhanced readability, colouring and numbering are applied to process mod-
els and key locations. Actions in the connection-establishing stage are highlighted
in yellow, while those in the established (data transmission) stage are highlighted
in green; actions in the termination stage remain uncoloured. Typically, the induc-
tive models feature five distinct patterns, as shown in Figure 3.2. Unique IDs are
allocated to each location and silent action. In the subsequent content, places are
denoted with the letter P, such as P1 for a place with ID 1, and silent actions with the
letter S, like S1 for a silent action with ID 1.

• Loops
Loops enable a single token to act as input to the Petri net and initiate multiple
executions of an action. As observed in the image, 000.ACK.|C can consume a
token from place P8 and generate a token at P11. Nevertheless, silent action S12
possesses the capability to ’transfer’ the token back to P8, making it available
for use by 000.ACK.|C once more.

• Short-cuts
Through the use of a shortcut, a particular action in the model can be circum-
vented, meaning that it is no longer necessary for the action to fire when the
token is replayed. Within the context of this illustration, 000.ECE.ACK.SYN.|S
will be circumvented in the event that the silent action S2 uses up the token
located in P2. This pattern typically appears when there are two traces in the
event log that are very similar to one another, but only one of the traces con-
tains the event class 000.ECE.ACK.SYN.|S.

• Sequences
If two actions are to occur in a process model, the second action must fire only
after the first action has fired, and not the other way around. This is what is
meant by the concept of sequence. For example, 000.ECE.ACK.SYN.|S will not
be able to fire until after 000.CWR.ECE.SYN.|C has already fired.

• Concurrences
Concurrency does not mean that all of the involved actions are executed at the
same time in the event log; rather, it means that these actions can fire in any
order. In the scenario depicted in Figure 3.2, the order in which the actions
000.ACK.PSH|S, 000.ACK.FIN.|S, and 000.ACK.PSH.FIN.|S are fired does not
make a difference in the model representation as long as each of these actions is
executed before S41 is executed. It is possible for the sub-sequence of a flow to
be written as either ⟨000.ACK.PSH|S, 000.ACK.PSH.FIN.|S, 000.ACK.FIN.|S⟩
or ⟨000.ACK.PSH|S, 000.ACK.PSH.FIN.|S, 000.ACK.FIN.|S.⟩ The reason for
concurrent events was discussed earlier in Chapter 2.

• Exclusive-selection
Under the exclusive-selection pattern, only one action can be selected at a time.
Because P6 only has one token that can be consumed once in the chart, either
000.ACK.PSH.|C, 000.ACK.SYN.|S, or 000.SYN.|C could fire.

An action might appear in multiple patterns due to the existence of nested pat-
terns. For example, 000.ACK.|S is included within the loop, shortcut, sequence, and
concurrence patterns in Figure 3.1. To enhance the visualisation of nested structures,
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FIGURE 3.2: Inductive model pattern examples. Loops: first row first
figure; short-cuts: first row second figure; sequences: first row third
figure; concurrences: second row first figure; exclusive-selection: sec-

ond row second figure.

a type of process model called Process Table has been developed, derived from Petri
nets.

FIGURE 3.3: process model example (Appendices figure A.1).

000.ACK.FIN.|C*#

000.ACK.|C*#

000.ACK.PSH.FIN.|C*

000.RST.|*#

000.ACK.|*#

000.ACK.PSH.|S*# 000.ACK.RST.|S*#

000.ACK.FIN.|*#

000.ACK.PSH.FIN.|S*#

1 000.CWR.ECE.SYN.|C 000.ECE.ACK.SYN.|S# 2
b

000.ACK.PSH.|C
000.ACK.SYN.|S

000.SYN.|C

000.ACK.RST.|C*# 000.RST.|C*#

a 000.NS.ACK.FIN.|#
000.CWR.ACK.RST.|C#

TABLE 3.1: the overview of the process model example.

Transitions and patterns equivalent to Figure 3.3 are consistently represented in
process table 3.1. Process table 3.2 serves as a reference to process table 3.1, with all
event-class names replaced by characters in process table 3.2 to facilitate a clearer
explanation. The interpretation of a process table will be discussed next.

Event classes in a row adhere to the sequential pattern, while those in a column
follow the concurrent pattern. For example, it is evident that event classes C, D, and
the set of event classes beneath D follow the concurrent pattern. This set of event
classes, including b, E, F, . . . , O, P, and a, is nestled within the concurrent pattern.
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C*#

D*#

H*#

I*#

J*#

K*#

M*#

N*#
L*#

1 A B# 2
b

E
F
G

O*# P*#

a Q#
R#

TABLE 3.2: the reference of table 3.2.

A and B are positioned in the same row but in different columns since they are part
of a sequential pattern. The ’*’ symbol denotes an action with a loop pattern, such
as C and D, while the ’#’ symbol denotes a skippable action, like B and C. In this
instance, a shortcut spanning A and B is represented by numbers 1 and 2, which
jointly symbolise a silent action. This shortcut begins before A and ends after B,
with its locations corresponding to P1 and P3 in figure 3.1. Another silent action
connects a and b, indicating a loop that corresponds to locations P6 and 49 in figure
3.1. Within the process table, the exclusive-selection pattern is displayed as a single
cell containing multiple actions, such as E, F, and G. Tables incorporating rare cases
will be addressed when they occur in section 3.1.5, as some of these rare instances
were not observed in this process model.

If an action to the left of the vertical border fires, all actions on the right side must
either fire or be bypassed. For instance, when B fires, C, D, and the nested pattern
should all fire or bypass. Clearly, C and D can be bypassed, necessitating the firing
of either E, F, or G from the exclusive-selection pattern. The action on the right side
of the vertical border can only be triggered when all actions on the left side have
been fired or bypassed.

Let us examine the concepts of missing tokens and remaining tokens. The miss-
ing token indicates that some events during a token replay on a case do not have
the necessary token to consume. A case that has been perfectly executed will have
the exact number of tokens to consume and will only leave one end token at the end
place after the replay. A token is a remaining token if it remains unconsumed in any
place aside from the end place. The case below will cause a missing token and a
remaining token.

• ⟨A, A, E⟩

Event A consumes the initial token and produces a token at the input place of node
B. The second A event has no token to consume, so there is a missing token. Second
A produces another token at the input place of node B, but E will only consume
one token. In summary, this replay results in one missing token and one remaining
token. The cases below are those which perfectly comply with the process model.

• ⟨A, B, C, C, C, E, H, J, I, D, K, N, M, L, O, P, Q, R⟩

• ⟨A, B, F, M, L, Q, R⟩

• ⟨E, E, E, E, E⟩

In the following sections, the process models for various setups and the event
classes observed in each setup will be demonstrated. Traces that can be perfectly
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replayed on the process model will be shown, reflecting the generality and accuracy
of the models. These traces are not actual traces from event logs but rather synthetic
traces created by observing each process model.

The concept of accuracy states that the process model extracted from the event
log should allow fewer unobserved traces in the event log to be replayed perfectly
on this model. In other words, an accurate process model closely resembles the ob-
served traces from the event log in its representation of patterns. On the other hand,
generalisation can be the opposite of accuracy. A general process model permits the
flawless replay of additional unanticipated traces. If a set of normal cases is used
to mine a model, a model that well-establishes the normal behaviours can be antic-
ipated, resulting in a high true-positive rate for anomaly detection. However, the
false-positive rate might be high because normal traces may not be observed in the
event log. The benefit of a general model is that it can accommodate unanticipated
normal traces, thereby reducing the false-positive rate. Nevertheless, there is a high
likelihood that anomalies will be perfectly replayed on the model, resulting in a high
false-negative rate. The balance between a process model’s accuracy and generality
must be determined based on its application, which will be discussed in greater de-
tail later.

3.1.1 Process Models Mined with 5 Cases

Five cases were used to mine the model in Figure 3.4. This is a case with relatively
a small number of cases to test how the number of cases affects the generality of the
process model and how generality affects the model’s accuracy. Nine of the event
classes listed in Table 3.3 are observed with this configuration. The process table is
presented in Table 3.4

FIGURE 3.4: First model mined with 5 traces (Appendices figure A.2).

000.SYN.|C 000.ACK.SYN.|S 000.ACK.|S 000.ACK.FIN.|C
000.ACK.|C 000.ACK.PSH.|S 000.ACK.PSH.|C 000.ACK.FIN.|S

000.ACK.RST.|C | | |

TABLE 3.3: List of event classes in the first model mined with 5 traces.

000.ACK.|S*#

000.ACK.FIN|C*#

b 000.ACK.|C 000.ACK.PSH.|C*# a 000.ACK.FIN.|S*#000.SYN.|C* 000.ACK.SYN.|S* 2

000.ACK.PSH.|S*#

1 000.ACK.RST.|C#

TABLE 3.4: The process table of the first model mined with 5 traces.

The following (Trace 3.1) is a list of the shortest traces that can be replayed on
this process model. In the sections that follow, we notate the sequence using → for
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easier reading.

START → 000.SYN.|C → 000.ACK.SYN.|S → 000.ACK.|C → END (3.1)

The shortest trace appears to be a valid TCP flow at the beginning, as it follows the
three-way handshake connection establishment; however, the connection terminates
without FIN or RST, which is not valid and should not occur. The accuracy of the
process model is evaluated by analyzing the shortest trace. Here is a potential trace
(Trace 3.2) involving all observed event classes that can be replayed perfectly on the
process model.

START → 000.SYN.|C → 000.ACK.SYN.|S → 000.ACK.|S → 000.ACK.|C
→ 000.ACK.|S → 000.ACK.FIN|C → 000.ACK.PSH.|C → 000.ACK.FIN.|S
→ 000.ACK.RST.|C → END

(3.2)

The model seems general enough to allow all event classes to appear in one trace,
however, this might allow illegal traces to be replayed on the process model. Ac-
cording to the above trace, the three-way handshake is not a proper handshake as
there is an extra ACK packet sent from the server, which could happen in real life,
but the data transmission stage and the termination stage are mixed together, so
these stages are invalid.

The second process model, mined with 5 cases, can be seen in Figure 3.5. From
these 5 cases, 9 distinct event classes were observed, as listed in Table 3.5. These nine
observed event classes correspond precisely with the first model. The corresponding
process table is shown in Table 3.6.

FIGURE 3.5: Second process model mined with 5 traces (Appendices
figure A.3).

000.SYN.|C 000.ACK.SYN.|S 000.ACK.PSH.|C 000.ACK.|S
000.ACK.|C 000.ACK.PSH.|S 000.ACK.FIN.|C 000.ACK.FIN.|S

000.ACK.RST.|C | | |

TABLE 3.5: List of event classes in the second process model mined
with 5 traces.

The shortest trace that is replayable by the second process model is shown below.

START → 000.SYN.|C → 000.ACK.SYN.|S → 000.ACK.FIN.|S →
000.ACK.FIN.|C → 000.ACK.|C → 000.ACK.|C → END

(3.3)
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000.ACK.SYN.|S
000.ACK.FIN.|C
000.ACK.FIN.|S

000.ACK.PSH.|C*#

000.ACK.|S*#
000.SYN.|C

b
000.ACK.|C* 000.ACK.PSH.|S*#

a

000.ACK.RST.|C#

TABLE 3.6: The process table of the second model with 5 traces.

Trace 3.3 is less precise than Trace 3.1 for the preceding model. Trace 3.1 has an ac-
curate connection establishment stage, whereas Trace 3.3 has no valid stages, similar
to Trace 3.2 in the first model. Below is depicted a possible trace that includes all
observed event classes.

START → 000.SYN.|C → 000.ACK.SYN.|S → 000.ACK.PSH.|C →
000.ACK.FIN.|S → 000.ACK.FIN.|C → 000.ACK.|C → 000.ACK.|S →
000.ACK.PSH.|S → 000.ACK.RST.|C → END

(3.4)

Although Trace 3.4 lacks a valid stage, it can still be replayed on the process model
as a "normal" trace that is comparable to Trace 3.2.

The construction of the process table using patterns from the process model will
be illustrated in the following section, where 100 cases are mined. As the next section
provides superior examples, the demonstration will take place there rather than in
the current section. Additionally, the usage of the process table to generate synthetic
traces, such as 3.3 and 3.4, is demonstrated.

3.1.2 Process Models Mined with 100 Traces

The process model in Figure 3.6 was obtained from 100 cases in which the event
log contained the 12 different event names listed in Table 3.7. In contrast to the
previous example, some classes that are more uncommon are observed, such as
000.ACK.RST.|S, 000.RST.|C, and 000.RST.|S. Let us review the creation of the pro-
cess table. The specifics of patterns obtained from Figure 3.6 are listed below. A
process table (Table 3.8) is constructed, drawing on the observations mentioned ear-
lier, which assists in visualising and pinpointing all potential traces capable of being
perfectly replayed on the process model.

FIGURE 3.6: First process model mined with 100 traces (Appendices
figure A.4).

000.SYN.|C 000.ACK.|C 000.ACK.SYN.|S 000.ACK.RST.|C
000.ACK.FIN.|S 000.ACK.|S 000.ACK.PSH.|C 000.ACK.PSH.|S
000.ACK.FIN.|C 000.ACK.RST.|S 000.RST.|C 000.RST.|S

TABLE 3.7: List of event classes in the first model with 100 traces.



3.1. Inductive Miner - ProM 43

• 000.ACK.|C and all actions between places P4 and P35 are concurrent. 000.RS
T.|S is the next action in a sequential pattern.

• 000.ACK.FIN|S and all actions between P5 and P35 are in a concurrent pattern.

• 000.ACK.|S, all actions between P9 and P26, and 000.ACK.PSH.|S are in a con-
current pattern. 000.ACK.PSH.|C is followed by 000.ACK.FIN.|C are sequen-
cial.

• 000.ACK.RST.|S and 000.RST.|C are in a sequential pattern.

000.ACK.|C*

000.ACK.FIN.|S*#

000.ACK.RST.|C#

000.ACK.|S*#

000.ACK.PSH.|C*# 000.ACK.FIN.|C*#
000.SYN.|C*

000.ACK.SYN.|S*

000.ACK.PSH.|S*#
000.ACK.RST.|S*# 000.RST.|C*#

000.RST.|S#

TABLE 3.8: The process table of the first model mined with 100 traces.

All potential traces are clearly displayed in Process Table 3.8. Since the calcula-
tion of the missing tokens and remaining tokens are not necessary, using a process
table to identify potential traces is easier. Additionally, it provides a clearer picture
of which event classes can repeat or be bypassed. As a result, it’s simple to make a
potential trace like the one shown below (Trace 3.5). In this trace 000.SYN.|C has re-
peated once and 000.ACK.RST.|C, 000.ACK.PSH.|C and 000.RST.|C were bypassed;
all other event classes appeared once. This trace might not be possible to happen
in real life, but it can be replayed on this process model. The shortest possible trace
that is can be replayed on the process model is shown below. To create the shortest
trace, it is necessary to determine which event classes cannot be bypassed (without
’#’). Because 000.ACK.|C and 000.ACK.SYN|S are in parallel, Trace 3.6 is close to
being a three-way handshake. The handshake is invalid if 000.ACK.|C is executed
prior to 000.ACK.SYN.|S. Now, let’s examine a possible trace (Trace 3.7) containing
all observed event classes.

START → 000.SYN.|C → 000.SYN.|C → 000.ACK.|C → 000.ACK.SYN.|S
→ 000.ACK.PSH.|S → 000.ACK.|S → 000.ACK.FIN.|C → 000.ACK.RST.|S
→ 000.ACK.RST.|C → 000.RST.|S → END

(3.5)

START → 000.SYN.|C → 000.ACK.|C → 000.ACK.SYN.|S → END (3.6)

START → 000.SYN.|C → 000.ACK.|C → 000.ACK.SYN.|S → 000.ACK.|S
→ 000.ACK.PSH.|C → 000.ACK.PSH.|S → 000.ACK.FIN.|C → 000.ACK.RST.|S
→ 000.ACK.RST.|C → 000.RST.|C → 000.ACK.FIN.|S → 000.RST.|S → END

(3.7)

Once again, the inductive miner has a high generality, but the trace is invalid.
However, the termination stage is better in contrast to earlier examples because the
data transmission packets are not mixed in this stage.
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Figure 3.7 shows the second model that is mined from 100 cases with 13 different
event classes observed from these 100 cases. The observed event classes are shown in
Table 3.9. 000.ACK.PSH.FIN|S is the newly observed event class. The corresponding
process table is shown in Table 3.10

FIGURE 3.7: Second process model mined with 100 traces (Appen-
dices figure A.5).

000.SYN.|C 000.ACK.|C 000.ACK.SYN.|S 000.ACK.RST.|C
000.ACK.PSH.FIN|S 000.ACK.|S 000.ACK.PSH.|C 000.ACK.PSH.|S

000.ACK.FIN.|C 000.ACK.FIN.|S 000.RST.|C 000.ACK.RST.|S
000.RST.|S | | |

TABLE 3.9: List of event classes in the second process model mined
with 100 traces.

000.ACK.|C*#

000.ACK.RST.|C#

000.ACK.PSH.FIN|S#

000.ACK.|S*#

000.ACK.PSH.|C*# 000.ACK.FIN.|C*# 000.RST.|C*#
000.SYN.|C*

000.ACK.SYN.|S*#

000.ACK.PSH.|S*# 000.ACK.FIN.|S*#

000.ACK.RST.|S*#
000.RST.|S#

TABLE 3.10: The process table of the second model mined with 100
traces.

The shortest possible trace that can be replayed on the process model is shown
in Trace 3.8, and the possible trace with all observed event classes are shown in
Trace 3.9. As the size of the event log grows larger, the accuracy of process models
decreases and the generality increases.

START → 000.SYN.|C → END (3.8)

START → 000.SYN.|C → 000.ACK.SYN.|S → 000.ACK.FIN.|S →
000.ACK.PSH.|S → 000.ACK.|S → 000.ACK.RST.|C → 000.ACK.PSH.|C →
000.ACK.FIN.|C → 000.ACK.RST.|S → 000.RST.|C → 000.ACK.|C →
000.RST.|S → END

(3.9)

3.1.3 Process Models Mined with 20k Traces

The process model depicted in Figure 3.8 was extracted from 20,000 cases and in-
cludes event classes not observed in previous models, such as 000.CWR.ECE.SYN.|C
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and 000.CWR.ACK.PSH.|C. Table 3.11 displays 19 observed event classes from the
event log.

FIGURE 3.8: First process model mined with 20k traces (Appendices
figure A.6).

000.CWR.ECE.SYN.|C 000.ACK.|S 000.ACK.FIN.|C 000.ACK.PSH.|C
000.ACK.FIN.|S 000.ACK.|C 000.ECE.ACK.SYN.|S 000.ACK.PSH.|S
000.ACK.SYN.|S 000.SYN.|C 000.CWR.ACK.PSH.|S 000.RST.|S

000.ACK.PSH.FIN.|C 000.ACK.PSH.FIN|S 000.ACK.RST.|C 000.ACK.RST.|S
000.RST.|C 000.CWR.ACK.PSH.|C 000.CWR.ACK.RST.|C |

TABLE 3.11: List of event classes in the first model mined with 20k
traces.

000.ACK.|S*#

000.ACK.FIN.|C*#

000.ACK.PSH.|C*#

000.ACK.FIN.|S*#

000.ACK.|C*#

000.ACK.PSH.|S*#

000.ACK.SYN.|S*#

000.SYN.|C*#

000.RST.|S*#

000.ACK.PSH.FIN|S*# 000.ACK.RST.|S*#

000.CWR.ECE.SYN.|C#

000.ECE.ACK.SYN.|S*#

000.CWR.ACK.PSH.|S#
000.ACK.PSH.FIN.|C*#

000.ACK.RST.|C*# 000.RST.|C*#

000.CWR.ACK.PSH.|C#

000.CWR.ACK.RST.|C*#

TABLE 3.12: the process model of the first model mined with 20k
traces.

Since all event classes can be bypassed, as shown by the process table in Table
3.12, the shortest trace (Trace 3.10) that can be replayed by the process model is one
that contains only the START and END tokens. The accuracy of this process model is
much worse than any previous examples. A potential trace (Trace 3.11) that includes
every event class that was discovered. The trace is sufficiently broad to encompass
all observed event classes, but a real-world connection cannot possibly behave in
this manner.

START → END (3.10)
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START → 000.CWR.ECE.SYN.|C → 000.ECE.ACK.SYN.|S → 000.ACK.|S →
000.ACK.FIN.|C → 000.ACK.FIN.|S → 000.ACK.PSH.|C → 000.ACK.|C →
000.CWR.ACK.PSH.|S → 000.SYN.|C → 000.RST.|S → 000.ACK.PSH.FIN.|C →
000.ACK.PSH.FIN.|S → 000.ACK.RST.|C → 000.RST.|C → 000.ACK.RST.|S →
000.ACK.SYN.|S → 000.ACK.PSH.|S → 000.CWR.ACK.PSH.|C →
000.CWR.ACK.RST.|C → END

(3.11)

Figure 3.9 is the second process model mined from 20,000 traces. Similarly, these
20,000 traces contain 19 different event classes that are shown in Table 3.13.

FIGURE 3.9: second process model mined with 20k traces (Appen-
dices figure A.7).

000.CWR.ECE.SYN.|C 000.ECE.ACK.SYN.|S 000.ACK.FIN.|C 000.ACK.|C
000.SYN.|C 000.ACK.PSH.|C 000.ACK.SYN.|S 000.CWR.ACK.PSH.|C
000.ACK.|S 000.RST.|S 000.ACK.PSH.|S 000.ACK.PSH.FIN.|C

000.ACK.FIN.|S 000.ACK.RST.|S 000.ACK.PSH.FIN.|S 000.ACK.RST.|C
000.RST.|C 000.NS.ACK.FIN.|S 000.CWR.ACK.RST.|C |

TABLE 3.13: List of event classes in the second model mined with 20k
traces.

000.ACK.FIN.|C*#

000.ACK.|C*#

000.ACK.RST.|S*#

000.ACK.PSH.FIN.|S*#
000.ACK.PSH.FIN.|C*#

000.ACK.RST.|C*# 000.RST.|C*#000.CWR.ACK.PSH.|C#

000.ACK.FIN.|S*#

000.ACK.|S*#

000.RST.|S*#

1 000.CWR.ECE.SYN.|C 000.ECE.ACK.SYN.|S# 2
b 000.SYN.|C*# 000.ACK.PSH.|C#

000.ACK.SYN.|S#

000.ACK.PSH.|S*#

a 000.NS.ACK.FIN.|S#
000.CWR.ACK.RST.|C#

TABLE 3.14: The process table of the second model mined with 20k
traces.

Table 3.14 presents, as always, the process table of this process model. The event
classes 000.ACK.PSH.|C and 000.ACK.SYN.|S are involved in an exclusive-selection
pattern that did not exist in previously mined models. The shortest trace is iden-
tical to Trace 3.10, which contains only the START and END tokens. In the fol-
lowing subsections, all process models mined with more cases have the same is-
sue, so they will not be discussed again. It is impossible to create a trace that con-
tains all event classes due to the exclusive-selection pattern. Trace 3.12 includes all
event classes with the exception of 000.ACK.PSH.|C and 000.ACK.SYN.|S, which are
exclusive. 000.ACK.SYN.|S is associated with the connection establishment stage,
whereas 000.ACK.PSH.|C is associated with the data transmission stage. Therefore,
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the existence of a selection pattern between these two event classes is not possible.
The occurrence of the ’selection’ pattern could be due to the fact that some traces are
ECN-capable and have ECE or CWR flags set during the handshake, which overlaps
some event classes before and after the selection pattern.

START → 000.CWR.ECE.SYN.|C → 000.ECE.ACK.SYN.|S → 000.ACK.|C →
000.ACK.FIN.|C → 000.SYN.|C → 000.ACK.PSH.|C (000.ACK.SYN.|S) →
000.CWR.ACK.PSH.|C → 000.ACK.|S → 000.ACK.PSH.|S → 000.ACK.PSH.FIN.|C
→ 000.ACK.RST.|S → 000.ACK.RST.|C → 000.ACK.FIN.|S → 000.RST.|C
→ 000.ACK.PSH.FIN.|S → 000.RST.|S → 000.NS.ACK.FIN.|S →

000.CWR.ACK.RST.|C → END
(3.12)

3.1.4 Process Models Mined with 100k Traces

Figure 3.10 depicts the model extracted from 100k cases, which includes 23 event
names listed in Table 3.15. Also shown in Table 3.16 is the process table.

FIGURE 3.10: First model mined with 100k traces (Appendices figure
A.8).

000.CWR.ECE.SYN.|C 000.ECE.ACK.SYN.|S 000.ACK.FIN.|C 000.ACK.|C
000.ACK.|S 000.ACK.PSH.|S 000.ACK.PSH.|C 000.CWR.ACK.|S

000.ACK.FIN.|S 000.ACK.SYN.|S 000.SYN.|C 000.CWR.ACK.PSH.|C
000.CWR.ACK.PSH.|S 000.CWR.ACK.|C 000.ACK.PSH.FIN.|S 000.ACK.PSH.FIN.|C

000.RST.|S 000.ACK.RST.|C 000.ACK.RST.|S 000.RST.|C
000.NS.ACK.FIN.|S 000.CWR.ACK.RST.|S 000.CWR.ACK.RST.|C |

TABLE 3.15: List of event classes in the first model mined with 100k
traces.

000.ACK.FIN.|C*#

000.ACK.|C*#

000.ACK.|S*#

000.ACK.PSH.|S*#

000.ACK.PSH.|C*#

000.ACK.FIN.|S*#

000.ACK.SYN.|S*#

000.SYN.|C*#

000.ACK.PSH.FIN.|S*#

000.ACK.RST.|C*# 000.RST.|C*#

000.ACK.PSH.FIN.|C*#
000.ACK.RST.|S*#

1 000.CWR.ECE.SYN.|C 000.ECE.ACK.SYN.|S# 2

000.CWR.ACK.|S*#
000.CWR.ACK.PSH.|C*#

000.CWR.ACK.PSH.|S*#

000.CWR.ACK.|C#
000.RST.|S*#

000.NS.ACK.FIN.|S#

000.CWR.ACK.RST.|S#

000.CWR.ACK.RST.|C#

TABLE 3.16: The process table of the first model mined with 100k
traces.

Despite Trace 3.13’s apparent generality, the trace is invalid at all stages of a
TCP connection. This model contains two patterns of exclusive selection. The first
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exclusive-selection pattern consists of 000.CWR.ACK.PSH.|C, 000.CWR.ACK.PSH.|S,
and 000.CWR.ACK.|C, whereas the second exclusive selection pattern consists of
000.CWR.ACK.RST.|S and 000.CWR.ACK.|C; these event classes can occur alterna-
tively within the stage, which is more accurate than the second model mined with
20k traces. All event classes may be bypassed, so the shortest trace is unavailable.

START → 000.CWR.ECE.SYN.|C → 000.ECE.ACK.SYN.|S → 000.CWR.ACK.|S
→ 000.ACK.FIN.|C → 000.ACK.FIN.|S → 000.SYN.|C → 000.ACK.SYN.|S
→ 000.CWR.ACK.PSH.|C (000.CWR.ACK.PSH.|S, 000.CWR.ACK.|C)
→ 000.ACK.PSH.FIN.|C → 000.ACK.PSH.FIN.|S → 000.ACK.RST.|C
→ 000.RST.|C → 000.ACK.RST.|S → 000.RST.|S → 000.ACK.|C
→ 000.ACK.|S → 000.ACK.PSH.|S → 000.ACK.PSH.|C → 000.NS.ACK.FIN.|S
→ 000.CWR.ACK.RST.|S (000.CWR.ACK.RST.|C) → END

(3.13)

3.1.5 Other Inductive Models

Both the second model mined with 100k cases and the final model mined with the
complete set contain 23 event classes and are similar. In other words, both event logs
containing 100k cases cover all observable event classes in the dataset. Because of
the similarity of the process models extracted from the final three setups, the list of
observed event classes will not be displayed. The inductive models are depicted in
Appendix Figures A.9 and A.10. The process tables are displayed in 3.17 and 3.18.

000.ACK.|S*#

000.ACK.FIN.|C*#

000.ACK.PSH.|C*#

000.ACK.|C*#

000.ACK.FIN.|S*#

000.ACK.PSH.|S*#

000.ACK.SYN.|S*#

000.SYN.|C*#

000.ACK.RST.|S*#

000.ACK.PSH.FIN.|S*#

000.ACK.PSH.FIN.|C*# 000.ACK.RST.|C*# 000.RST.|C*#

1 000.CWR.ECE.SYN.|C 000.ECE.ACK.SYN.|S# 2

000.CWR.ACK.|S*# 000.CWR.ACK.PSH.|C*#

000.CWR.ACK.PSH.|S#

000.CWR.ACK.|C#
000.RST.|S*#

000.NS.ACK.FIN.|S#

000.CWR.ACK.RST.|C#

TABLE 3.17: The process table of the second model with 100k traces.

000.ACK.FIN.|C*#

000.ACK.|C*#

000.ACK.|S*#

000.RST.|C*#

000.ACK.PSH.|C*#

000.CWR.ECE.SYC.|C*#

000.ACK.PSH.|S*#

000.ACK.FIN.|S*#

000.ACK.SYN.|S*#

000.SYN.|C*#

000.CWR.ACK.|C# 000.CWR.ACK.PSH.|C*# 000.ACK.PSH.FIN.|C*#

000.ACK.PSH.FIN.|S*# 000.ACK.RST.|S*#

000.ACK.RST.|C*#
000.ECE.ACK.SYN.|S*# 000.CWR.ACK.|S*#

000.CWR.ACK.PSH.|S*

000.RST.|S*#

000.CWR.ACK.RST.|C#
000.NS.ACK.FIN.|S#

000.CWR.ACK.RST.|S#

TABLE 3.18: The process table of the model mined with all traces.

The second model mined with 100k cases follows the same pattern of exclusive
selection as the first model mined with 100k cases. The event classes 000.CWR.ACK.|C,
000.CWR.ACK.PSH.|C, and 000.CWR.ACK.PSH.|S have the combined patterns of
exclusive-selection pattern and sequence pattern for the model mined with all cases;
therefore, the model could only fire 00.CWR.ACK.|C followed by 000.CWR.ACK.PSH.|C,
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or fire 000.CWR.ACK.PSH.|S only. In table 3.18, it appears as a cell with three actions
and a border separating 000.CWR.ACK.|C and 000.CWR.ACK.PSH.|C. In both pro-
cess models, all event classes can be bypassed, so short traces are unavailable. Traces
with all event classes will not be displayed because their characteristics are compa-
rable to Trace 3.13.

3.2 Fuzzy Miner - Disco

Disco is a proprietary closed-source process mining tool. It uses directed graphs
instead of Petri nets as process models. Due to the restrictions of Disco for academic
purposes, the case limit for all event logs has been set to 50,000. Consequently, there
are only eight configurations for process mining with Disco, which are listed below.
The first six setups utilise the same event logs as the first six ProM setups. Event
logs with 50,000 traces are sub-logs of the full-log.

1. First process model with 5 traces.

2. Second process model with 5 traces.

3. First process model with 100 traces.

4. Second process model with 100 traces.

5. First process model with 20k traces.

6. Second process model with 20k traces.

7. First process model with 50k traces.

8. Second process model with 50k traces.

Let us begin by examining an example of a process model mined with Disco.
Figure 3.11 is a model of a process mined from 100 cases using Disco. If a link is
shown between actions A and B in the process model, there must be a relation in
the event log where A is followed by B, i.e., every relation is recorded in the process
model assuming the model is the initial model. Adjacency matrix may be used to
represent the directed graph. Table 3.19 displays the number of events/nodes and
the number of edges.
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000.SYN.-C

100

000.ACK.SYN.-S

99

000.ACK.-C

963

000.ACK.PSH.-C

389

000.ACK.-S

998

000.ACK.PSH.-S

372

000.ACK.FIN.-C

99

000.ACK.FIN.-S

89

000.ACK.RST.-C

9

000.ACK.PSH.FIN.-S

4

000.RST.-C

25

000.ACK.RST.-S

7

000.RST.-S

4

FIGURE 3.11: An example of fuzzy model (Appendices figure A.4).



50 Chapter 3. Mined Process Models

0. 000.SYN.|C 1. 000.ACK.SYN.|S 2. 000.ACK.|C 3. 000.ACK.PSH.|C
4. 000.ACK.|S 5. 000.ACK.PSH.|S 6. 000.ACK.FIN.|C 7. 000.ACK.FIN.|S

8. 000.ACK.RST.|C 9. 000.ACK.PSH.FIN.|S 10. 000.RST.|C 11. 000.ACK.RST.|S
12. 000.RST.|S 13. START 14. END |

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
100 99 963 389 998 372 99 89 9 4 25 7 4 100 100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 0 97 2 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 97 2 0 0 0 0 0 0 0 0 0 0 0
2 0 2 85 236 490 67 26 11 2 0 0 0 1 0 43
3 0 0 6 68 169 95 51 0 0 0 0 0 0 0 0
4 0 0 481 32 270 146 10 20 4 1 4 4 0 0 26
5 0 0 227 49 11 48 4 26 2 3 1 1 0 0 0
6 0 0 4 0 50 14 0 29 0 0 0 0 2 0 0
7 0 0 56 2 6 0 8 0 1 0 8 1 0 0 7
8 0 0 0 0 0 2 0 2 0 0 0 0 0 0 5
9 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 2 0 0 1 0 0 11 0 0 0 11
11 0 0 1 0 0 0 0 0 0 0 1 0 0 0 5
12 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3
13 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TABLE 3.19: Event classes (top), event class count (middle) and adja-
cency matrix (bottom) of the process model.

The top table of Table 3.19 displays the ID number for each event class used in
the tables that follow. The table in the middle represents the weight of nodes, or
the counts of events with respect to the event class IDs. Here, the adjacency ma-
trix displays all edge weights under each ID; for instance, the relation (000.SYN.|C,
000.ACK.SYN.|S) occurs 97 times in this event log, per row 0 column 1.

3.2.1 Process Models Mined with 5 Traces

Figure 3.12 depicts the first process model mined with 5 traces, and Table 3.20 con-
tains all pertinent information. As some of the event logs utilised in the fuzzy mining
setups are identical to those employed in the inductive mining setup, the observed
event classes will not be displayed.
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000.SYN.-C

6

000.ACK.SYN.-S

6

000.ACK.-C

61

000.ACK.PSH.-C
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000.ACK.-S

47

000.ACK.PSH.-S

38

000.ACK.FIN.-C

6

000.ACK.FIN.-S

6

000.ACK.RST.-C

1

FIGURE 3.12: Process models mined with 5 traces.
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0. 000.SYN.|C 1. 000.ACK.SYN.|S 2. 000.ACK.|C 3. 000.ACK.PSH.|C
4. 000.ACK.|S 5. 000.ACK.PSH.|S 6. 000.ACK.FIN.|C 7. 000.ACK.FIN.|S

8. 000.ACK.RST.|C 9. START 10. END |

0 1 2 3 4 5 6 7 8 9 10
6 6 61 38 47 38 6 6 1 5 5

0 1 2 3 4 5 6 7 8 9 10
0 1 5 0 0 0 0 0 0 0 0 0
1 0 1 5 0 0 0 0 0 0 0 0
2 0 0 9 20 17 10 2 0 0 0 3
3 0 0 0 14 10 12 2 0 0 0 0
4 0 0 19 1 16 9 0 1 0 0 1
5 0 0 25 3 2 7 0 1 0 0 0
6 0 0 0 0 2 0 1 3 0 0 0
7 0 0 3 0 0 0 1 1 1 0 0
8 0 0 0 0 0 0 0 0 0 0 1
9 5 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0

TABLE 3.20: Event classes (top left), event class count (top right) and
adjacency matrix (bottom) of the process model.

A quick comparison of the fuzzy model with the inductive model mined from the
same event log is made. The shortest trace complying with the fuzzy model is identi-
cal to Trace 3.1, as previously demonstrated with the inductive model; however, the
fuzzy model strictly adheres to the three-way handshake. In other words, improper
handshakes are not permitted by the fuzzy model, regardless of the data transmis-
sion stage and termination stage configurations. It is observed that 000.ACK.|C is
the third packet in Trace 3.2, which is correct as 000.ACK.|C cannot be skipped. In
fact, any event classes listed in the second column (parallel pattern) of process ta-
ble 3.4, such as 000.ACK.|C or 000.ACK.FIN.|C, could be the third packet from the
inductive model. The fuzzy model proves to be more accurate in this situation.

START → 000.SYN.|C → 000.ACK.SYN.|S → 000.ACK.|C → 000.ACK.FIN|C
→ 000.ACK.|S → 000.ACK.PSH.|C → 000.ACK.PSH.|S → 000.ACK.FIN.|S
→ 000.ACK.RST.|C → END

(3.14)

Trace 3.14 includes all observed event classes and has mixed established and
termination stages due to the occurrence of 000.ACK.|C at both stages. Compared to
the inductive model, this model clearly imposes stricter constraints on how packets
should behave.

Figure 3.13 illustrates the second process model comprising five cases. Mov-
ing forward, only the process model itself will be displayed, as it offers improved
readability compared to the table of counts and adjacency matrices. The event log
contains a case in which the three-way handshake is incorrectly recorded as Se-
quence 3.15. The cause of the phenomenon is unknown, but it may occur during
the packet-capturing phase. The process model demonstrates that it supports the
standard handshake and Sequence 3.15, both of which are more accurate than the
model mined with an inductive miner using the same event log.

000.SYN.|C → 000.ACK.|C → 000.ACK.SYN.|S (3.15)

3.2.2 Other Process Models

Figure 3.14 shows the first fuzzy model mined with 100 cases. 2As more cases
are mined, more event classes are observed, and more relations are observed in
the event log. Some relations appear only once or twice, such as (000.ACK.|C,
000.ACK.RST.|C), indicating that the connection can be reset immediately after the
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FIGURE 3.13: Second process model mined with 5 traces.

establishing stage. The case referenced in Sequence 3.15 is still present in this pro-
cess model, but the case ID in the event log has changed. In the second event log
containing five traces, the case ID is 154987; however, the case ID in this event log is
110821. That indicates the phenomenon occurred multiple times in the event log.

Due to the similarity between models, further discussion of other configurations
will be omitted. The process models can be found in Appendix A. Sequence 3.15
occurred 611 times with a maximum of 50k traces. Evidently, this sequence emerges
solely when examining the fuzzy model. Even in the presence of ECN-capable con-
nections, fuzzy models disallow improper handshakes, highlighting the high accu-
racy of these models.

3.3 State Diagrams

The RFC TCP state transition diagram describes a TCP flow in general terms. The
diagram depicts three phases of a TCP connection: the establishing, established,
and closing phases. The diagram was previously presented in Figure 2.7. In this
diagram, the establishing stage is represented by the three-way handshake, but the
established stage is left undefined.

The information displayed in the state diagram from Bishop et al. [71] more
closely resembles the process models, as the analysis is based on real traffic data
observed through system calls. In this diagram, transitions with RST are coloured
orange; those with SYN are coloured green; those with FIN set are coloured blue;
and the rest are coloured black. Flags in the diagram, such as ’Arsf’, have specific
meanings: ’A’ represents ACK set, while ’a’ indicates ACK clear; ’R’ denotes RST
set, and ’r’ signifies RST clear; ’S’ corresponds to SYN set, and ’s’ means SYN clear;
’F’ stands for FIN set, and ’f’ refers to FIN clear. The transition rules of Figure 3.15
from [71] are detailed below.

• close_3 Successful abortive close of a synchronised connection.
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What Is This?
This graph shows an approximation to the Host Transition
System of the TCP specification

TCP, UDP, and Sockets: rigorous and experimentally-
validated behavioural specification. Volume 1: Overview.
Volume 2: The Specification. Steven Bishop, Matthew Fair-
bairn, Michael Norrish, Peter Sewell, Michael Smith, and Keith
Wansbrough. 2005.

The states are the classic ‘TCP states’, though note that
these are only a tiny part of the protocol endpoint state, in
the specification or in implementations. The transitions are
an over-approximation to the set of all the transitions in the
model which (1) affect the TCP state of a socket, and/or
(2) involve processing segments from the host’s input queue
or adding them to its output queue, except that transitions
involving ICMPs are omitted, as are transitions arising from
the pathological BSD behaviour in which arbitrary sockets can
be moved to LISTEN states. Transitions are labelled by their
Host LTS rule name (e.g. socket 1 , deliver in 3 , etc.), any
socket call involved (e.g. close()), and constraints on the flags
of any TCP segment received and sent, with e.g. R indicating
that RST is set and r indicating RST is clear. Transitions in-
volving segments (either inbound or outbound) with RST set
are coloured orange; others that have SYN set are coloured
green; others that have FIN set are coloured blue; others are
coloured black. The FIN indication includes the case of FINs
that are constructed by reassembly rather than appearing in a
literal segment.

The graph is based on data extracted manually from the
HOL specification. The data does not capture all the invari-
ants of the model, so some depicted transitions may not be
reachable in the model (or in practice). Similarly, the con-
straints on flags shown may be overly weak.

Transition Rules
close 3 Successful abortive close of a synchronised socket

close 7 Successfully close the last file descriptor for a socket in the CLOSED,

SYN SENT or SYN RECEIVED states.

close 8 Successfully close the last file descriptor for a listening TCP socket

connect 1 Begin connection establishment by creating a SYN and trying to

enqueue it on host’s outqueue

connect 4 Fail: socket has pending error

deliver in 1 Passive open: receive SYN, send SYN,ACK

deliver in 1b For a listening socket, receive and drop a bad datagram and either

generate a RST segment or ignore it. Drop the incoming segment if

the socket’s queue of incomplete connections is full.

deliver in 2 Completion of active open (in SYN SENT receive SYN,ACK and

send ACK) or simultaneous open (in SYN SENT receive SYN and

send SYN,ACK)

deliver in 2a Receive bad or boring datagram and RST or ignore for SYN SENT

socket

deliver in 3 Receive data, FINs, and ACKs in a connected state

deliver in 3b Receive data after process has gone away

deliver in 3c Receive stupid ACK or LAND DoS in SYN RECEIVED state

deliver in 6 Receive and drop (silently) a sane segment that matches a CLOSED

socket

deliver in 7 Receive RST and zap non-{CLOSED; LISTEN; SYN SENT;

SYN RECEIVED; TIME WAIT} socket

deliver in 7a Receive RST and zap SYN RECEIVED socket

deliver in 7b Receive RST and ignore for LISTEN socket

deliver in 7c Receive RST and ignore for SYN SENT(unacceptable ack) or

TIME WAIT socket

deliver in 7d Receive RST and zap SYN SENT(acceptable ack) socket

deliver in 8 Receive SYN in non-{CLOSED; LISTEN; SYN SENT;

TIME WAIT} state

deliver in 9 Receive SYN in TIME WAIT state if there is no matching LISTEN

socket or sequence number has not increased

deliver out 1 Common case TCP output

listen 1 Successfully put socket in LISTEN state

listen 1c Successfully put socket in the LISTEN state from any non-

{CLOSED; LISTEN} state on FreeBSD

shutdown 1 Shut down read or write half of TCP connection

socket 1 Successfully return a new file descriptor for a fresh socket

timer tt 2msl 1 2*MSL timer expires

timer tt conn est 1 connection establishment timer expires

timer tt fin wait 2 1FIN WAIT 2 timer expires

timer tt keep 1 keepalive timer expires

timer tt persist 1 persist timer expires

timer tt rexmt 1 retransmit timer expires

timer tt rexmtsyn 1 SYN retransmit timer expires

The RFC793 Original
Transmission Control Protocol

Functional Specification

+---------+ ---------\ active OPEN

| CLOSED | \ -----------

+---------+<---------\ \ create TCB

| ^ \ \ snd SYN

passive OPEN | | CLOSE \ \

------------ | | ---------- \ \

create TCB | | delete TCB \ \

V | \ \

+---------+ CLOSE | \

| LISTEN | ---------- | |

+---------+ delete TCB | |

rcv SYN | | SEND | |

----------- | | ------- | V

+---------+ snd SYN,ACK / \ snd SYN +---------+

| |<----------------- ------------------>| |

| SYN | rcv SYN | SYN |

| RCVD |<-----------------------------------------------| SENT |

| | snd ACK | |

| |------------------ -------------------| |

+---------+ rcv ACK of SYN \ / rcv SYN,ACK +---------+

| -------------- | | -----------

| x | | snd ACK

| V V

| CLOSE +---------+

| ------- | ESTAB |

| snd FIN +---------+

| CLOSE | | rcv FIN

V ------- | | -------

+---------+ snd FIN / \ snd ACK +---------+

| FIN |<----------------- ------------------>| CLOSE |

| WAIT-1 |------------------ | WAIT |

+---------+ rcv FIN \ +---------+

| rcv ACK of FIN ------- | CLOSE |

| -------------- snd ACK | ------- |

V x V snd FIN V

+---------+ +---------+ +---------+

|FINWAIT-2| | CLOSING | | LAST-ACK|

+---------+ +---------+ +---------+

| rcv ACK of FIN | rcv ACK of FIN |

| rcv FIN -------------- | Timeout=2MSL -------------- |

| ------- x V ------------ x V

\ snd ACK +---------+delete TCB +---------+

------------------------>|TIME WAIT|------------------>| CLOSED |

+---------+ +---------+

TCP Connection State Diagram

Figure 6. September 1981

http://www.cl.cam.ac.uk/users/pes20/Netsem
March 18, 2005
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FIGURE 3.15: State diagram by Bishop et al. [71].

• close_7 Closed the last file descriptor successfully for a connection in the CLOSED,
SYN_SENT or SYN_RECEIVED states.

• close_8 Closed the last file descriptor successfully for a listening TCP connec-
tion.

• connect_1 Establishing connection by creating a SYN.

• connect_4 Connection has pending error.

• deliver_in_1 Passive open when receiving SYN, then send SYN.ACK.

• deliver_in_1b A listening connection receives and drops a bad datagram, then
it either send back a RST segment or drop it.

• deliver_in_2 Completion of active open in SYN SENT state by receiving SYN.ACK
and send ACK, or simultaneous open in SYN SENT state by receiving SYN and
send SYN.ACK.
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• deliver_in_2a Receive a bad or boring datagram, then the RST is sent back or
the packet is ignored if the state is in SYN_SENT connection.

• deliver_in_3 Receive data, FINs, and ACKs in a connected state.

• deliver_in_3b Receive data after process has gone away.

• deliver_in_3c Receive stupid ACK or LAND DoS in SYN_RECEIVED state.

• deliver_in_6 Receive and drop (silently) a sane segment that matches a CLOSED
connection.

• deliver_in_7 Receive RST and terminate non-CLOSED; LISTEN; SYN_SENT;
SYN_RECEIVED; TIME_WAIT connection.

• deliver_in_7a Receive RST and terminate SYN_RECEIVED connection.

• deliver_in_7b Receive RST and ignore for LISTEN socket.

• deliver_in_7c Receive RST and ignore for SYN_SENT or TIME_WAIT connec-
tion.

• deliver_in_7d Receive RST and terminate SYN_SENT connection.

• deliver_in_8 Receive SYN in non-CLOSED; LISTEN; SYN SENT; TIME WAIT
state.

• deliver_in_9 Receive SYN in TIME_WAIT state if there is no matching LISTEN
socket or sequence number has not increased.

• deliver_out_1 Common case TCP output.

• listen_1 Successfully put connection in LISTEN state.

• listen_1c Successfully put connection in the LISTEN state from any non-CLOSED;
LISTEN state on FreeBSD.

• shutdown_1 Shut down read or write half of TCP connection.

• connection_1 Successfully return a new file descriptor for a fresh connection.

• timer_tt_2msl_1 2MSL timer expires.

• timer_tt_conn_est_1 Connection establishment timer expires.

• timer_tt_fin_wait_2_1 FIN_WAIT 2 timer expires.

• timer_tt_keep_1 Keepalive timer expires.

• timer_tt_persist_1 Persist timer expires.

• timer_tt_rexmt_1 Retransmit timer expires.

• timer_tt_rexmtsyn_1 SYN retransmit timer expires.
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SYN. ACK. ACK.SYN. ACK.RST. FIN. DATA ACK.FIN. RST. START END
SYN. 1 1 1 1 1 1
ACK. 1 1

ACK.SYN. 1 1 1 1 1
ACK.RST. 1

FIN. 1 1 1 1 1
DATA 1 1 1 1 1 1

ACK.FIN. 1 1 1
RST. 1 1

START 1 1 1
END

TABLE 3.21: The adjacency matrix of state diagram by Bishop et al.

To facilitate the observation of traces in the manner of a ’process model’, an ad-
jacency matrix was created, as shown in Table 3.21, based on the diagram and tran-
sition rules previously discussed.

Compared to the RFC diagram, this state diagram has much better details. It
includes more information about the transitions with RST and additional potential
traces. Table 3.21 makes this clear, and it is similar to the process models discovered
using Disco in that START cannot lead directly to PSH or END. The flags S and C,
which designate whether a packet was sent from the server or the client, are included
in the event names in our process models. It’s unclear whether a packet is sent from
the client or server because the state diagram maintains the states of the RFC TCP
state diagram. Additionally, the data transmission stage does not include the PSH
flag. Although the diagram has been converted to an adjacency matrix in order to
compare it to process models, it is still difficult to compare because the state diagram
emphasises states rather than packets. In addition, whereas our event logs created
from PCAPs lack state information, the state diagram monitors connections at the
system-call level and can determine the precise current state of a connection.

3.4 Model Comparisons

3.4.1 Process Models

Nine ProM-mined process models were displayed in section 3.1. Better accuracy is
offered by process models that were mined from fewer cases (typically fewer than
20,000 cases). All process models that were mined for inductive models using more
than 20,000 traces can have all actions bypassed. The generality of the process mod-
els mined with ProM results in more silent actions and parallel actions being added
when different cases are mined, which increases the likelihood that an action will be
bypassed or placed in the wrong order. Silent actions have the benefit of allowing a
process model with a small size to better fit unobserved traces (traces not included
in the event log). The drawback is that process models will deviate from the original
dataset’s accuracy, allowing traces that are not feasible in reality to obtain perfect
fitness from the process model. Later on, the concept behind the fitness calculation
will be covered.

For example, the trace below has the perfect fitness in all inductive models that
are mined with more than 20,000 cases.

START → 000.ACK.PSH.|S → END.

Since data transmission cannot begin before a connection has been made, this
trace is not feasible in real life. These traces were regarded as incomplete traces and
were filtered out, so they can not appear in the event log. Process models that were
extracted from fewer traces, however, do not have this problem because they are
more accurate. A more extreme example, such as
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START → END,

is also an inappropriate trace.
A more favourable trade-off between accuracy and generality can be achieved

with fuzzy models. If a specific edge exists in the process model, there must be a
trace containing that particular relation. Although inductive models lack this prop-
erty, it does not mean that process models discovered using Disco have no generality.
The rare three-way handshake case observed in section 3.2.1 demonstrates general-
ity, as it allows bypassing 000.ACK.SYN.|S by adding a path between 000.SYN.|C
and 000.ACK.|C for these types of handshakes. The shortcut was not intentionally
added to the process model like the inductive miner does; instead, it emerges natu-
rally as the complexity of the paths increases.

Fuzzy models are not always superior, however. In business processes, prede-
fined procedures or actions are typically executed according to rules and constraints.
Additionally, extra attributes can be defined in business process logs, thereby im-
proving the quality of the discovered inductive model. In the case of network packet
data process mining, fuzzy models seem more applicable.

3.4.2 Process Models and State Diagrams

A comparison of the generality levels of various discussed models is presented in
Table 3.22. A general model should allow normal, unobserved behaviours to pass
conformance tests. Only rare normal flows present in actual network traffic data are
compared. The examples illustrate some infrequent flows. Table columns display
models, such as an inductive model mined with five traces, a fuzzy model mined
with one hundred traces, and so on. The row shows rare cases expected to be ob-
served in the models. If the case is observed in any process model or diagram, the
cell is marked Y(es); otherwise, the cell is marked N(o). Following the inductive
model in terms of generality is the fuzzy model. This outcome is anticipated due
to the algorithmic design, where an inductive miner explores patterns such as con-
currencies, resulting in numerous possible traces not present in the event log. In
contrast, RFC diagrams are general descriptions of TCP states, with both diagrams
limited to predefined stages like LISTEN, SYN-SENT, and ESTABLISHED, among
others.

Ind. 5t Fuzzy 5t Ind. 100t Fuzzy 100t Ind. 20kt Fuzzy 20k RFC Diag. Bishop
PSH in established stage. Y Y Y Y Y Y N N

Duplicate pakages. Y Y Y Y Y Y N N
Reset during handskake. N N Y Y Y Y N Y

Send of receive SYN after estanblished. N N N N Y Y N N
Reset during closing Y N Y N Y Y N Y

TABLE 3.22: Generality Comparison.

Ind. 5t Fuzzy 5t Ind. 100t Fuzzy 100t Ind. 20kt Fuzzy 20k RFC Diag. Bishop
Data transmission without handshake N N Y N Y N N N

RST or FIN before handshake N N Y N Y N N N
Loop through Close and Established stages N N Y Y Y Y N N

Sending same packets infinitely without
response from the other side

Y Y Y Y Y Y N N

TABLE 3.23: Accuracy Comparison.

We contrast accuracy in Table 3.23. An accurate model that depicts normal be-
haviours should not allow abnormal traces to pass the compliance checking. We as-
sume a trace is abnormal based on typical use cases because the behaviour of a flow
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can vary depending on the implementation of an application. In contrast to Table
3.22, we DO NOT anticipate any of the cases in Table 3.23 to fit any process model or
diagram. We achieve greater accuracy with fuzzy models, and the diagrams are the
most accurate. Cases involving infinite loops are a common issue with process mod-
els. Because diagrams adhere to predefined stages, looping through the close stage
and the established stage cannot occur. Due to the fact that ACK typically occurs
after receiving any packet, a link will be created between this packet and the ACK
packet, causing loops between stages. For example, ACKs occur in both established
and termination stages, and this is the cause of the common issue where packets
from these two stages are mixed together in traces such as Trace 3.2 and Trace 3.4.
The problem occurs in both inductive models and fuzzy models.

Accuracy is compared in Table 3.23. An accurate model depicting normal be-
haviours should not allow abnormal traces to pass the conformance checking. A
trace is assumed to be abnormal based on typical use cases, as the behaviour of a
flow can vary depending on an application’s implementation. In contrast to Table
3.22, none of the cases in Table 3.23 are expected to fit any process model or diagram.
Fuzzy models offer greater accuracy, while diagrams are the most accurate. Cases
involving infinite loops are a prevalent issue with process models. As diagrams ad-
here to predefined stages, looping through the close stage and the established stage
cannot occur. Since ACK generally occurs after receiving any packet, a link is cre-
ated between this packet and the ACK packet, leading to loops between stages. For
instance, ACKs occur in both established and termination stages, which causes the
common issue where packets from these two stages mix together in traces such as
Trace 3.2 and Trace 3.4. This problem occurs in both inductive models and fuzzy
models.

On the basis of this observation, the question can be posed: what exactly can
process mining extract from event logs? Clearly, process mining relies heavily on the
identification of transitions in the event log. In our case, without prior knowledge
of the TCP protocol and pre-processing the packet data before adding them to the
event log, the information of the sender (C/S) and the stages will be lost, resulting
in a greater number of loops and a greater degree of analysis difficulty. Tracking
the flow and identifying the state of each packet is a further enhancement to our
current event log construction procedure, as it provides us with one more attribute
that prevents looping.

3.5 Conformance Checking

The effectiveness of process mining in detecting anomalies in network data is now
examined. A process model will be mined following [34], and conformance checking
will be applied to the traces to be audited. Initially, the inductive miner is used to
extract the process model from a dataset consisting solely of normal network traffic.
Then, using the fitness score measurement, attempts are made to identify anomalous
traces that do not conform to the normal process model. Fitness is measured through
conformance checking by replaying traces on process models, with the calculations
described as:

f itness(t, N) =
1
2

(
1 − m

c

)
+

1
2

(
1 − r

p

)
(3.16)

and

f itness(L, N) =
1
2

(
1 − Σt∈LL(t)× mN,t

Σt∈LL(t)× cN,t

)
+

1
2

(
1 − Σt∈LL(t)× rN,t

Σt∈LL(t)× pN,t

)
, (3.17)
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where Equation 3.16 represents conformance checking on the trace level, and Equa-
tion 3.17 is on the log level. In this context, t represents the trace, N is the process
model, and L is the event log. m is the number of missing tokens, and r is the number
of remaining tokens. The concepts of missing tokens and remaining tokens were in-
troduced in Section 3.1. The consumed tokens, c, are the tokens consumed by firing
all actions, and the produced tokens, p, are the tokens produced (fired) by all actions.
When calculating log-level fitness, it essentially counts m, c, r, and p throughout the
entire event log, not just for a single trace as in trace-level fitness calculations. [72]
provides details on how conformance checking is conducted.

Using the inductive models mined with a 20k event log (the same event log from
setup 5), conformance checking is performed, and the fitness score is calculated with
ProM. A score of 1 indicates a perfect alignment of all cases with the process model;
otherwise, the score will be less than 1. The average fitness scores (log-level fitness
scores) for multiple setups are shown in Table 3.24. Conformance checking is per-
formed with various categories, including another normal log and all attacks. The
normal column represents the fitness score of an additional subset, distinct from the
one used to generate the model. All preprocessed data will be accessible on Zenodo1.

Normal BruteForce DoS Heartbleed CoolDisk Dropbox PortscanNmap Web Botnet_ARES Port_Scan_DDos
1 1 1 1 1 1 1 1 1 1

TABLE 3.24: Fitness scores of conformance checking.

Since all cases display a perfect model fit, identifying anomalies becomes impos-
sible. Some related works mentioned in Section 2.4 from Chapter 2 achieve good ac-
curacy using conformance checking; however, the limitation of these related works
lies in mining the normal model from only dozens or hundreds of cases, leading to
a relatively accurate model. Nevertheless, network flows can be considerably more
complex; thus, mining a process model from deviated flows will result in a much
more general model. As long as the flows are being routed on the network, whether
they are attacks or normal traffic, they always comply with TCP, and attacks typi-
cally do not exploit the protocol itself. The belief is that the frequency distribution of
transitions is more critical for anomaly detection in IDS. An anomaly may not be re-
garded as a specific transitional change but rather as the global frequency structure.

3.6 Summary

This chapter recalls the second research question. It has shown several process mod-
els mined with Disco and ProM with explanations of the observations. Also, a novel
method of presenting process models in process tables was shown. The focus of
this chapter is to compare process models and state diagrams within the context of
network packet data process mining and investigates the efficacy of conformance
checking in detecting network data anomalies.

Process models mined with ProM, particularly inductive models, are susceptible
to generality issues, which can result in actions being bypassed and infeasible traces
being permitted. Fuzzy models provide a better balance between precision and gen-
eralisation. However, fuzzy models may continue to struggle with accuracy issues
arising from infinite loops in process models. When compared to state diagrams
such as RFC diagrams, which adhere to predefined TCP stages, both inductive and

1https://doi.org/10.5281/zenodo.6646875
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fuzzy models struggle to achieve the optimal balance between accuracy and gener-
ality. To examine the efficacy of process mining in detecting anomalies in network
data, a process model is extracted from a dataset containing normal network traffic
using the inductive miner. In the context of network packet data process mining,
fuzzy models appear more applicable than inductive models. As both normal traf-
fic and attacks conform to the TCP protocol, conformance checking is limited in its
ability to detect anomalies.
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Chapter 4

Online Process Mining Algorithm

In Chapter 3, issues encountered so far are found and discussed, leading to the belief
that utilising PM and conformance checking directly for network intrusion detection
proves to be inefficient. Upon comparing models and observing their behaviour, it
becomes apparent that detecting anomalies is challenging due to the generality of
the process model. In addition, an explanation is provided as to why employing
PM for network traffic anomaly detection is ineffective. This chapter proceeds to re-
view and introduce a novel algorithm capable of performing packet-level detection,
inspired by process mining.

4.1 Existing Problem

4.1.1 Existing NIDS Approaches

In Chapter 1, a few NIDS-related techniques were mentioned, with more examples
to be provided in this section. NIDS can be broadly categorised into two groups:
online NIDS and offline NIDS. A significant amount of research is being conducted
in the area of online approaches, which are the methods of interest. Subsequently,
flow-level and packet-level NIDS are categorised from the online NIDS. Disregard-
ing the requirement for computational resources, packet-level NIDS undoubtedly
emerges as the optimal method for delivering genuine online detection.

The majority of packet-level NIDS techniques, however, have the following short-
comings. Systems that operate at the packet level typically lack the ability to decrypt
encrypted data. Examples include the previously introduced Snort [8], which uses
predefined rules to check for intrusions, and the case-based agent [73], which uses
case-based reasoning on packet XML data. Another example is the technique [74],
which converts bytes of packets to grayscale images before using a hierarchical net-
work structure for classification. In order to detect encrypted traffic, it is necessary
to analyse the time series data. Some techniques use recurrent neural networks for
intrusion detection, for example, [28] uses Long short-term memory (LSTM) to cat-
egorise a time series of raw packets. For smaller network devices, the resources
required to run and train LSTM may not always be readily available. Employing
flow-level data serves as an alternative approach; however, this level of detection
does not align with the desired outcome that this research is looking for.

Certain methods update the analytical values for temporal historical packets
with analytical data, eliminating the need for recurrent neural networks or time-
series packet data as input. The analytical data can be used as input for classifiers not
designed for time-series data, such as multi-layer perceptrons (MLP), which prove to
be more effective as they already encode historical data at a higher level of abstrac-
tion. An excellent example is given in [17], which employs damped incremental
statistics for feature extraction.
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Packet-level IDS with the use of historical information addresses the issue of en-
crypted data. However, a challenge arises that may result in poor performance for
attacks such as DDoS attacks. A DDoS attack transpires due to the volume of con-
nections rather than a single connection. Each individual connection may appear
completely normal, so if the focus is solely on the information provided by a sin-
gle connection, the attack will not be identifiable. This problem can be resolved by
encoding the global flow information. [17] proposed using 2D-statistics to analyse
the TX and RX traffic of a connection, asserting that the computational complexity
is O(1). It is believed that, given a wire with n packets passing through, the com-
plexity of the damped incremental statistics method is O(n). The 2D-statistics are
between TX and RX traffic. Modifying the algorithm to perform the 2D-statistics be-
tween flows should result in a complexity of O(mn), assuming there are m flows in
the wire.

4.1.2 Process Mining

Process mining is intended for business process model discovery and analysis, and
is capable of encoding the global process structure. The capacity to observe global
process structure is considered crucial for detecting attacks such as botnet, DoS/D-
DoS, and brute force. The activities are recorded in the event log that can be used
for process mining in the future. The collection of these activities could take days
or even weeks, and the event log is then used to determine the process model. This
may be appropriate for offline intrusion detection, but it cannot be used traditionally
for online anomaly detection. Online conformance checking is available in later re-
search [75] but the anomaly detection is limited to conformance checking. Tests were
conducted in Chapter 3 as a naive approach to applying process mining to network
data and attempting anomaly detection with conformance checking. The outcomes
proved to be less than promising.

From the last chapter, it is observed that fuzzy models handle the trade-off be-
tween accuracy and generality more effectively, and process models mined with
larger event logs typically permit illegal traces to pass conformance checking. How-
ever, regardless of the event log size, using process mining directly for intrusion
detection does not offer a truly online solution, and even the offline performance
might not be promising. In general, smaller models exhibit greater accuracy. Since
an offline approach does not align with the desired outcome, further testing of offline
NIDS with conventional process mining has not been pursued.

Performance poses another problem. The inductive miner requires more re-
sources than the fuzzy miner, and even if a sliding window can be maintained that
shifts for every incoming packet p to achieve online process mining and merely mine
process models from a relatively small sliding window, performance will be a draw-
back for the inductive miner. Additionally, compared to the graph produced by
the fuzzy miner, the Petri net is more difficult to convert to other formats that can be
used by classifiers and anomaly detectors. Furthermore, another potential issue with
this online process mining approach using the sliding window is identified, regard-
less of the performance concern. Assuming the size of the sliding window is 500,
flows with more than 500 packets will not be fully covered by the sliding window.
Mining a process model with an incomplete trace is not expected, and incomplete
traces are treated as outliers during data cleaning.
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4.2 Dataset

A more recent CSE-CIC-IDS2018 dataset [25] has become available during the devel-
opment of the new method. This dataset is comparable to the IDS2017 dataset, but
it encompasses more data and updated attack categories. B-profiles and M-profiles
are utilised to generate network traffic data. Unlike the local computers used to
produce the IDS2017 data, the IDS2018 dataset is generated within the AWS cloud
environment.

B-profile was previously mentioned in Section 2.5.1 in the context of how it cre-
ates benign traffic data that appears to be natural. On the other hand, attack data was
produced using the M-profile system. When describing a cyber-attack scenario, the
M-profile makes an effort to be as specific as possible. Compilers and autonomous
agents would be used to analyse and run these scenarios. Based on the implemented
network topology, a scenario is built for each attack, and the attack is carried out
from one or more machines outside the target network. Various sets of operating
systems are installed, including Ubuntu, Microsoft Windows servers from 2012 and
2016, and Microsoft Windows operating systems (Windows 8.1 and Windows 10).
In the M-profile, seven attack scenarios have been implemented. The specifications
of the dataset are listed below.

1. Wednesday 2018.02.14
Brute Force attacks including

• FTP (10:32 – 12:09);
Attacker: 18.221.219.4
Victim: 18.217.21.148

• SSH (14:01 – 15:31).
Attacker: 13.58.98.64
Victim: 18.217.21.148

2. Thursday 2018.02.15
DoS attacks including

• GoldenEye (09:26 – 10:09);
Attacker: 18.219.211.138
Victim: 18.217.21.148

• Slowloris (10:59 – 11:40).
Attacker: 18.217.165.70
Victim: 18.217.21.148

3. Friday 2018.02.16
DoS attacks including

• SlowHTTPTest (10:12 – 11:08).
Attacker: 18.219.193.20
Victim: 18.217.21.148

• Hulk (13:45 – 14:19).
Attacker: 18.219.193.20
Victim: 18.217.21.148

4. Tuesday 2018.02.20
DDoS attacks including
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• LOIC-HTTP (10:12 – 11:17);

• LOIC-UDP (13:13 – 13:32).
Attacker: 18.218.115.60, 18.219.9.1, 18.219.32.43, 18.218.55.126, 52.14.136.135,
18.219.5.43, 18.216.200.189, 18.218.229.235, 18.218.11.51, 18.216.24.42
Victim: 18.217.21.148

5. Wednesday 2018.02.21
DDoS attacks including

• LOIC-UDP (10:09 – 10:43);

• DDOS-HOIC (14:05 – 15:05).
Attacker: 18.218.115.60, 18.219.9.1, 18.219.32.43, 18.218.55.126, 52.14.136.135,
18.219.5.43, 18.216.200.189, 18.218.229.235, 18.218.11.51, 18.216.24.42
Victim: 18.218.83.150

6. Thursday 2018.02.22
Brute Force attacks including

• Web (10:17 – 11:24);

• XSS (13:50 – 14:29).
Attacker: 18.218.115.60
Victim: 18.218.83.150

SQL Injection attacks (16:15 - 16:29).

Attacker: 18.218.115.60

Victim: 18.218.83.150

7. Friday 2018.02.23
Brute Force attacks including

• Web (10:03 – 11:03);

• XSS (13:00 – 14:10).
Attacker: 18.218.115.60
Victim: 18.218.83.150

SQL Injection attacks (15:05 - 15:18).

Attacker: 18.218.115.60

Victim: 18.218.83.150

8. Wednesday 2018.02.28
Infiltration attacks (10:50 - 12:05, 13:42 - 14:40).

Attacker: 13.58.225.34

Victim: 18.221.148.137

9. Thursday 2018.03.01
Infiltration attacks (9:57 - 10:55, 14:00 - 15:37, 14:00 - 15:37).

Attacker: 13.58.225.34

Victim: 18.216.254.154



4.3. Algorithm Design 65

10. Friday 2018.03.02
Botnet attacks (10:11 - 11:34, 14:24 - 15:55).

Attacker: 18.219.211.138

Victim: 18.217.218.111, 18.222.10.237, 18.222.86.193, 18.222.62.221,
13.59.9.106, 18.222.102.2, 18.219.212.0, 18.216.105.13, 18.219.163.126,
18.216.164.12

4.3 Algorithm Design

In general, the aim is to harness the global flow discovery potential of process min-
ing in an online manner. As mentioned previously, process mining analyses the
relationships between packets in flows and encodes the global flow structure into
the process model rather than analysing the flows themselves. Before discussing the
algorithm, it is necessary to revisit the definitions of transitions and event classes,
which may differ slightly from those used in conventional process mining.

4.3.1 Definition

Given a sequence of processed packets, P, a transition in P is defined as a pair of con-
secutive packets

(
pi, pj

)
within a flow in P. The transition was previously referred

to as the precedence relation, and P can be treated as the event log. The processed
packets are those that have been captured and had unnecessary data removed, such
as numerical values. All packets will be referred to as processed packets in the sub-
sequent context.

A trace is a series of packets that belong to the same TCP flow.
Here is an example, a series of packets P = ⟨p1, p2, p3, p4, p5⟩ is given with two

traces, t1 and t2. Flow t1 = ⟨p1, p3, p5⟩ and flow t2 = ⟨p2, p4⟩. Two transitions arise
for t1: (p1, p3) and (p3, p5), while a single transition for t2: (p2, p4). Although packets
p1 and p2 are consecutive, they are not considered a transition since they belong to
separate flows.

An event class ec(p) of a packet p is the concatenation of enabled flags of a packet
followed by an indicator. e.g. 000.SYN.|C, where the last character is an indicator
that indicates either the packet is sent from the client or the server. In this case, C
indicates the packet is sent from the client. Although every packet is unique (similar
to an event), every packet has its corresponding event class. Examples of event classes
were explored in Chapter 3.

A transition type (pi, pj) consists of a pair of corresponding event classes (ec(pi), ec(pj)).
Transition types may also be referred to as relations. For instance, (000-.SYN.|C,
000.ACK.SYN.|S) represents a relation signifying that a packet with the SYN flag en-
abled is succeeded by a consecutive packet with both ACK and SYN flags enabled.
Frequencies of transitions are measured under transition types. For instance, a count
of 5 for (000-.SYN.|C, 000.ACK.SYN.|S) indicates the occurrence of 5 transitions re-
lating to 10 packets sharing the same transition type.

4.3.2 Sliding Window

The dataset is analysed, revealing that the IDS2018 dataset of normal traffic data
comprises 23 possible event classes that can be observed. It is assumed that the
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majority of flag combinations are encompassed by these 23 event classes. For de-
fault rear case handling, all other packets with flag combinations not observed in
the dataset can be categorised as OTHERS.

In total, there are 26 event classes, consisting of 23 event classes from the obser-
vation and 3 default classes (START, END, and OTHERS). START and END serve as
two tokens marking the beginning and end of a trace. Consequently, assuming ev-
ery class can be paired with other classes, there will be 262 = 676 possible relations.
This finite set of 26 event classes can be found in Table 4.1.

000.SYN.|C 000.ACK.SYN.|S 000.ACK.|C 000.ACK.PSH.|C
000.ACK.PSH.|S 000.ACK.FIN.|C 000.ACK.|S 000.ACK.FIN.|S
000.ACK.RST.|C 000.ACK.RST.|S 000.RST.|S 000.ACK.PSH.FIN.|S
000.RST.|C 000.CWR.ECE.SYN.|C 000.ECE.ACK.SYN.|S 000.NS.ACK.FIN.|S
000.ACK.PSH.FIN.|C 000.CWR.ACK.PSH.|C 000.CWR.ACK.|C 000.CWR.ACK.|S
000.CWR.ACK.PSH.|S 000.CWR.ACK.RST.|S 000.CWR.ACK.RST.|C START
END OTHERS

TABLE 4.1: Possible event classes used.

Our proposed online algorithm operates as follows. Given a sequence of packets
P, the algorithm outputs the sequence (stream) of frequencies of relations observed
in the last l packets (for some l), organised in the form of an adjacency matrix (26x26).
Here, the frequencies of relations observed in the last l packets are process models.
In other words, the algorithm outputs a series of adjacency matrices.

To decrease computational complexity in the experiments, a sliding window and
a cap of 500 packets l were employed to calculate the frequency of transitions. This
constraint on window size is based on numerous experiments and can be substituted
with any other number. The only hyperparameter in this algorithm is the size of the
sliding window, which will be discussed later. Preferring models with higher accu-
racy, a small starting number of events was chosen, with 500 being deemed suitable.
This decision stems from the analysis of over 4 million events from typical network
traffic, revealing an average of 94 events per trace. Consequently, 500 events usually
encompass 5 traces, which is considered a suitable starting point. Process models
discovered using 5 traces have been examined, and they demonstrate higher accu-
racy over generality. In theory, during attacks such as DDoS, 500 events could cover
more cases due to a larger number of connections and relatively fewer packets trans-
mitted per connection. Conversely, activities like file transferring may be covered by
fewer cases.

The sliding window starts from p1 and covers ⟨pi⟩l
i=1 = ⟨p1, p2, p3 . . . pl−1, pl⟩,

and the frequency of transitions A′ is calculated as A/l, then the window will be
shifted one step further which covers ⟨pi⟩l+1

i=2. This process results in a sequence
⟨A′

i⟩
n−l+1
i=1 and each A′

i is a snapshot of a process model with l events. Here, n is the
total number of packets. In process mining, the events are instances of event classes.
The process of producing A′

i is shown in Figure 4.1.
Labelled data is needed for training and testing, so labels from packets are passed

to A′. If an incoming packet originates from a flow labelled as a specific attack, the
final A′

i will be labelled as that type of attack, such as DDoS or Brute Force. For exam-
ple, P500 and Pn are packets that come from anomalous flows and the corresponding
output A1 and An−500+1 are also labelled.
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FIGURE 4.1: Diagram of the sliding window. Packets P500 and Pn be-
long to traces that are marked as attacks, therefore, A1 and An−500+1

are also labelled as attacks for training classifiers.

4.3.3 Temporal Event Table

The temporal event table (TET) is a data structure employed to address the infor-
mation loss of the initial transition of each window. Each trace begins with an ini-
tial token SOT (start of trace). Assuming a trace with 1000 events exists and the
sliding window size is only 500, a DFG is generated for each window. Since the
window is not large enough to encompass the entire trace, assigning the SOT token
becomes uncertain. Clearly, this token cannot be assigned for each window; if it is
simply removed, the information about the start of a trace is lost. The same issue
applies to the EOT (end of trace) token. To better illustrate the concept, consider a
smaller-scale experiment with an event log of 10 events involved in 2 traces. Trace
♢ = ⟨a♢, b♢, c♢, d♢, c♢, e♢⟩ and trace □ = ⟨a□, b□, a□, e□⟩ are the two traces. With 5
event classes and a sliding window size of 3, the process is demonstrated in Figure
4.2.

S → a♢ → b♢ → E
S → a□ → E S → a□ → E

S → b♢ → c♢ → E
S → c♢ → E
S → a□ → b□ → E

S → e□ → E
S → c♢ → e♢ → E

S

· · ·

⟨a♢, b♢, a□, c♢, b□, d♢, a□, e□, c♢, e♢⟩

· · ·

· · ·

E E

S

E

S

E

S

bba ba

c

a

c c

e

FIGURE 4.2: Online process mining without the TET. S stands for the
SOT token and E stands for the EOT token. Same event classes will
likely occur many times within the window which causes the weights
of corresponding nodes or edges to increase, however, the weights are

not reflected in this figure.

The solution here is that the last event class that is outside the window of each
flow ti was kept in the TET, so the SOT and EOT tokens will only be set at the be-
ginning and end of a particular TCP flow instead of each sliding window. As the
last event class is known, the relation can be mined even if the window has already
passed the previous event. The process with the TET is shown in Figure 4.3.
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In other words, the original process mining takes into account the entire event
log P, and P generates a single relatively large adjacency matrix A. However, this
is unsuitable for online processing; consequently, the last event class of a trace is
retained temporarily until the trace ends, and process model generation is restricted
to only use l packets.

· · ·

⟨a♢, b♢, a□, c♢, b□, d♢, a□, e□, c♢, e♢⟩

· · ·

· · ·
e□ → E
d♢ → c♢ → e♢ → E

S → a□

b♢ → c♢
S → a□

S → a♢ → b♢

c♢
b□

ID

Last EC e♢

ba

S

b a

♢ □

c a

♢ □

a□ → b□
b♢ → c♢

c b

♢ □

c

♢

∅ ∅

∅ ∅

∅

∅

ba

c

S

ba

c

c

e

E

d

FIGURE 4.3: Online process mining with the TET. S stands for the
START token and E stands for the END token. Same event classes
will likely occur many times within the window which causes the
weights of corresponding nodes or edges to increase, however, the

weights are not reflected in this figure.

The TET is a hash table that contains a key entry which is normally the case ID,
and the event class is stored under the corresponding case ID. In Figure 4.3, the TET
is initialised with the first window, and the Last EC value is updated according to
the latest packet. For each incoming packet, the system uses the case ID from the
incoming packet as a key to retrieve the previous event. For example, c♢ has case
ID ♢ and it exists in TET where the event class record in TET for ♢ is b; the system
creates the relation (b, c) and then updates the record in TET to c. The values will be
empty when the traces reach the end, and the key/ID in the TET for this trace will be
destroyed. TET collaborates with the transition buffer data structure, which is going
to be introduced in the next section.

One could argue that it would be simpler to only include the SOT token before
specific event classes are detected, or to simply insert the token before the trace.
Indeed, it is always required for identifying a new trace; however, the primary rea-
son for using TET is that it is necessary to track the case regardless of the method
employed, and searching for the event with the same case ID in the window is ineffi-
cient. Furthermore, if a window is too small to cover any event of a case in between,
the track of this case will be lost. This may happen when a connection pauses packet
transferring at some point, and other connections send more than 500 packets before
this connection continues. Second, the TET is extensible, allowing us to retain older
events for each case and, potentially, all historical transitions of a flow. In addition,
some flows may be completely outside of the current window within a given period
of time, making it imperative to record the last event class name for such flows.

Another argument is that the SOT and END tokens can be removed. The purpose
of using the token is similar to the use of the start of sequence (SOS) and end of the
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sequence (EOS) tokens in natural language processing (NLP) [76]–[78]. As the flows
always begin with SYN and end with FIN or RST, which are equivalent to SOS and
EOS tokens, they can be removed for network data. However, in order to maintain
consistency, the SOT tokens are retained. The END token is omitted for the purpose
of implementation simplicity, but it is recommended to include the END token when
working with non-NIDS systems whose traces end with a wider variety of event
classes.

4.3.4 Transition Queue

The frequency of the transitions needs to be updated for each new packet, with cal-
culations based solely on the last l packets. The aim is to measure the frequency by
counting the incoming relations into an adjacency matrix A. The transition queue,
also referred to as the transition buffer, is an l-sized list that stores historical transi-
tions from multiple cases and adheres to the FIFO (first in, first out) principle. Here,
l represents the sliding window’s size. Utilising the transition queue allows for the
management and identification of obsolete transitions that should not be included
in the current process model, as opposed to employing resource-intensive mining
process models for each sliding window. Figure 4.4 illustrates the structure of the
transition queue.

⟨a♢, b♢, a□, c♢, b□, d♢, a□, e□, c♢, e♢⟩

· · ·
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FIGURE 4.4: The transition queue. The count of transition (edge
weight) decrease by 1 when the transition go out the queue (red
colour), the count increase by 1 otherwise (green colour). Yellow
colour means the count is increased and decreased at the same time.

Similar to the TET, the transition buffer will be initialised with the first sliding
window. For each incoming event, the new transition that is created based on the
retrieved value from TET will be pushed into the queue and the adjacency matrix’s
count for this transition will increase by 1. In the interim, the oldest transition will
be removed from the queue and its transiting count in the adjacency matrix will be
reduced by 1. Using this method, adjacency matrices A are generated dynamically
based on the previous matrix. Close inspection reveals that the adjacency matrices
do not correspond to the graphs shown in Figure 4.3. The matrices have one addi-
tional transition compared to the graphs in Figure 4.3, which is the leftmost transi-
tion within the queue. These additional transitions are perfectly acceptable, so their
retention in the experiment is justified.
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4.3.5 Pseudocode

NIDS utilises Algorithm 1 as the pseudocode for the online process mining tech-
nique. The pseudocode is divided into two sections: the first focuses primarily on
the initialisation phase, while the second addresses the online processing of each
packet. A brief examination of the pseudocode will now be conducted.

The first part starts from line 1 to line 21. The input data P is a list of packets, and
the parameter defines the window size that will be used. For the production envi-
ronment, the packets are captured in real-time. For initialisation in the production
environment, the processor will wait until the first l packets are collected, and later
packets will be processed online. There are two outputs, a list of the transition ma-
trices and a list of passed-through labels. The list of labels is used for training and
testing the classifiers only, and it is not needed in the online detection phase after
the classifiers or anomaly detectors are trained. The key used in TET is essentially
the socket information, but the case ID is also applicable when using this algorithm
offline for training and testing dataset generation. The current_flags variable is the
current event class name.

Algorithm 1: pseudocode of packet preprocessing.
1 in P = [n]; /* load n packets */
2 param l = 500; /* define the window size */
3 A = [26 by 26]; /* a 26 ∗ 26 adjacency matrix */
4 list_A′ = [ ]; /* initialise list of A′

i */
5 list_attacks = [ ]; /* initialise list of attacks */
/* a dictionary where the key is the concatenation of IPs and Ports

(′′ IP1 : PORT1|IP1 : PORT′′
1 ) of hosts, and the value is the flags of the previous packet

*/
6 tet = {};
7 bu f f er = [l]; /* an FIFO buffer that keeps the last l transitions */
/* initialise with first l packets */

8 for i = 1 to l do
/* check if the packet belong to any existing flow */

9 if ′′ IP1 : PORT1|IP2 : PORT′′
2 in tet.key() or ′′ IP2 : PORT2|IP1 : PORT′′

1 in tet.key() then
/* count the transition into A */

10 A[tet[′′ IP1 : PORT1|IP2 : PORT′′
2 ], current_ f lags] += 1;

/* update the state of the flow to the current flags into the dict */
11 tet[′′ IP1 : PORT1|IP2 : PORT′′

2 ] = current_ f lags;
12 push current_ f lags into bu f f er;

/* check whether TCP flow terminates */
13 if ′′FIN′′ in current_ f lags or ′′RST′′ in current_ f lags then
14 remove key ′′ IP1 : PORT1|IP2 : PORT′′

2 from tet;
15 end

/* check if new TCP flow starts */
16 else if ′′SYN′′ in current_ f lags and ′′ACK′′ not in current_ f lags then
17 A[tet[′′START′′], current_ f lags] += 1;
18 push current_ f lags into bu f f er; /* push the transition (event) into buffer */
19 end
20 end
21 append A/l to list_A′; /* append the frequency of transitions into the list */

After the initialisation, the first transition frequency matrix A′
1 and the first label

of Pl are available. The transition frequency matrices are basically the normalised
weights of edges of the process models and the maximum possible frequency of a
transition is 1. Following a similar principle, the algorithm now updates all data
structures and list for each incoming packet with a computational complexity of
O(n). Ultimately, the outputs are obtained and prepared for use in machine learning
for intrusion detection. These outputs are also suitable for alternative techniques,
such as signal processing.
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22 for i = l + 1 to n do
23 if ′′ IP1 : PORT1|IP2 : PORT′′

2 in tet.key() or ′′ IP2 : PORT2|IP1 : PORT′′
1 in tet.key() then

24 A[pop bu f f er] −= 1; /* sub 1 for transition that went outside the window */
25 A[tet[′′ IP1 : PORT1|IP2 : PORT′′

2 ], current_ f lags] += 1;
26 tet[′′ IP1 : PORT1|IP2 : PORT′′

2 ] = current_ f lags;
27 push current_ f lags into bu f f er;

/* check whether TCP flow terminates */
28 if ′′FIN′′ in current_ f lags or ′′RST′′ in current_ f lags then
29 remove key ′′ IP1 : PORT1|IP2 : PORT′′

2 from tet;
30 end

/* check if new TCP flow starts */
31 else if ′′SYN′′ in current_ f lags and ′′ACK′′ not in current_ f lags then
32 A[pop bu f f er] −= 1;
33 A[tet[′′START′′], current_ f lags] += 1;
34 push current_ f lags into bu f f er;
35 end
36 append A/l to list_A′;

/* Attack IP is from the labelled data */
37 if Attack IP in current_ f lags then
38 append i to list_attacks
39 end
40 end

Output: list_A′;
Output: list_attacks;

4.4 Feature Generation

4.4.1 Processing

Before employing the online feature generation algorithm, a discussion on data prepa-
ration is necessary. The event log construction procedure remains identical to the
method standardised in Chapter 2. There are 14 different types of network traffic
that utilise TCP, including normal traffic and 13 distinct types of attacks. For the
IDS 2018 dataset, normal data can only be separated from each day, unlike the IDS
2017 dataset, which designated a specific day for collecting normal data. Event logs
are generated for several normal PCAP files before merging them into a larger event
log. The PCAP files, specifically chosen due to containing only regular data, are
listed below.

• capPC1-172.31.64.121.pcap

• capPC1-172.31.65.117.pcap

• capPC1-172.31.66.90.pcap

• capPC1-172.31.66.111.pcap

• capWIN-J6GMIG1DQE5-172.31.65.104.pcap

• capWIN-J6GMIG1DQE5-172.31.65.115.pcap

• capWIN-J6GMIG1DQE5-172.31.67.62.pcap

• capWIN-J6GMIG1DQE5-172.31.67.109.pcap

• UCAP172.31.69.25-part1.pcap

The rest of the event log preparations are similar. Unique IDs are assigned to
each category, and such IDs will be used as the label of the data for identification
purposes. The list of different types of attacks and their IDs are listed below.
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0. Normal

1. FTP-BruteForce

2. SSH-Bruteforce

3. DoS-GoldenEye

4. DoS-Slowloris

5. DoS-SlowHTTPTest

6. DoS-Hulk

7. DDoS-LOIC-HTTP

8. DDoS-HOIC

9. Brute Force-Web

10. Brute Force-XSS

11. SQL Injection

12. Infiltration

13. Botnet

4.4.2 Generated Features

Following the preparation, each event log undergoes processing with the online fea-
ture generation algorithm. Prior to the classification step involving machine learn-
ing, it is worthwhile to determine if any observations can be made based only on the
frequencies of transitions. The direct output of the algorithm, without additional
processing, can be viewed as the fluctuation of frequencies.

77 out of 676 transition types are given in Figure 4.5. There are 10 transition
types in the first chart and 10 transition types in the second chart, and so on. Upon
closer inspection, a red bar can be observed on the x-axis, signifying the occurrence
of an attack. Roughly the attack happens between 50,000th to 310,000th packets. The
transition (a, b) is written as a-b in the charts.

The change in frequency during the attack is easily discernible in the majority of
the charts, or it could be said that it is visible across most of the transitions. During
the attack, there begins the stabilisation in the transition frequency patterns seen
in the first three charts. When looking at these three charts, it is not immediately
clear whether the frequency has become lower or higher on average. Charts 4 and 6
show lower frequencies that are stable throughout the attack, whereas chart 7 shows
higher frequencies that are present throughout the attack. It is a sign that correlated
information has been extracted, which is important for the classification step that
comes after this.

4.5 Signature-based Detection

4.5.1 Algorithms

• Multi-layer perceptions (MLP)
A multi-layer perceptron, or MLP, is a type of artificial neural network (ANN)
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FIGURE 4.5: The chart show frequency fluctuation under Botnet at-
tacks.
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made up of numerous perceptrons due to its multiple layers. It comprises an
input layer that receives the signal, an output layer that predicts based on the
input, and any number of hidden layers that function as the MLP’s computa-
tional units. The input layer processes the signal. MLPs with just one hidden
layer can approximate any continuous function. Multilayer perceptrons are
commonly employed in supervised learning problems, where the objective is
to teach perceptrons to predict correlations in labelled data sets.

Since MLP is not designed for time-series prediction, each A′ is trained indi-
vidually. The 262-sized A′ matrices are flattened into 676-dimensional vectors.
For the MLP, four layers of neural networks are used: the first layer has 676
neurons; the second and third layers have 128 neurons each; and the final
layer contains 2 neurons with the Softmax function for 2-class classification.
For multi-class classification, the last layer is modified to include 14 neurons.
Softmax ensures that the output ranges between 0 and 1, and that the sum of
the probability distribution equals 1.

• Long short-term memory (LSTM) [79]
Long Short-Term Memory (LSTM) networks are a form of recurrent neural net-
work (RNN) with the ability to learn order dependency in time-series predic-
tion tasks. The fact that long short-term memory (LSTM) is one of the first im-
plementations to overcome the technical challenges and deliver on the promise
of recurrent neural networks may be one of the contributing factors to the suc-
cess of LSTMs. These challenges are known as the vanishing gradients prob-
lem and the expanding gradients problem, and they are ones that have been
encountered by earlier RNNs.

LSTM is a recurrent neural network model suitable for time-series data, in this
case, classifying the A′ matrices in a time-series manner. Utilising 2 layers of
LSTMs, each with 128 units, the first layer has an input dimension of (676, s).
The number 676 represents the dimension of the flattened A′, and s refers to
the time steps. The final layer is a fully-connected layer with 2 neurons for
output, utilising the Softmax function. Likewise, the last layer is modified to
include 14 units for multi-class classification. Experiments are conducted with
different time step values, s ∈ {50, 100, 250}.

• Convolutional neural network (CNN) [80]
Convolutional Neural Network has produced ground-breaking breakthroughs
in various pattern recognition-related domains, including image processing
and speech recognition. The most advantageous element of CNNs is their abil-
ity to reduce the number of parameters in ANN. This success has led both aca-
demics and developers to use bigger models to perform complex tasks, which
was not achievable with traditional ANNs; The most significant assumption
regarding issues handled by CNN is that they should not have spatially de-
pendent characteristics. In a face detection application, for instance, there is no
need to consider the location of faces within the photos. The primary challenge
lies in detecting them regardless of their position in the provided photographs
[81].

Since CNN is designed for image recognition, it naturally accepts 2D-tensor
inputs. Thus, matrices A′ are fed as single-channel images, with the first con-
volution layer having an input shape of (26, 26, 1) and 16 units, followed by a
max-pooling layer. The second convolution layer has 32 units and is also fol-
lowed by a max-pooling layer. Then the output from the max-pooling layer is
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flattened and connected to a fully connected dense layer with 32 neurons. The
setup for the layer of output is the same as the previous models.

• K-nearest Neighbours (KNN) [82]
KNN is a non-parametric supervised learning approach and one of the sim-
plest machine learning algorithms that assess the similarity between new data
and existing instances and classifies the new case into the category that is most
similar to existing categories. KNN saves the dataset, and at the time of clas-
sification, it calculates the distance between the stored dataset and the new
data. It then selects k nearest neighbours from the stored dataset, which may
be used to identify the category of the new data based on the categories of the
neighbours. KNN is typically employed for classification issues, although it
may also be applied to regression. Inputs are flattened into 676-dimensional
vectors, as in the previous models, and a k value of 5 is used for both binary
classification and multi-class classification.

The rationale for using these classifiers is not to test and compare which classifi-
cation model performs the best but to demonstrate that the output from the online
process mining technique is versatile enough for various types of classifiers. The
selection of hyper-parameters, including the number of neurons, layers of percep-
tions, training epochs, and so on, is based on similar considerations. Other hyper-
parameter selections have been tested, and the ones listed above provide relatively
better trade-offs between training speed, performance, and hardware limitations in
the specific experimental setups. Other hyper-parameter selections have not been
listed but one can tune the hyper-parameters based on the provided selections ac-
cording to their specific environment.

The dataset is split into 80% training data and 20% testing data. All classifiers
have been trained using the same datasets. Excluding KNN, all neural networks are
trained for 10 epochs with a batch size of 64. The loss function used for all neural
networks is Categorical Cross Entropy Loss, and the optimiser employed is Adam
(Adaptive Moment Estimation) [83]. Adam excels in various tasks and architectural
types by combining the benefits of RMSProp and AdaGrad (Adaptive Gradient Al-
gorithm and Adaptive Gradient Algorithm, respectively). Class weights have also
been applied to unbalanced datasets.

4.5.2 Binary Classification Results

All classifiers are trained through a 5-fold cross-validation procedure and the re-
sults are listed below. The numbers of true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN) in the confusion matrices are the sums of
numbers from different folds. These metrics will be used to calculate the F1-scores
(sometimes also called F-score). The F1-Score is comprised of both Precision and
Recall. Precision and Recall are the two most prevalent measures that take class
imbalance into consideration. The F1-score is calculated as follows (Equation 4.1 -
4.3):

Precision =
TP

TP + FP
, (4.1)

Recall =
TP

TP + FN
, (4.2)
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F1 score = 2 × Precision ∗ Recall
Precision + Recall

. (4.3)

It must be mentioned that only the F1-score is directly present in the subsequent
context. The rationale for this is twofold: firstly, the F1-score is a metric that en-
capsulates the performance of a classification model by taking into account both
precision and recall. Calculated as the harmonic mean of precision and recall, it
ranges from 0 to 1, with higher values signifying superior performance [84]. Sec-
ondly, this approach simplifies the outcome, allowing the reader to more easily per-
ceive the performance difference. As the experiments aim to demonstrate that the
feature generation functions as anticipated rather than measuring the performance
of various machine learning models, displaying solely the F1-score can be a more
suitable choice. All confusion matrices are included, thus other metrics can always
be calculated based on these matrices.

• FTP BruteForce (Table 4.2 and Table 4.3)
All classifiers performed admirably and returned high true positive and true
negative rates for FTP Brute-force attacks. The results for all classifiers are close
to 1 on the F-score.

MLP Actual LSTM-50 Actual LSTM-100 Actual

Classifier
Attack Normal

Classifier
Attack Normal

Classifier
Attack Normal

Attack 385966 0 Attack 384723 0 Attack 385292 0
Normal 754 386720 Normal 1836 386561 Normal 1269 386559

LSTM-250 Actual KNN Actual CNN Actual

Classifier
Attack Normal

Classifier
Attack Normal

Classifier
Attack Normal

Attack 385513 328 Attack 385988 0 Attack 385985 0
Normal 1051 386228 Normal 732 386720 Normal 735 386720

TABLE 4.2: Confusion matrices for each classifier.

MLP LSTM-50 LSTM-100 LSTM-250 KNN CNN
0.9990 0.9976 0.9984 0.9982 0.9991 0.9990

TABLE 4.3: F1-score for each classifier.

• SSH-BruteForce (Table 4.4 and Table 4.5)
The scores for SSH BruteForce attacks across all classifiers are lower than those
for FTP BruteForce dangers, but they are still quite good. The fact that LSTM-
250 has a lower score than other classifiers is probably attributable to the chal-
lenges associated with training longer LSTMs.

MLP Actual LSTM-50 Actual LSTM-100 Actual

Classifier
Attack Normal

Classifier
Attack Normal

Classifier
Attack Normal

Attack 476774 27 Attack 476767 1 Attack 476894 60
Normal 23097 500102 Normal 23093 499819 Normal 23067 499659

LSTM-250 Actual KNN Actual CNN Actual

Classifier
Attack Normal

Classifier
Attack Normal

Classifier
Attack Normal

Attack 481756 99804 Attack 478656 5027 Attack 477156 45
Normal 18482 399638 Normal 21293 495024 Normal 23004 499795

TABLE 4.4: Confusions matrices for each classifier.
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MLP LSTM-50 LSTM-100 LSTM-250 KNN CNN
0.9763 0.9764 0.9763 0.8907 0.9732 0.9764

TABLE 4.5: F1-score for each classifier.

• DoS GoldenEye (Table 4.6 and Table 4.8)
Except for the LSTM-100 classifier, all classifiers performed well for the DoS
GoldenEye attack, and KNN is clearly the best.

MLP Actual LSTM-50 Actual LSTM-100 Actual

Classifier
Attack Normal

Classifier
Attack Normal

Classifier
Attack Normal

Attack 192862 2303 Attack 214492 5334 Attack 213057 135009
Normal 30681 221239 Normal 8863 218031 Normal 10309 88345

LSTM-250 Actual KNN Actual CNN Actual

Classifier
Attack Normal

Classifier
Attack Normal

Classifier
Attack Normal

Attack 207091 5617 Attack 221243 5769 Attack 208511 9966
Normal 16277 217735 Normal 2300 217773 Normal 15032 213576

TABLE 4.6: Confusion matrices for each classifier.

MLP LSTM-50 LSTM-100 LSTM-250 KNN CNN
0.9212 0.9680 0.7457 0.9498 0.9821 0.9434

TABLE 4.7: F1-score for each classifier.

• DoS-Slowloris (Table 4.8 and Table 4.9)
For DoS Slowloris attacks, all instances have high scores that are near 1; nev-
ertheless, LSTM classifiers do less well than other classifiers, with LSTM-250
performing the worst.

MLP Actual LSTM-50 Actual LSTM-100 Actual

Classifier
Attack Normal

Classifier
Attack Normal

Classifier
Attack Normal

Attack 103875 340 Attack 92423 20992 Attack 92927 21082
Normal 812 104348 Normal 11891 83334 Normal 11390 83241

LSTM-250 Actual KNN Actual CNN Actual

Classifier
Attack Normal

Classifier
Attack Normal

Classifier
Attack Normal

Attack 92959 42006 Attack 103977 406 Attack 103927 331
Normal 11362 62313 Normal 710 104282 Normal 761 104356

TABLE 4.8: Confusion matrices for each classifier.

MLP LSTM-50 LSTM-100 LSTM-250 KNN CNN
0.9945 0.8490 0.8513 0.7770 0.9947 0.9948

TABLE 4.9: F1-score for each classifier.

• DoS-SlowHTTPTest (Table 4.10 and Table 4.11)
DoS SlowHTTPTest attacks are easily detected by all classifiers. Despite the
fact that LSTMs received slightly lower scores, all classifiers have similar accu-
racy.
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MLP Actual LSTM-50 Actual LSTM-100 Actual

Classifier
Attack Normal

Classifier
Attack Normal

Classifier
Attack Normal

Attack 210417 47 Attack 202544 0 Attack 208409 181
Normal 683 211053 Normal 8343 210873 Normal 2478 210692

LSTM-250 Actual KNN Actual CNN Actual

Classifier
Attack Normal

Classifier
Attack Normal

Classifier
Attack Normal

Attack 202739 0 Attack 210474 3 Attack 210434 3
Normal 8149 210872 Normal 626 211097 Normal 666 211097

TABLE 4.10: Confusion matrices for each classifier.

MLP LSTM-50 LSTM-100 LSTM-250 KNN CNN
0.9983 0.9798 0.9937 0.9803 0.9985 0.9984

TABLE 4.11: F1-score for each classifier.

• DoS-Hulk (Table 4.12 and Table 4.13)
Detecting the DoS Hulk attacks is not an easy task for all classifiers, especially
for the LSTM-50 classifier. Although the results are not impressive, these clas-
sifiers still manage to detect some attacks.

MLP Actual LSTM-50 Actual LSTM-100 Actual

Classifier
Attack Normal

Classifier
Attack Normal

Classifier
Attack Normal

Attack 287896 115 Attack 456604 400543 Attack 326995 19125
Normal 211924 500065 Normal 42787 99746 Normal 172774 480786

LSTM-250 Actual KNN Actual CNN Actual

Classifier
Attack Normal

Classifier
Attack Normal

Classifier
Attack Normal

Attack 352932 112292 Attack 354493 105628 Attack 288750 426
Normal 147080 387376 Normal 145962 393917 Normal 211602 499222

TABLE 4.12: Confusion matrices for each classifier.

MLP LSTM-50 LSTM-100 LSTM-250 KNN CNN
0.7309 0.6732 0.7731 0.7313 0.7381 0.7314

TABLE 4.13: F1-score for each classifier.

• DDoS-LOIC-HTTP (Table 4.14 and Table 4.15)
MLP produces a high F1-score for DDoS LOIC HTTP attacks, whereas other
classifiers are less competitive. LSTMs have the lowest scores among classi-
fiers.

MLP Actual LSTM-50 Actual LSTM-100 Actual

Classifier
Attack Normal

Classifier
Attack Normal

Classifier
Attack Normal

Attack 360232 1150 Attack 432556 204700 Attack 443068 300217
Normal 140054 498564 Normal 67546 294878 Normal 56602 199793

LSTM-250 Actual KNN Actual CNN Actual

Classifier
Attack Normal

Classifier
Attack Normal

Classifier
Attack Normal

Attack 414506 199542 Attack 404745 64547 Attack 366844 5945
Normal 85274 300358 Normal 95062 435646 Normal 133173 494038

TABLE 4.14: Confusion matrices for each classifier.

MLP LSTM-50 LSTM-100 LSTM-250 KNN CNN
0.9968 0.7606 0.7129 0.7443 0.8353 0.8406

TABLE 4.15: F1-score for each classifier.
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• DDOS-HOIC (Table 4.16 and Table 4.17)
Similarly, for DDoS HOIc attacks, MLP has a relatively high F1-score, whereas
other classifiers have similar scores.

MLP Actual LSTM-50 Actual LSTM-100 Actual

Classifier
Attack Normal

Classifier
Attack Normal

Classifier
Attack Normal

Attack 294767 9528 Attack 328087 100441 Attack 342524 21977
Normal 205367 490338 Normal 171242 399910 Normal 157666 477513

LSTM-250 Actual KNN Actual CNN Actual

Classifier
Attack Normal

Classifier
Attack Normal

Classifier
Attack Normal

Attack 371456 199809 Attack 388147 97060 Attack 319166 25677
Normal 128516 299899 Normal 111925 402868 Normal 180443 474714

TABLE 4.16: Confusion matrices for each classifier.

MLP LSTM-50 LSTM-100 LSTM-250 KNN CNN
0.9687 0.7072 0.7922 0.6935 0.7879 0.7559

TABLE 4.17: F1-score for each classifier.

• Brute Force-Web (Table 4.18 and Table 4.19)
All classifiers achieve high F1-scores for Web BruteForce attacks, but MLP is
superior to other classifiers. LSTMs scored marginally lower than other types.

MLP Actual LSTM-50 Actual LSTM-100 Actual

Classifier
Attack Normal

Classifier
Attack Normal

Classifier
Attack Normal

Attack 32474 123 Attack 31688 492 Attack 32207 836
Normal 1748 34100 Normal 2231 33429 Normal 1700 33097

LSTM-250 Actual KNN Actual CNN Actual

Classifier
Attack Normal

Classifier
Attack Normal

Classifier
Attack Normal

Attack 32033 561 Attack 33112 318 Attack 32594 103
Normal 1897 33349 Normal 1110 33905 Normal 1629 34119

TABLE 4.18: Confusion matrices for each classifier.

MLP LSTM-50 LSTM-100 LSTM-250 KNN CNN
0.9962 0.9588 0.9621 0.9631 0.9789 0.9741

TABLE 4.19: F1-score for each classifier.

• Brute Force-XSS (Table 4.20 and Table 4.21)
Similar to Web BruteForce attacks, all classifiers achieve high F1-scores for XSS
Brute Force attacks, with MLP outperforming the competition.

MLP Actual LSTM-50 Actual LSTM-100 Actual

Classifier
Attack Normal

Classifier
Attack Normal

Classifier
Attack Normal

Attack 32691 48 Attack 32001 530 Attack 32230 802
Normal 1312 33954 Normal 1613 33056 Normal 1373 32795

LSTM-250 Actual KNN Actual CNN Actual

Classifier
Attack Normal

Classifier
Attack Normal

Classifier
Attack Normal

Attack 32219 49 Attack 33310 201 Attack 32900 55
Normal 1350 33582 Normal 691 33803 Normal 1102 33948

TABLE 4.20: Confusion matrices for each classifier.
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MLP LSTM-50 LSTM-100 LSTM-250 KNN CNN
0.9985 0.9676 0.9674 0.9788 0.9868 0.9827

TABLE 4.21: F1-score for each classifier.

• SQL Injection
The SQL Injection attack has been skipped due to insufficient data.

• Infiltration
The Infiltration attack has been skipped owing to insufficient data.

• Botnet (Table 4.22 and Table 4.23)
The LSTM-50 classifier got a relatively high score for Botnet attacks followed
by the second place which is the LSTM-100 classifier.

MLP Actual LSTM-50 Actual LSTM-100 Actual

Classifier
Attack Normal

Classifier
Attack Normal

Classifier
Attack Normal

Attack 392692 88105 Attack 480199 16110 Attack 440010 23898
Normal 107351 411852 Normal 19320 484051 Normal 59247 476525

LSTM-250 Actual KNN Actual CNN Actual

Classifier
Attack Normal

Classifier
Attack Normal

Classifier
Attack Normal

Attack 413913 82479 Attack 439268 82892 Attack 323537 54563
Normal 86073 417215 Normal 42148 398522 Normal 48777 317748

TABLE 4.22: Confusion matrices for each classifier.

MLP LSTM-50 LSTM-100 LSTM-250 KNN CNN
0.8168 0.9644 0.9137 0.8308 0.8754 0.8623

TABLE 4.23: F1-score for each classifier.

Table 4.24 is the direct comparison of F1-scores gathered from the results above.

Attack Type MLP LSTM-50 LSTM-100 LSTM-250 KNN CNN
FTP-BruteForce 0.9990 0.9976 0.9984 0.9982 0.9991 0.9990
SSH-Bruteforce 0.9763 0.9764 0.9763 0.8907 0.9732 0.9764
DoS-GoldenEye 0.9212 0.9680 0.7457 0.9498 0.9821 0.9434
DoS-Slowloris 0.9945 0.8490 0.8513 0.7770 0.9947 0.9948
DoS-SlowHTTP 0.9983 0.9798 0.9937 0.9803 0.9985 0.9984
DoS-Hulk 0.7309 0.6732 0.7731 0.7313 0.7381 0.7314
DDoS-LOIC-HTTP 0.9968 0.7606 0.7129 0.7443 0.8353 0.8406
DDoS-HOIC 0.9687 0.7072 0.7922 0.6935 0.7879 0.7559
BruteForce-Web 0.9962 0.9588 0.9621 0.9631 0.9789 0.9741
BruteForce-XSS 0.9985 0.9676 0.9674 0.9788 0.9868 0.9827
Botnet 0.8168 0.9644 0.9137 0.8308 0.8754 0.8623

TABLE 4.24: The F1-scores for binary classification.

4.5.3 Multi-class Classification Results

Multi-class classification is performed for all categories, which is a more challenging
task, and the accuracy of the F-score for multi-class classification is measured. The
calculation of F-score for multi-class classification is similar to the calculation of the
binary-classification. The number of TP is retrieved from the diagonal line of the
confusion matrix, the number of FP is the sum of the rest of the row and the FN
is the sum of the rest of the column. The calculation of the F-score for multi-class
classification is shown below.
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Precisionc =
TPc

TPc + FPc
, (4.4)

Recallc =
TPc

TPc + FNc
(4.5)

and
F1 scorec = 2 × Precisionc ∗ Recallc

Precisionc + Recallc
, (4.6)

where c is the class. Confusion matrices for multi-class classification are shown in
Tables 4.25 - 4.30.

MLP
Normal FTP-BF SSH-BF DoS-GoldenEye DoS-Slowloris DoS-SlowHTTPTest DoS-Hulk DDoS-LOIC-HTTP DDOS-HOIC BF-Web BF-XSS SQL Injection Infiltration Botnet

Normal 1374320 8 0 1080 242 31 1001 231 411 165 19 0 195 1668
FTP-BF 21015 386626 16 0 0 0 0 10 0 0 6 0 0 0
SSH-BF 26512 0 570004 0 0 0 0 0 0 0 0 0 0 1

DoS-GoldenEye 32799 0 26 222420 0 0 238 0 0 0 0 0 0 0
DoS-Slowloris 3248 0 0 5 104370 0 41 0 0 0 0 0 3 0

DoS-SlowHTTPTest 43111 0 0 0 4 210947 0 0 0 0 0 0 0 0
DoS-Hulk 297411 0 0 24 0 0 700247 0 0 0 0 0 0 0

DDoS-LOIC-HTTP 221011 0 0 0 0 0 17 777736 0 0 0 0 0 0
DDoS-HOIC 308941 0 0 0 0 0 0 0 699064 0 0 0 0 0

BF-Web 2125 0 0 0 0 0 0 0 0 33954 0 0 0 1
BF-XSS 2352 52 78 0 0 0 24 0 0 18 33946 0 0 0

SQL Injection 3936 34 34 0 0 0 0 28 0 86 33 445 0 0
Infiltration 890174 0 0 12 73 122 213 0 12 0 0 0 4216 417

Botnet 361679 0 0 2 0 0 0 0 4 0 0 0 0 333826

TABLE 4.25: Confusion table for MLP multi-class classification.

LSTM-50
Normal FTP-BF SSH-BF DoS-GoldenEye DoS-Slowloris DoS-SlowHTTPTest DoS-Hulk DDoS-LOIC-HTTP DDOS-HOIC BF-Web BF-XSS SQL Injection Infiltration Botnet

Normal 674007 88 351 538 0 89 55 110 131 367 126 292 1643 3260
FTP-BF 0 0 0 0 0 0 0 0 0 0 1 0 0 0
SSH-BF 31172 0 569564 0 0 0 0 0 0 33677 26629 0 0 0

DoS-GoldenEye 34172 0 0 222848 0 0 93 76 0 22 0 14 0 0
DoS-Slowloris 651153 0 0 52 104672 72 0 1 0 26 0 6 2758 0

DoS-SlowHTTPTest 25097 386536 67 6 0 210894 0 31 0 49 507 71 8 0
DoS-Hulk 298106 0 0 41 0 0 701452 176 126 5 0 42 0 0

DDoS-LOIC-HTTP 220851 0 0 0 0 0 0 777403 0 0 0 0 0 6
DDoS-HOIC 299899 0 0 0 0 0 0 38 699043 0 0 0 0 48

BF-Web 329 0 0 0 0 0 0 0 0 69 6727 0 0 0
BF-XSS 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SQL Injection 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Infiltration 735 0 0 0 1 0 0 0 0 0 0 0 5 0

Botnet 357522 0 0 0 0 0 0 0 0 0 0 0 0 332525

TABLE 4.26: Confusion table for LSTM-50 multi-class classification.

LSTM-100
Normal FTP-BF SSH-BF DoS-GoldenEye DoS-Slowloris DoS-SlowHTTPTest DoS-Hulk DDoS-LOIC-HTTP DDOS-HOIC BF-Web BF-XSS SQL Injection Infiltration Botnet

Normal 960902 0 37 414 371 206 463 64 4 310 0 197 1785 1248
FTP-BF 143 0 2 0 0 120 0 0 0 0 3 0 0 0
SSH-BF 30620 0 569654 0 0 0 0 0 0 33701 33509 4 1 0

DoS-GoldenEye 35503 0 0 222642 0 0 1857 0 11 0 0 5 1 0
DoS-Slowloris 8594 0 20 22 104100 7 0 0 0 10 4 25 19 0

DoS-SlowHTTPTest 26222 386706 98 0 0 210665 0 101 0 75 487 140 24 0
DoS-Hulk 301426 0 0 322 0 0 699285 204 138 0 0 9 4 0

DDoS-LOIC-HTTP 416058 0 0 0 0 0 27 622367 558838 0 0 0 0 2
DDoS-HOIC 104840 0 0 0 0 0 41 155186 140383 0 0 0 0 0

BF-Web 1 0 0 0 0 0 0 0 0 0 0 0 0 0
BF-XSS 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SQL Injection 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Infiltration 315839 0 9 132 212 90 0 37 0 26 0 32 2578 0

Botnet 392347 0 201 0 0 0 0 0 0 99 0 0 1 334650

TABLE 4.27: Confusion table for LSTM-100 multi-class classification.

LSTM-250
Normal FTP-BF SSH-BF DoS-GoldenEye DoS-Slowloris DoS-SlowHTTPTest DoS-Hulk DDoS-LOIC-HTTP DDOS-HOIC BF-Web BF-XSS SQL Injection Infiltration Botnet

Normal 492931 77492 92 495 2671 146 571 216 33 94 190 76 956 212
FTP-BF 1815 0 0 0 0 18 0 0 0 8 2 12 4 0
SSH-BF 30024 0 569600 0 0 0 0 0 0 33620 33312 3 0 0

DoS-GoldenEye 48761 0 0 221809 15771 0 2591 4 7 1 0 0 102 108
DoS-Slowloris 11577 0 0 73 83169 0 220 0 0 0 0 0 69 79

DoS-SlowHTTPTest 28232 309075 11 146 70 210808 0 83 0 99 437 200 32 0
DoS-Hulk 430455 0 0 838 2351 17 697558 140 18 1 0 1 209 0

DDoS-LOIC-HTTP 210760 0 0 0 0 0 15 756088 21 0 0 0 0 1
DDoS-HOIC 310564 0 0 6 626 0 278 21200 699027 0 0 0 0 0

BF-Web 5 0 0 0 0 0 0 0 0 1 1 0 0 0
BF-XSS 8 0 1 0 0 0 0 0 0 4 2 0 0 0

SQL Injection 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Infiltration 58022 0 0 0 0 6 0 0 0 37 0 9 564 0

Botnet 965884 0 8 93 2 27 133 0 0 344 21 28 2476 335383

TABLE 4.28: Confusion table for LSTM-250 multi-class classification.
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KNN
Normal FTP-BF SSH-BF DoS-GoldenEye DoS-Slowloris DoS-SlowHTTPTest DoS-Hulk DDoS-LOIC-HTTP DDOS-HOIC BF-Web BF-XSS SQL Injection Infiltration Botnet

Normal 378355 1 445 1391 55 7 17015 11579 16785 38 25 25 372 17733
FTP-BF 94 50280 0 0 0 0 0 0 0 0 0 0 0 0
SSH-BF 3303 0 74150 0 0 0 0 0 0 0 0 0 0 0

DoS-GoldenEye 815 0 0 27847 0 0 5 0 0 0 0 0 0 0
DoS-Slowloris 122 0 0 0 13440 0 0 0 0 0 0 0 0 0

DoS-SlowHTTPTest 95 0 0 0 0 27332 0 0 0 0 0 0 0 0
DoS-Hulk 28209 0 0 0 0 0 75186 0 0 0 0 0 0 0

DDoS-LOIC-HTTP 20458 0 0 0 0 0 0 89361 0 0 0 0 0 0
DDoS-HOIC 21807 0 0 0 0 0 0 0 74191 0 0 0 0 0

BF -Web 210 0 3 0 0 0 0 0 0 4447 0 0 0 0
BF-XSS 112 0 0 0 0 0 0 0 0 0 4423 0 0 0

SQL Injection 18 0 0 0 0 0 0 0 0 0 0 21 0 0
Infiltration 49 0 0 0 0 0 0 0 0 0 0 0 161 0

Botnet 13614 0 0 0 0 0 0 0 0 0 0 0 0 26421

TABLE 4.29: Confusion table for KNN multi-class classification.

CNN
Normal FTP-BF SSH-BF DoS-GoldenEye DoS-Slowloris DoS-SlowHTTPTest DoS-Hulk DDoS-LOIC-HTTP DDOS-HOIC BF-Web BF-XSS SQL Injection Infiltration Botnet

Normal 1712106 0 38 101 47 11 111 197 188 3 6 0 216 1138
FTP-BF 20397 386719 3 0 0 0 0 0 0 0 0 0 0 0
SSH-BF 26334 0 570093 0 0 0 0 0 0 0 0 0 0 0

DoS-GoldenEye 34052 0 0 223442 0 0 694 0 0 0 0 0 0 0
DoS-Slowloris 3326 0 0 0 104568 0 11 0 0 0 0 0 0 0

DoS-SlowHTTPTest 54916 0 0 0 11 211089 0 0 0 0 0 0 0 0
DoS-Hulk 297756 0 0 0 0 0 700954 0 0 0 0 0 0 0

DDoS-LOIC-HTTP 220901 0 0 0 0 0 0 777771 0 0 0 0 0 0
DDoS-HOIC 306137 0 0 0 7 0 0 4 699262 0 0 0 3 0

BF-Web 2180 0 16 0 0 0 0 11 2 34220 0 0 0 0
BF-XSS 1684 0 0 0 0 0 0 0 0 0 33985 0 0 0

SQL Injection 2132 0 9 0 0 0 0 23 3 0 13 445 0 0
Infiltration 553680 0 0 0 56 0 11 0 0 0 0 0 4195 35

Botnet 353033 0 0 0 0 0 0 0 36 0 0 0 0 334739

TABLE 4.30: Confusion table for CNN multi-class classification.

Attack Type MLP LSTM-50 LSTM-100 LSTM-250 KNN CNN
Normal 0.5533 0.4117 0.5401 0.3115 0.8306 0.6457
FTP-BruteForce 0.9734 NaN NaN NaN 0.9991 0.9743
SSH-Bruteforce 0.9772 0.9254 0.9206 0.9215 0.9753 0.9774
DoS-GoldenEye 0.9287 0.9219 0.9209 0.9215 0.9618 0.9277
DoS-Slowloris 0.9830 0.2433 0.9573 0.8323 0.9935 0.9837
DoS-SlowHTTP 0.9070 0.5056 0.5042 0.5546 0.9981 0.8844
DoS-Hulk 0.8241 0.8245 0.8212 0.7611 0.7688 0.8244
DDoS-LOIC-HTTP 0.8755 0.8754 0.524 0.8668 0.8480 0.8755
DDOS-HOIC 0.8188 0.8232 0.2553 0.8078 0.8253 0.8203
BruteForce-Web 0.9659 0.0334 NaN 0 0.9679 0.9687
BruteForce-XSS 0.9634 NaN NaN 0 0.9847 0.9756
SQL-Injection 0.1765 NaN NaN NaN 0.4941 0.2908
Infiltration 0.0898 0.0417 0.142 0.0179 0.4334 0.0149
Botnet 0.6473 0.6465 0.6295 0.4089 0.6277 0.6540

TABLE 4.31: The F1-score for multi-class classifications.

According to Table 4.31, KNN and CNN produce favourable outcomes. The di-
vision by 0 results in the existence of NaNs in the table. When the number of TP is
equal to zero, both precision and recall will be equal to zero, and the F-score cannot
be calculated. BruteForce-Web attack detection with LSTM-250 yields an F-score of
0 because, despite the fact that the number of TP is not zero, the F-score is too low to
be displayed with four decimal places. Even if the results are randomly categorised,
the F-score will be higher, so the NaN and 0 F-scores may not make sense. However,
the classifier may not be able to differentiate the data from other categories, causing
the classifiers to incorrectly categorise all positive data into wrong categories, and
leave with 0 TP. For some types of attacks, LSTMs are unable to produce competi-
tive results. It is believed that the difficulty of LSTM training plays a role. Moreover,
it is worth noting that RNNs may not be necessary for the processed data, as the
data from the algorithm already encodes time-series information.

In addition, yielding a high accuracy is not always a good indication. DDoS-
LOIC and DDoS-HOIC are two different but similar DDoS attack setups. LOIC
stands for Low Orbit Ion Cannon, a network stress test tool developed by Prae-
tox Technologies. LOIC can be utilised by DDoS offenders to flood target systems
with bogus TCP, UDP, and HTTP GET requests. HIOC on the other hand, stands for
High Orbit Ion Cannon, which is a replacement of LOIC for DoS/DDoS attacks. It
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allows a single user to have larger concurrent requests and it obfuscates attacker IP
addresses. Let us consider Table 4.25 as an example. HOIC and LOIC attacks are
clearly identifiable by MLP although both of them are DDoS attacks under HTTP
protocol. The reason is that all connections are identical with the same tool and the
classifiers can identify the characteristics of the attacks easily. However, by modi-
fying the request; i.e., using HOIC instead of LOIC, the classifiers will not be able
to detect the attack completely. This illustrates the case of sub-optimal generality
for classification thus anomaly-based intrusion detection methods are required for
detecting the evolving attacks.

4.6 Anomaly-based Detection

Anomaly detection in data analysis typically refers to the discovery of uncommon
observations of patterns that differ considerably from the majority of the data and do
not adhere to a well-defined concept of normal behaviour. Anomaly detection is also
known as outlier detection or novelty detection. [85] introduced the applications of
anomaly detection in many areas such as intrusion detection, fraud detection and
industrial damage detection. The paper also introduced several machine learning
techniques used in anomaly detection.

The measurement is called the outlier factor or outlier score in the following con-
text. Higher outlier factors mean the data have a larger difference than the normal
data, in other words, the data is more likely to be an anomaly. The training dataset
has normal data only and the testing dataset contains a mixture of normal and attack
data.

4.6.1 Anomaly Detectors

• Multivariate Normal Distribution (MND)
Assuming the normal data are normally distributed variables and they are
used to build the MND and the probability distribution presents at a high di-
mension. The outlier factors are calculated as the inverse of probability densi-
ties of the testing data according to the distribution of normal data.

The data are flattened into multi-dimensional vectors for MND and all outlier
detectors below.

• Copula-Based Outlier Detection (COPOD)
COPOD is inspired by copulas for modelling the distribution of multivariate
data. Copula allows the joint distribution to be defined using only marginals,
which enables greater modelling flexibility for high-dimensional data. CO-
POD first generates an empirical copula and then utilises it to predict the tail
probability of each data point in order to identify its levels of outlierness. The
details of COPOD can be found in [86].

• Autoencoder
Autoencoders are a kind of unsupervised learning technology that uses neu-
ral networks to learn representations. A bottleneck in the network imposes a
compressed knowledge representation of the original input, according to the
neural network architecture. The neural networks have narrower layers be-
tween the input and output. This compression and subsequent reconstruction
would be very difficult if the input characteristics were all independent of one
another, and this property is important for anomaly detection.
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When training the autoencoder, the output data is exactly the same as the in-
put data, enabling the autoencoder to learn how to reconstruct the input data
during training. The autoencoder is trained with normal data only. Assuming
the normal data exhibit similar characteristics, the outputs will resemble the
input and have small errors compared to the input. In other words, a larger
error suggests that the data is more likely to be anomalous.

• Angle-Based Outlier Detection (ABOD)
Angle-based outlier detection (ABOD) combats the "curse of dimensionality"
by evaluating the broadness of a point’s angle spectrum as an outlier compo-
nent in addition to proximity-based measurements. For a given point within
a cluster, the angles between this point and other points vary considerably. At
the cluster’s border, the variance of the angles will diminish and the variance
will be smaller for outliers. The details of ABOD can be found in [87].

• Clustering-Based Local Outlier Factor (CBLOF)
The clustering-based local outlier factor (CBLOF) assumes that normal data
objects belong to big, dense clusters, whereas outliers belong to small, sparse
clusters or do not belong to any clusters. Approaches based on clustering iden-
tify outliers by determining the link between items and clusters. An item is an
outlier if it does not belong to any cluster, has a great distance from the cluster,
or is part of a small or sparse cluster [88].

• Histogram-Based Outlier Score (HBOS)
The histogram-based outlier score tends to improve the computation speed
by sacrificing some accuracy. HBOS assumes feature independence, making it
significantly faster than multivariate techniques [89].

• Isolation Forest (IForest)
Isolation Forest (IForest) finds anomalies by isolating them rather than by cap-
turing normal points [90]. Isolation forest is a novel technique that explic-
itly isolates anomalies using binary trees, demonstrating a new prospect for a
speedier anomaly detector that directly targets abnormalities without profil-
ing all normal instances. Using recursive random partitioning, it is anticipated
that anomalies are simpler to separate than normal data points. The metric of
outlierness is the number of steps required to isolate a data point.

• K-nearest Neighbors (KNN)
K-nearest Neighbors (KNN) has been used in supervised learning previously,
and it is also used in anomaly-based detection. Instead of measuring the dis-
tance between the given testing data with other labelled data points, the pre-
sented data point is only compared with the normal data. The distance to the
normal data will be the outlier factor.

• Local Outlier Factor (LOF)
Local Outlier Factor (LOF) is an unsupervised anomaly detection technique
that calculates the local density deviation of a particular data point relative to
its neighbours. Outliers are samples that have a significantly lower density
than their neighbours [91].

• Principal Component Analysis (PCA)
PCA is a dimensionality reduction approach that decreases the number of
dimensions in a dataset without losing a large amount of information. The
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FIGURE 4.6: Example figure for anomaly-based intrusion detection.

essence of PCA-based anomaly detection is that an anomalous sample should
have more reconstruction error than a normal sample. In other words, the
reconstruction error of an anomalous sample that is compressed and subse-
quently decompressed with PCA should be greater than when the same oper-
ation is done to a normal sample [92].

First, the performance of each anomaly detector is analysed based on the dis-
tribution of outlier factors. For each anomaly detector, the analyses are carried out
on each type of attack. In real-world applications, attacks are not labelled, so the
anomaly detector will not indicate the type of attacks. The reason for analysing each
attack separately is to understand the difficulty of detecting each attack. Figure 4.6
provides an example of how the analyses are performed.

Initially, the data are ranked based on the outlier score in descending order,
meaning that the data with the highest outlier score are expected to be ranked high-
est. Next, the top-ranked data are compared to their actual labels to verify if they are
indeed intrusions. On the chart, the blue curve represents the expected result that
should be observed with a perfect detector, whereas the green curve represents the
actual result. Both the blue and green curves are connected to the left y-axis. The
dots represent data points, which are distributed on the chart based on their outlier
factors; the red dots represent actual intrusions, while the grey dots represent nor-
mal data. The dots correspond to the right y-axis. Both curves and points share the
x-axis.

The x-axis represents the position of the data in the ranked output. For instance,
x = 0.4 implies that the data point is situated at roughly the 40% mark of the ranked
data. Consider a dataset {a, b, c} with outlier factors (20, 10, 30). Once ranked, the
sequence becomes ⟨c, a, b⟩, placing ’a’ at the 50% location on the x-axis. The left y-
axis yl represents the proportion of observed intrusions within the top x per cent of
ranked data. Figure 4.6’s data point ’A’ indicates that, for the top 40 per cent of data,
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approximately 60 per cent of intrusions are expected to be ranked at the top (blue
curve), whereas only about 55 per cent of actual intrusions have been observed to be
ranked at the top (green curve). Therefore, approximately 5 per cent of normal data
have been improperly ranked. In addition, the turning point of the blue curve indi-
cates that this dataset contains approximately 67% of intrusions, as the blue curve
represents the expected result and all intrusions are expected to be ranked at the
top. The turning point on both green and blue curves encompasses 100 per cent of
intrusions. The right y-axis yr represents the outlier factor for a specific data point
(dots). For instance, point ’B’ in Figure 4.6 is an anomaly (red dot) that occurs at a 20
per cent location of the ranked data and has an outlier factor of 20.

The chart may be somewhat challenging to interpret; however, to measure per-
formance, one can simply assess the proximity of the green curve to the blue curve.
This chart is favoured over the receiver operating characteristic (ROC) curve, as it
offers insights into the extent of intrusion in the dataset and its distribution after the
application of anomaly detectors. The ROC curve will be generated for performance
measurements in a subsequent context. Now, it is time to explore some examples
of performance for a range of attack types paired with various detector types. With
over 100 charts, showcasing them all is unfeasible; thus, a selection of representative
examples will be provided as illustrations.

4.6.2 Results

• FTP-BruteForce
Apart from COPOD, all detectors yield favourable and similar outcomes. As
evidenced in Figure 4.7’s KNN chart, the green and blue curves are in close
proximity to each other. In addition, red dots are ranked highest. Normal data
have been prioritised for COPOD, and the result is not encouraging.

FIGURE 4.7: KNN detector on the left and COPOD detector on the
right.

• SSH-Bruteforce
All anomaly detectors show the difficulty of detecting SSH-Bruteforce attacks.
All detectors yield identical results and random data ordering. IForest is slightly
better than others, as the green curve begins closer to the blue curve. Other
charts depict a random ranking, which causes the green curve to overlap the
diagonal line. Some results are shown in Figure 4.8.
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FIGURE 4.8: IForest detector on the left and AutoEncoder detector on
the right.

• DoS-GoldenEye
All detectors can distinguish a small number of normal data, but the remaining
data are harder to be identified. In other words, the last 3% (located at (x =
1, yl ≈ 0.97) on the charts) of the entire ranked data are normal data only. This
indicates that the detection system will produce a higher rate of false positives
for anomaly detection if the threshold is set to the beginning of the last 3% of
normal data. The threshold for HBOS will be approximately 660 in this case.
However, 660 is not necessarily the threshold for the best F-score. Some results
are shown in Figure 4.9.

FIGURE 4.9: HBOS detector on the left and COPOD detector on the
right.

• DoS-Slowloris
The only anomaly detector that performs poorly is the LOF detector. IForest
performs the best, followed by HBOS and MND which perform marginally
below par. PCA, KNN, COPOD, and CBLOF have comparable performance,
which, while not as good as HBOS and MND, is still quite good. ABOD per-
forms worse than PCA and other detectors with comparable performance, and
it clearly ranked approximately 5 per cent of normal data at the top. Some re-
sults are shown in Figure 4.10.
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FIGURE 4.10: IForest detector the first, PCA detector the second,
ABOD detector the third and LOF detector the fourth.

• DoS-SlowHTTPTest
DoS-SlowHTTPTest attack detection has a large performance margin for detec-
tors. ABOD, Autoencoder, CBLOF, KNN, LOF, and PCA produce results that
are close to ideal, whereas COPOD, HBOS, and IForest rank almost all normal
data at the top, which is inferior to the random ranking (Figure 4.11).

FIGURE 4.11: ABOD detector on the left and COPOD detector on the
right.

• DoS-Hulk, DDoS-LOIC-HTTP and DDOS-HOIC
DoS-Hulk, DDoS-LOIC-HTTP and DDOS-HOIC anomaly detection is the most
difficult task so far. All detectors failed to produce a promising result, and all
resulting charts are nearly identical. Results that are better than others are
shown in Figure 4.12.
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FIGURE 4.12: DDoS-LOIC-HTTP detection with ABOD on the left
and DDOS-HOIC detection with CBLOF on the right.

• BruteForce-Web and BruteForce-XSS
LOF is the most effective BruteForce-Web attack detector, though false nega-
tives are to be expected. KNN is inferior to LOF, and other detectors perform
poorly with normal data typically ranking highest. The results are similar to
BruteForce-XSS attacks. Some results are shown in Figure 4.13.

FIGURE 4.13: LOF detector on the left and COPOD detector on the
right.

• SQL Injection
Autoencoder, MND and PCA perform better than other detectors. All detec-
tors ranked a part of the intrusions to the top, except for IForest, COPOD and
HBOS, which perform poorly. Some results are shown in Figure 4.14.

FIGURE 4.14: Autoencoder detector on the left and IForest detector
on the right.
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• Infiltration
Infiltration attacks are the most difficult to detect compared to other types of
attacks. None of the detectors are able to potentially differentiate between at-
tacks and normal data, and some normal data have higher outlier factors than
the intrusions. In general, the green curves in all graphs are below the diago-
nal lines; therefore, none of the detectors performs better random data ranking.
Some results are shown in Figure 4.15.

FIGURE 4.15: COPOD detector on the left and CBLOF detector on the
right.

• Botnet
Autoencoder, PCA, and MND are the most effective detectors, whereas other
detectors are marginally less effective. COPOD has not produced a promising
outcome and is inferior to random selection. Some results are shown in Figure
4.16.

FIGURE 4.16: Autoencoder detector on the left and COPOD detector
on the right.

4.7 Comparison between CICFlowMeter and Ours

A comparison is made between the performance of binary-classification and anomaly
detection, using preprocessed data with the online process mining technique and the
CICFlowMeter. The binary-classification result is sourced from [14], where a CNN
serves as the classifier. To ensure a fair comparison, results produced by CNN will
also be assessed. The first two columns in Table 4.32 display the F-score of classifi-
cation with CNN. It should be noted that the results from Kim et al. exhibit lower
precision, with only two decimal places. Though some classes have high F-scores
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with the CICFlowMeter, sizeable margins exist between certain classes. In conclu-
sion, the technique achieves an average F-score of 0.91, while the CICFlowMeter
attains 0.82.

Attack Type Ours (CNN) CICFM (CNN) Ours (Mixed)
FTP-BruteForce 0.9990 0.98 0.9991
SSH-Bruteforce 0.9764 0.96 0.9764
DoS-GoldenEye 0.9434 0.47 0.9821
DoS-Slowloris 0.9948 0.66 0.9948
DoS-SlowHTTP 0.9984 1 0.9985
DoS-Hulk 0.7314 1 0.7731
DDoS-LOIC-HTTP 0.8406 1 0.9968
DDOS-HOIC 0.7559 1 0.9687
BruteForce-Web 0.9741 0.3 0.9962
BruteForce-XSS 0.9827 0.65 0.9985
Botnet 0.8623 1 0.9644

TABLE 4.32: Comparison between CICFlowMeter and our technique.

The last column compiles the best scores from various classifiers employing our
technique, resulting in an average F-score of 0.97, which is highly competitive. Now,
attention turns to the comparison for anomaly detection. The CICFlowMeter pro-
cesses PCAP files and generates statistical data, which is then filtered to retain only
TCP traffic. Moreover, only the following data columns are kept:

’Protocol’, ’Flow Duration’, ’Tot Fwd Pkts’, ’Tot Bwd Pkts’, ’TotLen Fwd Pkts’,
’TotLen Bwd Pkts’, ’Fwd Pkt Len Max’, ’Fwd Pkt Len Min’, ’Fwd Pkt Len Mean’,
’Fwd Pkt Len Std’, ’Bwd Pkt Len Max’, ’Bwd Pkt Len Min’, ’Bwd Pkt Len Mean’,
’Bwd Pkt Len Std’, ’Flow Byts/s’, ’Flow Pkts/s’, ’Flow IAT Mean’, ’Flow IAT Std’,
’Flow IAT Max’, ’Flow IAT Min’, ’Fwd IAT Tot’, ’Fwd IAT Mean’, ’Fwd IAT Std’,
’Fwd IAT Max’, ’Fwd IAT Min’, ’Bwd IAT Tot’, ’Bwd IAT Mean’, ’Bwd IAT Std’,
’Bwd IAT Max’, ’Bwd IAT Min’, ’Fwd PSH Flags’, ’Bwd PSH Flags’, ’Fwd URG
Flags’, ’Bwd URG Flags’, ’Fwd Header Len’, ’Bwd Header Len’, ’Fwd Pkts/s’, ’Bwd
Pkts/s’, ’Pkt Len Min’, ’Pkt Len Max’, ’Pkt Len Mean’, ’Pkt Len Std’, ’Pkt Len Var’,
’FIN Flag Cnt’, ’SYN Flag Cnt’, ’RST Flag Cnt’, ’PSH Flag Cnt’, ’ACK Flag Cnt’, ’URG
Flag Cnt’, ’CWE Flag Count’, ’ECE Flag Cnt’, ’Down/Up Ratio’, ’Pkt Size Avg’, ’Fwd
Seg Size Avg’, ’Bwd Seg Size Avg’, ’Fwd Byts/b Avg’, ’Fwd Pkts/b Avg’, ’Fwd Blk
Rate Avg’, ’Bwd Byts/b Avg’, ’Bwd Pkts/b Avg’, ’Bwd Blk Rate Avg’, ’Subflow Fwd
Pkts’, ’Subflow Fwd Byts’, ’Subflow Bwd Pkts’, ’Subflow Bwd Byts’, ’Init Fwd Win
Byts’, ’Init Bwd Win Byts’, ’Fwd Act Data Pkts’, ’Fwd Seg Size Min’, ’Active Mean’,
’Active Std’, ’Active Max’ and ’Active Min’

For information about the data columns, one can refer to the Intrusion detection
evaluation dataset (ISCXIDS2012) [26]. Data was labelled according to sockets and
normalised column-wise. The same anomaly detectors were employed for the pre-
processor on the data generated by the CICFlowMeter. Figure 4.17 illustrates the
comparison of the ROC for the performance of both techniques. Despite the chal-
lenges outlined in the previous section, the overall performance of the preprocessor
in anomaly detection surpasses that of the CICFlowMeter by a significant margin.
Performance issues concerning certain types of attacks do not necessarily suggest
the technique is ineffective; rather, they highlight the inherently difficult nature of
anomaly detection.

From Figure 4.17, it is evident that the best result for online process mining, 0.63,
is achieved by the Autoencoder and LOF. Conversely, the CICFlowMeter’s top re-
sult, 0.42, is produced by the LOF detector. Some detectors yield 0 AOC, which can
be attributed to the high dimensionality of the data and certain data points having
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FIGURE 4.17: The receiver operating characteristic (ROC) for
anomaly-based intrusion detection setup. The first chart shows the
performance of our preprocessor, whereas the second chart shows the

performance of CICFlowMeter.

excessively large or infinite outlier factors. Consequently, it becomes impossible to
identify a discrete space for thresholds. For instance, MND creates a particularly
steep and spike-like distribution where the density difference between the centre
and outer area is substantial. Moreover, the accuracy measurement of our technique
is based on the packet level. In other words, it is the measurement of how many
packets are classified as anomalies. A connection that is an intrusion will likely have
some of its packets classified as normal. Hence, if a connection is classified as an
intrusion when at least one of its packets is deemed an anomaly, the resulting score
could be higher.

4.8 Summary

This chapter recalls the third research question. The chapter discussed the limita-
tions of existing Network Intrusion Detection Systems (NIDS) and process mining
techniques in detecting network attacks. NIDS can be categorized into online and
offline approaches, with packet-level and flow-level NIDS being subcategories of
online NIDS. Researchers have explored methods such as encoding global flow in-
formation and using historical information to overcome these challenges. However,
process mining faces its own limitations when applied to online anomaly detection,
and the performance of some mining techniques is a concern.

The feature generator algorithm was discussed in detail with the pseudocode
provided. The chapter introduces new definitions for transitions and event classes
to better adapt to the network packet environment. The algorithm was then used
for two types of detection: signature-based detection and anomaly-based detection.
Performance was measured to show that the feature generator works as expected
across various machine-learning algorithms. Finally, the result has been compared
with CICFlowMeter, which is a widely used feature generator for network packet
data.
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Chapter 5

TFGen: A General Approach

5.1 Online Feature Generation on Concurrent Data Streams

The feature generation algorithm has been presented in Chapter 4. A more de-
tailed, accurate, and general version of the algorithm, applicable to various types
of streams, is provided here.

Given a sequence of events, P, a transition in P is defined as a pair of consecutive
events

(
pi, pj

)
within the same case. This transition is referred to as the precedence

relation, and P can be treated as the event log.
A trace consists of a series of event names, while a case is an executed instance of

a trace. A trace, for instance, can be a predefined procedure or process for producing
a specific type of medication. This medication can be manufactured multiple times,
resulting in numerous cases. The event log contains logs from the production of
various types of medications. In this thesis, the case is also called a flow.

For example, consider a series of events P = ⟨p1, p2, p3, p4, p5⟩ with two flows
t1 and t2, where flow t1 = ⟨p1, p3, p5⟩ and flow t2 = ⟨p2, p4⟩. There will be two
transitions for t1: (p1, p3) and (p3, p5); and one transition for t2: (p2, p4). Although
p1 and p2 are consecutive events, they are not considered a transition since they
belong to different flows.

An event class ec(p) is the name of an event p, typically a concatenated string
of non-numerical attribute data. In the context of network traffic, it represents the
enabled flags of packets and some indicators (Chapter 2). An event is the executed
instance of an event class.

The primary distinction between TFGen and traditional process mining lies in
the focus. Process mining concentrates on process model generation and analytical
methods like conformance checking on process models, whereas TFGen is designed
for online processing and feature generation for machine learning.

The TFGen implementation as a Python package can be found on Github1. This
implementation can process around 80,000 events per second using a single thread
of an Intel Core i5-12600K processor2. The package was developed to enhance the
extensibility of the current feature generation method, which is advantageous for
future research.

5.2 Documentation

5.2.1 Installation

Install TFGen package via PyPI.

1https://github.com/yinzheng-zhong/TFGen
2Using the provided NIDS dataset on Github
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pip i n s t a l l t fgen # normal i n s t a l l
pip i n s t a l l −−upgrade t fgen # u pd a t e t f g e n

5.2.2 How to Use

First, the observable event classes must be obtained, which can be achieved using the
method "get_observable_ec()". The generated features may vary if the event classes
or their order change, so it is recommended to save the observable event classes for
future use. The first parameter of the method should be a dataframe, list, or array
of attributes. This step can be skipped if the observable event classes are already
available. The datasets to be used for the subsequent code examples can be found in
release v0.2.13 on GitHub.

from t fgen . observe_event_c lasses import get_observable_ec

data_for_ec = pd . read_csv ( ’ t e s t _ d a t a _ f o r _ e c . csv ’ )

# F l a g s and S /C a r e t h e a t t r i b u t e s
ec = get_observable_ec ( data_ for_ec [ [ ’ F lags ’ , ’ S/C ’ ] ] )

At this point, the creation of the TFGen object can commence. The first parameter
is a list of observable event classes obtained in the previous step, while the second
parameter is the window size.

from t fgen import TFGen
t fgen = TFGen ( ec , window_size =500)

Now, the process of loading the event log data to create features is underway. Prior
to sending the data to TFGen, ensure that it is arranged in chronological order. Mark-
ing the end of each case with an EOT (End of Transmission) is necessary, and this
must be done for each attribute. Without EOT, the TET (Temporal Event Trace) will
continue to expand. This might resemble the following table (Table 5.1).

Case_ID Flags S/C
... ... ...
13 000.ACK.FIN. C
13 000.ACK. S
14 000.SYN. C
13 000.ACK.RST. S
13 EOT EOT
14 000.ACK.SYN. S
... ... ...

TABLE 5.1: Example of EOT in event logs.

d a t a _ f o r _ f e a t u r e = pd . read_csv ( ’ t e s t _ d a t a _ w i t h _ e o t . csv ’ )

Either the offline dataset or the dataset loaded in online streaming mode are op-
tions. The following is the procedure to load the dataset in offline mode:

t fgen . load_from_dataframe ( d a t a _ f o r _ f e a t u r e ,
c a s e _ i d _ c o l = ’ Case_ID ’ ,
a t t r i b u t e s _ c o l s =[ ’ F lags ’ , ’ S/C ’ ] )

output = t fgen . g e t _ o u t p u t _ l i s t ( ) # t h i s w i l l r e t u r n a l i s t o f d a t a .

3https://github.com/yinzheng-zhong/TFGen/releases/tag/v0.2.1
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Note that the output is a list (or other iterable) of tuples where each tuple contains
two variables (case_id, transition_table). The case_id comes from the last processed
event, and it can be used for labelling the data for supervised learning or validation.
"get_output_list()" can only be used in offline mode.

The following example uses the generator as input for online streaming mode.
# r e p l a c e t h i s g e n e r a t o r wi th t h e a c t u a l g e n e r a t o r
def r ep la ce _ wi th _ t he _ ac tu a l _ ge ne ra t or ( ) :

while True :
for rows in d a t a _ f o r _ f e a t u r e . values :

case_ id = rows [ 0 ]
e v e n t _ a t t r s = rows [ [ 2 , 3 ] ]

# e v e n t _ a t t r i s an i t e r a b l e wi th m u l t i p l e a t t r i b u t e s .
y i e l d case_id , e v e n t _ a t t r s

# Use t h e g e n e r a t o r a s an i n p u t f o r o n l i n e s t r e a m i n g .
t fgen . load_from_generator ( r ep la ce _ wi th _ t he _ ac tu a l _ ge ne ra t or )

# t h i s w i l l r e t u r n a g e n e r a t o r a s t h e ou tpu t .
out = t fgen . get_output_generator ( )

Only the input methods "load_from_dataframe()" or "load_from_generator()" can
be used with the output method "get_output_generator()".

The data can be entered one at a time into TFGen. Due to the fact that TFGen
requires several events to initialise, the output is not guaranteed. To use this method,
one should handle the InitialisingException exception.

from t fgen import I n i t i a l i s i n g E x c e p t i o n

d a t a _ f o r _ f e a t u r e _ a r r a y = d a t a _ f o r _ f e a t u r e . values
for sample in d a t a _ f o r _ f e a t u r e _ a r r a y :

case_ id = sample [ 0 ]
e v e n t _ a t t r s = sample [ [ 2 , 3 ] ]

# t f g e n . l o a d _ n e x t ( < your d a t a sample > ) .
# The sample i s a t u p l e o f ( c a s e _ i d , e v e n t _ a t t r s )
# and e v e n t _ a t t r s i s an i t e r a b l e wi th m u l t i p l e a t t r i b u t e s .
t fgen . load_next ( case_id , e v e n t _ a t t r s )
t r y :

print ( t fgen . get_output_next ( ) )
except I n i t i a l i s i n g E x c e p t i o n :

continue

The output method "get_output_next()" is compatible with all input methods.

5.2.3 Methods

Currently, the "Classic" and the "ClassicLargeSparse" methods for feature generation
are available. The "Classic" method is employed by default. The "ClassicLargeS-
parse" method can be used to output Scipy sparse matrices for event logs that con-
tain a larger number of event classes.

from t fgen import TFGen

t fgen = TFGen ( ec , window_size =500 , method=TFGen . Class icLargeSparse )

5.2.4 Implementing New Methods

By deriving from the "BaseMethod" located in "tfgen/methods/base method.py,"
one can extend the existing methods by creating new method classes. All classes
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must be placed under "tfgen/methods/" directory. The next event sample must
be obtained using method "self.get_next_data()," and the generated feature must
be sent to the output using method "self.send_data()". "self.finished" will become
"True" if the input stream reaches the end.

from t fgen . methods . base_method import BaseMethod

c l a s s NewMethod( BaseMethod ) :
def _ _ i n i t _ _ ( s e l f , ec_lookup_table , window_size ,

input_stream , output_stream ) :
super ( ) . _ _ i n i t _ _ ( ec_lookup_table , window_size ,

input_stream , output_stream )

# e n t r y
def s t a r t _ p r o c e s s i n g ( s e l f ) :

while True :
# e v e n t i s a t u p l e o f ( c a s e _ i d , e v e n t _ a t t r s )
event = s e l f . get_next_data ( )
# do someth ing
s e l f . send_data ( processed_data )
i f s e l f . f i n i s h e d :

break

Then include the new method in the "TFGen" class found in "tfgen/tfgen.py".
Two locations are required to be modified.

c l a s s TFGen :
METHOD_CLASSIC = 101
METHOD_CLASSIC_LARGE_SPARSE = 102
METHOD_NEW_METHOD = 103 # The f i r s t l o c a t i o n . New method c l a s s

def _select_method ( s e l f , method ) :
i f method == TFGen .METHOD_CLASSIC:

return C l a s s i c (
s e l f . ec_lookup , s e l f . window_size ,
s e l f . input_stream , s e l f . output_stream
)

e l i f method == TFGen . METHOD_CLASSIC_LARGE_SPARSE :
return Class icLargeSparse (

s e l f . ec_lookup , s e l f . window_size ,
s e l f . input_stream , s e l f . output_stream

)
# The s e c o n d l o c a t i o n . The i n s t a n c e t o t h e new method c l a s s
e l i f method == TFGen .METHOD_NEW_METHOD:

return NewMethod(
s e l f . ec_lookup , s e l f . window_size ,
s e l f . input_stream , s e l f . output_stream

)
e lse :

r a i s e Exception ( " Method not supported " )

5.3 Future Research

5.3.1 Applications

Our initial experiments show that TFGen is quite competitive and outperforms CI-
CFlowMeter at almost all comparable tasks. Further improvements obviously can
be done. Giving the generality and flexibility of the algorithm, it may be applicable
to the domain of transition-based problems or data that can be mapped to discrete
space. Here are some instances.
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• It is applicable to HIDS based on system calls or kernel operations [93]–[95].
The calls are provided as events, and each process will generate a distinct case.
With a larger-scaled environment, agents can be deployed on multiple systems
for concurrent data collection from a cluster of hosts; TFGen is ideally applica-
ble as long as cases can be modelled and the lengths of cases are finite.

• Computer vision and sensor-based security systems [96], [97] that detect and
monitor a series of activities for health and safety measurement. Instead of
using the current approaches, the series of classified activities can be modelled
as cases where each case can be produced by specific personnel. Each case
consists of events that have several attributes such as gesture, department and
gender. The benefit could be better overall performance, and the behaviours
of multiple personnel are encoded.

• Anomaly detection in the operation of critical infrastructures such as power
grid, water and wastewater systems, transportation systems [98], where TF-
Gen can be used in conjunction with numerical sensor readings to encode time-
series activity data. For example, sensor data such as the status of valves or the
pressure in water systems can be treated as attributes of events, which can then
be sent to a centralised processor for feature generation.

These applications are based on the hypothesis that TFGen supports all standard
event logs as long as processes can be converted to an event log, and the performance
and practicability of using TFGen in these areas can be open research questions for
future work.

5.3.2 TFGen Applied on HIDS

To demonstrate the generality of TFGen, a brief experiment is conducted to assess
the performance of HIDS using the dataset available at [99]. Two datasets are pro-
vided: one containing API calls captured by Cuckoo Sandbox, and another contain-
ing kernel calls captured from the custom kernel hook [100]. Cuckoo Sandbox is a
tool designed to analyse applications within an isolated environment.

Each dataset has a few sub-datasets that contain captures of different applica-
tions, and each sub-datasets contains several folders containing each process named
by IDs (e.g. 1, 2 and 3). Since the dataset does not contain a native event log,
event logs must be reconstructed using timestamps and function call attributes. All
method call attributes from all processes must be merged and sorted according to
their timestamps. The kernel set does not provide a global timestamp in each call,
therefore, this dataset is not ideal for constructing the event log. Each process folder
in the Cuckoo dataset contains a report JSON file which provides API call informa-
tion. The attributes "category", "status", and "api" were selected from the calls. Table
5.2 displays a portion of the event log.

The event log generated from the "Hippo" sub-dataset, containing only normal
processes, serves as training material. The first 200,000 cases are utilised for train-
ing, and more than 300 event classes are observed, a significantly higher number
than that in the NIDS dataset. A test is conducted using one million cases. Due to
dataset constraints, the event log merges 500,000 cases from the Hippo sub-dataset
and 500,000 cases from the Virus sub-dataset. A transition matrix exceeding a size
of 3002 is produced by 300 event classes, which is too large to process; considering
the testing dataset contains one million events, maintaining the dataset in memory
proves challenging. Even with online training, the dimensionality remains too high.
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case_id status api category
hippo_0 1 SetErrorMode system
hippo_0 1 LdrGetDllHandle system
hippo_0 0 LdrGetProcedureAddress system
hippo_0 1 GetSystemDirectoryW file
hippo_0 1 NtClose system
hippo_0 1 NtOpenKey registry

TABLE 5.2: A fraction of the event log.

It should be noted that when "api" serves as an attribute, "category" becomes redun-
dant, so only "status" and "api" are required only as attributes at this point.

Several methods are employed to reduce the dimension of the output. The first
approach generates transition matrices based on a limited number of the most occur-
ring (frequent) event classes. Any event class (infrequent) not observed or included
is categorised as the default event class "Other". Event classes falling within the
limited range are called visible event classes, while others are referred to as hidden
event classes. The second method applies incremental principal component analysis
(IPCA) [101] to the output data. IPCA often supersedes principal component anal-
ysis (PCA) when the dataset for decomposition is too large for memory storage. A
low-rank approximation of the input data is constructed by IPCA, using a memory
quantity independent of the number of input data samples. Modifying the batch
size allows for control over memory utilisation, which still depends on the input
data’s characteristics. In all instances, the IPCA batch size is set to 2000. The reason
for selecting a 2000 batch size is the same as the selection of hyper-parameters of the
machine learning models in Chapter 4. The third method combines the first two,
with all setups detailed below.

• t0_ipca1000: Not limiting the number of event classes and using IPCA with
1000 components.

• t0_ipca100: Not limiting the number of event classes and using IPCA with 100
components.

• t100_ipca0: Limiting the visible event classes to 100 without using IPCA.

• t50_ipca0: Limiting the visible event classes to 50 without using IPCA.

• t25_ipca0: Limiting the visible event classes to 25 without using IPCA.

• t10_ipca0: Limiting the visible event classes to 10 without using IPCA.

• t100_ipca1000: Limiting the visible event classes to 100 and using IPCA with
1000 components.

• t50_ipca100: Limiting the visible event classes to 50 and using IPCA with 100
components.

Before IPCA is applied, the matrices are first flattened, and the outputs are n-
dimensional vectors, where n is the number of components. When IPCA is not
applied, the outputs remain as matrices; for instance, the configuration t50_ipca0
generates 53 × 53 matrices (50 event classes and 3 default tokens, SOT, EOT and
Other). Autoencoder is utilised for configurations that employ IPCA, whereas con-
volutional autoencoder is utilised for configurations that do not employ IPCA. The
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convolutional autoencoder is designed for image processing which uses convolu-
tional layers instead of dense layers. In the case of t50_ipca0, the shape of the input
tensors will be 1 × 53 × 53 where 1 is the image channel number.

The autoencoder has 9 layers, except the first two layers which have a number
of neurons equal to the input dimension, each layer behind has half the amount of
neurons of the previous layer. The 5th layer is the middle layer and the following
decoder layers are symmetric to the first 4 layers. The convolutional autoencoder
has 7 layers, with 3 layers of convolutional layers, a max-pooling layer in the middle
and 3 transposed convolution operators as the decoder layers.

FIGURE 5.1: ROC-AUC of case-level detection. Top left: Using IPCA
only. Top right: Using limited event classes only. Bottom: using IPCA

and limited event classes combined.

The measurement is conducted at the case level, with the outlier factor of a case
determined by the event with the highest outlier factor. Figure 5.1 shows the ROC
and AUC (area under the curve) of all instances. The results for feature reduction us-
ing IPCA only (top-left chart) are not promising as the AUC is less than 0.5, however,
reducing dimension by limiting the number of event classes gives better results com-
pared to using IPCA (top-right chart). Also, setups t50_ipca0 and t25_ipca0 yield the
best results. While limiting the number of event classes has a clear performance im-
pact, adding extra IPCA reduction on top of limited event classes seems to worsen
the performance (bottom chart).

The processing speed and AUC of all instances are documented in Table 5.3. It
becomes evident that employing 25 and 50 visible event classes yields better results,
while the processing speed remains relatively optimal. Utilising a larger number of
visible event classes results in a decreased feature generation speed, which appears
to not maintain the O(1) complexity. This can be attributed to the memory copy
bottleneck of large matrices and other overheads in offline dataset generation, issues
that should not arise in online processing. Additionally, IPCA significantly slows
down processing without enhancing accuracy.
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Setting Best AUC Feature Gen. Speed (events/s) Inference Speed (events/s)
t0_ipca1000 0.43 26.29 67667.61
t0_ipca100 0.46 35.38 84521.45
t100_ipca0 0.60 34843.18 9481.63
t50_ipca0 0.69 37008.24 28341.88
t25_ipca0 0.70 74243.74 48003.98
t10_ipca0 0.61 80645.42 52056.80
t100_ipca1000 0.42 134.81 65358.06
t50_ipca100 0.48 331.80 84199.91

TABLE 5.3: Processing speed and performance comparison.

Table 5.3 documents the processing speed and AUC for each instance. It is not
difficult to see that using 25 and 50 visible event classes yields the best results and
processing speed. When using a greater number of visible event classes, the rate of
feature generation decreases, suggesting that the O(1) complexity is not maintained;
however, this is due to the memory copying of large matrices and other overheads
that occur during offline dataset generation, which should not occur during online
processing. In addition, IPCA significantly slows down processing without improv-
ing accuracy.

Further investigation into TFGen’s capabilities is conducted by removing the
"status" attribute and substituting it with API calls. This approach reduces the num-
ber of observable event classes to around 200. Figure 5.2 displays the results, which
resemble those obtained when using both API call names and status as attributes.
This may indicate that the significance of the status attribute in this experiment is
reduced. All setups are detailed below. As the processing speed is similar to that of
the previous set of setups, it will not be demonstrated again.

• api_t0_ipca1000: Not limiting the number of event classes and using IPCA
with 1000 components.

• api_t0_ipca100: Not limiting the number of event classes and using IPCA with
100 components.

• api_t100_ipca0: Limiting the visible event classes to 100 without using IPCA.

• api_t50_ipca0: Limiting the visible event classes to 50 without using IPCA.

• api_t25_ipca0: Limiting the visible event classes to 25 without using IPCA.

• api_t10_ipca0: Limiting the visible event classes to 10 without using IPCA.

• api_t100_ipca1000: Limiting the visible event classes to 100 and using IPCA
with 1000 components.

• api_t50_ipca100: Limiting the visible event classes to 50 and using IPCA with
100 components.

Besides using only API calls, another feature reduction method is employed, in-
volving a simple linear transformation on an all-one vector e = 1n, where n repre-
sents the number of event classes. Given the n × n transition matrix A, the feature
vector x = Ae is obtained. In certain instances, this method takes the place of IPCA,
with setups detailed below.
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FIGURE 5.2: ROC-AUC of detection performance when using API
call names only. Top left: Using IPCA only. Top right: Using lim-
ited event classes only. Bottom: using IPCA and limited event classes

combined.

• api_t0_lt: Not limiting the number of event classes and using linear transfor-
mation for feature reduction.

• api_t100_lt: Limiting the visible event classes to 100 and using linear transfor-
mation for feature reduction.

• api_t50_lt: Limiting the visible event classes to 50 and using linear transforma-
tion for feature reduction.

• api_t25_lt: Limiting the visible event classes to 25 and using linear transforma-
tion for feature reduction.

Compared to IPCA, this approach is considerably easier and quicker. In compar-
ison to less than 400 events/s when utilising IPCA with setup api_t50_ipca100, the
feature generation rate is over 34,000 events/s with setup api_t100_lt. The perfor-
mance is displayed in Figure 5.3 and Table 5.4. For settings that do not restrict the
event classes, limit visible event classes to 100, and limit visible event classes to 50,
there is a noticeable speed improvement.

Setting Best AUC Feature Gen. Speed (events/s) Inference Speed (events/s)
api_t0_lt 0.64 16344.79 84504.82
api_t100_lt 0.76 34940.01 78582.83
api_t50_lt 0.74 35205.75 83802.39
api_t25_lt 0.60 74669.47 82856.19

TABLE 5.4: Processing speed and performance comparison for linear
transformation method.
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FIGURE 5.3: ROC-AUC of detection performance when using API
call names only and reducing feature with the linear transformation.

In a concluding test, an experiment using category as the sole attribute was
conducted, offering a higher level of process abstraction. Thus, only sixteen event
classes are observed. Due to the reduced number of event classes, no additional di-
mension reduction is performed, and both autoencoder and convolutional autoen-
coder are employed. Figure 5.4 (left) depicts the experimental outcome. The result
is not promising and in this instance, the autoencoder produces slightly superior re-
sults to the convolutional autoencoder. This does not imply that autoencoders are
always superior to convolutional autoencoders. Based on two prior setups, Figure
5.4 (right) depicts a verification using an autoencoder rather than a convolutional
autoencoder. As can be seen, the autoencoder is not superior to the convolutional
autoencoder. Therefore, the selection between anomaly detectors may relate to the
problem itself.

FIGURE 5.4: Left: ROC-AUC of detection performance when using
category attribute only. Right: Using limited event classes only.

From the results of these HIDS experiments, it has been deduced that using fewer
visible event classes can produce superior outcomes in certain situations. The ratio-
nale could be that the frequent event classes in normal cases indicate normal be-
haviour, while the less significant hidden event classes are grouped as the default
event class. In such a scenario, the hidden event classes are consolidated, and their
importance is reduced.
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5.4 Known Issues

These are some disadvantages of TFGen, for instance, a smaller window size may
result in sparse matrices, necessitating an adjustment of the window size based on
the problem and anomaly detector. When event classes contain numerous attributes,
such as using the HIDS dataset, the output matrices may be of high dimension. Us-
ing dimension reduction techniques such as IPCA or a list of limited event classes is
possible; however, this may require extra computational resources.

Further examinations are necessary, including conducting intrusion detection us-
ing native host-level event logs with TFGen. As mentioned earlier, the event log
utilised is created from the Cuckoo log and does not incorporate function calls from
sub-processes. In other words, the constructed event log might not provide as com-
prehensive a global observation of events when compared to the native event log.

5.5 Summary

This chapter recalls the last research question. A generalised version of the online
process mining algorithm was provided to extend the algorithm to other areas that
can potentially transform their data into event logs. To help future research, a Python
implementation of this technique has been developed. This implementation is able
to efficiently convert standard event log data into transition matrices. For testing,
HIDS data was used, which shows the algorithm works as expected and a smaller
number of visible event classes leads to superior performance and higher efficiency.
A few examples of application areas using this feature generator were given.

At the point of this thesis, several datasets have been released by Canadian In-
stitute for Cybersecurity4. These datasets include new DDoS-specific datasets, IoT
(Internet of Things) datasets, host-level datasets and more. Future research can fo-
cus on newly released datasets and issues described in the previous section. For
instance, employing process mining techniques such as aggregation used in fuzzy
mining, to minimize the dimension; or other feature reduction strategies to address
the dimensionality problem. In addition, research can be extended to areas outside
the domain of intrusion detection, such as anomaly detection in critical infrastruc-
tures and security.

4https://www.unb.ca/cic/datasets/index.html
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Appendix A

Figures

A.1 Mined Models using ProM

FIGURE A.1: process model example.
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FIGURE A.2: first process model with 5 cases.
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FIGURE A.3: second process model with 5 cases.
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FIGURE A.4: first process model with 100 cases.
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FIGURE A.5: second process model with 100 cases.



A.1. Mined Models using ProM 119

FIGURE A.6: first process model with 20k cases.
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FIGURE A.7: second process model with 20k cases.
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FIGURE A.8: first process model with 100k cases.
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FIGURE A.9: second process model with 100k cases.
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FIGURE A.10: process model with all cases.
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A.2 Mined Models using Disco
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FIGURE A.17: second process model with 20k cases.
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FIGURE A.18: first process model with 50k cases.
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FIGURE A.19: second process model with 50k cases.
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A.3 State Diagrams
 
September 1981
                                           Transmission Control Protocol
                                                Functional Specification

                              +---------+ ---------\      active OPEN
                              |  CLOSED |            \    -----------
                              +---------+<---------\   \   create TCB
                                |     ^              \   \  snd SYN
                   passive OPEN |     |   CLOSE        \   \
                   ------------ |     | ----------       \   \
                    create TCB  |     | delete TCB         \   \
                                V     |                      \   \
                              +---------+            CLOSE    |    \
                              |  LISTEN |          ---------- |     |
                              +---------+          delete TCB |     |
                   rcv SYN      |     |     SEND              |     |
                  -----------   |     |    -------            |     V
 +---------+      snd SYN,ACK  /       \   snd SYN          +---------+
 |         |<-----------------           ------------------>|         |
 |   SYN   |                    rcv SYN                     |   SYN   |
 |   RCVD  |<-----------------------------------------------|   SENT  |
 |         |                    snd ACK                     |         |
 |         |------------------           -------------------|         |
 +---------+   rcv ACK of SYN  \       /  rcv SYN,ACK       +---------+
   |           --------------   |     |   -----------
   |                  x         |     |     snd ACK
   |                            V     V
   |  CLOSE                   +---------+
   | -------                  |  ESTAB  |
   | snd FIN                  +---------+
   |                   CLOSE    |     |    rcv FIN
   V                  -------   |     |    -------
 +---------+          snd FIN  /       \   snd ACK          +---------+
 |  FIN    |<-----------------           ------------------>|  CLOSE  |
 | WAIT-1  |------------------                              |   WAIT  |
 +---------+          rcv FIN  \                            +---------+
   | rcv ACK of FIN   -------   |                            CLOSE  |
   | --------------   snd ACK   |                           ------- |
   V        x                   V                           snd FIN V
 +---------+                  +---------+                   +---------+
 |FINWAIT-2|                  | CLOSING |                   | LAST-ACK|
 +---------+                  +---------+                   +---------+
   |                rcv ACK of FIN |                 rcv ACK of FIN |
   |  rcv FIN       -------------- |    Timeout=2MSL -------------- |
   |  -------              x       V    ------------        x       V
    \ snd ACK                 +---------+delete TCB         +---------+
     ------------------------>|TIME WAIT|------------------>| CLOSED  |
                              +---------+                   +---------+

                      TCP Connection State Diagram
                               Figure 6.

                                                               [Page 23]

FIGURE A.20: RFC TCP state transition diagram [51].
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FIGURE A.21: state diagram by Bishop et al. [71].
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