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Abstract

Chirality was traditionally considered a binary property of periodic lattices and crystals. However,

the classes of 2-dimensional lattices modulo rigid motion form a continuous space, which was

recently parametrized by three geographic-style coordinates. The four non-oblique Bravais classes

of 2-dimensional lattices form low-dimensional singular subspaces in the full continuous space.

Now the deviations of a lattice from its higher symmetry neighbours can be continuously quanti-

fied by real-valued distances satisfying metric axioms. This paper analyses these and newer G-chiral

distances for millions of 2-dimensional lattices that are extracted from publicly available databases

of 2-dimensional structures and real materials in the Cambridge Structural Database and others.
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1 Introduction: continuous metrics for 2D lattices

The term chirality has for most of its history been used as a binary property of molecular

structures. Two objects with the same chemical structure have one of two possible chiralities

if, considered as a set of atoms, one can be mapped to the other via a reflection, but not by any

rigid motion (a composition of translations and rotations). However, the connection between

the physical, chemical, and biological properties of materials and the extent to which their

structures deviate from mirror symmetry1 has seen a growing interest in the development of

materials where this deviation can be continuously measured and controlled2.

A quantification of chirality for finite molecules based on continuous atomic positions was

proposed by Osipov et al3,4 while Zabrodsky et al5,6,7 developed a computationally easier

approach by considering the molecule as a discrete atomic centres. The general idea is to

1



define, for a fixed crystallographic group G, a minimum distance from a given configuration

of atoms to a configuration that is symmetric under the action of G. An overall asymmetry

of a molecule was then defined as the minimum of these distances over all groups G.

The requirement for continuous distances between periodic crystals is motivated by the

growing number of simulated and experimental structures being published. The Cambridge

Structural Database (CSD) contains over 1.2 million known structures8, while Crystal Struc-

ture Prediction software can over-predict several million hypothetical crystals9. Recent con-

tinuous Pointwise Distance Distributions10 (stronger than the Pair Distribution Function)

detected unexpected duplicates11 in the CSD and predicted a new material by analogy12.

Almost all past work on the chirality of periodic crystals13 has studied discrete versions

of chirality based on symmetry groups, which are discontinuous under perturbations.

This paper completes in the non-trivial case of 2-dimensional lattices14 and uses geographical-

style mapping15 to define continuous chiral distances that are not based on discrete symmetry

groups of the lattice. A point in the Euclidean plane R2 is identified with a vector v = (x, y),

whose length is |v| =
√
x2 + y2 and starting point is at the origin of R2.

Definition 1.1 (lattice, rigid motion and isometry). For any basis of vectors v1, v2 ∈ R2, the

lattice Λ = {c1v1 + c2v2 ∈ R2 | c1, c2 ∈ Z} is the set of all integer combinations of the basis

vectors. Shifting Λ by a vector p ∈ R2 produces the lattice Λ + p, whose origin is shifted to

the point p. The composition of such a shift with a rotation is a rigid motion. If we compose

a rigid motion with a mirror reflection, we get an isometry, which is a map f : R2 → R2

maintaining distances: |f(p)− f(q)| = |p− q| for any points p, q ∈ R2. ■

Since crystal structures are determined in a rigid form, there is no practical sense in dis-

tinguishing lattices that differ by a rigid motion. However, structures related by a reflection

may or may not differ in their properties, and so this paper explores the differences between

the rigid motion and isometry cases. Lattices are therefore considered as subsets of R2, as

in Definition 1.1, so that reflections are geometrically distinct from rotations. Definition 2.1

will introduce a sign (binary chirality or orientation) of a lattice. Then we can study lattices

modulo isometry and still distinguish them modulo rigid motion by their sign. Problem 1.2

formalises the requirements for a metric on the space of lattices modulo either rigid motion
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or isometry (one may simply exchange one term for the other in the problem statement).

Problem 1.2 (continuous metric for lattices). Design a metric d satisfying the axioms:

(a) coincidence : d(Λ,Λ′) = 0 if and only if lattices Λ,Λ′ ⊂ R2 are related by rigid motion;

(b) symmetry : d(Λ,Λ′) = d(Λ′,Λ) for any lattices Λ,Λ′ ⊂ R2;

(c) triangle inequality : d(Λ,Λ′) + d(Λ′,Λ′′) ≥ d(Λ,Λ′′) for any lattices Λ,Λ′,Λ′′ ⊂ R2.

If lattices Λ,Λ′ are given by Selling16 or Delone17 reduced bases, d(Λ,Λ′) should be com-

putable in a constant time. The new requirement is the continuity under perturbations of the

lattice, for example, the Hölder continuity : there are constants C, α > 0 such that if basis

vectors of lattices Λ,Λ′ differ from each other by a small perturbation δ, then d(Λ,Λ′) ≤ Cδα.

The Bilbao Crystallographic Server computes the strain tensor to quantify the similarity

of periodic lattices. This tensor measures the degree of distortion required to transform

one unit cell into another18, but fails the triangle axiom in Problem 1.2(c). This axiom

is absolutely necessary to justify outputs of clustering19, see an easy counterexample in

appendix B.

The first axiom in Problem 1.2(a) already allows us to detect non-isometric lattices by

checking if d(Λ,Λ′) = 0. For hundreds of years, crystallography attempted this detection by

reducing a lattice basis to a canonical (or conventional) form. For example, Selling16 and

Delone17 proposed reductions to an obtuse superbase, as named by Conway and Sloane20.

Recall that the scalar product of any vectors u = (a, b), v = (x, y) ∈ R2 is u · v = ax+ by.

Definition 1.3 (obtuse superbase). For any basis v1, v2 of a lattice Λ ⊂ R2, define the extra

vector v0 = −v1 − v2. The unordered triple v0, v1, v2 is called an obtuse superbase20 if all

vi · vj ≤ 0 or, equivalently, all pariwise angles between v0, v1, v2 are at least 90◦ (non-acute).

The unordered triple v0, v1, v2 is called an obtuse superbase if all vi · vj ≤ 0 or, equivalently,

all pairwise angles between v0, v1, v2 are at least 90◦. A lattice is oblique if vi · vj < 0 and

|vi| ≠ |vj| for all i, j ∈ {0, 1, 2}, and otherwise non-oblique (mirror-symmetric). ■

Since a pseudo-symmetric classification21 of lattices is typically done to within some nu-

merical tolerance (that is, a lattice is assigned a particular symmetry group if its parameters

deviate by some defined small quantity from one with that symmetry group), we clarify that
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all inequalities in the above and any subsequent definitions are precise. We aim to map

equivalence classes of lattices up to rigid motion (or isometry) to a continuous metric space

- if we classify two lattices that differ by a small perturbation as equivalent then all lattices

collapse into the same equivalence class, since any lattice can be deformed to any other via

a series of arbitrarily small perturbations, represented by a continuous path in the space.

Any lattice Λ ⊂ R2 has a unique obtuse superbase up to isometry, but not up to rigid

motion14. The non-oblique lattice bases (2, 0), (0, 1) and (2, 0), (0,−1) generate the same

rectangular lattice but are related by mirror reflection with respect to the x-axis, not related

by rigid motion. In R3, an obtuse superbase is not unique even up to isometry22. So

Selling/Delone reductions cannot directly provide a metric satisfying the coincidence axiom

in Problem 1.2(a). Niggli’s reduced cell23 has a more complicated definition and is considered

unique in R3 but has been known since 1965 to be discontinuous under basis perturbations,

see page 80 in the comprehensive report of Lawton24 and the easier 2D case in Fig. 1.

In R3, Andrews and Bernstein used the Niggli and Selling/Delone reduction in numerous

attempts to define a metric between lattices by examples instead of proofs. The DC7 simi-

larity25 fails the first metric axiom - see Example 6.5 in the recent work by Kurlin22. The

4! = 24 permutations of 4 superbase vectors v0, v1, v2, v3 of a 3D lattice are insufficient to re-

late non-isometric Delone cells. For instance, v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1), v0 =

(−1,−1,−1) and v1, v2 together with v′3 = (−1, 0, 1), v′0 = (0,−1,−1) are obtuse super-

bases of the same cubic lattice with vector lengths (|v1|, |v2|, |v3|, |v0|) = (1, 1, 1,
√
3), while

(|v1|, |v2|, |v′3|, |v′0|) = (1, 1,
√
2,
√
2), so the superbases are not isometric. Problem 1.2 was

solved by Theorems 4.2, Corollary 4.6, and Theorem 7.4 in the mathematical paper14. The

3D analogue will be solved in our forthcoming work extending the Voronoi classification22.

For each of the crystallographic point groups G = D2, D4, D6, which are the symmetry

groups of non-oblique or mirror-symmetric lattices in Definition 1.3, section 6 in the past

work14 introduces the real-valued chiral distances RC[G] and PC[G] as shortest distances

from a lattice Λ ⊂ R2 to the subspace of higher-symmetry lattices that have the group G.

Section 2 describes the mathematical methods. Section 3 analyses histograms of values

for the G-chiral distances of millions of 2D lattices extracted from the Cambridge Structural

Database, demonstrating the computational simplicity of our approach. Section 4 visualises
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Figure 1: For the equivalence class of lattices considered up to rigid motion Λ(t) generated

by v1 = (1, 0), v2(t) = (t, 1) for t ∈ [0, 1], a reduced basis with fixed v1 (and v2 that belongs to

the yellow fundamental domain in the last image) such that −1
2
≤ v1 · v2 ≤ 0 and |v2| ≤ |v1|

discontinuously changes when the coordinate x(t) of v2 at t = 1
2
drops down from 1

2
to −1

2
.

Figure 2: Any 2D lattice has one of four crystallographic point groups: oblique or generic

(C2), primitive or centred rectangular (D2), square or tetragonal (D4), hexagonal (D6).

large databases of 2D materials on new continuous maps. Section 5 concludes with a dis-

cussion of future work. Two appendices to the paper contain a deeper analysis of lattices

from the CSD, illustrating effects that are visible using continuous G-chiral distances which

can be missed under a an approach based only on discrete symmetry groups, and the etra

mathematical details and proofs for statements made in the main body of the paper.

2 Methods: lattice invariants and G-chiral distances

This section first recalls the concepts from sections 3-6 of the mathematical companion

paper14 and then introduces new invariants and G-chiral metrics in Definitions 2.5-2.7.

To understand the distinction between isometry and rigid motion, we introduce the sign

5



of a 2D lattice, which will help to define continuous signed chiral distances later on.

Definition 2.1 (sign of a lattice). Any 2D lattice Λ has a (unique up to isometry) obtuse

superbase v0, v1, v2. If any of the vectors have equal lengths, then Λ is mirror-symmetric and

has sign(Λ) = 0. Otherwise v1, v2, v0 are uniquely ordered by their length and sign(Λ) ∈ {±1}

is defined as the sign of the determinant of the 2× 2 matrix whose columns are v1, v2.

The lattice Λ(1
4
) in the bottom left picture of Fig. 1 has the obtuse superbase v1 =

(1, 0), v2 = (−1
4
,−1), v0 = (−3

4
, 1) and sign det


1 −1

4

0 −1

 < 0. The mirror image Λ(3
4
) has

the obtuse superbase v1 = (1, 0), v2 = (−1
4
, 1), v0 = (−3

4
,−1) and sign det


1 −1

4

0 1

 > 0.

Definition 2.2 (root invariants RI(Λ) and RIo(Λ)). Any 2D lattice Λ has an obtuse superbase

v0, v1, v2. The root invariant RI(Λ) is the ordered triple of root products rij =
√−vi · vj for

distinct indices i, j ∈ {0, 1, 2}, where rij = rji. If any vectors have equal lengths, they can be

swapped without affecting RI(Λ). The oriented root invariant RIo(Λ) is obtained from RI(Λ)

by attaching sign(Λ) as a subscript, which can be skipped for brevity if sign(Λ) = 0.

Definition 1.3 guarantees that all scalar products vi · vj ≤ 0 are non-positive, so that all

root products rij =
√−vi · vj are well-defined. In Appendix B we prove that the ordering of

vector lengths |v1| ≤ |v2| ≤ |v0| guarantees the ordering r12 ≤ r01 ≤ r02 of root products.

RI(Λ) is an isometry invariant in the sense that any isometric lattices Λ ∼= Λ′ have

RI(Λ) = RI(Λ′). The unit cell area A(Λ) is an isometry invariant of Λ but is not complete in

the sense that many non-isometric lattices Λ ̸∼= Λ′ have A(Λ) = A(Λ′). Theorem 4.2 in pre-

vious work14 proves that RI(Λ) is a complete isometry invariant, hence uniquely determines

Λ up to isometry. Similarly, RIo(Λ) is a complete invariant of lattices under rigid motion.

The crucial advantage of the root invariant RI(Λ) is its continuity under perturbations of

a lattice basis. The discontinuity of reduced bases is caused by the identification of vertical

6



boundaries x = ±1
2
of the fundamental domain in the last picture of Fig. 1. The root

invariant RI(Λ) takes values in the cone TC = {0 ≤ r12 ≤ r01 ≤ r02}. The Bravais classes

of square and hexagonal lattices occupy the disjoint boundary lines r02 = r01 > 0 = r12 and

r02 = r01 = r12 > 0, respectively. The Bravais class of primitive rectangular lattices covers

the open triangular boundary r01 > 0 = r12. The Bravais class of centred rectangular lattices

is represented by two disjoint boundaries r02 = r01 ̸= r12 > 0. Oblique lattices occupy the

interior of the cone TC. The boundary line r01 = r12 = 0 is excluded in Fig. 3 (left), but

there are no identifications on other boundaries that can cause discontinuities14.

Figure 3: Left: all root invariants RI(Λ) live in the cone TC ⊂ R3, which projects to the

yellow triangle QT by uniform scaling of lattices Λ ⊂ R2. Middle: all projected invariants

PI(Λ) live in the triangle QT parametrised by x = r̄02 − r̄01 ∈ [0, 1) and y = 3r̄12 ∈ [0, 1].

Right: mirror reflections Λ± ⊂ R2 of any non-mirror-symmetric lattice can be represented

by a pair of poits (x, y) ↔ (1−y, 1−x) in the square QS symmetric in the diagonal x+y = 1.

The uniform scaling of a 2D lattice Λ by a factor s > 0 multiplies all root products rij by

s, which motivates the normalisation of RI(Λ) to a simpler invariant. The most geometrically

intuitive way to select a similarity class of lattices is to consider some hyperplane r12+ r01+

r02 = σ for σ ∈ R, intersecting the cone TC as shown in Fig. 3, allowing us to define both a

numerical invariant of lattices up to similarity and a quantification of size as follows.

Definition 2.3 (projected invariants PI(Λ) and PIo(Λ)). Dividing all root products of RI(Λ) =

(r12, r01, r12) by the size σ(Λ) = r12 + r01 + r02 gives the ordered triple 0 ≤ r̄12 ≤ r̄01 ≤ r̄02

such that r̄12+ r̄01+ r̄02 = 1. Define the projected invariant PI(Λ) = (x, y) with x = r̄02− r̄01

and y = 3r̄12 takes values in the triangle QT = {0 ≤ x < 1, 0 ≤ y ≤ 1, x+ y ≤ 1}. The ori-
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ented projected invariant PIo(Λ) can be defined by attaching sign(Λ) as a subscript to PI(Λ).

Equivalently, one can also map any point (x, y)− with a negative sign to (1 − y, 1 − x) so

that PIo(Λ) takes values in the square QS whose sides are identified as in Fig. 3 (right).

While the area of the unit cell of a lattice (that is, the absolute value of the determinant

of its basis) is a more typical scaling quantity of Λ, the size σ(Λ) has a number of advantages

in this context. The size σ(Λ) is easier to compute from the root invariant RI(Λ) as a sum

of root products, while the area is the square root of a degree 4 polynomial in Lemma 4.114.

Also, σ(Λ) retains the units of the original basis coordinates (typically Ångstroms) and is

an upper bound on basis vector lengths in the obtuse superbase, see Lemma 7.414.

Fig. 3 (middle) shows all 2D lattices up to isometry and uniform scaling on the triangle

QT whose interior is filled by oblique lattices. The boundary of QT represents the lower-

dimensional subspaces of non-oblique 2D lattices that are achiral (mirror-symmetric): the

horizontal edge of all primitive rectangular lattices (point group D2), the vertical and diag-

onal (open) edges of all centred rectangular lattices (D2), the right-angled vertex (0,0) of all

square lattices (D4) and the top vertex (0,1) of all hexagonal lattices (D6). The excluded

vertex (1, 0), which maps from the intersection of the plane r12 + r01 + r02 = 1 with the

excluded axis r01 = 0 in TC, represents the limit case when a minimal cell becomes infinitely

long and thin. Any pair of lattices Λ+,Λ− of opposite signs that map to each other via a

reflection are represented by a pair of points reflected in the diagonal y = 1− x.

If mirror images of a lattice Λ ⊂ R2 are considered non-equivalent, the resulting space

of 2D lattices modulo rigid motion and uniform scaling consists of two copies of the triangle

QT that are glued along their boundaries. This space can be visualised as the square QS

with identified edges in Fig. 3 (right) or a punctured sphere in Fig. 5 (middle).

The continuous spaces TC and QT allow many metrics to satisfy all axioms. The sim-

plest Euclidean metric between root invariants RI satisfies the version of Problem 1.2 for

isometry. The analytic formulae in Propositions 5.8-5.914 address the more complex case of

oriented invariants. Any such metric easily quantifies a deviation from symmetry as a con-

tinuous distance from a lattice to a closest higher symmetry neighbour, hence measuring the

minimum deformation required to move a given lattice into a more symmetric position. For
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any 2D point group G, we call the resulting real value the G-chiral distance, with further

qualification and distinct notation for different equivalences - rigid motion, isometry, and

their composition with uniform scaling. Any G-chiral distance can be multiplied by the sign

of a lattice, see Definition 2.1 to distinguish mirror images of 2D lattices.

Definition 2.4 (root and projected G-chiral distances RC2[G](Λ) and PC2[G](Λ)). For a

group G ∈ {D2, D4, D6} and a lattice Λ ⊂ R2, the root G-chiral distance RC2[G](Λ) is

the minimum Euclidean distance from RI(Λ) to the subspace of root invariants of all 2D

lattices with the group G. The projected G-chiral distance PC2[G](Λ) is similarly defined

via the projected invariant PI(Λ), see Fig. 4. Any root or projected G-chiral distance can be

multiplied by sign(Λ) to get the signed distances, which distinguish mirror images.

The subscript 2 in RC2,PC2 refer to the Euclidean metric on the invariant spaces, see

more general RCq,PCq with a parameter q ∈ [1,+∞] in Definition 6.114. The root chiral

distances RC2[G] have the same units as the original basis coordinates, usually Ångstroms.

The projected chiral distances PC2[G] are unitless for lattices modulo uniform scaling.

The D4-chiral distance RC2[D4](Λ) is the Euclidean distance from RI(Λ) in the triangular

cone TC to the boundary axis {r01 = r02 > 0 = r12}. The hexagonal lattice Λ6 with minimum

inter-point distance 1 has an obtuse superbase v1 = (1, 0), v2 = (−1
2
,
√
3
2
), v0 = (−1

2
,−

√
3
2
),

the root invariant RI(Λ6) = ( 1√
2
, 1√

2
, 1√

2
) and D4-chiral distance RC2[D4](Λ6) = 1√

2
to a

closest square lattice with RI = (0, 1√
2
, 1√

2
) and basis v1 = ( 1√

2
, 0), v2 = (0, 1√

2
).

Mapping lattices to the unit square creates a simple and intuitive visualisation of lattice

distributions. However, the resulting metrics are computationally awkward for lattices of

opposite signs, since they still rely on exhaustive analysis of reflections across boundary

subspaces. Identifying the sides of the square QS in Fig. 3 gives a punctured sphere, on

which geographic coordinates lead to a new distance. The boundary of QT is a closed

cycle of three edges and can be continuously mapped to the equatorial circle of the unit

sphere S2. There are many (indeed an infinite number of) ways to do this, so we map all

mirror-symmetric lattices to the most obvious circle of symmetry, namely the equator of S2.

The most geometrically intuitive way to complete a map QS → S2 is to send the incentre

P (centre of the inscribed circle) of QT to the north pole of S2. So the further away a lattice
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Figure 4: Visualisation of Definition 2.4. Left: RC2[D2](Λ) and PC2[D2](Λ) equal the

minimum of three Euclidean distances from the points RI(Λ) ∈ TC and PI(Λ) ∈ QT to the

boundary of the cone TC (along perpendiculars to the three boundary planes) and triangle

QT, respectively. Right: PC2[D4](Λ),PC2[D6](Λ) equal the Euclidean distances from PI(Λ)

to the vertices (0, 0), (0, 1) ∈ QT representing all square and hexagonal lattices, respectively.

is from any mirror-symmetric lattice on the boundary of QT, the higher its latitude on S2.

We map QT to the northern hemisphere of QT linearly along radial rays emanating from

P . The spherical map SM : QS → S2 symmetrically maps the second triangle of QS to the

southern hemisphere. Since the vertex (1, 0) is excluded from QS, the Greenwich meridian

is chosen as the image (under SM) of the green line through the incentre P and (1, 0), hence

intersecting the vertical edge of QT at the Greenwich point GP = (0,
√
2− 1).

Definition 2.5 (spherical projected invariant SPI). For any lattice Λ ⊂ R2, the latitude

φ(Λ) ∈ [−90◦, 90◦] is the angle measured from the equatorial plane EP (upwards in the

positive direction) to the vector from the centre of S2 to SM(PI(Λ)), see Figure 5. For a

fixed orientation of EP, the longitude µ(Λ) ∈ [−180◦, 180◦] is the anti-clockwise angle from

the Greenwich meridian to the vector from the centre of S2 to the orthogonal projection of

SM(PI(Λ)) to EP. The spherical projected invariant is SPI(Λ) = (µ(Λ), φ(Λ)) = SM(PI(Λ)).

Proposition 5.2 of our crystallographic paper15 gives analytic formulae for SPI(Λ). The

advantage of the spherical map over QS is that all lattices of positive and negative signs live

10



Figure 5: The incentre and boundary edges of the triangle QT on the left are mapped to the

centre and boundary circle of the disk in the middle and further mapped to the north pole

and equator of the unit sphere, whose southern hemisphere is obtained by a similar map of

the second triangle, which represents all lattices with negative signs, in Fig. 3 (right).

in a common sphere without any need for the additional gluing operation of Definition 2.3.

Hence chiral distances can be easily defined using known metrics on the sphere S2. The

haversine function hav(θ) = sin2 θ
2
defines the angular distance along a great circle26 on S2

as h((µ1, φ1), (µ2, φ2)) = 2 arcsin
√

hav(φ1 − φ2) + hav(µ1 − µ2) cosφ1 cosφ2 ∈ [0◦, 180◦].

Tables of haversine distances have been used26,27 since the 19th century for points on S2.

Since the sphere S2 in Definition 2.5 has radius 1, the haversine distance is in degrees.

Definition 2.6 (spherical projected chiral distances). For any lattice Λ ⊂ R2 and a group

G ∈ {D2, D4, D6}, the spherical projected G-chiral distance SPC[G](Λ) is the minimum

haversine distance from SPI(Λ) ∈ S2 to the subspace of lattices whose point group is G.

Finally, we introduce invariants modulo rigid motion without uniform scaling by taking

into account the size σ(Λ) = r12 + r01 + r02. The resulting chiral distances will be measured

in the units of the original basis coordinates (such as Ångstroms) instead of degrees.

Definition 2.7 (spherical root chiral distances). Let Λ be a lattice with root invariant

RI(Λ) = (r12, r01, r02). The spherical root invariant is SRI(Λ) = (µ, φ, σ), where SPI(Λ) =

(µ, φ) was introduced in Definition 2.5. Map the spherical coordinates (µ, φ, σ) to the stan-

dard Euclidean coordinates (x, y, z) = (σ cosφ cosµ, σ cosφ sinµ, σ sinφ). For any lattices

Λ1,Λ2 ⊂ R2, the spherical root metric SRM(Λ1,Λ2) is the Euclidean distance between the
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points (x, y, z) ∈ R3 obtained from SRI(Λ1), SRI(Λ2) as above. For a group G ∈ {D2, D4, D6}

and any lattice Λ ⊂ R2, the spherical root G-chiral distance SRC[G](Λ) is the minimum dis-

tance SRM(Λ,Λ′) for a lattice Λ′ that has σ(Λ′) = σ(Λ) and the crystallographic group G.

Proposition 2.8 (proved in appendix B). For a lattice Λ with SRI(Λ) = (µ, φ, σ), the

distances from Definitions 2.5 and 2.7 can be computed as follows: SPC[D2](Λ) = |φ|,

SPC[D4](Λ) = 2 arcsin
√

hav(φ− 67.5◦) + hav(µ) cosφ cos 67.5◦, where hav(θ) = sin2 θ
2
,

SPC[D6](Λ) = 2 arcsin
√
hav(φ+ 45◦) + hav(µ) cosφ cos 45◦, and SRC[D2](Λ) = 2σ| sin φ

2
|,

SRC[D4](Λ) = σ
√
(cosφ cosµ− cos 67.5◦)2 + (cosφ sinµ− sin 67.5◦)2 + sin2 φ,

SRC[D6](Λ) = σ
√
(cosφ cosµ− cos 67.5◦)2 + (cosφ sinµ+ sin 45◦)2 + sin2 φ.

All the above defined distances arise from the mapping illustrated in Figure 5, which is

chosen for its geometrically intuitive nature. An infinite number of other mappings exist,

and could be considered as a composition of our chosen mapping with some arbitrary homeo-

morphism acting on the punctured sphere. More suitable metrics may arise on such surfaces,

or alternatively, the distorting effect of the chosen homeomorphism could be computed.

3 Results: G-chiral distances for 2D lattices of crystals

This section illustrates the ease with which the chiral distances can be computed for very

large datasets by visualising histograms of G-chiral distances from section 2 for millions of 2D

lattices extracted from all 870+ thousand crystals in the Cambridge Structural Database8

(CSD), which have full lattice data. Any such crystal is deposited with a lattice basis of

vectors v1, v2, v3, which are ordered by length. We took three 2D lattices generated by three

pairs of basis vectors {v1, v2}, {v2, v3}, {v1, v3}. For consistency, we used the same indices

as in the CSD, though a re-ordering of vectors can change the sign of the extracted 2D

lattices, see Definition 2.1. This choice of basis ordering explains slight dissymmetries in

Fig. 6-17. All plots were produced on a standard laptop in a few minutes by the code at

https://github.com/MattB-242/Lattice_Invariance.

Since any non-oblique (mirror-symmetric) 2D lattice has all D2-chiral distance equal to

zero, we first focus on oblique (generic) lattices. Their total number is 1177678, which is
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Figure 6: Signed D2-chiral distances of all oblique 2D lattices found in the CSD, see Defini-

tion 2.4 Left: sign(Λ)RC2[D2](Λ) in Ångstroms. Right: sign(Λ)PC2[D2](Λ) is unitless.

about 45% of all 2D lattices found in the CSD. Fig. 6-8 show the histograms of the signed

distances sign(Λ)RC2[G](Λ) and sign(Λ)PC2[G](Λ) for the point groups G ∈ {D2, D4, D6}.

Fig. 6 quantifies the continuous tendency towards non-oblique lattices, which have RC2[D2] =

0 = PC2[D2]. The mathematical paper14 proves the continuity of all G-chiral distances un-

der perturbations of a lattice basis (Proposition 7.10) and the upper bound PC2[D2](Λ) ≤
1

2 +
√
2
≈ 0.29 (Proposition 6.6c), which is respected by the distances in Fig. 6 (right). Also

notable is a preponderance of lattices with positive sign. This is an artefact of our choice

of lattice extraction - given cells with lengths a, b, c and angles α, β, γ, we generate lattices

using the parameters (a, b, γ), (b, cα) and (a, c, β). The use of this convention interacts with

consistent ordering of lattice length entries in the CSD to give rise to the imbalance.

Though there is no theoretical upper bound on RC2[D2], it is notable that the vast

majority of lattices (99.9%) occupy a fairly narrow range of signed distances between ±8.

In Fig. 6-17, the histograms of all root G-chiral distances have the bin size 0.1Å, while

the histograms of all projected G-chiral distances have the bin size of 0.01 (unitless). There

are a number of structural points to note in Figures 7 and 8.

Figure 9 (centre) previously showed that if we plot the number of 2D lattices extracted

from the CSD in the QT, we observe a strong preference for higher symmetry structures

(on the boundary) and a concentration of lattices towards the point (0, 1) representing the
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hexagonal lattice, while the number decreases towards the point (1, 0) representing infinitely

long, thin cells15. Figure 9 (left) illustrates a geometric reason for this by showing how chiral

distances change for the centred rectangular lattice Λθ with basis vectors of length 1 as its

angle θ varies in [90◦, 120◦]. Close to 90◦, PC2[D4](Λθ) increases rapidly with a small change

in angle - the rate of increase slows as we move closer to θ = 120◦. The plot thus concentrates

lattices closer to the point (0, 1) representing the hexagonal lattice, explaining the apparent

rarity of lattices with low D4-chiral distances compared to the plot for PC2[D6].

Figure 7: Signed D4-chiral distances of 1,177,678 oblique 2D lattices in the CSD, see Defini-

tion 2.4 Left: sign(Λ)RC2[D4](Λ) in Ångstroms. Right: sign(Λ)PC2[D4](Λ) is unitless.

Figure 8: Signed D6-chiral distances of 1,177,678 oblique 2D lattices in the CSD, see Defini-

tion 2.4. Left: sign(Λ)RC2[D6](Λ) in Ångstroms. Right: sign(Λ)PC2[D6](Λ) is unitless.
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Figure 9: Left: values of PC2[D4] and PC2[D6] for a lattice with parameters a = 1, b = 1 and

angle θ ∈ [90◦, 120◦] Centre: heat map of all 2D lattices in the quotient triangle, extracted

from crystals in the CSD. Right: intersection of QT with red and green circles centred at

the origin (0, 0) and the vertex (0, 1), respectively, of the radii ri =
1
2
and ri ± ϵ for i = 1, 2.

To explain the peaks of PC2[D4](Λ) ≈ 1√
2
and PC2[D6] ≈ 1

2
, we observe the intersection of

circles at the origin and the points (0, 0) with the QT - see Figure 9 (right). We would expect

the frequency of a particular chiral distance value to be a function of both the length of the

intersection of the circle whose radius corresponds to that value and the density, in terms of

CSD-derived 2D lattices, of the region through which the circle passes. The intersection of

the circle at the origin of radius 1√
2
with the QT gives a curve of maximal length. Thus a

larger number of lattices in the plot in the centre will intersect with this curve.

The maximal length circle of radius 1 centred at the point (1, 0) would pass mostly

through a low-density area - as its radius decreases the density of lattices increases but the

length of the intersection decreases - an optimum is evidently reached at radius 1
2
.

Both peaks are strengthened due to the presence of a large number of experimental

determinations of Oxalic Acid (a standard test molecule) deposited in the CSD. The lattice

ΛOX derived from the single pair of non-orthogonal vectors in this primitive monoclinic

lattice has parameters a = 6.1143Å, b = 12.0109Å, γ = 106.1◦. Computation of chiral

distances does indeed give the expected values PC2[D4](ΛOX) ≈ 1√
2
and PC2[D6](ΛOX) ≈ 1

2
.
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4 Results: continuous maps of monolayer structures

A more chemically practical application of chiral distances is for 2D structures. This has

been an area of great interest in chemistry since such materials are predicted to have many

useful physical properties28. While the lattice parameters for 2D monolayers are very often

close to those of high symmetry lattices (square or hexagonal), there is a growing interest

in stable 2D structures with more generic lattice geometries 29. Our chiral distances allow a

more formal definition of this problem - we wish to find materials whose lattices have a high

chiral distance, and whose projected invariants will thus occupy the interior of the QT.

2DMatPedia 30 is one of the largest open-source databases of such materials available -

currently containing 6, 351 crystal structures that have the potential to form monolayers. Of

these, two were retrieved from existing literature, 2, 940 were found through a layer detection

approach (referred to as the ’top-down’ process), in which separable 2-dimensional features

were detected from geometric data 31. The remaining structures were then generated from

this list by the substitution of atoms in the same group - the ’bottom-up’ discovery process.

Potential physical properties of the 2D structures are simulated using DFT calculations.

A natural first question is whether the database can tell us anything about the feasibility

of synthesising 2D structures with oblique lattices. The database calculates two key proper-

ties which determine this potential - the decomposition energy, which is the energy required

to split a structure into its most stable components, and the exfoliation energy, which is the

average energy per atom required to separate the modelled layer from its parent material.

The former should be high, and the latter low, to guarantee stability - typically 0.2eV is

considered an acceptable upper bound for exfoliation energy in 2D structures32.

Figure 10 shows the positions of the oriented projected invariants PIo(Λ), see QS in Fig. 3,

for 2D lattices of all structures in 2DMatPedia. It is immediately clear that strongly oblique

2D lattices are relatively rare in this dataset. The majority of 2D lattices are non-oblique,

with very few occupying the interior of the square: 66% of lattices in the database have sign

0, and 75% have extremely small D2-chiral distances RC2[D2] less than 3× 10−8Å.

In Figures 11 and 12, we see the relationship between overall G-chiral distance (using

the RC2[D2] metric) and both indicators of the feasibility of potential 2D materials. The
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Figure 10: Invariants PIo(Λ) in the square QS for 2D lattices of 6,351 monolayer structures30

isolated from 3D crystals by layer detection or generated by atomic substitution.

most obvious thing to note is that the highest decomposition energies and lowest exfoliation

energies occur with materials whose layers are non-oblique. It is also notable that the range

of chiral distances overall is within [−3, 3] - very narrow compared to the full CSD analysis.

Strongly oblique lattices are not structurally preferred or strongly stable in candidate 2D

materials. It is also interesting to note that on the whole atomic substitution gives rise to
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Figure 11: Scatter plot of physical properties of materials discovered by layer detection in

2DMatPedia vs sign(Λ)RC[D2](Λ). Left: Decomposition energy in meV.Right: Exfoliation

energy in meV per atom.

Figure 12: Scatter plot of physical properties of materials discovered by atomic substitu-

tion in 2DMatPedia vs sign(Λ)RC[D2](Λ). Left: Decomposition energy in meV. Right:

Exfoliation energy in meV per atom.

structures with lower chiral distances - lying in the range [−2.1, 2.0] while structures found

by identifying layers geometrically lie in the wider range of [−2.5, 2.8].

In Figure 13 we try to isolate high G-chiral distance 2D structures that may feasibly be

synthesised by plotting both exfoliation and decomposition energy on the same 2D plot. The

right hand plot shows only those molecules with a D2-chiral distance above 1.5, with three
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Figure 13: 2D scatter plot of exfoliation vs.decomposition energy, withG-chiral distance indi-

cated by colour Left: All structures in 2DMatPedia. Right: Structures where RC2[D2] ≥ 1

structures labelled that have low exfoliation and relatively high decomposition energy.

Of these three monolayer structures, only one, antimony telluride (Sb2Te3) has been

reported in the literature. In its monolayer form, the structure of Sb2Te3 has been found

to exhibit reversible state changes which switch its electrical resistance from low to high

values33. There are no reports in the literature on any anisotropic properties it may possess

due to its highly oblique 2D lattice. The other two structures I5N and CBr3, which have

been generated by atomic substitution, were not reported in the literature.

While 2DMatPedia is the largest open database, the 2D materials database34 is smaller,

containing only 1728 structures, some of which overlap with 2DMatPedia. It is of interest

since of these structures, 183 were additionally ’relaxed’: further DFT computations simulate

the likely final 2D structures once isolated from the parent crystal. Our main analysis here

investigates the effect of such relaxation on resulting G-chiral distances.

Fig. 14 and 15 show the invariants PI(Λ) of 1726 original 2D lattices and 183 ‘relaxed’

structures in the square QS with coordinates (x, y) ∈ [0, 1], see Definition 2.3. The elemental

structures (monolayers of a single element) are highlighted in red, the MX2 structures35,

19



Figure 14: 2D lattices of 1726 monolayer structures34 isolated from 3D crystals and shown by

the invariants PI(Λ) in the square QS, see Definition 2.3 and labels of structures in Fig. 15.

where M is a metal and X is a halogen, are in green, and the transition metal dichalcogenide

monolayers36 (TMDC) are in blue. For illustration some of these have been labelled, although

since several structures occupy higher symmetry lattice points at the vertics we have not

labelled all of them. In Fig. 15, the green dot at the top left vertex (0, 1) of the square QS

indicates the hexagonal crystal of Nb3Br8, whose monolayer form was recently discovered
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to have the long-sought-after property of acting as a superconducting diode37.

Figure 15: 183 ‘relaxed’ by DFT 2D lattices from 1726 monolayer structures34 in Fig. 14.

Left: structures with oblique lattices and molecules of type MX2 are labelled in green.

Right: elemental crystals and molecules of type TMDC are labelled in red and blue.

The key observation in this analysis is that while candidate 2D structures in their parent

crystal can be both oblique and non-oblique, nearly all such structures simulated in isolation

become non-oblique. This suggests that candidate materials with even larger D2-chiral

distances such as those selected above from 2DMatpedia may, when isolated, revert to a

mirror-symmetric state. We have labelled the three chiral molecules that retain non-zero

D2-chiral distances with the formula of their parent structure. AgNO2 has in fact been

shown to form chiral monolayers37, but we are not aware of any publications specifically

concerning the other two structures.

5 Conclusions and discussion of novelty and future work

This paper visualises new G-chiral distances for millions of 2D lattices extracted from real

crystals in the Cambridge Structural Database, and for large databases of 2D monolayer

structures. The key novelty is the continuity of these distances, which was proved under
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any perturbations of lattice bases14. The resulting histograms and maps with meaningful

coordinates in Ångstroms (or unitless under uniform scaling) reveal for the first time how 2D

lattices in real crystals and monolayer structures populate the underlying continuous space

of all possible 2D lattices. Though a strong preference for higher symmetry was expected,

the maps in Fig. 14 and 15 also include many oblique 2D lattices. These continuous maps

offer the opportunity to seek new materials based on the novelty of their structure - that

is, to discover materials with potentially new properties by targeting a search specifically in

regions where existing structures are sparse.

Even the high-level definitions and statements in section 2 demonstrate that the 2D case

is far from trivial and should be fully understood before attacking the 3D case. Problem 1.2

makes sense for any dimension n > 1, see recent progress22,38 for n = 3. Illustrating the

impact of the distinction between isometry and rigid motion on the resulting geometric

analysis is particularly important since there can be important functional differences between

3D structures which are mirror images of each other.

Previous work15 concluded with a vision for a new branch of continuous crystallography

that studies all periodic structures within a common continuous space. For general periodic

crystals, this Crystal Isometry Space is parametrised by complete isometry invariants that

are descriptors without false negatives and without false positives, hence playing the role of

a DNA-style code or a materials genome to unambiguously identify any periodic structure.

We now have a hierarchy of continuous isometry invariants from simple and ultra-

fast10,11,39 to slower but provably complete invariants40,41,42. Inverse design aims to make

complete invariants invertible, so that the space of all materials can be explored by trying

new invariant values, which all give rise to 3D periodic structures - having found areas with

low density (and thus high novelty) the proposed structure can be reconstructed directly

from its invariant. The ultimate goal is then to describe a much smaller subspace of invari-

ants whose crystals can be physically synthesised. By showing that chiral distances take

a relatively narrow range of values for the space of real crystals and that certain values

are more likely for structures with different chemical properties, the analysis of 2D lattices

discussed in this paper represents a step towards the inverse design of materials.
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A Further analysis of chiral distances in the CSD

To further illustrate the behaviour of our proposed chiral distance, we present below some ad-

ditional analysis for 2D lattices extracted from the CSD in the manner described in section 3.

Figure 16: Histogram of signed spherical D2-chiral distances of 2D lattices from all crystals

in the CSD. Left: SRC[D2](Λ) is in Ångstroms Å. Right: SPC[D2](Λ) is in degrees.
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Figure 16 shows the spherical D2-chiral distance on the complete dataset, exhibiting sim-

ilar behaviour to the planar version. Any non-oblique lattice is either rectangular (primitive

or centred) or has even higher symmetry (square or hexagonal).

Fig. 17 shows the histograms of root distances from rectangular 2D lattices in the CSD

to their closest square and hexagonal lattices. The high bar to about 6000 lattices in

Fig. 17 (right) indicates that the CSD has many centred rectangular lattices close to hexag-

onal ones and many fewer rectangular lattices close to square ones.

Figure 17: Distances (in Ångstroms) of rectangular (primitive and centred) 2D lattices.

Left: RC2[D4](Λ) to a closest square lattice. Right: RC2[D6](Λ) to a closest hexagonal

lattice.

We can investigate the relationship between continuous chiral distances and chemical

characteristics such as molecular weight by isolating the root and projected invariants of

2D lattices derived from the 50, 000 crystals whose constituent molecules had the highest

molecular weight, and the 50, 000 of lowest molecular weight.

A preliminary analysis of lattice parameters shows that among the non-oblique lattices

(D2-chiral distance 0) in this sample those with the lowest molecular weight form a higher

proportion (57%) of the achiral molecules. By this discrete analysis, we might say that

crystals of lower-weight molecules tend to form a more symmetric lattice.

Continuous analysis reveals a more nuanced picture. Fig. 18 compares the histograms

of chiral distances for oblique 2D lattices extracted from crystals in the CSD whose main
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Figure 18: Histograms of RC2[D2] (left) and PC2[D2] (right) for oblique lattices in crystals

whose molecular weight is among the the 50, 000 highest and lowest in the CSD.

molecules have extreme (low or high) weight. The overall distribution of chiral distances

for higher molecular weight molecules is slightly wider, indicating that higher molecular

weight crystals tend to form lattices with more extreme chiral distances. There is a stronger

preference towards negative sign for high-weight molecules which is more clearly visible when

comparing values of RC2[D2].

Organometallic crystals have unit cells containing an organic molecule non-covalently

bonded to one or more metal ions. Their importance as new materials is illustrated by the

fact that nearly half (∼ 52%) of the deposited structures in the CSD which form oblique

lattices are organometallic. They are often a target for materials design by crystal structure

prediction experiments, and so there is a drive for methods that can help to categorise the

outputs of such experiments43.

In Fig. 19, it appears that organometallic lattices have a stronger tendency to form

crystals whose derived 2D lattices have negative signs, and from the histogram of RC2[D2]

values we observe a wider distribution of distances overall. Since we cannot assume a normal

distribution, but our distributions are sampled from a variable known to be continuous, we

apply the non-parametric tests such as Kruskal-Wallace44 to determine if these distributions

are significantly different - and indeed we find a p-value much less than 0.001 in this case.

These differences are relatively small, but they illustrate the sort of analysis that can be
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Figure 19: Histograms of spherical D2-chiral distances of 2D lattices in the CSD, separated

into organometallic and non-organometallic structures. Left: SRC[D2]. Right: SPC[D2].

done quickly to investigate possible differences between very large crystal datasets

B Extra Mathematical Details and Proofs

The strain tensor fails the triangle inequality. Section 1 mentioned the strain tensor,

which measures the difference between crystal structures in the same space group and can

be computed at the Bilbao Crystallographic Server. The simple example below shows that

the lattice distortion obtained from this tensor is not a true metric since it fails the triangle

inequality. Let dS(X, Y ) denote the lattice distortion between lattices X, Y . Let

A = [1, 1, 1, 90◦, 90◦, 90◦], B = [2, 2, 2, 90◦, 90◦, 90◦], C = [3, 3, 3, 90◦, 90◦, 90◦]

be the length and angle parameters of three cubic lattices. The online calculation at https:

//cryst.ehu.es/cryst/strain.html show that

d(A,B) = 0.86603, d(B,C) = 0.36084, d(A,C) = 2.30940

which violates the triangle axiom since d(A,B) + d(B,C) = 1.22687 < d(A,C) = 2.30940.

Ordering of Root Products. Definition 1.3 stated that for an obtuse superbase the vector

length ordering induces an ordering r12 ≤ r01 ≤ r02 of the root products. This fact is evident

from the detailed mathematical development of the invariant14, but since it is central to the
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quantification of G-chiral distances we provide here a short proof based on the relationship

between root products and lattice vector norms. First, we compute

r202 = −v0 · v2 = −v0 · v2 = (v1 + v2) · v2 = |v2|2 − r212,

and similarly r201 = −v0 · v1 = (v1 + v2) · v1 = |v1|2 − r212. Taking the difference,

r202 − r201 = |v2|2 − |v1|2 > 0 and thus r01 ≤ r02. We can also express

r201 = −v0 · v1 = v0 · (v0 + v2) = |v0|2 − r202,

r12 = −v1 · v2 = (v0 + v2) · v2 = |v2|2 − r202.

Again, taking the difference r01 − r12 = |v0|2 − |v2|2 > 0 and thus r12 ≤ r01.

Proof of Proposition 2.8: For a plane crystallographic group G ∈ {D2, D4, D6}, Proposi-

tion 2.8 expresses the root spherical chiral G-distance SRC[G](Λ) and the projected spherical

chiral G-distance SPC[G](Λ) of any 2D lattice Λ ⊂ R2 in terms of its spherical root invariant

SRI(Λ) = (µ, φ, σ).

Case of SPC[D2]. Any lattice that has the crystallographic group D2 is mirror-symmetric

(primitive or centred rectangular). Hence its spherical projected invariant SPI = (µ, 0) lies

on the equator of S2 for some longitude µ ∈ (−180◦, 180]. By Definition 2.6, for any other

lattice Λ with SPI = (µ, φ), the spherical projected D2-chiral distance SPC[D2](Λ) equals

the haversine distance from (µ, φ) to the equator (minimal along the meridional arc where µ

is constant): SPC[D2](Λ) = h((µ, φ), (µ, 0)) = 2 arcsin
√
hav(φ) = 2 arcsin

√
sin2 φ

2
= |φ|.

Cases of SPC[D4] and SPC[D6]. By Definition 2.5 all square and hexagonal lattices are

represented by the spherical projected invariants (µ, φ) = (67.5◦, 0) and (µ, φ) = (−45◦, 0),

respectively, see Fig. 5. By Definition 2.6 the spherical projected chiral distances are

SPC[D4] = h((µ, φ), (67.5◦, 0◦)) and SPC[D6] = h((µ, φ), (−45◦, 0◦)), where the haversine

distance h below gives the required formulae in terms of SPI(Λ) = (µ, φ) in Proposition 2.8:

h((µ1, φ1), (µ2, φ2)) = 2 arcsin
√

hav(φ1 − φ2) + hav(µ1 − µ2) cosφ1 cosφ2, hav(θ) = sin2 θ

2
.

For any 2D lattice Λ with a spherical root invariant SRI(Λ) = (µ, φ, σ), Definition 2.7

gives the Euclidean coordinates (x, y, z) = σ(cosφ cosµ, cosφ sinµ, sinφ) ∈ R3 used below.
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Case of SRC[D2]. In the spherical coordinates (µ, φ, σ), the subspace of all mirror-symmetric

lattices, which have the crystallographic group D2, is the equatorial plane φ = 0 or the hor-

izontal plane z = 0 in the Euclidean coordinates (x, y, z) = σ(cosφ cosµ, cosφ sinµ, sinφ).

By Definition 2.7 for any 2D lattice Λ, the root spherical distance SRC[D2](Λ) to a closest

mirror-symmetric lattice of the same size σ has the minimum Euclidean distance from the

fixed point (x, y, z) to the equatorial circle σ(cosµ′, sinµ′, 0) whose radius σ is fixed, but the

longitude µ′ is variable. Ignoring the fixed third coordinates and factor σ2, we minimise the

squared distance s(µ′) = (cosφ cosµ− cosµ′)2 + (cosφ sinµ− sinµ′)2 by differentiation:

ds

dµ′ = 2 sinµ′(cosφ cosµ− cosµ′)− 2 cosµ′(cosφ sinµ− sinµ′),

= 2 cosφ(cosµ sinµ′ − sinµ cosµ′) = 2 cosφ sin(µ′ − µ)

d2s

dµ′2 = 2 cosφ cos(µ′ − µ).

If
ds

dµ′ = 0 for µ ∈ [−180◦, 180◦] then either cosφ = 0 or sin(µ′ − µ) = 0, which implies that

µ′ − µ = 180◦n for n ∈ {−1, 0, 1}. If cosϕ = 0, then ϕ = ±90◦ and s = cos2 µ′ + sin2 µ′ = 1

independent of µ, while sinφ = 1 giving SRC2[D2](Λ) =
√
2σ.

If µ′ − µ = 180n and n = ±1 then d2s
dµ′2 = cos(±180) = −1 and s has a maximum. In

the remaining case d2s
dµ′2 = cos(±0) = 1 and, substituting µ′ for µ we find that s achieves

a minimum at s = cos2 µ(cosφ − 1)2 + sin2 µ(cosφ − 1)2 = (1 − cosφ)2, so SRC[D2](Λ) =

σ
√

(1− cosφ)2 + sin2 φ = σ
√
2− 2 cosφ = σ

√
4 sin2 φ

2
= 2σ| sin φ

2
|.

Case of SRC[D4]. In the spherical coordinates (µ, φ, σ), the subspace of square lattices is

defined by φ = 0, µ = 67.5◦, see Fig. 5. The spherical root D4-chiral distance SRC[D4](Λ)

equals the Euclidean distance from (x, y, z) = σ(cosφ cosµ, cosφ sinµ, sinφ) to the point

SRI(Λ4) = σ(cos 67.5◦, sin 67.5◦, 0), which represents the only square lattice Λ4 of the same

size σ, so SRC[D4](Λ) = σ
√

(cosφ cosµ− cos 67.5◦)2 + (cosφ sinµ− sin 67.5◦)2 + sin2 φ.

Case of SRC[D6]. In the spherical coordinates, the subspace of hexagonal lattices is defined

by φ = 0, µ = −45◦, see Fig. 5. The spherical root D6-chiral distance SRC[D6](Λ) equals the

Euclidean distance from (x, y, z) = σ(cosφ cosµ, cosφ sinµ, sinφ) to the point SRI(Λ6) =

σ(cos 45◦,− sin 45◦, 0), which represents the only hexagonal lattice Λ6 of the same size σ, so

SRC[D6](Λ) = σ
√

(cosφ cosµ− cos 45◦)2 + (cosφ sinµ+ sin 45◦)2 + sin2 φ. □
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List of Figure Captions

Figure 1. For the lattices Λ(t) generated by v1 = (1, 0), (t, 1) for t ∈ [0, 1], a reduced basis

with fixed v1 (and v2 that belongs to the yellow fundamental domain in the last image)

discontinuously changes when the coordinate x(t) of v2 at t = 1
2
drops down from 1

2
to −1

2
.

Figure 2: Any 2D lattice has one of four crystallographic point groups: oblique or generic

(C2), primitive or centred rectangular (D2), square or tetragonal (D4), hexagonal (D6).

Figure 3: Left: all root invariants RI(Λ) live in the cone TC ⊂ R3, which projects to the

yellow triangle QT by uniform scaling of lattices Λ ⊂ R2. Middle: all projected invariants

PI(Λ) live in the triangle QT parametrised by x = r̄02 − r̄01 ∈ [0, 1) and y = 3r̄12 ∈ [0, 1].

Right: mirror reflections Λ± ⊂ R2 of any non-mirror-symmetric lattice can be represented

by a pair (x, y) ↔ (1− y, 1− x) in the square QS symmetric in the diagonal x+ y = 1

Figure 4: Visualisation of Definition 2.4. Left: RC2[D2](Λ) and PC2[D2](Λ) equal the

minimum of three Euclidean distances from the points RI(Λ) ∈ TC and PI(Λ) ∈ QT to the

boundary of the cone TC (along perpendiculars to the three boundary planes) and triangle

QT, respectively. Right: PC2[D4](Λ),PC2[D6](Λ) equal the Euclidean distances from PI(Λ)

to the vertices (0, 0), (0, 1) ∈ QT representing all square and hexagonal lattices, respectively.

Figure 5: The incentre and boundary edges of the triangle QT on the left are mapped to

the centre and boundary circle of the disk in the middle and further mapped to the north

pole and equator of the unit sphere, whose southern hemisphere is obtained by a similar map

of the second triangle, which represents all lattices with negative signs, in Fig. 3 (right).

Figure 6: Signed D2-chiral distances of all oblique 2D lattices found in the CSD, see Defi-

nition 2.4 Left: sign(Λ)RC2[D2](Λ) in Ångstroms. Right: sign(Λ)PC2[D2](Λ) is unitless.

Figure 7: Signed D4-chiral distances of 1,177,678 oblique 2D lattices in the CSD, see Defi-

nition 2.4 Left: sign(Λ)RC2[D4](Λ) in Ångstroms. Right: sign(Λ)PC2[D4](Λ) is unitless.

Figure 8: Signed D6-chiral distances of 1,177,678 oblique 2D lattices in the CSD, see Defi-

nition 2.4. Left: sign(Λ)RC2[D6](Λ) in Ångstroms. Right: sign(Λ)PC2[D6](Λ) is unitless.

Figure 9: Behaviour of chiral distances and QT plots in relation to lattice parameters.

Left: Values of PC2[D4] and PC2[D6] for a lattice with parameters a = 1, b = 1 and angle

θ ∈ [90◦, 120◦]. Centre: Map of all CSD lattices in the Quotient Triangle (reproduced from
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our previous paper15). Right: Intersection of QT with circles centred at the origin (red)

and the point (0, 1) (green), of radii r1 =
1
2
, r2 =

1
2
respectively, and ri ± ϵ.

Figure 10: Two dimensional lattices of 6,351 monolayer structures30 isolated from 3D

crystals by layer detection or generated by atomic substitution, invariants PI(Λ) in the

square QS, see Definition 2.3.

Figure 11: Scatter plot of physical properties of materials discovered by layer detection in

2DMatPedia vs sgn(Λ)RC[D2](Λ). Left: Decomposition energy in meV. Right: Exfoliation

energy in meV per atom.

Figure 12: Scatter plot of physical properties of materials discovered by atomic substi-

tution in 2DMatPedia vs sgn(Λ)RC[D2](Λ). Left: Decomposition energy in meV. Right:

Exfoliation energy in meV per atom.

Figure 13: 2D scatter plot of exfoliation vs.decomposition energy, with chiralities indicated

by colour Left: All structures in 2DMatPedia. Right: Structures where RC2[D2] ≥ 1

Figure 14: 2D lattices of 1726 monolayer structures34 isolated from 3D crystals and shown

by the invariants PI(Λ) in the square QS, see Definition 2.3 and labels of structures in Fig. 15.

Figure 15: 183 ‘relaxed’ by DFT 2D lattices from 1726 monolayer structures34 in Fig. 14.

Left: structures with oblique lattices and molecules of type MX2 are labelled in green.

Right: elemental crystals and molecules of type TMDC are labelled in red and blue.

Figure 16: Histogram of signed spherical D2-chiral distances of 2D lattices of all crystals

found in the CSD. Left: SRC[D2](Λ) is in Ångstroms Å. Right: SPC[D2](Λ) is in degrees.

Figure 17: Distances (in Ångstroms) of rectangular (primitive and centred) 2D lattices.

Left: RC2[D4](Λ) to a closest square lattice. Right: RC2[D6](Λ) to a closest hexagonal

lattice.

Figure 18: Histograms of RC2[D2] (left) and PC2[D2] (right) for oblique lattices in crystals

whose molecular weight is among the 50, 000 highest and lowest in the CSD.

Figure 19: Histograms of spherical D2-chiral distances of 2D lattices in the CSD, separated

into organometallic and non-organometallic structures. Left: SRC[D2]. Right: SPC[D2].
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