- 1 Title: Exploring the presence of markers of decidualisation in the Fallopian tubes: a
- 2 systematic review

3 **Running title: Fallopian tube decidualisation**

- 4 F. Aljassim^{1*}, N. Georgopoulou^{1*}, C. H. Rigby¹, S. G. Powell¹, J. N. R. Wyatt¹, D. K.
- 5 Hapangama^{1,2} & C. J. Hill^{1,3}
- ⁶ ¹Department of Women's and Children's Health, Institute of Life Course and Medical
- 7 Sciences, University of Liverpool, member of Liverpool Health Partners, Liverpool L8 7SS,
- 8 UK
- 9 ²Liverpool Women's Hospital NHS Foundation Trust, member of Liverpool Health Partners,
- 10 Liverpool, L8 7SS, UK
- ³Corresponding author: C.J.Hill1@liv.ac.uk
- 12 *Contributed equally
- 13

© The Author(s) 2023. Published by Oxford University Press behalf of Society for the Study of Reproduction.

14	
----	--

15 Key words: Fallopian tubes; decidualisation; implantation; ectopic pregnancy

changes consistent with decidualisation.

16

17 Summary sentence: Under certain circumstances, the Fallopian tubes exhibit molecular

10

18

19

20

21

22

23

24 Abstract

The Fallopian tubes (FTs) are part of the female upper genital tract. The healthy FT provides the biological environment for successful fertilisation and facilitates the subsequent movement of the conceptus to the endometrial cavity. However, when the FT is damaged, as with salpingitis, pyosalpinx and hydrosalpinx, it may increase the risk of an ectopic pregnancy, a life-threatening condition.

Decidualisation refers to a multifactorial process by which the endometrium changes to permit blastocyst implantation. The decidualisation reaction is vital for endometrial receptivity during the window of implantation. To date, no comprehensive review that collates evidence on decidualisation in the human FT has been conducted. Therefore, the aim of this review is to compile the current evidence on cellular decidualisation occurring in the healthy and pathological FT in women of reproductive age. A literature search was conducted using five databases and identified 746 articles, 24 of which were analysed based on inclusion and exclusion criteria. The available evidence indicates that the FT are able to undergo decidual changes under specific circumstances, however, the exact mechanism by which this occurs is poorly understood. Further research is needed to elucidate the mechanism by which decidualisation can occur in the FT.

41

42 Introduction

The Fallopian tubes (FTs) are part of the female upper genital tract. In health, the FTs 43 provide the biological environment for successful fertilisation and facilitate the transport of the 44 conceptus from the distal part of the FT to the endometrium (1). However, pathological 45 processes that cause tubal damage increase the chance of ectopic pregnancy (EP), a life-46 threatening condition (2). EP is defined as the implantation of a blastocyst outside the 47 endometrial lining of the uterus (3). Whilst EPs only occur in 2% of all pregnancies, they 48 account for 8-9% of maternal mortality; over 95% of EPs are located in the FT, with the 49 majority implanting in the ampulla (3, 4). Intriguingly, tEP appears to be restricted to primates, 50 and does not occur in other mammals. This distinction may be due to differences in uterine and 51 tubal anatomy in primates, which allow for mixing of luminal fluids and thus potentially 52 promote a more permissive environment for implantation in the FT(5). Risk factors for tubal 53 EP (tEP) include, but are not limited to, previous tubal surgery, existing tubal pathology and 54 infection of the genital tract (6). However, many EPs occur in women without any known risk 55 factors (3). In non-idiopathic tEP cases, the conventional postulation that ectopic implantation 56 57 is a direct consequence of tubal damage has not been fully confirmed by the available evidence (3). 58

Pelvic inflammatory disease (PID) is the infection of the upper genital tract, which may
manifest as pathologies of the FT (7). These include salpingitis, pyosalpinx and hydrosalpinx
(7, 8). Salpingitis refers to inflammatory and oedematous FTs after ascending infection (7).
Pyosalpinx refers to a FT that is distended with pus due to obstruction following infection,
inflammation and subsequent formation of adhesions around the FT (7). Hydrosalpinx
describes a distended, fluid-filled FT that occurs as a result of tubal obstruction (7).

The tubal mucosa, termed the endosalpinx, possesses a distinct profile of hormone receptor expression across the menstrual cycle, yet does not demonstrate the same dynamic changes in proliferative activity in response to hormones as the eutopic endometrium(**Figure 1A**) (9). Normal embryo implantation occurs in the endometrium, and decidualisation is considered a prerequisite for establishing a pregnancy (10). A 2010 review exploring possible functional mechanisms by which risk factors predispose a tEP concluded that such molecular pathways have yet to be fully elucidated (10).

Decidualisation, otherwise known as the decidual reaction, refers to a multifactorial 72 process through which the endometrial stratum functionalis changes to allow a blastocyst to 73 interact with the endometrium and implant. Decidualisation includes both morphological and 74 functional changes, of which the two most important are the differentiation of endometrial 75 stromal cells to decidual cells, and leukocyte recruitment (11, 12). Decidual transformation of 76 stromal cells is primarily mediated by progesterone, which promotes intracellular accumulation 77 of cyclic adenosine monophosphate (cAMP)(12). Progesterone and cAMP regulate a network 78 of signalling pathways; cAMP-mediated protein kinase A (PKA) is critical for decidualisation, 79 and exchange protein directly activated by cAMP (EPAC) can potentiate this process(13). 80 81 Downstream regulators of progesterone/cAMP signalling include forkhead box O1 (FOXO1), signal transducers and activators of transcription (STAT5) and CCAAT/enhancer-binding 82 protein β (C/EBP β). Decidual cells secrete factors that regulate embryo implantation and 83

placentation, including insulin-like growth factor binding protein-1 (IGFBP-1) and prolactin 84 (PRL)(11, 12). Leukocytes play vital roles in decidual remodelling and immune tolerance of 85 86 the endometrium during pregnancy establishment (Figure 1B) (14). Humans are amongst the few viviparous species in which the endometrium will begin the process of decidualisation 87 during the post-ovulatory secretory phase of the menstrual cycle, independent of the presence 88 of a conceptus (11, 12). The decidual reaction is key to the endometrium being receptive, thus 89 sanctioning the window of implantation, the timeframe within which the blastocyst can attach 90 to and invade the superficial uterine wall (15). An abnormal decidual response can lead to 91 92 aberrations in placentation and, thus, both early and late gestational problems, such as recurrent implantation failure and preeclampsia (16). 93

94 To date, no comprehensive review has explored the available evidence on 95 decidualisation in the FT. Here, we conduct a systematic review to explore the potential for a 96 decidual response in healthy and diseased FTs.

97

98 Methods

99 This systematic review was reported in accordance with the Preferred Reporting Items
100 for Systematic Reviews and Meta-Analysis (PRISMA) statement (17) and was preceded by a
101 prospectively written protocol registered with PROSPERO (Registration number:
102 CRD42022333468) (18).

103 Search strategy and selection criteria

A comprehensive literature search was conducted on the 29th of September, 2022. Scopus, PubMed, CINAHL, EMBASE and EMCARE were searched for relevant published material. The search strategy included the following Medical Subject Heading (MeSH) terms, keywords and their combinations: ("Fallopian tube" OR "Oviduct" OR "Uterine tube") AND

("Decidua"). No filters were applied to the search, and wildcards were incorporated to 108 encompass various word endings where appropriate. All search results were uploaded into 109 110 Rayyan [18], an electronic systematic review software enabling enhanced title and abstract screening. Duplicated literature was removed, and two independent reviewers performed a title 111 and abstract screen according to the inclusion and exclusion criteria. Studies that met the 112 following criteria were included: (1) concerning the decidualisation of the human FT in health 113 or benign pathology; (2) population of pre-menopausal or pregnant women; (3) publications in 114 the English language. The exclusion criteria included: (1) exclusive focus on malignant 115 pathology; (2) animal studies; (3) secondary, non-electronic, and grey literature. Following 116 screening, full-text reviews were conducted by two independent reviewers, and a third reviewer 117 was recruited for the resolution of any disagreements. 118

119 Data extraction and analysis

Data from all eligible studies were extracted and recorded into an Excel spreadsheet recording the following: author, year of publication, study aim, sample size, comparator groups, experimental technique, relevant results and author conclusions. Given the heterogeneity of both the methods and results of included studies, statistical meta-analysis was not feasible. Therefore, data has been presented thematically.

125 Quality assessment

Risk of bias assessment was conducted by two independent reviewers (F.A. and C.H.R) using two well-established scoring tools. The Newcastle-Ottawa Scale (NOS) (19) was used for case-control and cohort studies and evaluated each study based on three domains: selection, comparability, and outcome. Each study receives a score between 0 and 9, which categorises as either good, fair or poor. In addition, a modified version of the NOS proposed by Murad et al. (20) was used for case series, which consists of eight questions across four domains: selection, ascertainment, causality, and reporting. Although a score between 0 and 8 can be attributed to each study based on binary responses to each question, Murad et al. suggest that numerical representation of methodological quality is not always recommended when certain questions are deemed more essential than others. Therefore, in this study, a judgement of methodological quality for each paper was made based on questions 1, 2, 3, 4, 6, and 8. The risk of bias assessment is detailed in **Table 1** and **Table 2**.

138

139 **Results**

The literature search identified 746 unique articles; 354 remained after removing 140 duplicate studies. Eligibility screening of these publications based on the assessment of their 141 142 title and abstract, following the predetermined inclusion and exclusion criteria, led to the exclusion of a further 169 publications. The remaining 185 full-text articles were sought for 143 retrieval, where, following evaluation, an additional 161 articles were excluded. Subsequently, 144 24 studies are included in the present review. This selection process is illustrated by a PRISMA 145 flow diagram in Figure 2. Table 3 provides a summary of all studies included in this systematic 146 147 review.

148

149 Thematic analysis

Decidualisation associated with intrauterine pregnancy in post-partum Fallopian tubes
Whilst rare, decidual changes do occur in the FT, which is primarily evident from post-partum FT of intrauterine pregnancies (IUP) that show decidual changes. Ordi et al. (2006),
Hunt & Lynn (2002), Rutanen et al. (1991), Tilden and Winstedt (1943), and Heatley et al.
(1996) reported a decidual reaction in post-partum tubes associated with an IUP; Rewell (1971)
reported tubal decidualisation associated with IUP and in contralateral tubes of tEP (21-26).

Heatley et al. (1996), Rutanen et al. (1991), and Tilden and Winstedt (1943) examined FT 156 samples collected from sterilisation procedures performed at term pregnancies(23, 24, 26). 157 Rewell (1971) investigated the FT in the puerperal period(25). However, Ordi et al. (2006), 158 and Hunt and Lynn (2002) do not explicitly state the circumstances of sample collection nor 159 period post-partum(21, 22). Collectively, studies indicated that 3-25% of post-partum women 160 demonstrate a tubal decidual reaction (23, 25). However, the study by Rutanen et al. (1991), 161 which concluded that 25% of tubes showed decidualisation, only included eight samples 162 compared to the 194 post-partum tubes analysed by Rewell (1971), where only 3% had 163 164 decidual changes (23, 25).

165 Decidualisation associated with tubal ectopic pregnancy

Decidualisation associated with tEP has been described in several studies. Nine 166 included papers observed a decidual reaction in the FT containing the tEP at the site of 167 implantation, away from the site of implantation within the same tube, or at both sites (25, 27-168 35). One study has also demonstrated decidualisation in the contralateral FT in women with 169 tEP (25). However, Floridon et al. (1999) detected tubal decidualisation only in two cases of 170 tEP with localised endometriosis from a total of 50 tEP specimens. None of the above studies 171 described the decidualisation to be as extensive as would be expected at the implantation site 172 in a normal IUP. 173

Ordi et al. (2006), Goffin et al. (2006) and Vassiliadou et al. (1998) analysed a total of
41 tEP specimens and concluded an absence of a decidual reaction at the site of implantation
(21, 36, 37). Interestingly, Randall et al. (1987) demonstrated that cells which initially
resembled decidual cells at the site of implantation were in fact of cytotrophoblastic origin (32).

178

179 Leukocyte infiltration in the Fallopian tube

A study by Von Rango et al. (2001) indicated that the number of CD45⁺ leukocytes 180 increased in the tubal mucosa from non-pregnant to tEP and suggest it to be a consequence of 181 182 increased numbers of CD68⁺ macrophages (38). In tEP, there is a marked lack of CD56⁺ uterine natural killer (uNK) cells, which are thought to limit trophoblast invasion in normal IUPs (21, 183 37-39). Ordi et al. (2006) found that increased recruitment of uNK cells in decidual tissue is a 184 common phenomenon regardless of location and that this process is mediated by hormones 185 rather than the presence of an implanting blastocyst (21). In addition, Von Rango et al. (2001) 186 stated that while uNK cells are not necessary for successful implantation, they may limit 187 188 trophoblast invasion; thus, the absence of uNK cells in the FT is proposed to allow for the increased trophoblastic invasion seen in tEP (38). 189

The most abundant leukocytes identified in tEP were macrophages and T cells (37-39). When comparing the leukocyte populations at the tEP implantation site with the matched intrauterine decidua, the numbers of T cells and macrophages were similar (39). Basta et al. (2010) reported a significantly lower percentage of T regulatory cells in the subpopulation of CD4⁺ T lymphocytes in the decidual of tEP compared to the secretory phase eutopic endometrium (30).

196

197 Cellular markers of decidualisation

198 The studies included in this review investigated various cellular markers of 199 decidualisation. In particular, two studies by Refaat et al. (2008, 2011) employed 200 immunohistochemistry and quantitative RT-PCR to quantify the expression of activins in tEP. 201 These studies suggest that activins have a paracrine and autocrine action in the FT; in the 202 endometrium, decidualisation is facilitated by activins increasing the expression of matrix 203 metalloproteinases (40, 41). The increased expression of activins in tEP, when compared to

secretory phase tubes, is considered pathological. However, it is also suggestive of tubal 204 decidualisation because activins are raised in the cycling endometrium during the luteal phase 205 206 (40, 41). Refaat et al. (2008) also investigated the action of follistatin in tEP. Their findings indicated that the expression of activins and follistatin might play an important role in the 207 pathogenesis of ectopic implantation but not necessarily in determining the site of implantation. 208 The authors propose that increased expression of activin-A in the FT could increase nitric oxide 209 production, which may induce a pathological relaxation in the smooth muscle of the FT. This 210 muscular relaxation would prevent adequate movement of an embryo, which in turn could 211 212 increase the chance of a tEP (40, 41). This theory is supported by a similar finding, whereby the embryo was located in the same place as a decidual polyp in the tube; Wist et al. (1954) 213 suggest that the tubal obstruction prevented the embryo from moving through the tube and 214 215 therefore caused a tEP (33). Wist et al. (1954) proposed that the decidual reaction should be considered a result of pregnancy but not the cause of the tEP (33). 216

The expression of mucin-1 (MUC1) in tubal epithelial cells fluctuates throughout the menstrual cycle (42). In the luteal phase, increased MUC1 expression in tubal epithelial cells may act as a protective mechanism against ectopic implantation, which might include an antiadhesive effect and/or facilitate transport (42). In tEP, decreased MUC1 expression indicates feature changes in the tubal epithelium (42).

Fibronectin is a ligand for integrins that is present at the implantation site in the endometrium and has a key role in embryo implantation following its adhesion to the maternal tissue. Integrins and fibronectin, which are considered necessary for uterine implantation, have also been shown to be present in tEP, indicating that they may have a role in tubal implantation (27). Kuroda et al. (2004) observed the total loss of α -smooth muscle actin (α SMA) and CD34⁺ stromal cells in both IUP and tEP compared to non-pregnant endometrial and tubal tissues. 228 Loss of α SMA⁺ and CD34⁺ stromal cells may therefore indicate decidualisation-specific 229 changes in tEP (31).

A study by Ji et al. (2013) compared oestrogen receptor (ER) and progesterone receptor 230 (PR) expression between normal mid-secretory non-pregnant tubes with tEP, both at the site 231 of implantation and at distant regions of the same tube. They reported a decrease in the 232 233 expression of ER and PR at the site of implantation compared to other tubal regions of the pregnant FT and secretory phase non-pregnant tubes; the expression of ER and PR in the latter 234 two groups was similar. Expression of ER and PR was mainly confined to the epithelial nuclei 235 and sparsely in the tubal stroma (43). Land & Arends (1992) suggest that the absence of 236 sufficient decidualisation in tubal pregnancies may be explained by the lack of PR in the FT 237 (28), yet the action of progesterone via PR is known to reduce the expression level of its own 238 receptor and ER (44). 239

Three included articles investigated bona fide decidual markers in the FT. Groffin et al.
(2003) reported an absence of expression of two well-know decidualisation markers, PRL and
IGFBP-1, in tEP (36). Rutanen et al. (1991) and Zygmunt et al. (2000) indicated IGFBP-1
expression in FT in post-partum and intrauterine pregnancies, respectively (23, 45).

244 **Discussion**

The objective of this review was to compile the available evidence regarding the potential of the FT to undergo decidualisation. We found that the FT has the ability to undergo stromal decidualisation under specific circumstances (31, 45). However, unlike the endometrium, where decidualisation is a hallmark of the secretory phase, decidualisation in the FT appears to be a relatively rare occurrence, and it is unclear how or why it transpires.

In the endometrium, decidualisation is modulated by cyclic fluctuations in the ovarian
steroid hormones, oestrogen and progesterone (46). In the absence of an embryo, the superficial

In the luteal phase, the rise in progesterone levels stimulates a chain of reactions in the 254 endometrial stromal cells, causing an upregulation of multiple genes, including the classical 255 markers of decidual cells, PRL and IGFBP-1 (11). Endometrial receptivity also involves the 256 257 presentation of adhesion molecules and simultaneous loss of inhibitory factors that prevent embryo attachment (47). The phenotypical changes of the endometrium include vascular 258 remodelling, an influx of uNK cells and the differentiation of stromal cells to a hypertrophic, 259 secretory phenotype (12, 48). There is a five-fold increase in leukocytes during the secretory 260 phase, of which the most notable change is the significant increase in uNK cells; uNK cells 261 account for approximately 70% of the total leukocyte population (21, 47, 49). 262

As identified in this review, the FT have the ability to decidualise under specific circumstances. One explanation is that the FT is more sensitive to the higher concentrations of progesterone produced by the placenta compared to the relatively moderate levels produced by the corpus luteum, which is why decidual changes in the FT associated with IUP are present post-partum (25).

It is important to note that the hormone responsiveness of the tubal mucosa is proposed to be different to that of endometrial cells. The dynamic changes in the expression of steroid hormone receptors are not observed in healthy pre-menopausal tubes when compared with the eutopic endometrium (9). The relative hormone resistance of the tubal mucosal would prevent initiation of decidualisation, but in the event that the cells become sensitised, possibly via prolonged and sustained exposure to high progesterone levels, decidualisation may occur and promote tEP. Furthermore, there is a paucity of studies investigating the FT in early IUP to confirm that this is only a late pregnancy event. For obvious reasons, access to such material is limited. The developing foetus and placenta of ongoing IUPs produce many endocrine agents that may influence the tubal mucosa, potentially inducing decidual changes (11, 12, 14). Intriguingly, no studies have investigated tubal changes following exogenous progestogen administration, which typically induces a decidualisation response in the endometrium. Therefore, further studies are needed to conclude on the decidualisation potential of healthy FT.

The receptive endometrium describes the stage at which an embryo can implant, and it 282 can have degrees and types of abnormality (50). In parallel, extravillous trophoblasts are 283 thought to switch from a differentiating phenotype to an invasive phenotype, which is believed 284 to occur independently of the maternal environment (36), meaning that the embryo could begin 285 to invade any tissue that it is in contact with when this change occurs. This postulation is 286 acceptable, considering the observation of rare ectopic pregnancies in the abdomen. Evidence 287 suggests that tubal implantation may occur due to stagnation of the embryo in the FT; such 288 immobility will allow prolonged exposure of the FT to the secretory products of an embryo, 289 which may induce a local decidual reaction in the FT, encouraging tubal implantation (33). 290 However, stagnation of the embryo in the FT in the study by Wist et al. (1954) occurred due to 291 the presence of a decidual polyp (33). Interestingly, Vang et al. showed that 292 293 pseudoxanthomatous salpingitis manifests histological similarities to decidualisation (51). As the study by Wist et al. was published in 1954, it can be speculated that the multiple decidual 294 polyps were, in fact, expanded plicae due to the presence of numerous histiocytes (33, 51). 295

Activins are important autocrine/ paracrine regulators that stimulate and facilitate endometrial decidualisation, which is crucial for successful implantation (52). They are secreted by newly decidualised cells, promoting the spread of decidualisation throughout the endometrium (40, 53-55). The presence of specific molecular markers, such as activins in the FT, that affect tubal mobility via altering smooth muscle contractility and/or ciliary beat activity, leading to tubal
transport failure and, consequently, blastocyst retaining within the tube, which overexposed
the tubal epithelium to the embryonic chorionic gonadotrophin, and ultimately induces tubal
epithelial receptivity (9, 38-40).

Although the immune cell profile of the FT may have similarities to that of the 304 305 endometrium, there are stark differences, such as the increased number of T cells and the lack of uNK cells in the FT. The absence of uNK cells in the FT may allow over-invasion of the 306 extravillous trophoblasts (36), which could be a reason for frequent rupture of the FT observed 307 in tEP. Unlike the endometrium, the immune cell profile of the FT does not appear to change 308 in response to an embryo implanting. This is again likely to reflect the relative resistance of the 309 tubal mucosa to steroid hormones (9). Von Rango et al. (2001) identified T cells, followed by 310 macrophages, as the most abundant leukocytes in the healthy FT (38). This immune profile is 311 similar to that of the proliferative phase endometrium described by Vallvé-Juanico et al. (2019), 312 whereby the most abundant leukocytes are T cells, followed by macrophages and uNK cells 313 (56), though uNK cells are virtually absent from tubal mucosa (38, 57). 314

In summary, there is insufficient evidence to define the decidualisation potential of 315 healthy and pathological FT in full. Furthermore, no studies have explored decidualisation 316 reactions in damaged FT, such as hydrosalpinx after infection. Therefore, it remains 317 challenging to find a causal relationship between factors influencing tEP. This uncertainty 318 creates a causality dilemma, in which it is difficult to confirm what came first: the embryo 319 expressing the invasive phenotype or a pre-existing receptive FT. Additionally, the association 320 of ectopic pregnancy with many risk factors, such as previous FT surgery and PID, is well-321 established; however, this review did not identify any literature exploring decidualisation in 322 such cohorts. Furthermore, there is a lack of studies regarding decidualisation in the FT during 323 specific stages of the menstrual cycle. 324

326 Conclusions

327 The FT can undergo decidual changes under specific circumstances. These may include prolonged exposure to high levels of progesterone, placental products, and prolonged exposure 328 to a conceptus. The presence of decidual cells in tEP is poorly understood, and many questions 329 are left unanswered. Further research surrounding the decidualisation of the FT at different 330 stages of the menstrual cycle and following damage would help to bridge the gap of knowledge 331 in understanding the pathophysiology of the FT. Additionally, receptivity markers, the 332 proliferation of the tubal mucosa and the immune profile of normal and damaged tubes could 333 be explored in FT across the menstrual cycle. Such studies could provide greater insight into 334 the mechanisms of aberrant embryo implantation at ectopic sites. 335

336

337 Authors' roles

F.A., N.G., S.G.P., J.N.R.W., D.K.H and C.J.H. developed the systematic review protocol.
F.A., N.G. and C.H.R. performed database searches and data extraction. F.A. and C.J.H.
created figures. N.G., C.H.R. and F.A. wrote the first draft of the manuscript. All authors
finalised, critically appraised and approved the final version of the manuscript.

342

343 Funding

F.A. is supported by Imam Abdulrahman bin Faisal University, Saudi Arabia (30199). N.G.
and C.H.R. are supported by a University of Liverpool Master's studentship. J.N.R.W. and
S.J.P. are supported by clinical fellowships at Liverpool University Hospitals NHS Foundation
Trust. C.J.H. is supported by a Wellbeing of Women project grant (RG2137), SRI/Bayer and

SR

and an MRC clinical research training fellowship (MR/V007238/1).

350

- 351 Conflicts of interest
- 352 The authors declare that there are no conflicts of interest.

353

354 Data availability

355 The data underlying this article are available in the article.

356

357 **References**

- Croxatto HB. Physiology of gamete and embryo transport through the fallopian tube. 358 1. Reprod Biomed Online. 2002;4(2):160-9. 359 Shaw JL, Horne AW. The paracrinology of tubal ectopic pregnancy. Mol Cell 360 2. Endocrinol. 2012;358(2):216-22. 361 Marion LL, Meeks GR. Ectopic pregnancy: History, incidence, epidemiology, and 362 3. risk factors. Clin Obstet Gynecol. 2012;55(2):376-86. 363 Anderson FW, Hogan JG, Ansbacher R. Sudden death: ectopic pregnancy mortality. 364 4. Obstet Gynecol. 2004;103(6):1218-23. 365 Corpa JM. Ectopic pregnancy in animals and humans. Reproduction. 366 5. 367 2006;131(4):631-40. Kriebs JM, Fahey JO. Ectopic pregnancy. J Midwifery Womens Health. 368 6. 2006;51(6):431-9. 369 370 Rezvani M, Shaaban AM. Fallopian tube disease in the nonpregnant patient. 7. Radiographics. 2011;31(2):527-48. 371 Ng KYB, Cheong Y. Hydrosalpinx - Salpingostomy, salpingectomy or tubal 372 8. occlusion. Best Pract Res Clin Obstet Gynaecol. 2019;59:41-7. 373 Maclean A, Bunni E, Makrydima S, Withington A, Kamal AM, Valentijn AJ, et al. 374 9. 375 Fallopian tube epithelial cells express androgen receptor and have a distinct hormonal 376 responsiveness when compared with endometrial epithelium. Hum Reprod. 2020;35(9):2097-106. 377 10. Shaw JL, Dey SK, Critchley HO, Horne AW. Current knowledge of the aetiology of 378 379 human tubal ectopic pregnancy. Hum Reprod Update. 2010;16(4):432-44. Ng SW, Norwitz GA, Pavlicev M, Tilburgs T, Simón C, Norwitz ER. Endometrial 380 11.
- 381 Decidualization: The Primary Driver of Pregnancy Health. Int J Mol Sci. 2020;21(11).
- 382 12. Okada H, Tsuzuki T, Murata H. Decidualization of the human endometrium. Reprod
 383 Med Biol. 2018;17(3):220-7.

Ś

384	13. Kusama K, Yoshie M, Tamura K, Nakayama T, Nishi H, Isaka K, et al. The role of
385	exchange protein directly activated by cyclic AMP 2-mediated calreticulin expression in the
386	decidualization of human endometrial stromal cells. Endocrinology. 2014;155(1):240-8.
387	14. Ochoa-Bernal MA, Fazleabas AT. Physiologic Events of Embryo Implantation and
388	Decidualization in Human and Non-Human Primates. Int J Mol Sci. 2020;21(6).
389	15. Kim SM, Kim JS. A Review of Mechanisms of Implantation. Dev Reprod.
390	2017;21(4):351-9.
391	16. Ticconi C, Di Simone N, Campagnolo L, Fazleabas A. Clinical consequences of
392	defective decidualization. Tissue Cell. 2021;72:101586.
393	17. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al.
394	The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst
395	Rev. 2021;10(1):89.
396	18. Fatimah Aljassim CR, Natalie Georgopoulou, Simon powell, James Wyatt,
397	Christopher Hill, Dharani Hapangama. Fallopian tube decidualisation in health and benign
398	pathology: a systematic review. PROSPERO. 2022;CRD42022333468.
399	19. Wells GA, Shea, B., O'connell, D., Peterson, J., Welch, V., Losos, M., Tugwell, P.
400	The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in
401	meta-analyses [Online]. The Ottowa Hospital Research Institute. 2021.
402	20. Murad MH, Sultan S, Haffar S, Bazerbachi F. Methodological quality and synthesis
403	of case series and case reports. BMJ Evid Based Med. 2018;23(2):60-3.
404	21. Ordi J, Casals G, Ferrer B, Creus M, Guix C, Palacín A, et al. Uterine (CD56+)
405	natural killer cells recruitment: association with decidual reaction rather than embryo
406	implantation. Am J Reprod Immunol. 2006;55(5):369-77.
407	22. Hunt JL, Lynn AA. Histologic features of surgically removed fallopian tubes. Arch
408	Pathol Lab Med. 2002;126(8):951-5.
409	23. Rutanen EM, Partanen S, Pekonen F. Decidual transformation of human extrauterine
410	mesenchymal cells is associated with the appearance of insulin-like growth factor-binding
411	protein-1. J Clin Endocrinol Metab. 1991;72(1):27-31.
412	24. Tilden IL, Winstedt R. Decidual Reactions in Fallopian Tubes: Histologic Study of
413	Tubal Segments from 144 Post-partum Sterilizations. Am J Pathol. 1943;19(6):1043-55.
414	 Rewell RE. Extra-uterine decidua. J Pathol. 1971;105(3):219-22. Heatley MK, Maxwell P, Toner PG. The immunophenotype of human decidua and
415	26. Heatley MK, Maxwell P, Toner PG. The immunophenotype of human decidua and extra-uterine decidual reactions. Histopathology. 1996;29(5):437-42.
416 417	 27. Inan S, Giray G, Vatansever HS, Ozbilgin K, Kuscu NK, Sayhan S.
417	Immunolocalization of integrins and fibronectin in tubal pregnancy. Acta Histochem.
418	2004;106(3):235-43.
420	28. Land JA, Arends JW. Immunohistochemical analysis of estrogen and progesterone
420	receptors in fallopian tubes during ectopic pregnancy. Fertil Steril. 1992;58(2):335-7.
421	29. Spornitz UM. Pseudo-decidualization at the site of implantation in tubal pregnancy.
422	Arch Gynecol Obstet. 1993;253(2):85-95.
423	30. Basta P, Majka M, Jozwicki W, Lukaszewska E, Knafel A, Grabiec M, et al. The
425	frequency of CD25+CD4+ and FOXP3+ regulatory T cells in ectopic endometrium and
426	ectopic decidua. Reprod Biol Endocrinol. 2010;8:116.
427	31. Kuroda N, Miyazaki E, Hayashi Y, Toi M, Hiroi M, Enzan H. The disappearance of
428	CD34-positive and alpha-smooth muscle actin-positive stromal cells associated with human
429	intra-uterine and tubal pregnancies. Histol Histopathol. 2004;19(3):707-13.
430	32. Randall S, Buckley CH, Fox H. Placentation in the fallopian tube. Int J Gynecol
431	Pathol. 1987;6(2):132-9.
432	33. Wist A. Decidual reaction and tubal pregnancy. Acta Obstet Gynecol Scand.
433	1954;33(1):83-90.
-	

434 34. Floridon C, Nielsen O, Holund B, Sunde L, Westergaard JG, Thomsen SG, et al. Localization and significance of urokinase plasminogen activator and its receptor in placental 435 tissue from intrauterine, ectopic and molar pregnancies. Placenta. 1999;20(8):711-21. 436 437 35. Floridon C, Nielsen O, Hølund B, Sweep F, Sunde L, Thomsen SG, et al. Does plasminogen activator inhibitor-1 (PAI-1) control trophoblast invasion? A study of fetal and 438 maternal tissue in intrauterine, tubal and molar pregnancies. Placenta. 2000;21(8):754-62. 439 440 36. Goffin F, Munaut C, Malassiné A, Evain-Brion D, Frankenne F, Fridman V, et al. 441 Evidence of a limited contribution of feto-maternal interactions to trophoblast differentiation along the invasive pathway. Tissue Antigens. 2003;62(2):104-16. 442 443 37. Vassiliadou N, Bulmer JN. Characterization of tubal and decidual leukocyte populations in ectopic pregnancy: evidence that endometrial granulated lymphocytes are 444 445 absent from the tubal implantation site. Fertil Steril. 1998;69(4):760-7. von Rango U, Classen-Linke I, Kertschanska S, Kemp B, Beier HM. Effects of 446 38. trophoblast invasion on the distribution of leukocytes in uterine and tubal implantation sites. 447 Fertil Steril. 2001;76(1):116-24. 448 Pröll J, Bensussan A, Goffin F, Foidart JM, Berrebi A, Le Bouteiller P. Tubal versus 449 39. uterine placentation: similar HLA-G expressing extravillous cytotrophoblast invasion but 450 different maternal leukocyte recruitment. Tissue Antigens. 2000;56(6):479-91. 451 Refaat B, Amer S, Ola B, Chapman N, Ledger W. The expression of activin-betaA-40. 452 and -betaB-subunits, follistatin, and activin type II receptors in fallopian tubes bearing an 453 454 ectopic pregnancy. J Clin Endocrinol Metab. 2008;93(1):293-9. Refaat B, Ledger W. The expression of activins, their type II receptors and follistatin 455 41. 456 in human Fallopian tube during the menstrual cycle and in pseudo-pregnancy. Hum Reprod. 2011;26(12):3346-54. 457 Al-Azemi M, Refaat B, Aplin J, Ledger W. The expression of MUC1 in human 42. 458 459 Fallopian tube during the menstrual cycle and in ectopic pregnancy. Hum Reprod. 2009;24(10):2582-7. 460 Ji YF, Chen LY, Xu KH, Yao JF, Shi YF, Shanguan XJ. Reduced expression of 43. 461 aquaporin 9 in tubal ectopic pregnancy. J Mol Histol. 2013;44(2):167-73. 462 Hapangama DK, Kamal AM, Bulmer JN. Estrogen receptor β : the guardian of the 44. 463 endometrium. Hum Reprod Update. 2015;21(2):174-93. 464 Zygmunt M, Mazzuca DM, Walton J, Han VK. Local fetal signal is not required for 465 45. maintaining IGFBP gene expression in the human decidua: evidence from extrauterine 466 pregnancies. Mol Hum Reprod. 2000;6(10):959-65. 467 Mori M, Bogdan A, Balassa T, Csabai T, Szekeres-Bartho J. The decidua-the 468 46. maternal bed embracing the embryo-maintains the pregnancy. Semin Immunopathol. 469 470 2016;38(6):635-49. Achache H, Revel A. Endometrial receptivity markers, the journey to successful 471 47. 472 embryo implantation. Hum Reprod Update. 2006;12(6):731-46. 48. Telgmann R, Gellersen B. Marker genes of decidualization: activation of the decidual 473 prolactin gene. Hum Reprod Update. 1998;4(5):472-9. 474 49. Yang F, Zheng Q, Jin L. Dynamic Function and Composition Changes of Immune 475 Cells During Normal and Pathological Pregnancy at the Maternal-Fetal Interface. Front 476 Immunol. 2019;10:2317. 477 478 50. Lessey BA, Young SL. What exactly is endometrial receptivity? Fertil Steril. 2019;111(4):611-7. 479 Robert J. Kurman LHE, Brigitte M. Ronnett. Blaustein's Pathology of the Female 480 51. 481 Genital Tract. 7 ed: Springer Cham; 2019. XVII, 1508 p. Wijayarathna R, de Kretser DM. Activins in reproductive biology and beyond. Hum 482 52. Reprod Update. 2016;22(3):342-57. 483

- 484 53. Jones RL, Salamonsen LA, Zhao YC, Ethier JF, Drummond AE, Findlay JK.
 485 Expression of activin receptors, follistatin and betaglycan by human endometrial stromal
 486 cells; consistent with a role for activins during decidualization. Mol Hum Reprod.
 487 2002;8(4):363-74.
- 488 54. Jones RL, Findlay JK, Farnworth PG, Robertson DM, Wallace E, Salamonsen LA.
- 489 Activin A and inhibin A differentially regulate human uterine matrix metalloproteinases:
- 490 potential interactions during decidualization and trophoblast invasion. Endocrinology.
 491 2006;147(2):724-32.
- 492 55. Dimitriadis E, White CA, Jones RL, Salamonsen LA. Cytokines, chemokines and 493 growth factors in endometrium related to implantation. Hum Reprod Update. 2005;11(6):613-
- 493 gro494 30.
- 495 56. Vallvé-Juanico J, Houshdaran S, Giudice LC. The endometrial immune environment
- 496 of women with endometriosis. Hum Reprod Update. 2019;25(5):564-91.
- 497 57. Rigby CH, Aljassim F, Powell SG, Wyatt JNR, Hill CJ, Hapangama DK. The
- immune cell profile of human fallopian tubes in health and benign pathology: a systematic
- 499 review. J Reprod Immunol. 2022;152:103646.
- 500

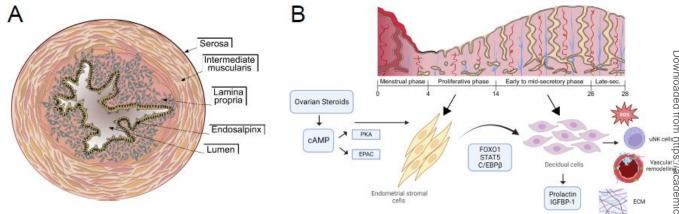
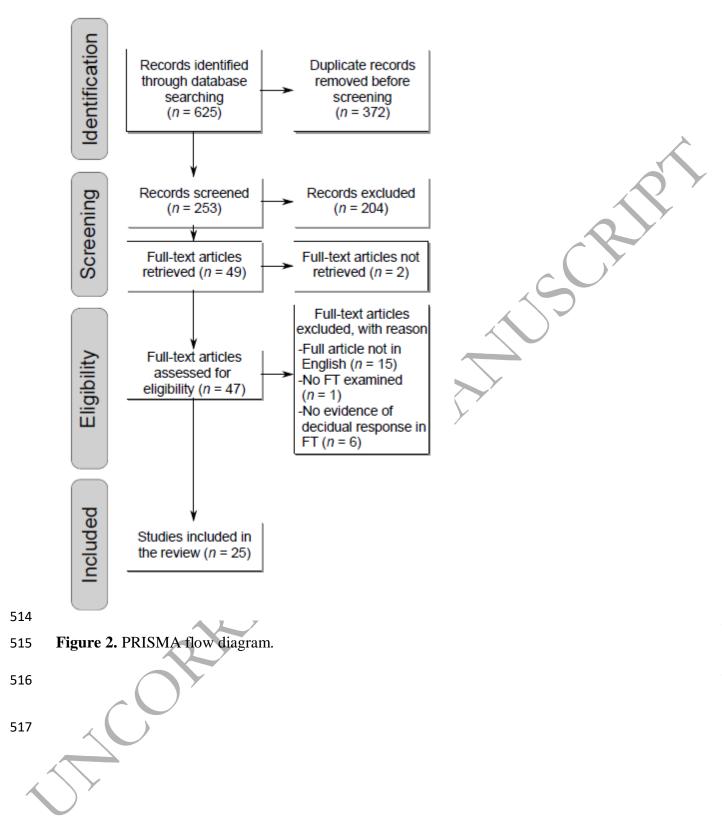



Figure 1. (A) Fallopian tube cross-section with major anatomical structures labelled. (B) 504 Schematic representation of the decidualisation process in human endometrium, which leads 505 to enhanced reactive oxygen species (ROS) production, increased extracellular matrix (ECM) 506 deposition, uterine natural killer cell (uNK) recruitment and vascular remodeling. 507 CCAAT/enhancer-binding protein β Abbreviations: $(C/EBP\beta),$ cyclic adenosine 508 monophosphate (cAMP), exchange protein directly activated by cAMP (EPAC), forkhead box 509 protein 1 (FOXO1), insulin-like growth factor binding protein-1 (IGFBP-1), protein kinase A 510 (PKA), and signal transducer and activator of transcription 5 (STAT5). Created in part with 511 BioRender.com. 512

513

520 Tables

521 Table 1. Risk of bias assessment for case-control and cohort studies using the Newcastle-

522 Ottawa Scale.

				Cas	e-cor	trol stud	ies			(
Author	Year		Selec	ction		Compa	rability	0	utcor	ne		Total
		1	2	3	4	5	6	7	8	9		
Al-Azemi	2009	*		*	*	*	*	*	*	*	8	Good
Basta	2010	*	*	*	*	*	*	*	*	*	9	Good
Inan	2004			*		*		*	*	*	5	Poor
Ji	2013	*		*	*	$\mathbf{\mathbf{x}}$	*	*	*	*	8	Good
Kuroda	2004			*	Ý	*			*	*	4	Poor
Pröll	2000	★) *		*		*	*	*	6	Fair
Refaat	2008	S	>	*	*	*		*	*	*	6	Fair
Refaat	2011	*	*	*	*	*	*	*	*	*	9	Good
Rutanen	1991	*				*			*	*	4	Poor
Von Rango	2001	*		*		*	*	*	*	*	7	Fair
Zygmunt	2000			*		*			*	*	4	Poor
				(Cohoi	t studies						
Floridon	1999			*		*		*	*	*	5	Poor
Floridon	2000			*		*		*	*	*	5	Poor

Goffin	2003	*		★		*	*	*	★	6	Fair
Heatley	1996					*	*	*	*	4	Poor
Ordi	2006		*	*		*	*	*	*	6	Fair
Vassiliadou	1998	*			*	*	*	*	*	6	Fair

Table 2. Risk of bias assessment for case series using the tool proposed by Murad et al. (2018).

525

Author	Year	Selectio	Ascer	tainme	Caus	sality	R	eportin		Fotal
		n	I	nt		Ź	\mathbf{X}	g		
		1	2	3	4 5	6 7		8		
Hunt	2002	*	*	*			•		3	Fair
Land	1992		*	*	×		·		3	Fair
Randall	1987			$\mathbf{\mathbf{Y}}$					0	Poc
Rewell	1971		$\langle \rangle$						0	Poc
Spornitz	1993)	*		*		*	3	Fai
Tilden	1943	$\mathbf{\mathbf{x}}$				*		*	2	Poc
Wist	1954					*			1	Poc
50)									

Table 3. Summary of studies that investigated decidualisation in human Fallopian tubes. Abbreviations: FT (Fallopian tube), IHC (immunohistochemistry), IF (immunofluorescence), RT-PCR (reverse transcription polymerase chain reaction), tEP (tubal ectopic pregnancy).

First	Title	Method(s)	Decidualisation	Control/comparator group(s)	Relevant results
author		Wiethou(3)	markers studied	Control comparator group(s)	Relevant results
Al-Azemi	The expression of	IHC and	Mucin-1	FT collected in the	Cyclical changes in MUC1
et al.	MUC1 in human	quantitative	(MUC1)	menstrual, follicular or	expression in tubal epithelial
(2009)	Fallopian tube during	RT-PCR		secretory phase following	cells. Decrease in MUC1
	the menstrual cycle			total abdominal	mRNA and protein in tEP
	and in ectopic			hysterectomy for benign	compared with
	pregnancy			disease not affecting the	pseudopregnancy.
		Ŕ		tubes.	
		Rt			
					23

					k
Basta et	The frequency of	Fluorescenc	CD4, CD25, and	Eutopic endometrium group	The percentages of FOXP3+
al. (2010)	CD25+CD4+ and	e-activated	forkhead box P3	derived from participants	cells in the subpopulation of
	FOXP3+ regulatory T	single cell	(FOXP3)	with regular menstrual	CD4+ T lymphocytes found
	cells in ectopic	sorting		cycles, and ectopic	in the
	endometrium and			endometrium group derived	decidua of the patients
	ectopic decidua			from participants undergoing	treated for FT pregnancy
				removal of ovarian	were statistically
				endometriomas.	significantly lower than both
				×	those observed in the
					ovarian endometriosis
					samples and those found in
			\bigcirc		the secretory eutopic
		\sim			endometrium of the control
		25			group.
) *	1	1	1
					2

Floridon	Localization and	IHC	Urokinase	Decidual tissue from normal	There was no decidual-like
et al.	significance of		plasminogen	intrauterine pregnancies,	reaction of the stromal cells
(1999)	urokinase		activator	decidual tissue from	in the FT wall except in two
	plasminogen activator		receptor (uPAR),	complete and partial molar	cases with localized
	and its receptor in		urokinase	pregnancies, and	endometriosis. Only very
	placental tissue from		plasminogen	pseudodecidual intrauterine	few submucosal stromal
	intrauterine, ectopic		activator (uPA),	tissue from participants with	cells away from the
	and molar pregnancies		cytokeratin and	tEP.	implantation site were
			Ki67	×	positive for uPAR. The tubal
				<i>P</i>	epithelium, circumferential
					muscular cells and serosal
					mesothelium were uPAR
					negative. No maternal
					stromal zone of uPAR-
					positive cells directed
		1			
	\sim				25

					\mathbf{k}
					against the implanting
					ectopic pregnancy.
Floridon	Does plasminogen	IHC	Plasminogen	Decidual tissue from normal	In the tubal wall, PAI-1 was
et al.	activator inhibitor-1		activator	intrauterine pregnancies,	exclusively seen in a few
(2000)	(PAI-1) control		inhibitor-1 (PAI-	decidual tissue from	submucosal stromal cells
	trophoblast invasion?		1)	complete and partial molar	distant from the implantation
	A study of fetal and			pregnancies, pseudodecidual	site. The tubal epithelium
	maternal tissue in			intrauterine tissue from	and the muscular cells were
	intrauterine, tubal and			participants with tEP, and	PAI-1 negative.
	molar pregnancies			normal endometrial tissue	Decidualisation of the
				from non-pregnant	stromal cells at the
				participants in the	implantation site was not
				proliferative or secretory	present.
				phase.	
					2

Goffin et	Evidence of a limited	IF and	Connexin,	First-trimester placental	The decidualisation markers
al. (2003)	contribution of feto-	quantitative	cytokeratin, C-	tissue.	PRL and IGFBP-1 were not
	maternal interactions	RT-PCR	erbB-2, E-	(detected in the tubal
	to trophoblast		cadherin,	, C	implantation sites.
	differentiation along		epidermal		
	the invasive pathway		growth factor	\sim	
			receptor		
			(EGFR), human		
			leukocyte	×	
			antigen G (HLA-		
			G), human		
			prolactin		
			(hPRL), insulin-		
			like growth		
			factor binding		
			protein 1		
				•	

		Ι	Γ		
			(IGFBP-1),		× ×
			integrins (α1, α6,		
			α5β1), Ki67,	Ć	
			p16, p57, and	S	
			vimentin		
Heatley et	The	IHC	α_1 -anti-trypsin,	Decidua from intrauterine	Extra-uterine mesenchymal
al. (1996)	immunophenotype of		α_1 -anti-	gestations, appendix, cervix	cells, such as in the FT, that
	human decidua and		chymotrypsin,	and FT, and non-pregnant	have undergone a decidual
	extra-uterine decidual		(human	endometrium.	reaction correspond closely
	reactions		chorionic		to their counterparts in the
			gonadotrophin β)		endometrial stroma. Post-
			β-hCG, CD3,		partum decidualised stromal
			CD20, CD45,		reaction was noted in the FT.
			CD68,		
		`	cytokeratin,		
			desmin,		
		1			2:

					$\mathbf{\lambda}$
			placental		
			alkaline		
			phosphatase	Ć	
			(PLAP), smooth	S	
			muscle actin,		
			and S-100		
			protein		
Hunt &	Histologic features of	Microscopy	Histologic	None	Tubal ectopic decidua was
Lynn	surgically removed		examination	×	found in 3% of the FT
(2002)	fallopian tubes			/	examined and were all from
			CT Y		post-partum patients.
Inan et al.	Immunolocalization of	IHC	Integrins (a3,	Non-pregnant FT samples,	Integrins (in particular α3
(2002)	integrins and		αV , $\beta 1$, and	and non-implantation site	and β 1) and fibronectin may
	fibronectin in tubal		$\alpha 2\beta 1$), and	regions from tEP specimens.	play a role in progression of
	pregnancy		fibronectin		tubal implantation. $\alpha 3$ and
					β 1 integrins and fibronectin
			·	·	29

					$\mathbf{\lambda}$
					was present in ectopic
					pregnancy decidual cells at
				Ć	the site of implantation.
				S	Increased fibronectin-
					staining intensity may be
					related to the adhesive
				K Pri	activity in tEP.
Ji et al.	Reduced expression of	IHC	Aquaporin 9	Non-pregnant FT samples	Expression of AQP9 in the
(2013)	aquaporin 9 in tubal		(AQP9),	collected during the mid-	human FT may be
	ectopic pregnancy		oestrogen	secretory phase, and non-	significant during tubal
			receptor (ER),	implantation site regions	implantation. No correlation
			and progesterone	from tEP specimens.	between AQP9 and ER or
			receptor (PR)		PR in the non-implantation
					site or the normal FT. ER
					and PR had weak
		r			immunostaining at the site of
			1	1	30

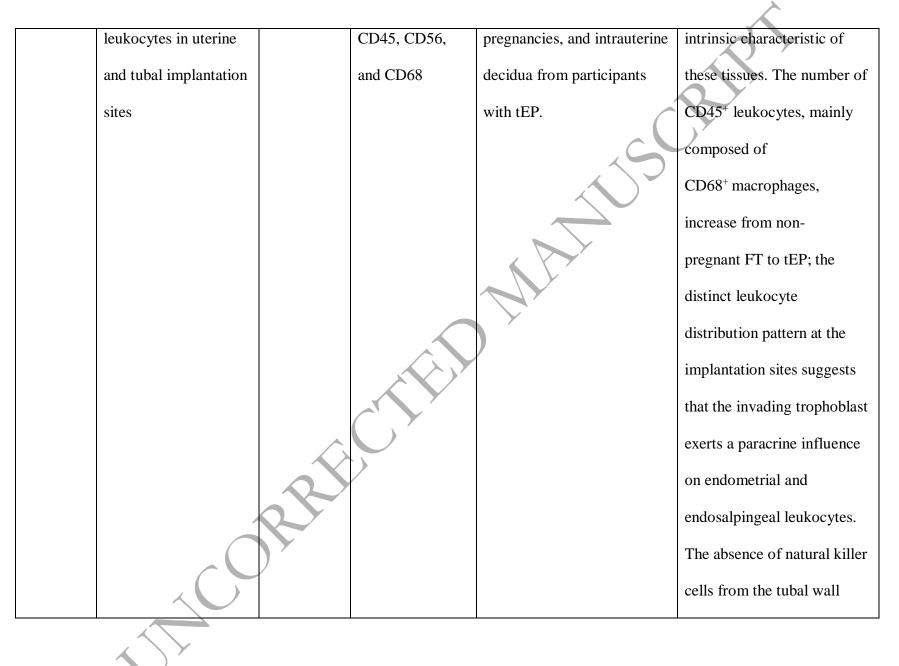
					implantation in tEP
					compared with spatially
				C	remote regions of the same
				5	tube.
Kuroda et	The disappearance of	IHC	-smooth	Non-pregnant FT, normal	Cells positive for both
al. (2004)	CD34-positive and		muscle actin	endometrium and	antigens seemed to be more
	alpha-smooth muscle		$(\Box SMA)$, and	intrauterine pregnancy	abundant in normal mucosa
	actin-positive stromal		CD34	decidual tissue.	of FT than at the peri
	cells associated with				decidual mucosa of
	human intra-uterine				intrauterine and tubal
	and tubal pregnancies				pregnancies. Neither
					\Box SMA ⁺ nor CD34 ⁺ stromal
					cells were observed
					anywhere in the decidual
					stroma of intra-uterine and
					tubal pregnancies, which
			•	•	•

					may be an indicator of
					decidualisation induced
				(changes in the stroma.
Land &	Immunohistochemical	IHC	Oestrogen	None	A decidual reaction was
Arends	analysis of estrogen		receptor (ER),		observed in 42% of tubal
(1992)	and progesterone		and progesterone		pregnancies, though the
	receptors in fallopian		receptor (PR)		degree and extent of
	tubes during ectopic				decidualisation was less that
	pregnancy			× ·	normally seen in an
				/	intrauterine pregnancy. ER
					expression, PR expression
					and serum hCG
					concentrations had no
					correlation to the degree of
					decidualisation. The lack of
					PR in the FT may explain
		1	1	1	

				X
				the absence of adequate
				decidualisation in tubal
			Ć	pregnancies.
Uterine (CD56+)	IHC	CD3, CD4, CD8,	Decidualised endometrium	The immunomodulation of
natural killer cells		CD16, CD20,	from participants undergoing	uterine natural killer (uNK)
recruitment:		CD56, CD57,	progestin therapy,	cells is most likely not
Association with		CD68,	intrauterine pregnancy-	induced by the local
decidual reaction		cytokeratin and	associated ectopic decidua	presence of trophoblast but
rather than embryo		α -inhibin	and intrauterine decidua	is primarily hormonally
implantation			from spontaneous abortions.	regulated. No decidual
				reaction was detected in any
				ectopic implantation. Lack
	\sim			of uNK cells in all cases of
-				tubal pregnancy. Ectopic
				decidua that is associated
	v			with intrauterine pregnancy
	natural killer cells recruitment: Association with decidual reaction rather than embryo	natural killer cells recruitment: Association with decidual reaction rather than embryo	natural killer cellsCD16, CD20,recruitment:CD56, CD57,Association withCD68,decidual reactioncytokeratin andrather than embryoα -inhibin	natural killer cellsCD16, CD20,from participants undergoingrecruitment:CD56, CD57,progestin therapy,Association withCD68,intrauterine pregnancy-decidual reactioncytokeratin andassociated ectopic deciduarather than embryo α -inhibinand intrauterine decidua

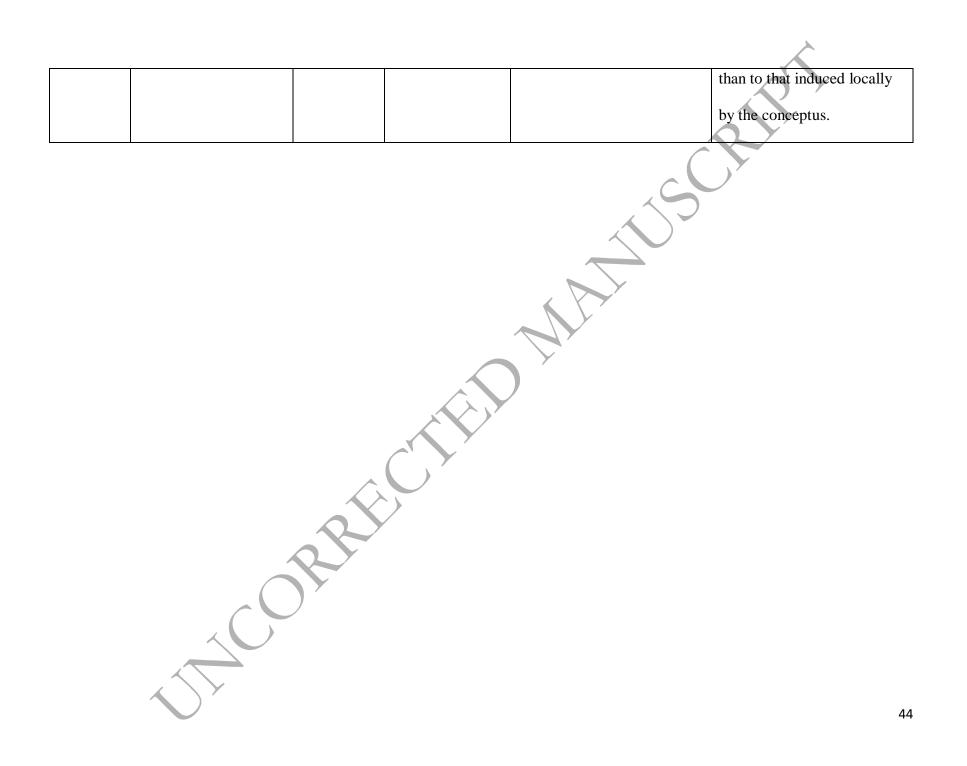
					$\mathbf{\lambda}$
					is characterised by the
					presence of uNK cells.
Pröll et al.	Tubal versus uterine	IHC	BY55, CD1a,	Non-pregnant FT samples,	Pregnant tubes were
(2000)	placentation: Similar		CD1b, CD1c,	and intrauterine decidua	characterised by the lack of
	HLA-G expressing		CD4, CD8,	from elective terminations.	NK cells and of cells
	extravillous		CD14, CD16,		expressing CD94 receptor
	cytotrophoblast		CD20, CD25,		specific for HLA-E, and a
	invasion but different		CD56, CD83,		prominent increase of
	maternal leukocyte		CD94, human		CD8 ⁺ T cells, dendritic cells
	recruitment		leukocyte	/	and macrophages.
			antigen DR		
			(HLA-DR),		
			HLA-G,		
			leukocyte		
			immunoglobulin		
		ſ	-like receptors 1		
				1	1

				-	\sim
			and 2 (LIR1 and		S Y
			LIR2),		
			cytokeratin, and	Ć	
			vimentin	S	
Randall et	Placentation in the	Microscopy	Histologic	None.	No histological evidence of
al. (1987)	fallopian tube		examination		any decidual reaction in
					~76% of tubal pregnancies
					examined.
Refaat et	The expression of	IHC and	Activin-βA,	Pseudopregnant FT samples	Increased activin-A
al. (2008)	activin-βA- and -βB-	quantitative	activin-βB,	collected from participants	expression by
	subunits, follistatin,	RT-PCR	activin receptor	undergoing hysterectomy	the FT epithelial cells may
	and activin type II		types 2A and 2B	who were injected with β -	stimulate tubal
	receptors in fallopian		(ActRIIA and	hCG prior to surgery.	decidualisation
	tubes bearing an		ActRIIB), and		and trophoblast invasion
	ectopic pregnancy		follistatin		within the tube. An increase
					in activin-A expression by
		·	·	·	

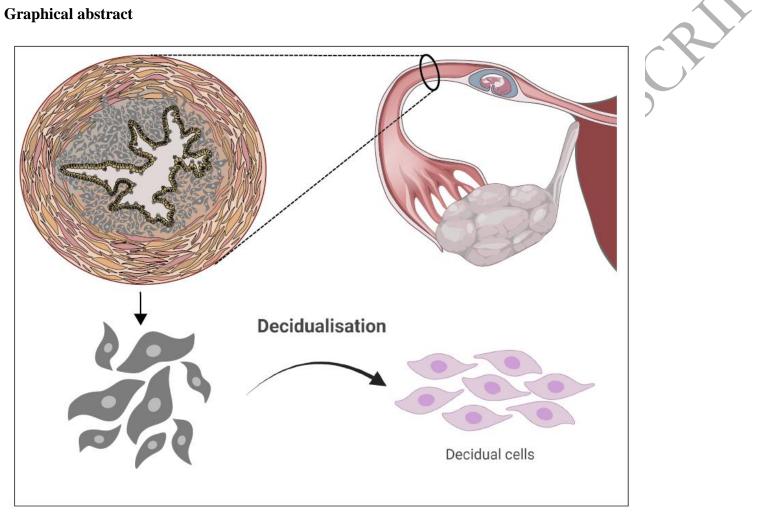

					the FT epithelial cells may
					increase the production of
				C	nitrous oxide in a
				15	concentration dependent
					manner, which will result in
					pathological relaxation of
					the tubal smooth muscles,
					failure of propulsion of the
					early embryo along the FT,
				<i>x</i>	and the development of
			C Y		ectopic pregnancy.
Refaat	The expression of	IHC and	Activin-βA,	Non-pregnant FT samples	Exposure of the tubal
and	activins, their type II	quantitative	activin-βB,	from the proliferative,	epithelium to hCG
Ledger	receptors and	RT-PCR	ActRIIA,	secretory and menstrual	modulates the expression of
(2011)	follistatin in human		ActRIIB, β-actin	phases, and pseudopregnant	tubal activins which are
	Fallopian tube during		and follistatin	FT samples collected from	involved in regulation of
			1		
	\mathbf{N}				36

	the menstrual cycle			participants undergoing	tubal physiology and early
	and in pseudo-			hysterectomy who were	embryonic development.
	pregnancy			injected with β -hCG prior to	
				surgery.	
Rewell	Extra-uterine decidua	Microscopy	Histologic	None.	Decidua was found in the FI
(1971)			examination		in 3% of cases associated
					with intra- uterine pregnancy
					before the 18 th week of
				× ·	gestation or in the
				/	puerperium, and found in all
					contralateral tubes in tubal
					pregnancies.
Rutanen	Decidual	IHC	IGFBP-1	Decidual tissue from early	25% of the FT studied, all
et al.	transformation of			pregnancy.	retrieved following tubal
(1991)	human extrauterine				ligation, contained decidual
	mesenchymal cells is				cells, which were
				•	·

					×
	associated with the				morphologically
	appearance of insulin-				indistinguishable from those
	like growth factor-			C	in endometrium. These cells
	binding protein-1			, C	stained positively for
					IGFBP-1, which the authors
					suggest proves IGFBP-1
					involvement in decidual
					transformation.
Spornitz	Pseudo-	Microscopy	Histologic	None.	The cells present at the tubal
(1993)	decidualization at the		examination	/	implantation site are
	site of implantation in				suggested to be named
	tubal pregnancy				"pseudo decidual cells", as
					apart from their large size,
					they do not possess the
					miniature mitochondria,
		×			basal lamina-like coat, or the
		1		1	38


					\mathbf{k}
					decidual granules seen in
					decidual cells. In addition,
				Ć	they are not of maternal
				, C	origin, thus it was indicated
					that ectopic endometrium is
					not involved in tubal
					implantation.
Tilden	Decidual Reactions in	Microscopy	Histologic	None.	12% of tubal segments
and	Fallopian Tubes:		examination	×	retrieved following post-
Winstedt	Histologic Study of			/	partum sterilisations
(1943)	Tubal Segments from				exhibited decidual formation
	144 Post-partum				of varying extent and
	Sterilizations				location. This study suggests
					that the receptivity of the
					tubal mucosa to the fertilised
		r			ovum may play a more
					39

					important role in ectopic
					implantation than generally
				Ć	believed.
Vassiliad	Characterization of	IHC	CD3, CD20,	Non-implantation site	Tubal decidualisation was
ou and	tubal and decidual		CD43, CD45,	regions from tEP specimens,	not observed in any of the
Bulmer	leukocyte populations		CD45RA, CD56,	and first-trimester	specimens examined.
(1998)	in ectopic pregnancy:		CD57, and	intrauterine decidua from	Macrophages and T cells
	Evidence that		CD68	participants with tEP.	were the most abundant
	endometrial			<i>y</i>	leukocyte populations at the
	granulated			7	tubal implantation site.
	lymphocytes are				
	absent from the tubal				
	implantation site				
Von	Effects of trophoblast	IHC	Cytokeratin,	Decidual tissue obtained	Leukocyte populations
Rango et	invasion on the		CD8, CD20,	from elective terminations of	present in the tubal
al. (2001)	distribution of	r		normal intrauterine	and uterine mucosa are an
		1			



				5	may be one reason for the higher degree of invasiveness of the trophoblast at the tubal implantation site.
Wist	Decidual Reaction and	Microscopy	Histologic	Non-implantation site	Decidual reactions were
(1954)	Tubal Pregnancy	Nicroscopy	examination	regions from tEP specimens.	observed in 17% of cases of tubal pregnancy, the majority of which appeared to occur away from the implantation site. This indicates that there is no chemotactic attraction between the ovum and decidual reaction.
					4

Zygmunt	Local fetal signal is	In-situ	Insulin-like	Endometrial tissue obtained	Abundant IGFBP-1 mRNA
et al.	not required for	hybridisatio	growth factor 2	from participants with tEP,	was present in the
(2000)	maintaining IGFBP	n and IHC	(IGF-II), IGFBP-	and intrauterine decidua and	decidualised segments of the
	gene expression in the		1, IGFBP-2,	FT tissue from elective	tubal wall in intrauterine
	human decidua:		IGFBP-3,	terminations of normal	pregnancies. Other IGFBP
	Evidence from		IGFBP-4,	pregnancies.	mRNAs were expressed in
	extrauterine		IGFBP-5,		moderated abundance
	pregnancies		IGFBP-6,		(IGFBP-3, IGFBP-4). These
			cytokeratin, and		findings suggest that the
			vimentin	<i>P</i>	expression of IGFBP-1
					mRNA is equal to the
					hormonally induced
					differentiation of
					endometrial or tubal stromal
					cells into decidua, rather
		1	1	1	1
	\sim				2

