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Maxime Médevielle

Supervised by

Dr Thomas Mohaupt

University of Liverpool

Department of Mathematical Sciences

March 2023

Thesis submitted in accordance with the requirements of

the University of Liverpool for the degree of

Doctor in Philosophy

Examiners:

Prof. Chris Hull FRS (Imperial College London, United Kingdom)

Prof. Alon Faraggi (University of Liverpool, United Kingdom)



Abstract

This thesis is centered around the study of geometric aspects of string theory and

supergravity. We will focus on N = 2, D = 4 supergravity theories in arbitrary spacetime

signature. We will obtain these supergravity theories as Calabi-Yau compactifications of

Hull’s exotic Type II theories. In ten dimensions these theories are related to each other

via T-duality and S-duality. We will obtain the four dimensional duality web of theories as

a projection of the ten-dimensional one. Moreover the T-duality relations between theories

define maps, from the vectormultiplet geometries to the hypermultiplet geometries, called

c-maps, which will be characterized and classified.

We will then turn to the study of solutions of such theories. We will be interested

in non-extremal black hole and cosmological solutions exhibiting planar symmetry. Such

solutions will be T-dualized and we will interpret their behavior once embedded in string

theory.
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passage a Paris. Merci aussi de m’avoir hebergé de nombreuses fois pour me permettre
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Chapter 1

Introduction

So are we quarks, strings,

branes or what?

New York Times, 22/09/1998

Unification of the observable fundamental phenomena of nature is one of the primary

goals of physics, and has historically been a fruitful way to make paradigm shifting dis-

coveries. The first unification dates back to Isaac Newton in the 17th century with the

formulation of the universal law of attraction, which unified under a single theoretical

framework the motion of celestial bodies in space and the motion of massive bodies on

the surface of the Earth. At the beginning of the 20th century Albert Einstein, with his

theory of special relativity, unified the concept of space and time to form a single entity

called spacetime. He then incorporated gravity in this framework in 1915 with his theory

of general relativity which led to a revolution in astrophysics and cosmology.

Thermodynamics first unified the concepts of heat and work as two manifestations of

energy. Subsequently a microscopic description of these phenomena was given by Lud-

wig Boltzmann with the advent of statistical physics and the atomic hypothesis. James

Clerk Maxwell, with the equations that bear his name, unified electric and magnetic

phenomena. The quantum revolution allowed for a unification of all atomic phenomena.

Subsequently, electromagnetism and quantum phenomena were also unified in a field the-

oretic framework dubbed quantum electrodynamics (QED) initiated by Paul Dirac and

then developed by people like Tomonaga, Schwinger, Feynman and Dyson. In the late

60’s, Glashow, Salam and Weinberg described, by incorporating the Higgs mechanism

(whose associated boson was discovered at the LHC in 2012), the unification of QED and

the weak nuclear force into the electroweak interaction. This laid the foundation for the

standard model of particle physics which, in its current form, is the most precise and

experimentally verified theory of physics.
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Even with all these spectacular successes, we know that the standard model is not the

end of the story as there are several loose ends. First and foremost, the standard model

does not account for gravity. Indeed, a quantum field theory for gravitation only works at

low energies because of its non-renormalizability. In order to probe phenomena like black

hole singularities or the Big Bang, a genuinely new quantum gravity theory is required.

The standard model also fails to explain other phenomena such as matter/antimatter

asymmetry, dark matter, dark energy, neutrino masses, hierarchy problems.

One of the main goals of current research in theoretical high energy physics is to find

a single unifying framework that can describe all the matter content in the universe and

all fundamental interactions. Such framework is sometimes referred to as a “theory of

everything”. String theory is currently the leading candidate for such a theory.

String theory was initially proposed in the form of the so called “dual resonance model”

by Veneziano in 1968 as a way to describe the strong nuclear interaction. The Veneziano

formula for the scattering of mesons was generalized for N-particles by Nambu, Nielsen

and Susskind who provided a physical interpretation in terms of an inifinite number of

simple harmonic oscillators describing the motion of an extended one-dimensional string,

hence the name “string theory”. String theory was a popular research topic in hadron

physics until it fell out of fashion in 1973 with the rise of quantum chromodynamics

(QCD) as the theory of the strong nuclear force, which fitted better with experimental

evidence such as the electron/proton deep inelastic scattering.

In 1974, John H. Schwarz and Joël Scherk, and independently Tamiaki Yoneya, found

that the spectrum of the quantum string contained a particle that exactly matched the

graviton. This lead to string theory being reinterpreted not as a theory of nuclear forces

but as a theory of quantum gravity. The early string models were still facing challenges,

one being that the bosonic string theory has a critical spacetime dimension D = 26 and

a tachyonic vacuum.

In 1984, the first superstring revolution marked a period of important discoveries that

reignited the interest in string theory. It was understood that string theory was capable

of describing all elementary particles and interactions between them thus making it a

promising candidate for a theory of everything. The revolution started with the discov-

ery of anomaly cancellation in type I string theory via the Green-Schwarz mechanism

(named after Michal Green and John H. Schwarz). Shortly after came the construction

of the heterotic string theories, by David Gross, Jeffrey Harvey, Emil Martinec and Ryan

Rohm. It was understood by Philip Candelas, Gary Horowitz, Andrew Strominger and

Edward Witten that phenomenologically realistic models could be obtained by compact-

ifying these theories on Calabi-Yau manifolds. By 1985, the five supersymmetric string

theories (type I, Type IIA and IIB, heterotic SO(32) and E8 × E8) were constructed.

In the early 1990’s, Edward Witten found evidence that the different superstrings were

different limits of an 11-dimensional theory whose low energy description is the unique
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11-dimensional supergravity theory. This theory became known as M-theory. He re-

lied heavily on earlier works on non-perturbative dualities, primarly the work of Sen on

S-duality [4] and the work of Hull and Townsend on U-duality [5]. These discoveries be-

gan the second superstring revolution. The different versions of superstring theory were

unified by various dualities and equivalences such as T-, S- and U-duality. The non-

perturbative nature of D-branes culminated at the same period and plays a central role in

string dualities. Proposals for a fundamental non-perturbative definition of string theory

emerged, amongst which we can mention the matrix model of Banks, Fischler, Shenker

and Susskind (BFSS), or the AdS/CFT correspondence by Juan Maldacena, which gives a

direct stringy realization of the holographic principle (for a detailed account of the history

of string theory see [6]). All these discoveries point to a rethinking of the role of space-

time in string theory. As Andrew Strominger pointed out “The notion of space ... and

time... and dimension are not absolute” [6]. He compares the situation with the phases of

H20 and their temperature dependance: in various regimes, water switches between solid,

liquid and steam. In the case of the dimensionality of spacetime, there is a dependence

on the energy of the system: it becomes another dynamical parameter similarly to how

the spacetime metric is made dynamical in classical general relativity. John Schwarz went

further and claimed “The remarkable role of duality symmetries and their geometrically

non-intuitive implications suggest to me that the theory might look very algebraic in

structure without evident geometric properties so that no space-time manifold is evident

in its formulation. In this case, the existence of space-time would have to emerge as a

property of a class of solutions. Other solutions might not have any such interpretation”.

The emergence of spacetime from more fundamental degrees of freedom is an idea that

is not specific to string theory but common with other approaches to quantum gravity

such as loop quantum gravity and causal sets. One particularly interesting question, and

which plays a central role in this thesis, is the role of spacetime signature. Indeed, if

spacetime were to be an emergent phenomenon, something would need to dictate not

only its dimensionality, but also its signature. Moreover, just like dimensionality can be

dynamical in string theory, can dynamical signature change occur?

In his “Orthogonal” trilogy [7–9], famous hard science fiction writer Greg Egan imag-

ined a story taking place in a universe where there are four fundamentally identical dimen-

sions, in other words, a universe with Euclidean signature. In his book “Dichronauts” [10],

he explored a universe with two distinct dimensions of time (split signature in four di-

mensions is often referred to as Klein space). Such considerations have often times been

fuel to science fiction books and philosophical treaties alike. Although the topic of signa-

ture change has been explored in the theoretical physics literature, it remains somewhat

controversial. Indeed, considering spacetimes of arbitrary signatures leads rapidly to fun-

damental issues clashing with causality and unitarity. Even if signature change is not

permitted in the real world, it can have interesting theoretical and even practical use
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(arbitrary signatures have for example found applications in the study of exotic forms of

matter and metamaterials, see [11,12] for example).

We do not aim to give a comprehensive account of the literature on signature change as

it is too extensive. Instead, we will only present a few interesting discussions that have

been raised in the topic so as to contextualise the work done in this thesis.

First and foremost, it is important to state that even fundamental considerations of causal-

ity can not trivially rule out the possibility of other signatures. Indeed, it has been shown

by Craig and Weinstein [13, 14] that the ultrahyperbolic wave equation (the wave equa-

tion in other signatures), possesses a well defined initial value problem. Initial data on a

mixed hypersurface obeying a particular nonlocal constraint evolves deterministically in

the remaining time dimension.

The most familiar case of signature change which is familiar for anyone dealing with

quantum field theories is the transition from Lorentzian to Euclidean signature. Indeed,

to deal with path integrals, it is a standard procedure to work with Euclidean signature

by performing a Wick rotation. However, this is usually interpreted as a mathematical

trick and not a proper hint of a fundamental Euclidean signature of the metric. This

interpretation tends to change when considering gravity into the mix. Indeed, in “Eu-

clidean quantum gravity”, the Euclidean path integral is taken seriously with the hope

of dealing with topology change (in the path integral the spacetime signature is a priori

unconstrained). The interplay between Euclidean and Lorentzian signature is explored

from several avenues in the context of cosmology. The famous “no-boundary proposal”

of Hartle-Hawking [15] deals with the cosmological singularity by describing a transition

in the early universe from a state with Euclidean signature to one with Lorentzian signa-

ture. Such a signature transition has also been proposed in Vilenkin’s quantum tunneling

proposal [16] for the wave function of the early Universe. Interestingly, recent numerical

studies of string matrix models (see [17–19]) have also observed a similar behavior. Arbi-

trary signature change and compact extra timelike dimensions have also been discussed

in the cosmology context by Sakharov [20]. Other applications of extra timelike dimen-

sions in the Kaluza-Klein context have also been studied (see for example [21–23] or more

recently [24] for the case of an oscillating universe)

The use of split signature in four dimensions to study Lorentzian physics has been dis-

cussed in [25]. Klein space has also found applications in different contexts like twistor

theory [26], the double copy [27], and the study of black holes [28].

If one were to accept the physical possibility of signature fluctuations, then this raises

the question of what determines the currently observed spacetime signature in our patch

of the universe. Several explanations have been proposed amongst which we can men-

tion [29] which treats one metric component as a genuine quantum field. The signature

of spacetime is then determined dynamically by its expectation value and it was found

that (under some assumptions) Lorentzian four-dimensional spacetime is selected. In [30]
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it is argued that the signature of spacetime is constrained by the consistency of electro-

magnetism. Tegmark brought forth anthropic arguments in order to explain the observed

signature [31](although as mentioned earlier the question of determinism in the ultrahy-

perbolic case is non-trivial). In the string context, the brane scan for branes of arbitrary

world-volume signature does not single out Lorentzian signature but suggests that it plays

a preferred role [32]. Lastly, group theoretic arguments based on representation theory

can be invoked to explain the observed spacetime signature [33,34]

If signature changing events are possible, the metric at the junction would degenerate

and strictly speaking the Einstein equations would cease to apply. Several proposals for

“junction conditions” have been proposed and lead to intense debates in the litterature

sometimes refered to as the “signature change controversy” (see for example [35–46]). Ul-

timately, there are strong hints that the issue of signature change can only be settled in a

full fledged quantum gravity framework. Indeed, as explained in [47], any model of QFT

on curved backgrounds suffers from infinite particle production at the junction. Without

a proper understanding of the backreaction any attempt to describe dynamical signature

change is moot. Just like the question of topology change and chronology protection, the

question of signature change seems to ultimately require quantum gravity in order to be

settled.

Exotic spacetime signatures have been explored in the string theory context in various

places. We can mention F-theory, a non-perturbative completion of Type IIB string the-

ory, which is formally formulated in (10+2) dimensions (although interpreting the extra

timelike coordinate as genuinely geometric is debatable). The N = 2 superstring also

gives rise to a 4D theory in split signature [48–50]. Itzhak Bars is a known proponent of

“two-time physics” which originates from string theory and is motivated by unifying sym-

metry arguments (see [51] for a review). Braneworld scenarios also support the possibility

of dynamic signature change [52]. Of primary interest to us in this thesis is the possibility

of signature change induced by string dualities. Indeed Hull found that considering exotic

dualities leads one to string theories of arbitrary spacetime signature [53]. Moreover it

was found that exotic negative branes (branes with negative tension), induce a bubble of

signature change around them [54], and these spacetimes are exactly described by the ex-

otic theories found by Hull. It has also been argued from algebraic considerations [55–57]

that different spacetime signatures sit on the same footing in the context of the E11 for-

mulation of M-theory [58].

We conclude by mentioning that there are considerations of going even beyond arbitrary

signatures of the metric. Indeed, several hints suggest that there are ways of making sense

of complex spacetime metrics. This was initially explored in the QFT context [59] but

is also discussed in the quantum gravity context through the lense of the Euclidean path

integral (see for example [60]).



6

Thesis outline This thesis is organised as follows:

In Chapter 2 we will review the classical and quantum bosonic string. We will rederive

the important results relevant for this work, in particular the construction of the massless

spectrum. We will study the bosonic string compactified on a circle and introduce the

central concept of T-duality. We will then turn to the supersymmetric string with a focus

on Type II theories and the T-duality relation between them. We then conclude with an

overview of other superstring theories and dualities relating them.

Chapter 3 will be devoted to presenting the necessary background of supergravity and

geometry. We will first present supersymmetry algebras and their representation theory to

construct supersymmetric field theories. Then, we will show how to perform a dimensional

reduction in the field theory setting, a process known as Kaluza-Klein theory. We will

describe Calabi-Yau manifolds, which are a prime choice for the compactification space

in superstring theory. We will then introduce the “special geometry” of the Calabi-Yau

moduli spaces.

In Chapter 4 we will present the new results that constitute the main work of this

thesis. We will first review the relevant material about vector and hypermultiplets in

arbitrary spacetime signatures. We will then perform the Calabi-Yau compactifications

of the exotic Type II supergravity theories that were constructed by Hull by performing

timelike T-duality. We will be focusing on the sign flips happening in the Lagrangian in

order to interpret them in terms of special geometry of the scalar sector of the supergravity

theories in 4 dimensions. We will classify the different T-duality relations happening in 4

dimensions in order to construct the 4-dimensional duality web.

In Chapter 5 we will present some preliminary results of work to appear, which studies

the global action of T-duality on spacetimes with non-extremal Killing horizons. These



Chapter 1. Introduction 7

solutions are black hole and cosmological solutions of Einstein (anti)-Maxwell theory with

planar symmetry. In order to perform T-duality, a 4-dimensional version of the Type

II Buscher rules will be derived. An embedding of the dualized solutions in Type II*

supergravity will also be discussed.

Finally we will conclude with potential future projects furthering the work done in

this thesis. In particular we will discuss embedding this work in Double Field Theory, an

effective field theoretic framework which makes T-duality manifest.



Chapter 2

Bosonic and Type II string theory

There is geometry in the

humming of the strings.

Pythagoras

In this chapter we will introduce the classical and quantum string theory. We focus on

the bosonic string because it allows to study many aspects of string theory while avoiding

complications due to to the presence of fermions in the case of the superstring. We will be

focusing primarily on the closed string as its spectrum contains the gravitational sector of

the theory. We will then introduce T-duality, a fundamental symmetry of string theory

that plays a major role in this thesis. Finally we will describe the Type IIA and Type

IIB string theories, which are T-dual to each other. Our main references are [61–63].

2.1 Classical bosonic string theory

We start with the study of the classical relativistic bosonic string. Our aim is to write

an action for such a string and study its dynamics.

2.1.1 Nambu-Goto action

We start with the classical relativistic string, which means a one-dimensional object

which traces a worldsheet in spacetime. This worldsheet Σ is a surface embedded in

Minkowski spacetime M
X : Σ→ X(σ, τ) ∈M, (2.1)

where we chose linear coordinates associated to a Lorentz frame X = Xµ with µ =

0, 1, ..., D−1 and D being the dimension of spacetime. We choose on the worldsheet local

8
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coordinates σ = (σ0, σ1) = (σα). σ0 is time-like and σ1 is space-like. We introduce the

following notation

Ẋ = ∂0X
µ =

(
∂Xµ

∂σ0

)
, X ′ = ∂1X

µ =

(
∂Xµ

∂σ1

)
. (2.2)

For a free string that does not split or join, the topology of the worldsheet is either a

strip (open string) or a cylinder (closed string). The coordinate σ1 takes values in [0, π]

and σ0 takes values in [σ0
(1), σ

0
(2)] ⊂ R. We want the action describing this physical system

to not depend on the choice of coordinates on the worldsheet, in other words we want

the action to exhibit reparametrization invariance. One obvious physical quantity of the

worldsheet that does not depend on coordinates is the area of the worldsheet, so we start

with an action proportional to the worldsheet area

S[X] = −TA(Σ) = −T
∫
Σ

d2A, (2.3)

where T is the string tension. The Minkowski metric ηµν induces on the worldsheet Σ a

metric gαβ by pullback

gαβ = ∂αX
µ∂βX

νηµν . (2.4)

We can therefore define the invariant area element on Σ

d2A = d2σ
√
| det gαβ|. (2.5)

We can now write the action for the string as

SNG[X] = −T
∫
d2σ
√
| det ∂αXµ∂βXνηµν |. (2.6)

This is the Nambu-Goto action. We notice that it is also manifestly invariant under the

Poincaré transformations of M (for a review on spacetime symmetries see chapter 3).

We can write the action more explicitly for computational purposes

SNG =

∫
d2σL = −T

∫
d2σ

√
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2. (2.7)

We define worldsheet momentum densities as

Pα
µ :=

∂L
∂∂αXµ

. (2.8)

and we find

P 0
µ :=

∂L
∂Ẋµ

= T
(X ′)2Ẋµ − (Ẋ ·X ′)X ′

µ√
(Ẋ ·X ′)2 − Ẋ2(X ′)2

, (2.9)

P 1
µ :=

∂L
∂X ′µ = T

Ẋ2X ′
µ − (Ẋ ·X ′)Ẋµ√

(Ẋ ·X ′)2 − Ẋ2(X ′)2
. (2.10)
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The equations of motion are obtained by applying the variational principle on the Nambu-

Goto action, which means that the action has to be invariant under X → X+δX, keeping

the endpoints of the string fixed: δX(σ0 = σ0
(1)) = δX(σ0 = σ0

(2)) = 0. Carrying out the

variation gives

δS =

∫
d2σ(P 0

µδẊ
µ + P 1

µδX
′µ). (2.11)

Performing an integration by parts gives two boundary terms

δS =

∫ π

0

dσ1[P 0
µδX

µ]
σ0
(2)

σ0
(1)

+

∫ σ0
(2)

σ0
(1)

dσ0[P 1
µδX

µ]σ
1=π

σ1=0 −
∫
d2σ∂αP

α
µ δX

µ. (2.12)

The first term vanishes because of the variational principle, which requires that the initial

and final positions are kept fixed. However, we need to impose other boundary conditions

for the second term to vanish as well, namely∫ σ0
(2)

σ0
(1)

dσ0[P 1
µδX

µ]σ
1=π

σ1=0 = 0. (2.13)

There are 3 different possibilities to satisfy this constraint:

1. Periodic boundary conditions

X(σ1) = X(σ1 + π). (2.14)

This means that the string is closed.

2. Neumann boundary conditions

P 1
µ |σ1=0,π = 0. (2.15)

These constraints imply that δXµ don’t have restrictions at the boundaries so these

describe strings whose momentum is conserved at the endpoints, and can therefore

move freely.

3. Dirichlet boundary conditions

P 0
i |σ1=0,π = 0. (2.16)

This implies that the tangential component of the world-sheet momentum vanishes

at the boundary, meaning that the endpoints of the string are kept fixed in the i-th

direction

X i(σ1 = 0) = xi0, X i(σ1 = π) = xi1. (2.17)

The translation invariance of Minkowski is therefore broken and momentum is not

conserved at the ends of the string. The way to restore this conservation is to couple

these open strings with new dynamical objects called D-branes.
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A detailed introduction of D-branes is beyond the scope of this work and much re-

mains to be understood since these objects are inherently non-perturbative, we will only

comment on a few general properties that these objects possess. When we want to specify

their dimensionality, we call them Dp-branes, whence a D0-brane is a D-particle, a D1-

brane is a D-string (which is not the same object as the fundamental string), a D2-brane

is a membrane,... and a (D-1)-brane is space-filling. Dirichlet conditions were rarely

considered, and the existence of D-branes was shown using T-duality in [64, 65]. Indeed,

since T-duality exchanges Neumann and Dirichlet, such boundary conditions necessarily

appear in regions of the moduli space of the open string. It was then shown by Polchinski

that D-branes are the objects charged under the Ramond-Ramond fields, and that they

correspond to the black p-branes of the supergravity effective theory, thus triggering the

second superstring revolution and rapid advances in the non-perturbative understanding

of string theory. When considering stacks of D-branes that coincide, the field theories

living on the world-volume of these branes are described by non-abelian gauge theories,

making them a prime choice for string phenomenology in order to recover the gauge group

of the standard model. (For a review on D-branes see [66, 67]).

One might wonder if Dirichlet boundary conditions in the time direction make sense.

As it turns out, after a Wick rotation, these objects play the role of instantons. In field

theory, instantons are solutions of the Euclidean equations of motion with a finite action

thus corresponding to saddle points of the Euclidean path integral. When expanding

around these saddle points, instantons contribute as non-perturbative corrections to ob-

servables. Indeed, for gauge theories (and string theory), the coupling constant g enters

with a weight of e
− 1

g2 which is not analytic at g = 0 and is therefore not captured by

perturbation theory. Euclidean Dp-branes can contribute in Type II theories when their

world-volume are along compact directions (a direct computation of instanton effects in

Type IIA/B on Calabi-Yau threefolds was achieved recently [68, 69]). Timelike Dirichlet

boundary conditions can also play a role in Lorentzian signature if one considers time-like

T-duality, in which case D-branes are time-like T-dual to E-branes (Euclidean branes),

which are not necessarily compact.

Coming back to our variational principle, after imposing the various boundary condi-

tions, we finally obtain the equations of motion which take the form

∂αP
α
µ = 0. (2.18)

which might look complicated if written explicitly, but if we were to choose a coordinate

system where Ẋ · X ′ = 0, Ẋ2 = −1, X ′2 = 1 then these would reduce to a simple wave

equation. We are interested in getting the quantum theory of the relativistic string,

however the presence of the square root in the action makes the process cumbersome, we

therefore turn to the Polyakov action.
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2.1.2 Polyakov action

One can write an action called the Polyakov action, classicaly equivalent to the

Nambu-Goto action, that is more suitable for quantisation. The square root is elimi-

nated by adding an auxiliary field hαβ into the action

SP [X, h] = −
T

2

∫
d2σ
√
hhαβ∂αX

µ∂βX
νηµν , (2.19)

where hαβ has signature (−+). This action, just like the Nambu-Goto action, exhibits

spacetime Poincaré invariance and reparametrisation invariance on the worldsheet. How-

ever, this action exhibits a new local symmetry: Weyl invariance

hαβ(σ)→ e2Λ(σ)hαβ(σ). (2.20)

This symmetry is a special property of strings, and requiring that it holds in the quantum

case will impose stringent constraints on our theory.

Once again, we obtain the equations of motion from the variational principle on the

Polyakov action

1√
h
∂α

(√
hhαβ∂βX

µ
)
= 0, (2.21)

∂αX
µ∂βXµ −

1

2
hαβh

γδ∂γX
µ∂δXµ = 0. (2.22)

The same boundary conditions (periodic, Neumann, Dirichlet) as the Nambu-Goto action

need to be imposed for boundary terms to vanish. The first equation is a two-dimensional

wave equation on the Riemannian manifold (Σ, hαβ) which can be reformulated as

2Xµ = 0 ⇐⇒ ∇α∇αXµ = 0, (2.23)

where ∇α is the covariant derivative with respect to the worldsheet metric hαβ.

The Polyakov action allows us to take an alternative viewpoint because it takes the

form of a two-dimensional field theory of free massless scalar fields. Interpreted this way, Σ

is a two-dimensional spacetime on which D scalar fields X live and take value in the target

space M. This is called the worldsheet point of view. Definining the energy-momentum

tensor

Tαβ := − 4

T

1√
h

δSP

hαβ
= 2∂αX

µ∂βXµ − hαβhγδ∂γXµ∂δXµ, (2.24)

we can reinterpret one of the equations of motion as

Tαβ = 0. (2.25)

This is a constraint that has to be imposed on the solutions of the other equation of

motion.
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We can bring expressions to a standard form by performing a gauge fixing. Indeed, the

metric hαβ has 3 independent components and three local symmetries (reparametrisation

of two coordinates and Weyl transformations), suggesting that we can completely fix the

form of the metric. This is true locally because any two-dimensional Riemannian metric

can be written as the product of a flat metric and a conformal factor, which can be

removed using a Weyl transformation

hαβ → e2Ω(σ)ηαβ → ηαβ. (2.26)

In this conformal gauge the equations of motion for the field Xµ are

2Xµ = −(∂20 − ∂21)Xµ = 0. (2.27)

We recognize the two-dimensional wave equation in flat space-time whose general solution

is

Xµ(σ) = Xµ
L(σ

0 + σ1) +Xµ
R(σ

0 − σ1), (2.28)

describing decoupled left- and right-moving waves. Any solution of this equation needs

to be supplemented by constraints in order to be a solution of string theory. The first

constraint is the boundary conditions that were introduced earlier (periodic, Neumann,

Dirichlet). The other constraint is the h equation Tαβ = 0 which now needs to be enforced

by hand

T01 = T10 = 2ẊX ′ = 0, T00 = T11 = Ẋ2 +X ′2 = 0. (2.29)

For the Polyakov action the canonical momenta are

Πµ =
∂LP

∂Ẋµ

= TẊµ, (2.30)

and the canonical Hamiltonian is

Hcan =

∫ π

0

dσ1(ẊΠ− LP ) =
T

2

∫ π

0

dσ1(Ẋ2 +X ′2), (2.31)

which clearly vanishes on-shell because of the constraints.

The general solution of the wave equations suggests to introduce lightcone coordinates

σ± := σ0 ± σ1. (2.32)

In this coordinate system the wave equation takes the form

− 4∂+∂−X
µ = 0, (2.33)

which makes it manifest that the general solution decomposes as independent left- and

right-moving waves. The constraints become

T++ = 2∂+X
µ∂+Xµ = 0 ⇐⇒ Ẋ2

L = 0, (2.34)

T−− = 2∂−X
µ∂−Xµ = 0 ⇐⇒ Ẋ2

R = 0. (2.35)
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2.1.3 Explicit solution

We are now ready to study the solutions in detail. In this section, we will focus on

the case of periodic boundary conditions, the reason being as we will show later, that

closed string excitations describe gravitational degrees of freedom and therefore play a

central role in this work. The most general solution of the two-dimensional wave equation

periodic in σ1 can be parametrised as

Xµ(σ) = xµ + L2
Sp

µσ0 +
i

2
LS

∑
n̸=0

1

n
αµ
ne

−2inσ−
+
i

2
LS

∑
n̸=0

1

n
α̃µ
ne

−2inσ+

, (2.36)

where xµ, pµ ∈ R, (αµ
n)

∗ = αµ
−n and (α̃µ

n)
∗ = α̃µ

−n. The string length LS is defined as

LS =
1√
πT

=
√
2α′, (2.37)

but we will from now on work in string units LS = c = ℏ = 1 unless specified otherwise.

α′ is called the Regge slope parameter and it is standard to show dimensionful formulas

using this quantity. We can compute the total momentum

P µ = T

∫ π

0

dσ1Ẋµ = pµ, (2.38)

and the motion of the centre of mass

xµCM =
1

π

∫ π

0

dσ1Xµ(σ) = xµ + pµσ0, (2.39)

which matches the world-line of a massive relativistic particle

xµ(τ) = xµ(0) +
dxµ

dτ
(0)τ. (2.40)

The physical interpretation of the parameters is now clear, pµ is the total momentum of

the string whose centre of mass behaves like a relativistic particle, which is a straight line

in Minkowski spacetime in the free case. The motion of the relativistic string decomposes

into two parts: a zero mode part corresponding to the motion of the centre of mass and

the remaining terms that describe left- and right-moving waves.

In order to impose the constraint, we can evaluate the conserved charges. We recall

that, on-shell, the energy momentum tensor is conserved which in light-cone coordinates

gives

∂−T++ = 0, ∂+T−− = 0 (2.41)

Since the left and right-moving sectors are independent we focus on just T++. Because of

the periodic boundary condition we have that T++(σ
+ + π) = T++(σ

+), therefore we can

create infinitely many conserved currents by multiplying T++ with an arbitrary (smooth)

periodic function since

∂−(f(σ
+)T++) = 0, (2.42)
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whose corresponding conserved charge is

Lf = T

∫ π

0

dσ1f(σ+)T++. (2.43)

The function f being periodic, we can expand it in a Fourier series with basis {e2imσ+|m ∈
Z} providing a basis {L̃m|m ∈ Z} for the conserved charges. Being conserved, we can

evaluate them at σ0 = 0 and using the constraint T±± = 2(∂±X)2 we find

L̃m :=
1

4π

∫ π

0

dσ1e2imσ1

T++ =
1

2

∞∑
n=−∞

α̃m−n · α̃n, (2.44)

Lm :=
1

4π

∫ π

0

dσ1e−2imσ1

T−− =
1

2

∞∑
n=−∞

αm−n · αn, (2.45)

where we have defined αµ
0 = α̃µ

0 = 1
2
pµ. The constraints T±± = 0 imply that

Lm = L̃m = 0. (2.46)

The canonical Hamiltonian is

H =
1

2π

∫ π

0

dσ1(Ẋ2 +X ′2) = L0 + L̃0 =
1

2

∞∑
n=−∞

(α−n · αn + α̃−n · α̃n) =
p2

4
+N + Ñ = 0,

(2.47)

where we defined total occupation numbers

N =
∞∑
n=1

α−n · αn, Ñ =
∞∑
n=1

α̃−n · α̃n. (2.48)

This provides us with the mass shell condition

M2 = −p2 = 4(N + Ñ). (2.49)

The same type of analysis can be performed for Neumann and Dirichlet boundary

conditions, as well as the case of a non-oriented string. Having investigated the classical

relativistic string, it is now time to turn to the quantum theory.

2.2 Quantization of the bosonic string

We now want to turn to the quantum theory of the relativistic string. The most

rigorous procedure is to apply the BRST formalism, but for our purposes old covariant

quantization will be enough to access the relevant properties of the theory that we want

to study.
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2.2.1 The Fock space

We start by imposing the equal time commutation relations on the string coordinates

[Xµ(σ0, σ1),Πν(σ0, σ′1)] = iηµνδπ(σ
1 − σ′1), (2.50)

[Xµ(σ0, σ1), Xµ(σ0, σ1)] = [Πν(σ0, σ′1),Πν(σ0, σ′1)] = 0, (2.51)

where

δπ(σ
1) =

1

π

∞∑
k=−∞

e−2ikσ1

= δπ(σ
1 + π) (2.52)

is the δ-function of period π. These can be shown to be equivalent to

[xµ, pν ] = iηµν , [αµ
m, α

ν
n] = mηµνδm+n,0, [α̃µ

m, α̃
ν
n] = mηµνδm+n,0 (2.53)

with all other commutation relations vanishing. Since Xµ is hermitian we have

(xµ)† = xµ, (pµ)† = pµ, (αµ
m)

† = αµ
−m, (α̃µ

m)
† = α̃µ

−m. (2.54)

We see that we indeed get an infinite set of harmonic oscillators, so let us now turn to

the construction of the Fock space. We start by defining the ground state |0⟩ defined as

αµ
n|0⟩ = 0, α̃µ

n|0⟩ = 0, pµ|0⟩ = 0, n > 0. (2.55)

The oscillator eigenstates are generated by acting on the ground state with creation

operators. Assuming the vacuum is normalized as ⟨0|0⟩ = 1, the scalar products of

two oscillator states is

(αµ
−m|0⟩, αν

−n|0⟩) = ⟨0|αµ
mα

ν
−n|0⟩ = mηµνδm,n. (2.56)

We notice that this scalar product is not positive definite, but we still haven’t imposed

the constraints. We will explore how to impose the constraints in the quantum theory in

the next section which will allow us to restrict the Fock space to the space of physical

states Fphys. By combining momentum and oscillator eigenstates we can write down a

basis for the Fock space of a closed string

B = {αµ1
−m1

αµ2
−m2

. . . α̃ν1
−n1

α̃ν2
−n2

. . . |k⟩ ∈ F|k ∈ RD, µi, νi = 0, ..., D − 1,mj, nj = 1, 2, ...}
(2.57)

2.2.2 Imposing the constraints

The constraints in the classical theory are Lm = L̃m = 0 and are imposed on solutions

as initial conditions. In the quantum theory, the constraints select the physical space

Fphys ⊂ F . Since L†
m = L−m, it is sufficient to impose

Lm|ϕ⟩ = 0,m > 0 =⇒ |ϕ⟩ ∈ Fphys ⊂ F . (2.58)
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The reason why we do not impose these constraints directly as an operator equation is

the same reason as for the Gupta-Bleuler quantisation of QED. Indeed, imposing the

constraint at the level of operators will spoil commutation relations, so instead we impose

that the matrix elements between physical states vanish.

The case m = 0 needs to be treated separately because it has an ordering ambiguity.

Indeed the normal ordered operator is

LNO
0 =

1

2
: α−n · αn :=

1

8
p2 +N, (2.59)

while the classical ordering gives

LCO
0 =

1

2

∞∑
−∞

α−n · αn =
1

8
p2 +

1

2

∞∑
n=1

(αn · α−n + α−n · αn) (2.60)

which entails

LCO
0 − LNO

0 =
D

2

∞∑
n=1

n. (2.61)

We know that L0 + L̃0 is the worldsheet Hamiltonian so this signifies an ambiguity in the

energy of the ground state. In QFT, normal ordering is imposed, because it renders a

vanishing energy for the ground state which is the only consistent choice with the Poincaré

invariance of Minkowski spacetime. However, the worlsheet has finite spatial extension

and the energy of the ground state now depends on the volume, this is the Casimir effect.

To take into account this effect, we introduce shift parameters a and ã such that we arrive

at the following definition for physical states

|ϕ⟩ ∈ Fphys ⇐⇒ (L0 − a)|ϕ⟩ = (L̃0 − ã)|ϕ⟩ = 0, (2.62)

Lm|ϕ⟩ = L̃m|ϕ⟩ = 0,m > 0. (2.63)

Actually this space is not positive definite but only positive semi-definite

⟨ϕ|ϕ⟩ ≥ 0. (2.64)

The reason is because there are non-trivial null states in Fphys, whose existence is related to

the residual symmetry under conformal transformations which is not fixed in the conformal

gauge. Therefore we can define an equivalence relation ∼, identifying states which differ

only by a null state. Therefore the true physical space is

H = Fphys/ ∼ (2.65)

Finally, in order to ensure positive definiteness and unitarity in a Minkowski background,

it can be shown that one must impose the following conditions: D = 26 and a = ã = 1.

This is the no-ghost theorem (see [70] for details on how to derive it in the old covariant
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formulation). Let us interpret physically the L0 and L̃0 constraints, imposing them on a

physical state gives

(L0 − 1)|ϕ⟩ = 0 =⇒
(
1

8
p2 +N

)
|ϕ⟩ = |ϕ⟩ =⇒ 1

8
k2 +N = 1, (2.66)

and identical for L̃0. This gives

1

8
M2 = N − 1 = Ñ − 1, (2.67)

which can be rearranged as the mass shell condition

1

4
M2 = N + Ñ − 2, (2.68)

and the level-matching condition

N = Ñ . (2.69)

This constraint physically means that for a closed string, the left- and right-moving ex-

citations contribute equally to the mass of the string. Actually, this constraint holds

off-shell and is a consequence of translation invariance in σ1 (see [3,71] for discussions on

removing the constraint in a string field theoretic context).

2.2.3 Massless spectrum of the closed bosonic string

We are now ready to start studying the spectrum of states of the bosonic string.

Before looking at the excited states, comments are in order with respect to the ground

state. Indeed, according to the mass shell condition, the ground state is characterized

by N = Ñ = 0 and so has a negative mass squared M2 = −8. This means that the

vacuum of the closed bosonic string is tachyonic, signalling an instability, and that the

perturbative expansion was not performed on the true vacuum of the theory. The fate

of the open string tachyon was studied in detail using string field theoretic techniques

(see [72] for a review). The case of the closed string tachyon is much less understood.

Nonetheless, we aim to have a theory with space-time fermions, which is achieved by

considering superstrings. In these theories the tachyon is projected out of the spectrum

so they do not suffer from tachyon instabilities. We will therefore pursue our study of

the bosonic string, ignoring tachyon-related problems, as the lessons we can learn in this

context can be transposed to the supersymmetric case.

The general form of a massless closed string state is

|ζ, k⟩ = ζµνα
µ
−1α̃

ν
−1|k⟩. (2.70)

The only constraints that impose additional conditions are

L1|ζ, k⟩ = L̃1|ζ, k⟩ = 0, (2.71)



Chapter 2. Bosonic and Type II string theory 19

which lead to

kµζµν = 0. (2.72)

We can decompose this state into symmetric and anti-symmmetric parts ζµν = sµν + bµν ,

where

sµν = ζ(µν) =
1

2
(ζµν + ζνµ), bµν = ζ[µν] =

1

2
(ζµν − ζνµ). (2.73)

We focus on the symmetric part for now, so the states

sµνα
µ
−1α̃

ν
−1|k⟩, (2.74)

are physical if they satisfy

k2 = 0, kµsµν = 0. (2.75)

A state with the following polarization

σµν = kµζν + kνζµ, kµζµ = 0, (2.76)

is a null state. This induces the following residual gauge symmetry

sµν → sµν + kµζν + kνζµ, (2.77)

where kµζµ = 0. Since the trace sµµ is a Lorentz scalar, we decompose the polarization

tensor into a traceless symmetric part and a scalar part. We choose an auxiliary null

vector k̄, linearly independent from k and we impose kk̄ = 1 in order to parametrize

physical states. We get the following decomposition

1. The traceless part is

ψµν = sµν −
1

D − 2
sρρ(ηµν − kµk̄ν − kν k̄µ). (2.78)

2. The trace part is

ϕµν =
1

D − 2
sρρ(ηµν − kµk̄ν − kν k̄µ). (2.79)

We can check that this is a correct decomposition because

sµν = ψµν + ϕµν , ηµνψµν = 0, ηµνϕµν = sρρ, (2.80)

with the trace part of sµν being physical as kµϕµν = 0 and is not null. This field corre-

sponds to a scalar field called the dilaton, we will come back to the role of this field in string

theory in a moment. The physical state condition means that the tracless part is transver-

sal. For a standard representative of the momentum for a massless field k = (k0, 0, ..., k0)

this gives

k0ψ00 + k0ψ0,D−1 = 0⇒ ψ0,D−1 = −ψ00, (2.81)

and so on. Taking into account the symmetry we can give the following matrix form
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(ψµν)=


ψ00 ψ01 ψ02 . . . ψ0,D−2 −ψ00

ψ01 ψ11 ψ12 . . . ψ1,D−2 −ψ01

...
...

ψ0,D−2 ψ1,D−2 ψ2,D−2 . . . ψD−2,D−2 −ψ0,D−2

−ψ00 −ψ01 −ψ02 . . . −ψ0,D−2 ψ00

.

We can remove the null part according to (2.76) in which case we are left with the

transverse part representing the physical states

(ψtransv
µν )=


0 0 0 . . . 0 0

0 ψ11 ψ12 . . . ψ1,D−2 0
...

...

0 ψ1,D−2 ψ2,D−2 . . . ψD−2,D−2 0

0 0 0 . . . 0 0

,

with ψ11 + ψ22 + · · ·+ ψD−2,D−2 = 0.

The total number of states is decomposed as follows

1

2
D(D + 1)− 1 =

(
1

2
(D − 2)(D − 1)− 1

)
+ (D − 1) +D (2.82)

We can interpret it the following way:

• D unphysical components are removed by the physical condition kµsµν = 0.

• D − 1 degrees of freedom are removed because of the residual gauge invariance,

parametrized by the vector ζµ subject to kµζµ = 0.

• We are left with 1
2
(D − 2)(D − 1)− 1 physical states represented by (ψtransv

µν )

The field ψµν describes a massless symmetric tensor which corresponds in D = 4 to a

massless spin-2 particle with helicity eigenstates h = ±2. To show that this state has the

same kinematic properties as a graviton, one needs to study a linearisation of the vacuum

Einstein equations, we therefore refer the reader to [73] for details.

Let us now turn to the antisymmetric part of the massless closed string state which

will be of the form

bµνα
µ
−1α̃

ν
−1|k⟩, (2.83)

which is physical if

k2 = 0, kµbµν = 0. (2.84)

The null states are given by

βµν = kµζν − kνζµ, where kµζµ = 0. (2.85)
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The decomposition of states can be done in a similar fashion as previously

1

2
D(D − 1) =

1

2
(D − 2)(D − 3) + (D − 2) + (D − 1). (2.86)

This decomposition is understood the following way:

• (D − 1) unphysical components are removed by the physical condition kµbµν = 0

(one is trivially satisfied when µ = ν because of the anti-symmetry of bµν).

• (D−2) degrees of freedom removed because of residual gauge invariance. As before

kµζµ = 0 fixes one component, and another one can be fixed using the fact the the

gauge invariance is itself gauge invariant under ζµ → ζµ + Ckµ which can be used

to fix another component.

• We are left with 1
2
(D − 2)(D − 3) physical states.

This antisymmetric tensor field is known as the Kalb-Ramond field. Its importance comes

from the fact that the fundamental string is charged under this field. When we will

introduce T-duality, we will see that this field gets mixed with the metric. In 4 dimensions

the Kalb-Ramond field can be dualized, in the sense of Hodge duality, into a scalar where

it is then named the universal string axion. This fact will be of importance when we will

derive a 4D version of Buscher rules in Chapter 5.

Finally we turn to the trace part whose corresponding physical field is the dilaton

ϕ. This field plays a crucial role in string theory as its vacuum expectation value (vev)

determines the coupling constant of the theory. To see this we study the following action

S[gµν , ϕ] =
1

2κ2

∫
dDx
√
ge−2ϕ (R + 4∂µϕ∂

µϕ) , (2.87)

which is a string effective action describing the dilaton coupled to gravitons. The action is

given in the string frame so the Einstein-Hilbert term has an extra factor e−2ϕ compared

to the usual Einstein frame metric.

The equations of motion are solved for gµν = ηµν and arbitrary constant dilaton ϕ = ϕ0.

This means that Minkowski space is not a unique solution, but actually a 1 parameter

family of solutions parametrized by the vev of the dilaton. Massless scalar fields with

arbitrary vevs are called moduli, and the space of inequivalent ground states is the moduli

space of vacua.

We observe that shifting the dilaton ϕ→ ϕ+ϕ0 is equivalent to rescaling the gravita-

tional coupling κ→ κeϕ0 . Therefore, as long as we do not specify the vev of the dilaton,

κ has no physical meaning. We can therefore define κ0 to be the value at which the

gravitational coupling equals the string scale parameter α′. By dimensional analysis we

have

κ0 = (α′)(D−2)/4. (2.88)
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We can now parametrise different values of the coupling constant using the vev ϕ0 of the

dilaton

κ = (α′)(D−2)/4eϕ0 . (2.89)

We will not give a detailed account of how interactions and amplitudes are described in

string theory. For this we refer the reader to any standard textbook on string theory. What

is relevant for us to know is that the scattering of closed oriented strings are represented

by connected oriented surfaces, and there is a unique basic interaction describing the

splitting of a closed string or the fusion of two.

Figure 2.1: The closed string vertex.

When performing the path integral, the sum over inequivalent surfaces includes a sum

over topologies. In the closed string case, the topology of the surface is encoded by the

Euler characteristic χ = 2− 2g where g is the genus of the surface. Increasing the genus

of the worldsheet by one means that the surface has two new vertices so a surface of genus

g and M external states has M − χ(g) vertices, and therefore carries a factor κM−χ(g),

where κ is the string coupling constant (we give it the same name as the gravitational

one because considering graviton scattering allows us to identify them).

Figure 2.2: Genus h expansion of a four-point amplitude. The boundary circles are

mapped to points thanks to the conformal structure of the surfaces.
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Now exploiting equation (2.89), an M-particle string amplitude can be written as

e(M−χ(g))ϕ0 and we indeed see that we can define the dimensionless string coupling con-

stant as gS = eϕ0 thus justifying the claim that the dilaton vev encodes the perturbative

expansion of string scattering amplitudes.

2.2.4 Curved backgrounds

So far we have only discussed string theory in a flat Minkoswki background. We now

turn to string theory in a curved background. The Polyakov action is now

S[X, h|G] = − 1

4πα′

∫
d2σ
√
hhαβ∂αX

µ∂βX
νGµν(X). (2.90)

This action describes a map between the worldsheet with metric hαβ to the curved target

spacetime with background metric Gµν . Ultimately, since the closed string has a graviton,

we expect this background to actually be dynamical. It can also be shown that the

background can be constructed as a coherent state of gravitons.

In what follows, we will consider the fully generalized Polyakov action, where the string

is also coupled to a background B-field and a background dilaton

S[X, h|G,B, ϕ] = S[X, h|G] + S[X, h|B] + S[X, h|ϕ]. (2.91)

The coupling with the B-field is described by a two-dimensional Wess-Zumino term

S[X, h|B] = − 1

4πα′

∫
d2σϵαβ∂αX

µ∂βX
νBµν(X). (2.92)

The coupling with the dilaton is

S[X, h|ϕ] = 1

4π

∫
d2σ
√
hRhϕ(X), (2.93)

where Rh is the world-sheet Ricci scalar. For a constant dilaton background ϕ = ϕ0,

we can perform the integral explicitly. Indeed, due to the Gauss-Bonnet theorem, the

Einstein-Hilbert action in 2 dimensions is purely topological. We therefore find that

1

4π

∫
d2σ
√
hRhϕ0 = χ(Σ)ϕ0 = (2− 2g)ϕ0. (2.94)

In the path integral, this term contributes to e−S[X,h|ϕ] = e−(2−2g)ϕ0 which shows again

that the vev of the dilaton accounts for the genus dependance in scattering amplitudes.

When imposing the conformal gauge, the theory is not free as it was in the Minkoswki

case, it is therefore non-trivial to check that the theory is renormalisable and conformal.

The renormalization procedure typically introduces an energy scale which breaks con-

formal invariance. However in string theory conformal symmetry is gauged so it would
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be anomalous and thus inconsistent. We need to understand under which circumstances

conformal invariance is preserved in the quantum theory. The energy scale µ dependence

of the coupling constants g is encoded in the β-functions as

β(g) =
∂g

∂ log µ
= µ

∂g

∂µ
. (2.95)

In order to be scale invariant, all the β-functions need to vanish and it was shown by

Polchinski that in 2D, combined with Poincaré invariance and unitarity, this implies

conformal invariance [74] (To be accurate we only require local Weyl invariance, we also

actually have functionals since the couplings are field dependent so we now write them

β̄-functionals). The conditions to preserve conformal invariance at the quantum level are

therefore

β̄[Gµν(X)] = β̄[Bµν(X)] = β̄[ϕ(X)] = 0. (2.96)

These equations can be evaluated in α′ perturbation theory and we obtain

α′RG
µν + 2α′∇µ∇νϕ−

α′

4
HµλωH

λω
ν +O(α′2) = 0, (2.97)

− α′

2
∇ωHωµν + α′∇ωϕHωµν +O(α′2) = 0, (2.98)

− α′

2
∇2ϕ+ α′∇ωϕ∇ωϕ− α′

24
HµνλH

µνλ +O(α′2) = 0. (2.99)

We see for example, that at the lowest level the first equations give us Einstein equations

with the B-field and dilaton as sources.

More generally, all the β̄-functional equations enforce that the background fields sat-

isfy their equation of motions. In other words, the quantum consistency of the theory

enforces the background fields to be on-shell. All these equations of motion can be derived

from the following effective action

Seff =
1

2κ2

∫
dDx
√
Ge−2ϕ

(
RG + 4∂µϕ∂νϕ−

1

12
HµνρH

µνρ

)
. (2.100)

Field configurations that solve the β̄-equations are said to be consistent string back-

grounds. The simplest solution is

Gµν = ηµν , Bµν = 0 ϕ = const. (2.101)

This is an exact solution at all orders in α′ since this is exactly the Polyakov action which

defines a conformal field theory. If we only impose Bµν = 0 and ϕ = const then we have

β̄[Gµν(X)] = 0⇒ α′Rµν +
1

2
α′2RµαβγR

αβγ
ν +O((α′)3) = 0. (2.102)

It is clear that at first order in α′, string theory recovers the vacuum Einstein equations.

But we now see that string theory also provides higher order curvature corrections to
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Einstein equations. (Interestingly, in the Type II theories that we will introduce later on,

the α′2 corrections are absent and the first corrections appear at order α′3).

We have seen that consistency requires the spacetime dimension to be D = 26 for the

bosonic string. However the universe has 4 large dimensions. To make contact with the

real world, it is standard to compactify the extra dimensions, which means that the space-

time manifold takes the form M×X where X is a compact manifold whose size is smaller

than the length scales we can currently probe today. The first β̄-equation tells us that the

spacetime must be Ricci-flat (when there are no fluxes). But besides Minkoswki, there is

a large number of other Ricci-flat solutions (alluding to the vastness of the string theory

landscape).

The simplest choice is to just consider a torus where the extra dimensions are period-

ically identified. This simple example already exhibits many interesting properties and

in the next section we will explore one of them, T-duality, in detail. In the context of

the superstrings (where D = 10), a prime choice for the compact space are Calabi-Yau

manifolds. The reason is that the resulting lower dimensional theory preserves some of the

supersymmetry and therefore allows one to have better analytic control of the resulting

theory. A description of Calabi-Yau manifolds will be given in Chapter 3.

The requirement that D = 26 is actually not true in full generality. To see this, we

relax this condition and study again the β̄-equation of the dilaton which now takes the

form

β̄(ϕ) =
D − 26

6
− α′

2
∇µ∇µϕ+ α′∇µϕ∇µϕ− α′

24
HµνρH

µνρ +O(α′2) = 0. (2.103)

We can see that the Weyl anomaly arises as the leading order term in the dilaton’s β̄-

equation and the effective action now becomes

Seff =
1

2κ2

∫
dDx
√
Ge−2ϕ

(
RG − 1

12
HµνρH

µνρ + 4∂µϕ∂νϕ−
2(D − 26)

3α′

)
. (2.104)

This method for getting D ̸= 26 world is however not straightforward because Minkoswki

spacetime is no longer a solution of the theory. There are also reasons to expect the

perturbative regime to be less under control. The best way to understand how we can

get non-critical string theories is to look at the BRST quantisation. Indeed, each string

coordinate carries a central charge c = 1 but the Faddeev-Popov ghosts that arise when

gauge fixing carry a charge cghost = −26 and therefore the consistency requirement is

really ctotal = c+ cghost = 0. Therefore we have two choices:

• critical string theory where the string coordinates CFT has c = 26 and thus cancels

the conformal anomaly.

• non-critical string theory where c ̸= 26 where the conformal mode now becomes a

dynamical field. This is what is known as Liouville string theory.
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2.3 String compactifications

In this thesis, we work in the framework of the critical string, and we adopt a geometric

approach to extra dimensions (in contrast to a CFT/algebraic approach). By this we mean

that we will consider compactifications of the higher dimensional theory on a compact

manifold. For simplicity, we are going to study the case of a circle compactification of a

single spacetime coordinate. This simple example is enough to explore many properties of

string compactifications, including T-duality. In a nutshell, T-duality can be understood

as a target-space duality, we will show that by considering theories defined on two different

backgrounds, they are actually physically indistinguishable.

2.3.1 Spectrum of the closed strings on S1

In this subsection we study the worldsheet theory of a closed string on a background

of the form

MD−1 × S1
R, (2.105)

where R is the radius of the circle. In later chapters, we will explore this from the

spacetime and effective actions point of view. We denote the internal coordinate by X

subject to

X ≃ X + 2πR. (2.106)

Thus the string is closed if

X(σ0, σ1 + π) = X(σ0, σ1) + 2πRm, m ∈ Z. (2.107)

The parameter m is known as the winding number and says how many times does the

string wind around the circle, the sign accounting for direction. As is standard from

quantum mechanics, a periodic direction implies that momentum is quantized in this

direction, indeed

eikX ≃ eik(X+2πRm) → k · 2πRm ∈ 2πZ→ k =
n

R
, n ∈ Z. (2.108)

The parameter n is the momentum number.

The expansion of the coordinates Xµ for µ = 0, ..., D − 2 does not change from the

previous section, however the internal coordinate gets modified

X(σ0, σ1) = x+ pσ0 + 2pσ0 + 2wσ1 + . . . , (2.109)

Defining left- and right-moving momenta as

pL =
1

2
p+ w, pR =

1

2
p− w, (2.110)
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the mode expansion becomes

X(σ+, σ−) = x+ pLσ
+ + pRσ

− + . . . . (2.111)

so we can express the compact coordinate entirely in terms of left and right movers

X(σ+, σ−) = XL(σ
+) +XR(σ

−). (2.112)

Splitting the operator x into left- and right-moving parts we have

[xL, pL] = i = [xR, pR]. (2.113)

We write kL and kR the eigenvalues of pL and pR and take the values

kL =
1

2
k + w, kR =

1

2
k − w, where k =

n

R
, w = mR, (2.114)

so that momentum eigenstates are written as

eikµx
µ

eikLxLeikRxR |0⟩ = |kµ, (kL, kR)⟩ = |kµ, (k, w)⟩ = |kµ, (n,m), R⟩. (2.115)

We can therefore write a generic state of the Fock space as

αµ1
−m1

. . . α−k1 . . . α̃
ν1
−n1

. . . α̃−l1 . . . |kµ, (kL, kR)⟩, mi, ni, kj, lj > 0. (2.116)

Rederiving the mass formula, we now have contributions from internal momenta and the

level-matching formula also gets modified and we find

M2 = 4

(
N + Ñ +

1

2
k2L +

1

2
k2R − 2

)
, (2.117)

N +
1

2
k2L = Ñ +

1

2
k2R, (2.118)

which can be expressed as

M2 =
2

α′ (N + Ñ − 2) +
n2

R2
+
m2R2

α′2 , (2.119)

N − Ñ = mn, (2.120)

where we have reintroduced the α′ parameter. We see that the level-matching condition

does not depend on R so the spectrum does not change when we vary continuously the

value of R. We now see a new modulus appear, the radius R of the circle. We could

naively think that the moduli space is

MS1 = R ∈]0,∞[ (2.121)

We will see in a moment that T-duality manifests itself by making these circles not all

distinct. For now, we want to look at the spectrum of massless states. As usual there is

the issue of the tachyon to deal with in the bosonic string, but we are interested in the

properties shared with the superstring. The states that are massless for all values of R

are necessarily states with N = Ñ = 1 and they have no winding or internal momentum

m = n = 0. We therefore have the following states and their corresponding spacetime

fields:
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• αµ
−1α̃

ν
−1|(0, 0), R⟩ → these are the states we’ve studied before and correspond to the

metric, B-field and dilaton.

• (αµ
−1α̃−1+α−1α̃

µ
−1)|(0, 0), R⟩ → the corresponding spacetime field Vµ is a U(1) gauge

field called the Kaluza-Klein vector and comes from the higher dimensional metric.

• (α−1α̃
ν
−1−αν

−1α̃−1)|(0, 0), R⟩ → the corresponding spacetime field Aν is also a U(1)

gauge field called the winding vector and comes from the higher dimensional B-field.

• α−1α̃−1|(0, 0), R⟩ → the corresponding spacetime field σ is a scalar field called the

Kaluza-Klein scalar and comes from the higher dimensional metric. This scalar field

is actually a modulus that parametrizes the size of the compactification circle.

To see why the KK scalar parametrizes the size of the circle, we consider the physical

radius that can actually be measured which we call ρ which we obtain when computing

the length l = 2πρ of the circle using the background metric (see Chapter 3 for more

details on the Kaluza-Klein ansatz):

l =

∫ 2πR

0

dxe⟨σ⟩ = 2πRe⟨σ⟩ = 2πρ. (2.122)

We can always compensate a change of the parametric radius R by a change of the vev

⟨σ⟩ and vice versa. To parametrize distinct circles we can either fix R and vary ⟨σ⟩, or
fix ⟨σ⟩ and vary R. For the time being, we will fix ⟨σ⟩ and use R, though it is useful to

keep in mind that changing R amounts to changing the vev of the Kaluza-Klein scalar σ.

Besides these generic massless states, there are others that become massless at specific

points in the moduli space, which means for specific values of R. By inspecting the mass

formula (we reintroduce α′) we can first look at winding modes withm ̸= 0 (which enforces

n = 0 according to level-matching) and the mass of these states is

M2 =

(
mR

α′

)2

− 4

α′ (2.123)

which are massless when R2 = 4α′/m2. Similarly, we can consider KK modes of the

tachyon with no winding (m = 0) which have mass

M2 =
n2

R2
− 4

α′ (2.124)

which are massless when R2 = n2α′/4.

There is a very specific value of the radius where we get the richest spectrum of

massless states. This is known as the self-dual radius R =
√
α′ for reasons that will

become clear once we introduced T-duality. At this specific radius the solutions of the

level matching condition with M2 = 0 are now given by
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• N = Ñ = 1 with m = n = 0 that we have described above

• N = Ñ = 0 with n = ±2 and m = 0. These are KK modes of the tachyon which

correspond to spacetime scalars with charges (±2, 0) under the U(1)× U(1) gauge
symmetry.

• N = Ñ = 0 with n = 0 and m = ±2. These are winding modes of the tachyon

which correspond to spacetime scalars with charges (0,±2) under U(1)× U(1) .

• N = 1 and Ñ = 0 with n = m = ±1. These are two new vector fields αµ
−1|0, p⟩.

They carry charge (±1,±1) under U(1)× U(1).

• N = 0 and Ñ = 1 with n = −m = ±1. These are two further vector fields α̃µ
−1|0, p⟩.

They carry charge (±1,∓1) under U(1)× U(1).

Looking at the charges, we see that at the self dual radius the theory develops an enhanced

gauge symmetry

U(1)× U(1)→ SU(2)× SU(2). (2.125)

We therefore have four extra massless charged vector bosons under U(1)×U(1). These fit
into the adjoint representation (3,0)⊕(0,3) of the group SU(2)×SU(2) which indicates an

enhanced, non-abelian gauge symmetry at this point. This can point towards interpreting

T-duality for arbitrary radii as the remnant after symmetry breaking of a gauge symmetry.

2.3.2 T-duality

Looking more closely at the mass formula

M2 =
2

α′ (N + Ñ − 2) +
n2

R2
+
m2R2

α′2 , (2.126)

we can see that it is invariant under the exchange of momenta and windings

m↔ n (2.127)

as long as we also invert the radius of the circle in string units

R→
√
α′

R
. (2.128)

A string moving along a circle of radius R has the same spectrum as a string moving

along a circle of radius R′ =
√
α′

R
. This means that if we want to specify the radius of the

circle, we first have to identify which modes are windings and which are momenta. For

large radii R ≫
√
α′, classical geometry is valid and the initial identification is correct.

However, for radii R ≪
√
α′, it becomes more natural to reinterpret the winding modes
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as momentum modes and vice versa, and now the limit R → 0 is reintrepreted as an

alternative decompactification limit where R′ =
√
α′

R
→ ∞. In this limit, the winding

modes are reinterpreted as momentum modes and the original momentum modes become

infinitely heavy and decouple.

In the stringy regime where R ≈
√
α′ the tower of momentum states and winding states

become comparable in mass, and the geometric interpretation becomes ambiguous. Since

small and large radii are related by symmetry, the string length
√
α′ can be interpreted

as a minimal length scale of the theory. It is crucial to realise that this duality relies on

the existence of the winding modes, whence making it a purely stringy effects because we

do not see such a phenomenon in field theory, where particles can not wind around the

compact direction.

It can be shown that T-duality is still valid for the full conformal field theory on the

worldsheet, thus making it an exact perturbative duality for the full interacting theory.

In position space, T-duality acts as a “chiral reflection”

XL → XL and XR → −XR. (2.129)

This transformation does not have an interpretation in classical Riemannian geometry,

therefore in order to describe strings on toroidal backgrounds, a generalization is needed.

Two related ideas have been put forward in order to do this

• Generalized geometry is a framework where the tangent bundle T of a manifold is

replaced by T ⊕T ∗ (T ∗ being the cotangent bundle) and the Lie bracket is replaced

by a Courant bracket (see [75] for a review).

• Doubled Geometry is a framework where the whole spacetime manifold is doubled.

The effective field theory defined on such geometries, dubbed Double Field Theory

is then able to capture the winding modes as degrees of freedom which are treated

on an equal footing as the momentum modes (see [76,77] for reviews).

Let’s take a moment to look at the behavior of an open string under T-duality. We

saw that T-duality as a chiral reflection acts as

X(σ0, σ1) = XL(σ
0+σ1)+XR(σ

0−σ1)→ X ′(σ0, σ1) = XL(σ
0+σ1)−XR(σ

0−σ1), (2.130)

which entails

∂0X = ∂1X
′. (2.131)

This means that under T-duality, Neumann and Dirichlet boundary conditions are ex-

changed. Dualizing a circle transverse to a Dp-brane turns it into a D(p+1) brane in the

dual theory. Conversely, a Dp-brane wrapped around a circle gives a D(p-1)-brane in the

dual theory. This is actually how D-branes were first discovered, by studying T-duality

in the open string sector [64,65].
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Here, we could derive the T-duality transformation rules from the worldsheet perspec-

tive of the massless background fields known as the Buscher rules. However we will be

interested in deriving these rules in the Type II superstring case including the Ramond

sector as well as timelike isometries. We therefore refer to appendix B for a derivation of

generalized Type II Buscher rules from a spacetime perspective.

2.4 Superstring theory

As we have mentioned already, the bosonic string can not be the end of the story. First

of all, we want the spectrum to include fermionic degrees of freedom in order to describe

the matter content of the universe. Second of all, we saw that the bosonic string has a

tachyonic vacuum rendering the theory unstable. To answer these problems, we will now

introduce the superstring. Many aspects of the superstring are similar to what was done

for the bosonic string. We will therefore not give a detailed account and only highlight

the main properties and novelties, and focus particularly on the Type II theories, which

are the most relevant ones for the present work.

2.4.1 The Ramond-Neveu-Schwarz string

We will start by generalizing the Polyakov action in conformal gauge to make it

supersymmetric. We will not introduce supersymmetry here, and refer the reader to

Chapter 3 for a more detailed account. The resulting world-sheet theory is therefore a

two-dimensional supersymmetric field theory. We recall that from the worldsheet point of

view, the string coordinates Xµ are scalar fields which transform under a global internal

SO(1, D − 1) symmetry. Therefore the natural choice if we want fermions is to add

two dimensional-spinor fields ψµ which also transform as SO(1, D − 1) vectors. In 2D

Minkowski space, the gamma matrices can be chosen to be real as

γ0 =
(
(γ0) b

a )
)
=

(
0 −1
1 0

)
, γ1 =

(
(γ1) b

a )
)
=

(
0 1

1 0

)
, {γα, γβ} = 2ηαβ. (2.132)

In 2D, we can impose a reality and chirality condition at the same time on the spinors

thus making them Majorana-Weyl spinors. In order to generalize the gauge-fixed Polyakov

action, it is natural to add the action for massless spinors, whence giving us the Ramond-

Neveu-Schwarz action

SRNS = − 1

2π

∫
d2σ

(
∂αX

µ∂αXµ + iψ̄µγα∂αψµ

)
. (2.133)

This action is invariant under the following two-dimensional supersymmetry transforma-

tions

δXµ = iϵ̄ψµ, δψµ = γα∂αX
µϵ, (2.134)
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where ϵ = (ϵa) is the supersymmetry parameter. As usual we apply the variational

principle on this action and we get the following equations of motion

2Xµ = 0, iγα∂αψ
µ = 0. (2.135)

We still have our usual wave equation for the string coordinates, and we see that the

spinors satisfy a massless version of the Dirac equation which, written explicitly, is

i

(
0 −∂0 + ∂1

∂0 + ∂1 0

)(
ψ1

ψ2

)
=

(
0

0

)
. (2.136)

By writing ψ− := ψ1 and ψ+ := ψ2 we can rewrite this in the following illuminating way

∂+ψ− = 0, ∂−ψ+ = 0. (2.137)

The purely positive chirality spinors are therefore purely left moving ψ+ = ψ+(σ
+) while

negative chirality spinors are purely right-moving ψ− = ψ−(σ
−). We can therefore think

of ψ± as the supersymmetric partners of the left- and right-moving parts of the string

coordinates Xµ. We can now derive the conserved currents, we again have an energy

momentum tensor associated with reparametrisation invariance

Tαβ = ∂αX
µ∂βXµ −

i

4
ψ̄µγα∂βψµ −

i

4
ψ̄µγβ∂αψµ − Trace, (2.138)

where the Trace term are further terms rendering the current traceless. We now also have

a current associated with the supersymmetry which takes the form

Jα = −1

2
γβγαψ

µ∂βXµ. (2.139)

The resulting worldsheet theory is conformally invariant.

The systematic way to study the superstring is to supersymmetrise the Polyakov

action before gauge fixing. The resulting action is invariant under local supersymmetric

transformations. Theories of this kind are called supergravity theories, and will be the

subject of the next chapter. For our purposes, it is enough to know that upon imposing

the superconformal gauge hαβ = ηαβ, ψα = 0, the locally supersymmetric action reduces

to the RNS action with the additional constraints

Tαβ = 0, Jα = 0. (2.140)

These currents satisfy conservation equations

∂αTαβ = 0, ∂αJα = 0 (2.141)

and

ηαβTαβ = 0, γαJα = 0. (2.142)
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which means that the gauge-fixed theory is superconformal.

Just like in the bosonic case, we determine the boundary conditions the spinor fields

ψµ have to satisfy by requiring vanishing boundary terms in the variation of the action.

Again focussing on the closed string case, where Xµ satisfy periodic boundary conditions,

the worldsheet spinors can satisfy either periodic or anti-periodic boundary conditions.

Since left- and right-moving components of the worldsheet spinors decouple, we can impose

the boundary conditions independently. There are therefore 4 combinations of boundary

conditions

ψµ
+(σ

0, σ1 + π) = ±ψµ
+(σ

0, σ1), ψµ
−(σ

0, σ1 + π) = ±ψµ
−(σ

0, σ1). (2.143)

The periodic boundary conditions are called Ramond boundary conditions and the anti-

periodic ones are the Neveu-Schwarz boundary conditions. We know the equations of

motion as well as the boundary conditions, so we can now write down the corresponding

mode expansions. The mode expansions of Xµ remain unchanged and for the closed

string, the fermions give

ψµ
− =

∑
m∈Z

dµme
−2imσ−

(R), ψµ
+ =

∑
m∈Z

d̃µme
−2imσ+

(R), (2.144)

ψµ
− =

∑
r∈Z+ 1

2

bµr e
−2irσ−

(NS), ψµ
+ =

∑
r∈Z+ 1

2

b̃µr e
−2irσ+

(NS), (2.145)

which combine in 4 different ways. States in the NS-NS and R-R sector are spacetime

bosons while states in the NS-R and R-NS sector are spacetime fermions.

The covariant quantisation leads to the following anti-commutation relations for the

fermionic modes

{dµm, dνn} = ηµνδm+n,0 (R), {bµr , bνs} = ηµνδr+s,0 (NS), (2.146)

where m,n ∈ Z, r, s ∈ Z+ 1
2
and analogous relations for d̃µm, b̃

µ
r .

We can now construct the corresponding Fock space for each boundary conditions.

Physical states as usual are defined by imposing the constraints (2.140), which we express

in terms of the Fourier modes

Lm =
1

2

∞∑
n=−∞

: α−n · αm+n : +
1

2

{∑
n∈Z(n+ m

2
) : d−n · dm+n : (R),∑

r∈Z+ 1
2
(r + m

2
) : b−r · bm+r : (NS),

Fm =
∑
n∈Z

α−n · dm+n (R),

Gr =
∑
n∈Z

α−n · br+n (NS).



34 2.4. Superstring theory

In the case of the closed string this set of relations is supplemented with a second set for

L̃m, F̃m, G̃r. Fm and Gr correspond to the Fourier modes of the supercurrent Jα. As in

the bosonic case, the theory has a critical dimension which in the supersymmetric case is

D = 10. The physical state conditions are now

Lm|ϕ⟩ = 0, m > 0, (L0 − a)|ϕ⟩ = 0, a =

{
0 (R),
1
2

(NS),
(2.147)

Fm|ϕ⟩ = 0,m ≥ 0 (R) (2.148)

Gr|ϕ⟩ = 0, r > 0 (NS) (2.149)

We are now ready to construct the Fock space of the RNS string. We will describe how

this is done for the open string, as the closed string case just amounts to two chiral sectors

each equivalent to the open string. For the NS boundary conditions the momentum states

|k⟩ satisfy
αµ
m|k⟩ = 0, bµr |k⟩ = 0, m, r > 0, (2.150)

and the mass of the state is computed using the L0-constraint(
L0 −

1

2

)
|ϕ⟩ = 0⇒ α′M2 = N − 1

2
, (2.151)

where

N =
∞∑

m=1

α−m · αm +
∞∑

r= 1
2

rb−r · br. (2.152)

As in the bosonic case, the true physical states are obtained by imposing the other con-

straints and by dividing out the residual gauge equivalences.

The lowest mass state |k⟩, for which N = 0 and α′M2
open = 1

4
α′M2

closed = −1
2
, corresponds

to a scalar tachyon. We will see shortly how this state is projected out of the spec-

trum. The next excited states is bµ− 1
2

|k⟩, for which N = 1
2
and α′M2

open = 1
4
α′M2

closed = 0,

corresponds to a massless vector.

For R-boundary conditions, the momentum eigenstates satisfy

αµ
m|k⟩ = 0, dµm|k⟩ = 0, m > 0, (2.153)

and the L0 constraint gives

L0|ϕ⟩ = 0⇒ α′M2 = N, (2.154)

where

N =
∞∑

m=1

α−m · αm +
∞∑

m=1

md−m · dm. (2.155)

We note that

[N, dµ0 ] = 0, {dµ0 , dν0} = ηµν . (2.156)
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Using the operators dµ0 , µ = 0, . . . , 9, we can form 210 = 1024 independent, energetically

degenerate states

(d00)
n0(d10)

n1 . . . (d90)
n9|k⟩, n0, . . . , n9 = {0, 1}. (2.157)

These states form a reducible representation of the Clifford algebra Cl(1, 9). The dimen-

sion of an irreducible representation of Cl(p, q) is

dimCl(p, q) = 2[(p+q)/2]. (2.158)

For Cl(1, 9) the unique (up to equivalence) irreducible representation has dimension 25 =

32. Following [78], an explicit re-arrangement of the SO(1, 9) operators into fermionic

creation and annihilation operators is given by

d±0 =
i√
2
(d00 ± d10), d±i =

i√
2
(d2i0 ± id2i+1

0 ), i = 1, . . . , 4. (2.159)

We can now define a highest weight state |0⟩R by

d+i |0⟩R = 0 (2.160)

and create a Clifford representation by acting with the fermionic operators d−i , with basis

(d−0 )
m0 . . . (d−4 )

m4|0⟩R, m0, . . . ,m4 = {0, 1}. (2.161)

Since the degenerate ground state transforms in a spinor representation of the spacetime

rotation group, it is a spacetime fermion. The oscillators being spacetime vectors their

application cannot change bosonic states into fermionic ones and vice versa.

2.4.2 Type II superstrings

When studying a specific superstring model, we want to include the NS-NS sector of

the closed string since this is where there is a graviton. However, we just saw that the

vacuum is still tachyonic. The way to fix this problem is by performing a projection of

states on the spectrum, a process called GSO-projection. This projection can be derived

from several consistency requirements (for example modular invariance or spacetime su-

persymmetry, see [79] for details). Relevant for us, is that there are only 2 supersymmetric

modular invariant theories of closed strings with spacetime fermions that allows for an

open string sector: Type IIA and Type IIB superstring theories. Both of these theories

have the 4 sectors NS-NS, R-R, NS-R and R-NS in their Hilbert space.

In the NS-sector, the GSO-projection operator is

PNS
GSO = −(−1)

∑∞
r=− 1

2
b−r·br

. (2.162)
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States with PGSO = 1 remain in the spectrum, and so all states with an even number of

b-modes are projected out. Moreover we see than the tachyon is projected out since

PNS
GSO|k⟩ = −|k⟩, (2.163)

so bµ− 1
2

|k⟩ becomes the new ground state of the NS-sector, which is not tachyonic but

massless. For the R-sector, the projection operator is

PR
GSO = Γ̄(−1)

∑∞
m=1 d−m·dm , (2.164)

where Γ are the spacetime γ-matrices and

Γ̄ = Γ0Γ1 . . .Γ9 (2.165)

is the 10D chirality operator satisfying

Γ̄2 = 1 and {Γ̄,Γµ} = 0. (2.166)

Spinors that satisfy

Γ̄ψ = ±ψ (2.167)

are said to have positive or negative chirality and spinors with a definite chirality are

called Weyl-spinors. The GSO-projection therefore projects out states with a negative

chirality combined with an odd-number of d-operators, or positive chirality with an even

number of d-operators.

In the case of the closed string, there is an additional choice, which is the relative

chirality of the vacuum in the R-sectors. If they have opposite chirality, the resulting

theory is the Type IIA superstring which is non-chiral with (N+,N−) = (1, 1) Poincaré

supersymmetry algebra. If they have the same chirality, then the resulting theory is the

Type IIB superstring which is chiral with (N+,N−) = (2, 0) Poincaré supersymmetry

algebra.

The massless supergravity theories with such susy algebras are unique, called Type IIA

and IIB supergravity, and correspond to the massless effective field descriptions of the

corresponding string theories (for details on supersymmetry algebras and Type II super-

gravities, see chapter 3). We won’t describe these theories here in detail but we can

describe their massless spectrum. We will give the decomposition into irreducible repre-

sentations of the Lorentz group SO(1, 9) and its little group SO(8). The ground state

bµ− 1
2

|k⟩ of the NS-sector is a Lorentz vector which is the [10] representation. The NS-NS

sector is common to both Type II theories:

SO(1, 9) : [10]× [10] = [54] + [45] + [1], (2.168)

SO(8) : [8]× [8] = [35] + [28] + [1]. (2.169)
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We already know these universal states from the bosonic string, as they correspond to

the graviton, Kalb-Ramond field and the dilaton.

For spinor indices, restricting to physical states means that we restrict the representations

to Majorana-Weyl representations, which have real dimension 16 such that in the R-

sector, the vacuum is a Majorana-Weyl spinor [16]±. Moreover the Dirac equation further

eliminates half of the degrees of freedom such that spinors have 8 on-shell degrees of

freedom.

States in the NS-R and R-NS sectors are decompositions of the product between a vector

and a spinor representation, which give a vector-spinor and a spinor and so we get

SO(1, 9) : [10]× [16]± = [144]∓ + [16]∓, (2.170)

SO(8) : [8]× [8]± = [56]∓ + [8]∓. (2.171)

In Type IIA, these sectors contain two gravitini ψµ
± and two dilatini λ± which are of

opposite chirality since we’ve already mentioned that this theory is non-chiral. Type IIB

has the same type of fields however, they have the same chirality.

Finally, for the R-R sector, we need to decompose the product of two spinors. For

Dirac or Majorana spinors, this reduces to the sum of all possible antisymmetric tensor

representations. We also need to take into account that some antisymmetric tensors can

be further decomposed into (anti)-self-dual parts (in the sense of Hodge duality). In the

case of Type IIA we get

SO(1, 9) : [16]+ × [16]− = [1] + [45] + [210]. (2.172)

This corresponds to antisymmetric tensors G0, G2, G4 of rank 0, 2, 4 respectively. The

on-shell condition for these fields are Maxwell-like equations

∂µ1Gµ1...µp+2 = 0, ∂[µGµ1...µp+2] = 0. (2.173)

The interpretation is that these fields are actually gauge invariant field strength and not

gauge potentials. The decomposition in terms of transverse degrees of freedom is then

SO(8) : [8]+ × [8]− = [8] + [56]. (2.174)

which represent the gauge potentials C1, C3 of G2, G4. The zero-form field strength G0

does not carry any local degrees of freedom and therefore does not have an associated

gauge potential. Its existence is related to a massive deformation of Type IIA [80], but

this goes beyond the scope of this work and in the rest we will ignore this term.

For Type IIB we get the following decomposition

SO(1, 9) : [16]+ × [16]+ = [10] + [120] + [126], (2.175)

SO(8) : [8]+ × [8]+ = [1] + [28] + [35]. (2.176)
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Field strength G1 G2 G3 G4 G5 = ⋆G5

IIA/IIB IIB IIA IIB IIA IIB

electric D(-1) D0 D1 D2 D3

magnetic D7 D6 D5 D4 D3

Table 2.1: Half BPS-branes in Type IIA/B string theories.

This therefore corresponds to the field strengths G1, G3, G5 of rank 1, 3, 5 with associated

gauge potentials C0, C2, C4. It is important to note that the rank 5 field strength is

subject to a self-duality condition G5 = ⋆G5, whence dividing by 2 its number of degrees

of freedom.

If we add up the sectors, we get 128 bosonic degrees of freedom and 128 fermionic

ones. These are the supergravity multiplet which describe the whole field spectrum of the

Type IIA and IIB supergravity theories. As mentioned before, the fundamental string is

charged under the Kalb-Ramond B-field, but it is neutral under the R-R fields. Instead,

as we alluded to earlier, it is the D-branes of string theory which are charged under these

fields, and therefore act as sources for these R-R fields. This means that we can infer a

D-brane spectrum for these Type II theories. To be more precise, Dp-branes exist in both

theories for arbitrary p, but are stable only for even p in IIA and odd p in IIB since they

have an associated conserved charge.

The stable D-branes preserve half of the supersymmetry and are therefore called half

BPS-branes (see chapter 3 for details), this allows one to make exact statements which

hold non-perturbatively.

2.4.3 Type II T-duality

We saw that for the bosonic string, performing a T-duality on a circle of radius R

mapped the theory to itself on a background with a circle of radius α′

R
. In this sense the

theory is self dual. However, in the case of the Type II theories, they are not mapped to

themselves but to each other. If several coordinates are compactified, then we can perform

several T-dualities, one on each coordinate, so on an even torus, a Type II theory is then

dual to itself (on the dual torus). Going back to the case of a single circle compactification,

we perform a T-duality on X9, the compact coordinate of radius R. The transformation

on the bosonic coordinates is the same as in the bosonic string case

X9
L → X9

L and X9
R → −X9

R, (2.177)

which exchanges momentum and winding modes. In the RNS formalism, supersymmetry

requires the worldsheet spinors to transform in the same way as their bosonic partners,
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that is

ψ9
L → ψ9

L and ψ9
R → −ψ9

R. (2.178)

This has the effect of changing the chirality of the R-sector ground state in the right-

moving sector. As we have seen, the relative chirality between left- and right-moving

sectors is what distinguishes the Type IIA and Type IIB theories. Since only one sector

is flipped, we understand that Type IIA on a circle of radius R is T-dual to Type IIB

on a circle of radius R̃. We can also infer what happens to the half-BPS branes of the

respective theories. Type IIA has even Dp-branes and are mapped to the odd Dp-branes

of Type IIB theory. If the dualized coordinate X9 is longitudinal to the Dp-brane, the

duality gives a D(p − 1)-brane, if it is transverse to the Dp-brane, the duality gives a

D(p+ 1)-brane.

T-duality is a perturbative duality of Type II theories, which means that it holds

order by order in the perturbative expansion of the respective theories. To see this we

can derive the relation between the coupling constants of the two theories. It is sufficient

to look at the low energy NS-NS sector, but the relation holds generally. We have

SIIA =
1

g2S

∫
d10xLNS, SIIB =

1

g̃2S

∫
d10xLNS. (2.179)

which, compactified on circles of radii R and R̃ gives

SIIA =
2πR

g2S

∫
d9xLNS, SIIB =

2πR̃

g̃2S

∫
d9xLNS, (2.180)

Because of T-duality, these expression are the same, and since we know that RR̃ = α′ we

conclude that the couplings satisfy

g̃S =

√
α′

R
gS. (2.181)

2.4.4 The web of dualities

Let us conclude this chapter with general remarks and an overview of the current

state of superstring theory. First of all, besides the two Type II theories, there are other

consistent theories in 10D:

• The Type I superstring is a theory of open and closed non-oriented strings. It

can be constructed by performing an orientifold projection (which implements the

modding out by world-sheet parity) of Type IIB theory with 32 D9-branes. The

orientifold projection breaks the spacetime supersymmetry down to N = 1.
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• The Heterotic string theories are theories obtained when we consider the RNS model

but with chiral supersymmetry (1, 0). The critical dimensions of each chiral sector

then differ by 26 − 10 = 16, so the 16 unpaired worldsheet bosons need to be

compactified and satisfy certain boundary conditions. Two heterotic theories are

constructed this way, one with gauge group E8 × E8 and one with gauge group

Sp(32)/Z2 (usually refered to SO(32) as they are locally isomorphic).

• The non-supersymmetric string theories, with the heterotic SO(16)×SO(16) being
the only modular invariant and tachyon-free one. Since there is no evidence for

supersymmetry in experiments so far, and considering how still poorly understood

supersymmetry breaking is in string theory, these less-studied non supersymmetric

theories are becoming increasingly more interesting for phenomenology.

All these theories are initially defined perturbatively. However, as we have seen in

the case of Type II theories, they are not independent and some equivalences can be

found. It can be shown that the two supersymmetric heterotic theories are T-dual to

each other. Other types of dualities have been discovered which further interconnects the

different string theories. S-duality is a non-perturbative duality which can be thought

of as a generalization of electric-magnetic duality, therefore relating the weak coupling

regime of one theory to the strong coupling of another. Type I and heterotic SO(32) are

S-dual, and TypeIIB is self-dual. F-theory [81] (see [82] for a review) has been proposed

as a non-perturbative definition of Type IIB theory, which geometrizes the SL(2,Z) S-

duality symmetry as being the group of large diffeomorphisms of an internal torus of a

12-dimensional theory. F-theory compactified on an elliptically fibered manifold allows

one to study non-perturbative vacua of string theory. It has been shown by Witten [83],

building on work on S-duality by Sen [4] and on U-duality by Hull and Townsend [5], that

the strong coupling regime of Type IIA is eleven dimensional. This theory, which is not

stringy, has been dubbed M-theory. Only its low energy limit is known, 11D supergravity,

which is the only supersymmetric field theory in 11 dimensions. When compactified on a

torus, 11D supergravity exhibits a manifest U-duality which includes T- and S-duality, and

can map the coupling (dilaton) of one theory to geometric properties (moduli) of another

theory. M-theory compactified on an interval, known as Hořava–Witten theory [84, 85],

gives the Heterotic E8 × E8 string theory. This intricate web of theories is nowadays

interpreted as a vast moduli space of the underlying fundamental theory, the elusive

M-theory. In some sense, different theories are just manifestions of particular limits of

M-theory.
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Figure 2.3: The Superstring duality web

Several proposals have been put forward to provide a non-perturbative definition of

M-theory

• Matrix models like the BFSS model [86] (or IKKT model for Type IIB [87]). In this

theory, the fundamental degrees of freedom are the D0-branes of Type IIA and any

calculation of M-theory can be rephrased as a quantum mechanical matrix model

calculation.

• Supermembranes [88, 89] which are similar in spirit to string theory except that

the fundamental degrees of freedom are now two-dimensional objects that sweep a

world-volume. Their critical dimension is D = 11 but the quantum theory is still

poorly understood. It was shown that their double dimensional reduction to 10

dimensions recovers the Green-Schwarz superstring [90].

• AdS/CFT [91] states that string/M-theory on certain anti de-Sitter backgrounds

is dual to certain conformal field theories in one less dimension (whence making it

a direct realisation of the holographic principle). Since this is a weak-strong dual-

ity, it allows to define M-theory non-perturbatively, albeit on certain backgrounds.

The AdS/CFT correspondence has found numerous applications like quantum in-

formation and the black hole information paradox, QCD confinement, condensed

matter,...

Each of these approaches provide insights into the fundamental nature of M-theory, but

a precise definition is still missing.
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One of the goals of string theory is to derive the standard model of particle physics, and

compute as many of its parameters as possible as well as fitting with current cosmological

data. The vast possible choices of different compactifications makes the landscape of

different vacua extremely large. However, there is no known dynamical principle in string

theory that selects a particular vacuum. In more recent years, an alternative viewpoint was

to consider the swampland of string theory. The swampland is in a sense the complement

of the landscape, the set of low energy theories which cannot be UV-completed into

a consistent theory of quantum gravity. Studying common features that appear in the

swampland gives us insight into consistency requirement that any quantum gravity theory

should have, for example the absence of global symmetries (see [92] for review).

Considering the very high energy scale of the massive excitations of strings, only

the lowest energy excitations can be probed in current experiments. Moreover, in most

compactifications, only the massless spectrum can be derived exactly. As mentioned

before, the low energy effective theory of strings are supergravity theories. Thanks to

supersymmetry and dualities, they are perfect arenas to explore various properties of

string theory, including its non-perturbative regime. With that goal in mind, we introduce

the supergravity formalism in the next chapter.



Chapter 3

Supergravity

There are endless possibilities

when you see the geometry in

nature and your environment.

Monir Farmanfarmaian

This chapter is dedicated to the study of field theories with gauged supersymmetry,

and some of their geometric aspects. Supersymmetry is a property of certain theories

that relate bosonic and fermionic degrees of freedom. When the supersymmetry is local,

which means when the supersymmetry parameter is spacetime dependent, then it can be

shown that the theory automatically includes gravity whence the name of supergravity

theories. We will introduce the main features of these theories, such as their algebras and

representation theory. We will present dimensional reduction in this field theoretic context

as it is a ubiquitous tool to study supergravity. We will then give a description of a special

type of manifold, dubbed Calabi-Yau manifolds, for string theory compactifications that

preserves some supersymmetry. Finally we will present the special geometry of Calabi-Yau

threefolds’ moduli spaces.

3.1 Supersymmetry

Supersymmetry is an extension of the usual spacetime symmetries that one imposes

on field theories. The spacetime symmetries of a relativistic theory possess the Poincaré

group as symmetry group. Lie groups are often studied through their associated Lie

algebras that contain most of the necessary information about the group itself. We will

start with studying the Lorentz algebra and associated representation theory, to build up

towards the full Poincaré superalgebra. Here we will only present supersymmetry with

43
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Lorentzian signature but supersymmetry in other signatures will play a role in the next

chapter (for a discussion of supersymmetry algebras in arbitrary spacetime dimensions

and signature, see [93]). This section is mainly based on [94].

3.1.1 The Poincaré superalgebra

We start with 4-dimensional Minkowski space equipped with the flat metric ηµν with

the following Lorentz transformations: xµ → Λµ
νx

ν where

ΛTηΛ = η. (3.1)

These matrices form the Lorentz group SO(1, 3). We are interested in the representations

of that group, in particular the spinor ones. Technically speaking, the Lorentz group

doesn’t have any, but its double cover Spin(1, 3) does. These two groups share the same

algebra so(1, 3). A Lorentz transformation can be written as

Λ = exp(− i
2
ωµνM

µν), (3.2)

where ωµν are six paramaters andMµν = −Mνµ are the antisymmetric generators. These

matrices generate as wanted the so(1, 3) algebra

[Mµν ,Mρσ] = i(ηνρMµσ − ηνσMµρ + ηµσMνρ − ηµρMνσ). (3.3)

The Lorentz generators can be decomposed in terms of rotations Ji and boosts Ki defined

as

Ji =
1

2
ϵijkMjk and Ki =M0i, (3.4)

where i, j = 1, 2, 3 are contracted using δij and ϵijk = +1. We find from the Lorentz

algebra that these generators obey

[Ji, Jj] = iϵijkJk, [Ji, Kj] = iϵijkKk, [Ki, Kj] = −iϵijkJk. (3.5)

We can see that the rotations form an su(2) sub-algebra, which is expected since SO(3) ∼=
SU(2)/Z2. If we perform the following linear combination

Ai =
1

2
(Ji + iKi) and Bi =

1

2
(Ji − iKi), (3.6)

both operators are hermitian and we find two mutually commuting su(2) algebras inside

so(1, 3)

[Ai, Aj] = iϵijkAk, [Bi, Bj] = iϵijkBk, [Ai, Bj] = 0. (3.7)

The representations of SU(2) are well known from quantum mechanics: they are labelled

by an integer or half-integer j ∈ 1
2
Z which is called spin in the context of rotations.

The dimension of the representation is 2j + 1. Since we have two copies of su(2), the
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representations of the Lorentz algebra have therefore two labels (j1, j2) and has dimension

(2j1 + 1)(2j2 + 1). We can enumerate the simplest of these representations

(0, 0) : scalar (3.8)

(
1

2
, 0) : left-handed Weyl spinor (3.9)

(0,
1

2
) : right-handed Weyl spinor (3.10)

(
1

2
,
1

2
) : vector (3.11)

(1, 0) : self-dual 2-form (3.12)

(0, 1) : anti-self-dual 2-form (3.13)

The physical spin of a particle is the quantum number under rotations J⃗ , that is j = j1+j2.

It turns out that the generators Ai and Bi are complex conjugates

(Ai)
∗ = −Bi. (3.14)

So really it is the complexified Lorentz algebra that is isomorphic to two copies of su(2).

We sometimes keep this in mind by writing the real section as

so(1, 3) ∼= su(2)× su(2)∗. (3.15)

For us it means that a complex conjugate of a representation exchanges the two quantum

numbers

(j1, j2)
∗ = (j2, j1). (3.16)

The scalar and vector representations (0, 0) and (1, 1) are real, but the left- and right-

handed Weyl spinors (1
2
, 0) and (0, 1

2
) are exchanged under complex conjugation.

The continuous symmetry of Minkowski spacetime also include the spacetime transla-

tions generated by P µ. They commute between themselves and the commutation relations

with the Lorentz generators are given by

[P µ, P ν ] = 0 and [Mµν , P σ] = i(P µηνσ − P νηµσ), (3.17)

which shows that P µ transforms as a vector of the Lorentz group. Together with the

Lorentz commutation relations these form the Poincaré algebra. Field theories can also

exhibit additional continuous symmetries like the SU(N) gauge groups of the standard

model. If we call the generators of such symmetries T , then we will find that they are

always Lorentz scalars, which means that they commute with the Poincaré generators

[P µ, T ] = [Mµν , T ] = 0. (3.18)

This is the essence of the Coleman-Mandula theorem [95]. The theorem states that in

any spacetime dimension greater than d = 1 + 1, the symmetry group of the S-matrix of

any interacting quantum field theory must factorise as
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Poincaré × Internal.

The theorem comes with a set of underlying assumptions like causality and locality. How-

ever some other assumptions can be relaxed to find loopholes of the theorem. One in-

teresting loophole is the case where all particles are massless, in which case the Poincaré

group is enhanced into the conformal group. Another loophole, which is the one relevant

for us, is supersymmetry. Indeed, one of the assumptions of the theorem is that the sym-

metries of the theory are Lie groups generated by Lie algebras. However, supersymmetry

is described by a similar yet different mathematical structure called a Lie superalgebra,

or Z2-graded Lie algebra in the mathematical litterature. In a nutshell, it means that we

allow for both commutation and anticommutation relations inside our algebra. This is

the essence of the Haag-Lopuszanski-Sohnius theorem [96] which generalizes the Coleman-

Mandula theorem.

Supersymmetric theories have a new conserved charge called the supercharge which

is a left-handed Weyl spinor Qα and its right-handed counterpart Q̄α̇. The case where

there are multiple supercharges is known as extended supersymmetry but for now we focus

on theories with a single supercharge ie. N = 1 supersymmetry. The anti-commutation

relation, the one that allows us to escape the Coleman-Mandula theorem, is

{Qα, Q̄α̇} = 2σµ
αα̇Pµ, (3.19)

where σµ are the Pauli matrices defined as

σµ = (1, σi) with σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (3.20)

We also have the following commutation relations to complete the supersymmetry algebra

[Mµν , Qα] = (σµν) β
α Qβ, [Mµν , Q̄α̇] = (σ̄µν)α̇

β̇
Q̄β̇, [Qα, P

µ] = {Qα, Qβ} = 0, (3.21)

where the generators of the Lorentz group in the left-handed and right-handed spinor

representation are, respectively,

(σµν) β
α =

i

4
(σµσ̄ν − σν σ̄µ) β

α and (σ̄µν)α̇
β̇
= (σ̄µσν − σ̄νσµ)α̇

β̇
(3.22)

We saw that the Coleman-Mandula theorem states that internal symmetries must

commute with spacetime symmetries of the Poincaré group. However, they don’t neces-

sarily commute with the supercharge Qα. Indeed all internal symmetries must commute

with the supercharge with the exception of internal U(1) symmetries that act as

Qα → e−iλQα and Q̄α̇ → eiλQ̄α̇. (3.23)



Chapter 3. Supergravity 47

This U(1) symmetry is known as R-symmetry and is by definition the automorphism

group of the supersymmetry algebra which commutes with the Lorentz group. If we call

the generator R then the commutation relations are written

[R,Qα] = −Qα and [R, Q̄α̇] = +Q̄α̇. (3.24)

For extended supersymmetry, the R-symmetry group can be larger as we will see in a

moment.

3.1.2 Representations

Now that we have derived the supersymmetry algebra it is time to turn to its repre-

sentations. We first start by constructing the irreducible representations of the Poincaré

group, which we commonly call “particles”. Irreducible representations are labelled by

their eigenvalue of the Casimir. Casimir operators are operators that commute with all

the generators of the group. The Poincaré group has two such Casimirs

C1 = PµP
µ and C2 = WµW

µ, (3.25)

where W µ = 1
2
ϵµνρσPνMρσ is the Pauli-Lubanski vector. The representations are therefore

labelled by the eigenvalues of C1 and C2. The first one is simply the massm of the particle

C1 = m2. We now need to seperate between the massless and massive cases:

• Massive particles: We can always boost to the rest frame of the particle so that

P µ = (m, 0, 0, 0). In this frame the Pauli-Lubanski vector is given by

W 0 = 0 and W i = −mJ i, (3.26)

where J i are the generators of rotations. This means that C2 = −m2J2 and so is

specified by the eigenvalues of J2. Massive particles are therefore characterized by

their mass m and spin j.

• Massless particles: In that case C2 = 0, so both Casimirs vanish. We can how-

ever still characterize representations. We choose a frame where P µ = (E, 0, 0, E).

There, W µ = M12P
µ so the porportionality constant between W and P is deter-

mined by the eigenvalue of the U(1) rotation in the (x1, x2)-plane. This eigenvalue

is called the helicity, h = 0, 1
2
, 1, . . . . Massless particles are therefore characterized

by their mass m = 0 and helicity h.

The symmetry group that survives after boosting to a preferred frame is known as the

little group. In the case of massless particles, a state |pµ, h⟩ needs to come paired up with

the state |pµ,−h⟩ in order to preserve CPT invariance.



48 3.1. Supersymmetry

We turn to the representations of the N = 1 supersymmetry algebra. We start with

the massless case. C1 is still a Casimir so all particles in a multiplet will have the same

mass. However C2 is no longer a Casimir, the representations of the algebra can therefore

contain particles of different spins. Another Casimir operator can be constructed, but in

what follows, we will construct the representations by starting from a particle and acting

on it with successive susy generators until a representation of the full superalgebra is built

up.

We consider a state of a massless particle of helicity h in a preferred frame. Restricted

on such a state, the susy algebra becomes

{Qα, Q̄α̇} = 2σµ
αα̇Pµ = 2E(1 + σ3)αα̇ = 4E

(
1 0

0 0

)
. (3.27)

From this, and the fact that any state in a supersymmetric theory is necessarily positive,

we infer that Q2 and Q̄2 annihilate this state. Therefore to build up the representation

we only need to act with Q1 and Q̄1. These act like fermionic creation and annihilation

operators. Therefore the representation is straightforward and consists of two states: The

starting state, which satisfies Q1|pµ, h⟩ = 0, and Q̄1|pµ, h⟩. The supersymmetry multiplet

then consists of these two states, and it can be shown thanks to the commutation relation

that the second state has a helicity 1
2
lower. All in all the multiplet has two states:

|pµ, h⟩ and |pµ, h − 1
2
⟩. As before, CPT invariance ensures that for each state, there is a

corresponding state with the opposite helicity.

The different representations differ by the helicity of the starting state, we can list:

• Starting with h = 1
2
we have

h -1
2

0 +1
2

multiplicity 1 2 1

This chiral multiplet is comprised of a single Weyl spinor and a complex scalar.

• Starting with h = 1 we have

h -1 -1
2

+1
2

+1

multiplicity 1 1 1 1

This vector multiplet is comprised of a photon as well as a single Weyl spinor.

• Starting with h = 2 we have

h -2 -3
2

+3
2

+2

multiplicity 1 1 1 1
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This is known as the supergravity multiplet as it is comprised of a graviton and its

supersymmetric partner, the gravitino of spin 3
2
.

We could continue these constructions, but for massless fields with helicity greater than

2, there are strong restrictions which prohibit these fields from interacting in Minkowski

space (although one can study higher-spin field theories in (anti)-de Sitter backgrounds).

We will not describe the construction for massive representations as they are not

relevant for this work, the main difference in the construction is that now both Q1 and

Q2 can act as fermionic creation operators.

The scalar sector of the basic supergravity theories in 4 dimensions will all contain a

non-linear sigma model for the scalar sector, which means that the Lagrangian will have

a term of the form

e−1Lbos = · · · −
1

2
gIJ(φ)∂µϕ

I∂µφJ . (3.28)

This metric defines a target space geometry “data” that defines a particular theory. In

the case of N = 1, D = 4 supergravity, the target space geometry of the scalars is a

Kähler-Hodge manifold (see [97] for details).

3.1.3 Extended supersymmetry

We now turn to the case of extended supersymmetry. This means that we now have

a collection of N supercharges

QI
α and Q̄I

α̇, I = 1, . . . ,N . (3.29)

Each supercharge keeps the same commutation relations with the Poincaré generators

and among supercharges we have

{QI
α, Q̄

J
α̇} = 2σµ

αα̇Pµδ
IJ . (3.30)

The anti-commutator of the supercharges with themselves becomes

{QI
α, Q

J
β} = ϵαβZ

IJ and {Q̄I
α̇, Q̄

J
β̇
} = ϵα̇β̇(Z

†)IJ . (3.31)

ZIJ = −ZJI are called the central charges as they commute with all other elements of

the algebra.

We also saw that for N = 1 we had a U(1) R-symmetry group that changes the phase

of the supercharges. In the extended case, the R-symmetry group can rotate supercharges

among themselves. The R-symmetry group is U(2) ∼= U(1)×SU(2) in the N = 2 case and

SU(4) in the N = 4 case (we will also see in the next chapter that the R-symmetry group

depends on the signature of spacetime). The construction of massless representations is
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similar to what was performed in the N = 1 case still with QI
2 and Q̄I

2 annihilating the

starting state |Ω⟩ and (3.29) enforces ZIJ |Ω⟩ = 0 which means that the central charge

doesn’t play a role for the massless states. The QI
1 and Q̄I

1 now form a collection of

N fermionic creation and annihilation operators, and we build up the representation by

acting on the starting state with successive creation operators

|Ω⟩
Q̄I†

1 |Ω⟩
Q̄I†

1 Q̄
J†
1 |Ω⟩

. . .

Q̄1†
1 . . . Q̄

N†
1 |Ω⟩.

The starting state |Ω⟩ has helicity h. Acting with p excitation operators there are different

states, each with helicity h − p/2. Therefore the full multiplet has 2N different states.

Finally, adding the CPT conjugates leaves us with 2N+1 states inside a supermultiplet.

Let us now look at specific examples with an emphasis on the N = 2 case as it is the one

of prime interest in this work.

N = 2 supersymmetry As before, we start with a state of given helicity h.

• Starting with h = 1/2, there are two states in the first level, namely Q̄1
1|Ω⟩ and

Q̄2
1|Ω⟩ each with h = 0 and a single state in the final level Q̄1

1Q̄
2
1|Ω⟩ with h = −1

2
.

After CPT conjugation we have

h -1
2

0 +1
2

multiplicity 2 4 2

This is known as a hypermultiplet. We can see that it is comprised of two chiral

multiplets.

• Starting with h = 0 we have

h -1 -1
2

0 +1
2

+1

multiplicity 1 2 2 2 1

This is the N = 2 vector multiplet which is comprised of an N = 1 vectormultiplet

and an N = 1 chiral multiplet.

• If we start with h = 2 we have

h -2 -3
2

-1 +1 +3
2

+2

multiplicity 1 2 1 1 2 1



Chapter 3. Supergravity 51

This is the N = 2 supergravity multiplet which is comprised of an N = 1 super-

gravity multiplet and an N = 1 vector multiplet.

The target space geometry of the scalar sector of N = 2, D = 4 supergravity is special

Kähler for the vector multiplets and quaternionic Kähler for the hypermultiplets. We will

describe these geometries in later sections and next chapter as they will play a central

role.

N = 4 supersymmetry

• Starting with h = 1 we get

h -1 -1
2

0 +1
2

+1

multiplicity 1 4 6 4 1

This is comprised of an N = 2 vectormultiplet with an N = 2 hypermultiplet and

is the only N = 4 multiplet that does not include gravity.

• Starting with h = 2 we get

h -2 -3
2

-1 -1
2

0 +1
2

+1 +3
2

+2

multiplicity 1 2 2 2 2 2 2 2 1

This is the N = 4 supergravity multiplet comprised of an N = 2 supergravity

multiplet and an N = 2 vectormultiplet.

In N = 4, D = 4 supergravity, the target space geometry of the scalar sector is

M =
SU(1, 1)

U(1)
× SO(6, n)

SU(4)× SO(n)
, (3.32)

where n is the number of vectormultiplets.

N = 8 supersymmetry Beyond N = 4 there are no multiplets with helicites h ≤
1. This means that we are necessarily working with a supergravity theory with local

supersymmetry. Beyond N = 8, the multiplets have helicities h > 2 and so they are

usually not considered in Minkowski backgrounds as already mentioned. In that sense,

N = 8 is the maximal amount of supersymmetries possible. The theory has a unique

multiplet

h -2 -3
2

-1 -1
2

0 +1
2

+1 +3
2

+2

multiplicity 1 8 28 56 70 56 28 8 1
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and the target space of the scalar sector is completely fixed by supersymmetry

M =
E7,7

SU(8)
. (3.33)

This theory is of particular interest in string theory as it can be obtained as a dimen-

sional reduction from 11D supergravity or 10D Type II supergravity.

In the case of massive representations the supercharges never act trivially on the

states so one gets twice the amount of fermionic creation and annihilation operators

compared to massless representations. If the supersymmetry algebra contains central

charges Zi, i = 1, . . . , l we can order them by size |Z1| ≥ |Z2| . . . It can be shown that all

states in a supersymmetry representation satisfy the mass bound M ≥ |Z1| ≥ |Z2| . . . ,
called the BPS bound. If one or several of the bounds is saturated, then the number

of supercharges that act non-trivially get reduced, hence reducing the dimension of the

representation. Such representations that saturate the BPS bound are called short or

BPS representations. The case in which all bounds are saturated gives the shortest BPS

representation possible, which has as many states as a massless representation.

The existence of short multiplets is an extremely powerful tool to study the strong

coupling regime of extended supersymmetric quantum field theories because the mass of

the states is protected by supersymmetry. It is the use of these techniques that lead to

the study of the strong coupling regime of Type IIA string theory and the emergence of

M-theory [83].

We will not give a detailed account of supersymmetry representations in higher di-

mensions, we refer the reader to [97] and [98] for details. We simply mention that the 11D

supergravity theory, which is maximal in this dimension, has a field content comprised of

a metric GMN , a 3-form gauge field AMNP and a Majorana vector-spinor ΨM and has the

following bosonic action

S11D =
1

2κ211

∫
d11x

√
|G|
(
R− 1

2
|F4|2

)
− 1

6

∫
A3 ∧ F4 ∧ F4. (3.34)

Doing a dimensional reduction (technique introduced in the next section), the 11D su-

persymmetry splits into a left- and right-chiral one, and thus becomes the supergravity

multiplet of Type IIA supergravity introduced in the previous chapter whose bosonic

action is

SIIA =
1

2κ210

∫
d10x

√
|g|
(
e−2Φ

[
R− 1

2
|H3|2 + 4(∇Φ)2

]
− 1

2
|F2|2 −

1

2

∣∣∣F̃4

∣∣∣2)
− 1

4κ210

∫
B2 ∧ F4 ∧ F4. (3.35)

The other theory with 32 supercharges in 10 dimensions is the one with two supercharges

of the same chirality, which is the Type IIB supergravity also introduced in the previous
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chapter and whose bosonic action is

SIIB =
1

2κ210

∫
d10x

√
|g|e−2Φ

[
R− 1

2
|H3|2 + 4(∇Φ)2

]
− 1

4κ210

∫
d10x

√
|g|
[
|F1|2 +

∣∣∣F̃3

∣∣∣2 + 1

2

∣∣∣F̃5

∣∣∣2]− 1

4κ210

∫
B2 ∧ F3 ∧ F5. (3.36)

Both theories reduce to the same 9D maximal supergravity theory, which is at the heart

of the T-duality relation between them (see appendix B for an explicit derivation).

We have so far mentioned several times of going from a higher dimensional supergrav-

ity theory to a lower dimensional one. We now turn to this process called dimensional

reduction, which is a powerful technique and was revived with the advent of supergravity,

in the 80s [99].

3.2 Kaluza-Klein dimensional reduction

The original idea of Kaluza-Klein theory dates back to the 1920s when Kaluza and

Klein considered the dimensional reduction of 5D gravity as a way to unify, in 4 dimen-

sions, gravity with Maxwell’s electromagnetism. This section follows [100].

Let us start by considering the simple dimensional reduction of a scalar field satisfying

a massless wave equation in higher dimension

□̂ϕ̂ = 0, (3.37)

where □̂ = ∂µ̂∂µ̂. The hat symbol is here to make it explicit that the objects are defined

in the higher dimensional theory. We want to compactify one of the coordinates, which

we call z on a circle S1 of radius L (we assume for now that this coordinate is spacelike

and we will show how the final results are modified in the timelike case). The field is

expanded in Fourier modes

ϕ̂(x, z) =
∑
n

ϕn(x)e
inz/L, (3.38)

where x denotes collectively all the lower dimensional coordinates. We see that the equa-

tion of motion becomes

2ϕn −
n2

L2
ϕn = 0, (3.39)

which is the wave equation of a scalar field of mass |n|/L.

Therefore a higher dimensional massless field reduces to a massless field and an infinite

tower of massive states. In dimensional reduction, we assume that we probe the theory at

an energy scale lower than the mass of the first massive state. In the effective field theory

all massive states are truncated out, and the fields do not depend on the extra dimension.
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This truncation is said to be a consistent truncation. In a nutshell, it means that the

fields that we kept cannot be sources for the fields that were truncated, therefore the

lower dimensional equations of motion are consistent with the higher dimensional ones.

Note that this argument does not work in the timelike reduction case. To see this,

let’s consider again our wave equation this time with parameter ϵ

□ϕn − ϵ
n2

L2
ϕn = 0, (3.40)

where ϵ = +1 in the spacelike case and ϵ = −1 in the timelike case. In the latter case,

the modes with n > 0 are seen from the 4D perspective as tachyons, and therefore not

only does the effective theory argument breaks down but we might run into causality

and unitarity problem. To avoid these problems, we follow the argument of [101]. In

essence, if we consider plane waves ϕn = ϕ0
n exp[−i(Ent−pnx)] then the enery momentum

relationship reads

E2
n − p2

n − ϵ
n2

L2
= 0. (3.41)

If we consider the timelike case ϵ = −1, we can have a second interpretation that avoids

the aforementioned problems. Instead of interpreting the n2/L2 as a mass, we instead

group it with the energy term

Ē2
n = E2

n +
n2

L2
. (3.42)

With this interpretation, we no longer have a tachyonic tower of states, instead the exci-

tations differ from the n = 0 mode just in their energies. In the spacelike case, KK modes

correspond to different particles, but in the timelike case, they can be viewed as excited

energy states of the same particle.

3.2.1 Einstein-Hilbert term reduction

We will be interested in the dimensional reduction of supergravity theories, so let us

start with the reduction of the Einstein-Hilbert term itself. The full fledged computation

is very tedious so we will only go through the main steps without delving too much in

cumbersome computational details.

We start with the Einstein-Hilbert action in (d+1) dimensions. We will represent

higher dimensional quantities with a hat. So our starting point is

LEH =
√
−ĝR̂. (3.43)

We can therefore decompose the metric in a Fourier series as such

ĝµ̂ν̂(x, z) =
∑
n

g(n)µν (x)e
inz/L. (3.44)
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Performing the dimensional reduction means we lose the dependence on z and keep only

the zero mode. We therefore decompose our higher metric using the Kaluza-Klein ansatz

ds2(d+1) = e2αϕds2d + e2βϕ(dz + V )2, (3.45)

where α and β ̸= 0 are parameters that we will choose appropriately, V is the Kaluza-

Klein vector and ϕ is the Kaluza-Klein scalar. We can write the metric in matrix form.

To do this we express the metric the following way

ds2d+1 = e2αϕds2d + e2βϕ(dz + Vµdx
µ)2

= gµνdx
µdxν + e2βϕdz2 + e2βϕVµVνdx

µdxν + 2e2βϕVµdzdx
µ

⇒ ĝµ̂ν̂dx
µ̂dxν̂ = e2βϕdz2 + 2e2βϕVµdzdx

µ +
(
e2αϕgµν + e2βϕVµVν

)
dxµdxν .

From this we can read off the matrix components

ĝµ̂ν̂ =

(
e2αϕgµν + e2βϕVµVν e

2βϕVµ

e2βϕVν e2βϕ

)
. (3.46)

The reduction of the Ricci scalar is simpler in the vielbein formalism so we now aim to

get a reduction ansatz for the d+ 1 vielbein. By definition

ĝµ̂ν̂ = ê â
µ̂ ê

b̂
ν̂ η̂âb̂. (3.47)

We consider first the components µ̂ = µ and ν̂ = ν

ĝµν = ê â
µ ê

b̂
ν η̂âb̂

⇒ e2αϕgµν + e2βϕVµVν = ê a
µ ê

b
ν ηab + ê z

µ ê
z

ν .

These equations are satisfied if we choose

ê z
µ = eβϕVµ and ê a

µ = eαϕe a
µ . (3.48)

We now consider the components µ̂ = µ and ν̂ = z and we get

ĝµz = ê â
µ ê

b̂
z η̂âb̂

⇒ e2βϕVµ = eαϕe a
µ ê

b
z ηab + eβϕVµê

z
z .

which is satisfied for ê b
z = 0 and ê z

z = eβϕ. Therefore the ansatz for our vielbein

decomposition is

ê â
µ̂ =

(
eαϕe a

µ 0

eβϕVµ eβϕ

)
. (3.49)

This ansatz is unique up to Lorentz transformations. We can now relate directly the

d and d+ 1 dimensional vielbeins

êa = ê a
µ̂ dx

µ̂ = ê a
µ dx

µ + êazdz = eαϕe a
µ dx

µ + 0 = eαϕea, (3.50)
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êz = ê z
µ̂ dx

µ̂ = ê z
z dz + ê z

µ dx
µ = eβϕdz + eβϕVµdx

µ = eβϕ(V + dz). (3.51)

Setting the torsion to zero we compute the following 1-forms

dêa = αdϕeαϕ ∧ ea + eαϕdea

= α∂bϕe
αϕeb ∧ ea + eαϕ(−ωa

b ∧ eb)
= α∂bϕe

−αϕêb ∧ êa − ωa
b ∧ êb,

where we have exploited Cartan’s first structure equation. We compute the other one-form

dêz = d(eβϕ(dz + V ))

= βdϕeβϕ ∧ (dz + V ) + eβϕdV

= βe−αϕ∂aϕê
a ∧ êz + e(β−2α)ϕ1

2
Fabê

a ∧ êb.

Where we defined F = dV such that

F =
1

2
Fabe

a ∧ eb = 1

2
(∂aVb − ∂bVa)ea ∧ eb (3.52)

We can now derive the spin connection components using Cartan’s first structure equation

− ω̂z
a ∧ êa = dêz =⇒ ω̂az = −βe−αϕ∂aϕêz − 1

2
e(β−2α)ϕF a

bê
b. (3.53)

Moreover we write

dêa = −ω̂a
b ∧ êb − ω̂a

z ∧ êz = αe−αϕ∂bϕê
b ∧ êa − ωa

b ∧ eb. (3.54)

We can therefore write

− ω̂a
b∧ êb = −ωa

b∧ êb−αe−αϕ∂bϕê
a∧ êb+ 1

2
e(β−2α)ϕF a

bê
z ∧ êb+αe−αϕ∂aϕ ê

b ∧ êb︸ ︷︷ ︸
=0

. (3.55)

So all in all we have

ω̂ab = ωab + αe−αϕ
(
∂bϕêa − ∂aϕêb

)
− 1

2
e(β−2α)ϕF abêz. (3.56)

Having derived the reduction formulas we are now ready to procede with the reduction

of the curvature two-form. Before this, we want to choose the values of the parameters α

and β. We want to obtain the dimensionally reduced Lagrangian in Einstein frame and

we want the scalar kinetic term to have the canonical normalisation. This imposes the

following choices for our parameters

α2 =
1

2(D − 1)(D − 2)
, β = −(D − 2)α. (3.57)

To get the reduction of the curvature we use Cartan’s second structure equation

Ra
b = dωa

b + ωa
c ∧ ωc

b. (3.58)
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Carrying out the reduction is straightforward but cumbersome so we give directly the

reduced formulas

R̂ab = e−2αϕ

(
Rab −

1

2
∂aϕ∂bϕ− αηab□ϕ

)
− 1

2
e−2DαϕF c

a Fbc, (3.59)

R̂az =
1

2
e(D−3)αϕ∇b

(
e−2(D−1)αϕFab

)
, (3.60)

R̂zz = (D − 2)αe−2αϕ□ϕ+
1

4
e−2DαϕF 2. (3.61)

Finally we can get the curvature scalar by contracting the indices R̂ = ηâb̂R̂âb̂ which gives

R̂ = ηab
(
e−2αϕ(Rab −

1

2
∂aϕ∂bϕ− αηab□ϕ)−

1

2
e−2DαϕF c

a Fbc

)
+ (D − 2)αe−2αϕ□ϕ+

1

4
e−2DαϕF 2

= e−2αϕ

(
R− 1

2
(∂ϕ)2 + (D − 3)α□ϕ− 1

4
e−2DαϕF 2

)
. (3.62)

The determinant of the metric reduces as follows√
−ĝ = e(β+Dα)ϕ

√
−g = e2αϕ

√
−g. (3.63)

Therefore all in all the dimensional reduction of the Einstein-Hilbert action is

SEH =
1

16πGD+1
N

∫
dD+1

√
−ĝR̂

=
2πL

16πGD+1
N

∫
dDx
√
−g
(
R− 1

2
(∇ϕ)2 − ϵ

4
e−2(D−1)αϕF 2

)
, (3.64)

where we have reintroduced the ϵ parameter to take into account the timelike reduction

case.

3.2.2 p-form gauge field kinetic term reduction

Now that we have seen how to reduce the Einstein-Hilbert term in the action, we turn

to the reduction of the kinetic term of antisymmetric p-form fields, as they are ubiquitous

in supergravity. The general form of this term is

S =

∫
−1

2
F̂p ∧ ⋆F̂p. (3.65)

We can infer just from the index structure that a p-form field will give rise, after an S1

reduction, to a p-form and a (p − 1)-form. We choose the following reduction ansatz for

the associated gauge potential

Âp−1(x, z) = Ap−1(x) + Ap−2(x) ∧ dz. (3.66)
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We could identify the lower dimensional field strength directly from this but it turns out

to not be a convenient choice. Instead we add and substract a term so that

F̂p = dAp−1 − dAp−2 ∧ V + dAp−2 ∧ (dz + V )

≡ F̃p + Fp−1 ∧ (dz + V ), (3.67)

where V is the Kaluza-Klein vector and

F̃p = dAp−1 − dAp−2 ∧ V, Fp−1 = dAp−2. (3.68)

We can now reduce the field strength in a vielbein basis such that

F̂ =
1

p!
F̂µ̂1...µ̂p ê

µ̂1 ∧ · · · ∧ êµ̂p

=
enαϕ

n!
F̂µ1...µpe

µ1 ∧ · · · ∧ eµp +
e((n−1)α+β)ϕ

(n− 1)!
F̂µ1...µp−1ze

µ1 ∧ · · · ∧ eµp−1 ∧ (dz + V )

≡ 1

n!
F̃µ1...µne

µ1 ∧ · · · ∧ eµp +
1

(n− 1)!
Fµ1...µp−1e

µ1 ∧ · · · ∧ eµp−1 ∧ (dz + V ), (3.69)

from which we can read off

F̂µ1...µp = e−nαϕF̃µ1...µp , F̂µ1...µp−1z = e(D−p−1)αϕFµ1...µp−1 (3.70)

where we have expressed β in terms of α. Finally, bearing in mind the factor coming from

the reduction of the determinant of the metric we have after reduction (and reintroducing

the ϵ parameter)

S =

∫
−1

2
F̂p ∧ ⋆F̂p =

∫
−1

2
e−2(p−1)αϕF̃p ∧ ⋆F̃p −

ϵ

2
e2(D−p)αϕFp−1 ∧ ⋆Fp−1. (3.71)

We will not show explicitly how to reduce topological terms as they are more case depen-

dent. However we show the reduction of Type II Chern-Simons term in detail in appendix

B where we derive the generalized Buscher rules.

3.3 Calabi-Yau manifolds

The only manifold that has been discussed so far for the extra dimensions of spacetime

was the circle S1. One can consider toroidal backgrounds, where the extra dimensions

are just product of circles, but when string theories are compactified on tori, none of the

supersymmetry is broken leading to theories in 4 dimensions with either N = 4 or N = 8.

These theories are very far from phenomenological since supersymmetry is broken in the

real world. This objective of reducing supersymmetry after compactification leads us, as

we will see, to consider a very special type of manifold called Calabi-Yau manifolds, which

have the very interesting property of breaking supersymmetry partially. This allows one to
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have theories that are more viable phenomenologically, while still being computationally

tractable thanks to the remaining amount of supersymmetry. This section is mainly

based on [63] and we refer the reader to appendix A for relevant definitions and concepts

of geometry and topology.

3.3.1 Definition

A Calabi-Yau n-fold is a Kähler manifold with n complex dimensions and vanishing

first Chern class

c1 =
1

2π
[R] = 0. (3.72)

It was conjectured by Calabi, and subsequently proven by Yau [102], that any compact

Kähler manifold with c1 = 0 admits a Kähler metric with SU(N) holonomy. We will see

soon that manifolds with SU(N) holonomy are necessarily Ricci flat, therefore metrics

with such holonomy correspond precisely to Kähler manifolds of vanishing first Chern

class.

Betti numbers are fundamental topological invariants associated to manifolds (see

appendix A). The Betti number bp is the dimension of the p-th de Rham cohomology

Hp(M) of the manifold M . If the manifold is equipped with a metric, these numbers

count the number of linearly independant harmonic p-forms onM . For Kähler manifolds,

they can be decomposed into Hodge numbers hp,q, which count the number of harmonic

(p, q)-forms on M

bk =
k∑

p=0

hp,k−p. (3.73)

Calabi-Yau n-folds are characterized by the value of their Hodge numbers1. Symmetries

and dualities relate different Hodge numbers and therefore only a subset are independant.

The Hodge numbers satisfy

hp,0 = hn−p,0. (3.74)

This comes from the fact that the spaces Hp(M) and Hn−p(M) are isomorphic. Complex

conjugation gives

hp,q = hq,p, (3.75)

and Poincaré duality gives

hp,q = hn−q,n−p. (3.76)

Any compact connected manifold has h0,0 = 1, which corresponds to constant functions.

A simply connected manifold has vanishing fundamental group (the first homotopy group),

1This characterization is not complete since inequivalent Calabi-Yau manifolds sometimes have the

same Hodge numbers. Wall proved that Calabi-Yau threefolds can be characterized up to homotopy by

the Euler characteristic, second Chern class and triple intersection numbers [103].
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and therefore vanishing first homology group, whence2

h1,0 = h0,1 = 0. (3.77)

Since we will compactify theories from 10 to 4 dimensions, the manifolds of interest for

us are Calabi-Yau threefolds. In this case, the complete cohomological description of the

manifold only requires specifying h1,1 and h2,1. We can display the full set of Hodge

numbers in the following Hodge diamond

h3,3

h3,2 h2,3

h3,1 h2,2 h1,3

h3,0 h2,1 h1,2 h0,3

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

=

1

0 0

0 h2,2 0

1 h2,1 h1,2 1

0 h1,1 0

0 0

1

Using relations discussed above one can express the Euler characteristic of the Calabi-

Yau threefold as

χ =
6∑

p=0

(−1)pbp = 2(h1,1 − h2,1). (3.78)

3.3.2 Mirror symmetry

We have already seen in the context of T-duality that the geometry probed by strings

is very different from the geometry seen by point particles. A similar phenomenon appears

in the context of Calabi-Yau manifolds that goes by the name of mirror symmetry. The

mirror map associates with almost3 any Calabi-Yau threefold M another Calabi-Yau

threefold W such that

Hp,q(M) = H3−p,q(W ). (3.79)

This conjecture implies in particular that h1,1(M) = h2,1(W ) and vice-versa. The precise

statement of the conjecture is too technical and beyond the scope of this work, what is

important for us is that this conjecture implies that Type IIA compactified onM is exactly

equivalent to Type IIB on W . This can be at first value a very surprising statement since

the two Calabi-Yau threefolds are in general very different from the classical geometry

2Calabi-Yau manifolds that are not simply connected can be constructed by modding out by discrete

freely acting isometry groups. In cases of interest, these groups are finite and thus the resulting Calabi-

Yau still satisfies h1,0 = h0,1 = 0, see [104] for details.
3The few cases where it fails, the mirror still exist but it does not define a Calabi-Yau threefold.



Chapter 3. Supergravity 61

point of view. Even the most basic topology of the manifolds are different since their

Euler characteristics are related by

χ(M) = −χ(W ). (3.80)

We can give a heuristic of how mirror symmetry works in simple cases through the lense

of T-duality. We have already seen that Type IIA and Type IIB compactified on a circle

are T-dual to each-other, which can be interpeted as a form of mirror symmetry. Let’s

now consider the case of the torus T 2 = S1 × S1 where the first circle has radius R1 and

the second circle has radius R2. We can intepret the torus as an S1 fibration over an

S1 base. We can characterize this torus by its complex-structure and Kähler-structure

parameters (see next section for details)

τ = i
R2

R1

and ρ = iR1R2. (3.81)

The shape, or complex structure of the torus, is described by τ while the size, or Kähler

structure, is described by ρ. If we perform a T-duality on the fiber circle we know that

R1 → 1
R1

such that the resulting torus now has parameters

τ̃ = iR1R2 and ρ̃ = i
R2

R1

. (3.82)

This shows that under the mirror map, complex-structure and Kähler-structure param-

eters are interchanged, which also happens in the Calabi-Yau threefold case. Actually

interpreting mirror symmetry as a manifestation of T-duality is possibly more than just

heuristic. Calabi-Yau threefolds that have a mirror are conjectured to be T 3 fibrations

over a base B, which is the essence of the SYZ conjecture [105]. Mirror symmetry would

then be a fiber-wise T-duality on all three directions of the T 3. Since the number of dual-

ities is odd, even and odd forms are interchanged and so the (1, 1) and (2, 1) cohomologies

are interchanged, as expected from mirror symmetry. In 1991, mirror symmetry was used

to solve important problems in enumerative geometry [106] that until then resisted the

mathematical community and is just one of many examples of the fruitfulness of string

theory in pure mathematics.

3.3.3 Conditions for unbroken supersymmetry

We will now show how the condition of unbroken supersymmetry in the lower dimen-

sional theory imposes on us the use of Calabi-Yau manifolds as the manifold on which

dimensions are compactified. We assume that spacetime is decomposed into a product

of a non-compact four-dimensional spacetime M4 and a six-dimensional internal manifold

M

M10 =M4 ×M. (3.83)
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Our convention for indices is such that xM correspond to coordinates of M10, xµ corre-

sponds toM4 and ym corresponds toM . The fact that the resulting theory preserves some

supersymmetry imposes constraints on the vacua that arise. Each of the supersymmetry

charges Qα generates an infinitesimal transformation of all the fields with an assiocated

infinitesimal parameter ϵα. A particular background will be left invariant under unbroken

supersymmetries. The invariance of the bosonic fields is trivial because the supersymme-

try transformation will contain at least one fermionic field, which are known to vanish on

classical backgrounds. The nontrivial conditions are therefore coming from the fermionic

sector

δϵ(fermionic fields) = 0. (3.84)

If the expectation value of the fermions still vanish after performing a supersymmetry

variation, then one obtains a solution of the bosonic equations of motion that preserves

supersymmetry for the backgrounds considered. In fact, a solution to the supersymmetry

constraints is always a solution of the equations of motion (but the converse is not true).

The supersymmetry transformations of Type IIA supergravity are

δλ =

(
−1

3
ΓM∂MΦΓ11 +

1

6
H− 1

4
eΦF(2) +

1

12
eΦF̃(4)Γ11

)
ε (3.85)

δΨM =

(
∇µ −

1

4
HMΓ11 −

1

8
eΦFNPΓ

NP
M Γ11 +

1

8
eΦF(4)ΓM

)
ε, (3.86)

where A = 1
p!
AM1...MpΓ

M1...Mp and all the spinors are of Majorana type. For Type IIB the

transformations are

δλ =
1

2
(∂MΦ− ieΦ∂MC0)Γ

Mε+
1

4

(
ieΦF̃(3) −H

)
ε⋆ (3.87)

δΨM =

(
∇µ +

i

8
eΦF(1)ΓM +

i

16
eΦF̃(5)ΓM

)
ε− 1

8

(
2HM + ieΦF̃(3)ΓM

)
ε⋆, (3.88)

where the spinors are of Weyl type. If we focus on the case of a compactification without

fluxes for the Kalb-Ramond field or for the Ramond-Ramond fields, we see that the

supersymmetry transformations for the gravitini reduce simply to

δΨµ = ∇µϵ = 0. (3.89)

This is known as the Killing spinor equation, it means that ϵ is a covariantly conserved

spinor. We can decompose the supersymmetry parameter into external and internal parts

as

ϵ(x, y) = ζ(x)⊗ η(y). (3.90)

If we restrict ourselves to the internal manifold we have

∇mη = 0. (3.91)
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This leads to the following integrability condition

[∇m,∇n]η =
1

4
RmnpqΓ

pqη = 0. (3.92)

This in turn implies that the internal manifold M is Ricci-flat

Rmn = 0. (3.93)

For an orientable six-dimensional spin manifold4, if one parallel transports a spinor η

around a closed curve it will generically be rotated by a matrix Spin(6) = SU(4) which

is the generic holonomy group. A real spinor on such manifolds has eight components,

which can be decomposed into two irreducible SU(4) representations

8 = 4⊕ 4̄, (3.94)

where the 4 and 4̄ represent spinors of opposite chirality which are complex conjugates

of each other. Thus, a spinor of definite chirality has four complex components. A spinor

that is covariantly conserved remains unchanged after being parallely transported along

a closed curve. The largest subgroup of SU(4) for which a spinor of definite chirality can

be invariant is SU(3). This is because the 4 has an SU(3) decomposition

4 = 3⊕ 1, (3.95)

and the singlet is invariant under SU(3) transformations. Since the condition for unbroken

supersymmetry in four dimensions is equivalent to the existence of a covariantly constant

spinor on the internal manifold, it follows that the manifold should have SU(3) holonomy.

Let us now show that the manifold is of Kähler type. We start by decomposing the

covariantly constant spinor

ϵ(x, y) = ζ+ ⊗ η+(y) + ζ− ⊗ η−(y), (3.96)

where the fields η±(y) correspond to the covariantly constant spinors coming from the

singlet pieces of the 4 and 4̄ and ζ± are two-component constant Weyl spinors on M4.

These spinors being covariantly constant they can be normalized η†+η+ = η†−η− = 1 and

so we define the tensor

J n
m = iη†+γmη+ = −iη†−γmη−, (3.97)

which satisfies

J n
m J p

n = −δ p
m . (3.98)

This implies that the manifold is almost complex, and J is the almost complex structure.

Since the spinors η± and the metric are covariantly constant, the almost complex structure

is covariantly constant as well

∇mJ
p

n = 0. (3.99)

4A spin manifold is a manifold on which spinors can be defined
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This implies that the associated Nijenhuis tensor vanishes identically Np
mn = 0 making

J a complex structure. This means that we can write local complex coordinates za and

z̄a such that

J b
a = iδ b

a , J b̄
ā = −iδ b̄

ā , and J b̄
a = J b

ā = 0. (3.100)

From this we see easily that

gmn = J k
m J l

n gkn, (3.101)

which implies that the metric is hermitian with respect to the complex structure J . We

can therefore write

Jmn = J k
m gkn, (3.102)

which defines the following antisymmetric two-form

J =
1

2
Jmndx

m ∧ dxn, (3.103)

whose components are related to the metric according to

Jab̄ = igab̄. (3.104)

Moreover it is closed as

dJ = ∂J + ∂̄J = i∂agbc̄dz
a ∧ dzb ∧ dzc̄ + i∂āgbc̄dz

ā ∧ dzb ∧ dzc̄ = 0. (3.105)

As a result, the internal manifold is of Kähler type and J is the Kähler form. We have

shown that the internal manifold is a Kähler, Ricci-flat compact manifold with SU(3)

holonomy and therefore, according to Yau’s theorem, has vanishing first Chern-class. Thus

concludes our proof that requiring partial supersymmetry breaking leads the compact

manifold to be Calabi-Yau.

We can now consider possible fermion bilinears. The only non-zero possibility which

is consistent with both chirality and symmetry is

Ωabc = ηTγabcη−. (3.106)

This can be used to define a nowhere-vanishing (3, 0)-form

Ω =
1

6
Ωabcdz

a ∧ dzb ∧ dzc (3.107)

which is closed. Since η and the metric are covariantly conserved, it satisfies ∇d̄Ωabc = 0.

The connection terms vanish for a Kähler manifold and therefore one has ∂̄Ω = 0. It

is obvious that ∂Ω = 0 since there are only three holomorphic dimensions. Therefore

dΩ = (∂ + ∂̄)Ω = 0 which means that it is indeed closed. It can also be shown that Ω

is not exact. A Calabi-Yau manifold has h3,0 = 1 and Ω is a unique representative of

the (3, 0) cohomology class. The existence of a holomorphic (3, 0)-form implies that the

manifold has a vanishing first Chern class, again showing that the manifold is Calabi-Yau.
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3.3.4 Deformations of Calabi-Yau manifolds

As we mentioned previously, specifying Hodge numbers is not sufficient to completely

determine a Calabi-Yau manifold. Some Calabi-Yau manifolds are related to each other by

smooth transformations of the parameters that characterize their size and shape. These

parameters are moduli. In this section, we will explain how these moduli parametrize the

space of possible choices of the undetermined vacuum expectation values of massless scalar

fields in 4D. This space is known as the moduli space of the Calabi-Yau compactification.

Antisymmetric tensor-field deformations We consider the spectrum of fluctuations

about a given Calabi-Yau of fixed Hodge numbers. We start with the simple case of

antisymmetric tensor fields. These are of importance in this work because the Type II

supergravity theories contain various p−form fields. We can for example focus on the

case of the Kalb-Ramond B-field. Since it is part of the Neveu-Schwarz sector, this field

is common to both Type II theories, whose equation of motion is5

∆Bp−1 = d ⋆ dBp−1 = 0. (3.108)

After compactification on the Calabi-Yau threefold the Laplacian is written as

∆ = ∆4 +∆6, (3.109)

and the number of massless four-dimensional fields is given by the number of zero modes

of the internal Laplacian ∆6. These are counted by the Betti numbers bp. Therefore after

compactification we have in 4D two-forms, one-forms and zero-forms coming from the

B-field, which we can summarize in the following table

BMN Bµν Bµn Bmn

p-form fields in 4D p=2 p=1 p=0

# of fields in 4D b0 = 1 b1 = 0 b2 = h1,1

Here the b2 scalar fields are moduli that come from the B-field. More generally, a p-form

field will give rise to bp moduli fields.

Metric deformations The ten-dimensional metric gives rise to a four-dimensional met-

ric and a set of moduli. In Calabi-Yau compactifications there are no massless vector fields

coming from the metric since b1 = 0. This is related to the fact that the massless gauge

fields are in one to one correspondence with the continuous isometries of the manifold,

but Calabi-Yau manifolds don’t have any. We analyse the deformations of the metric by

performing a small variation

gmn → gmn + δgmn, (3.110)

5assuming vanishing background field
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and imposing that the new background still satisfies the Calabi-Yau conditions. In par-

ticular the new background has to be Ricci-flat such that

Rmn(g + δg) = 0. (3.111)

This leads to differential equations for δg and the number of solutions count the number of

ways to deform the background metric while preserving supersymmetry. The coefficients

of these solutions are the moduli and they parameterize the changes of shape and size of

the Calabi-Yau manifold. Some metric deformations only describe diffeomorphisms and

we are not interested in these. To eliminate them we make the following gauge fixing

∇mδgmn =
1

2
∇nδg

m
m. (3.112)

We then expand (3.111) to first order in δg which leads to the Lichnerowicz equation

∇k∇kδgmn + 2R p q
m n δgpq = 0. (3.113)

The equations for the mixed components δgab̄ and pure components δgab actually decouple.

• δgab̄: (3.111) reduces to (∆δg)ab̄ = 0. We can view δgab̄ as the components of a

(1,1)-form

δgab̄dz
a ∧ dz̄b̄. (3.114)

Therefore the allowed metric variations of the form δgab̄ correspond to harmonic

(1,1)-forms. We can therefore expand in a basis

δgab̄ =
h1,1∑
α=1

t̃αbαab̄, t̃α ∈ R. (3.115)

These moduli (called Kähler moduli since they transform the Kähler form) have to

be chosen so that the deformed metric is still positive definite. Positivity of the

Kähler metric is equivalent to∫
Mr

J ∧ · · · ∧ J︸ ︷︷ ︸
r-times

> 0, r = 1, 2, 3, (3.116)

where Mr is any complex r-dimensional submanifold of the Calabi-Yau. The subset

of moduli that satisfy this condition is called the Kähler cone since if J satisfies the

condition, so does λJ for any λ ∈ R+.

• δgab: In this case (3.111) reduces to ∆∂̄δg
a = 0 where δga = δga

b̄
dz̄b̄ and δga

b̄
=

gac̄δgc̄b̄. This (0,1)-form has values in T 1,0(M), the holomorphic tangent bundle

which we write TM . The corresponding cohomology group is H0,1

∂̄
(M,TM). For

a new metric to be Kähler, there must be a coordinate system where it has only
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mixed components. Holomorphic coordinate transformations do not change the type

of index and so δgab can only be removed by a non-holomorphic transformation. The

new metric is therefore Kähler with respect to a new complex structure. Therefore

elements of H0,1

∂̄
(M,TM) correspond to deformations of the complex structure.

Using the unique holomorphic (3,0) form, we can define an isomorphism between

H0,1

∂̄
(M,TM) and H2,1

∂̄
(M) by defining the following complex (2,1) forms

Ωabcδg
c
d̄dz

a ∧ dzb ∧ dz̄d̄, (3.117)

which is harmonic if (3.111) is satisfied. We can again expand the complex structure

deformations in a basis

Ωabcδg
c
d̄ =

h2,1∑
α=1

tαbαabd̄, (3.118)

where the tα are called the complex structure moduli.

The Kähler deformations moduli can be combined with the B-field moduli

(δBij̄ + iδgij̄)dz
i ∧ dz̄ j̄ =

h1,1∑
α=1

t̃αbα, (3.119)

where t̃α are now complex with their imaginary parts still restricted by the positive defi-

niteness of the metric. This is what is known as the complexification of the Kähler form

and we can write a complexified Kähler form

J = B + iJ. (3.120)

3.4 Special Geometry

The mathematics needed to describe the Calabi-Yau moduli spaces is known as special

geometry which is described in this section. It is of particular interest for us because in

the next chapter, we will study the theories obtained in 4D after compactifying Type II

supergravity theories on a Calabi-Yau threefold, with a particular interest on the scalar

geometry of the moduli. We follow [63] as well as the original paper [107].

The moduli space has a natural metric defined on it which is given by the sum of two

pieces

ds2 =
1

2V

∫
gab̄gcd̄ [δgacδgb̄d̄ + (δgad̄δgcb̄ − δBad̄δBcb̄)]

√
gd6x. (3.121)

For Calabi-Yau threefolds, the moduli space is locally isometric to the product of the

moduli space of complex structures and the moduli space of Kähler structures

M(M) =M2,1(M)×M1,1(M). (3.122)
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3.4.1 Complex structure moduli space

Under deformations of the complex structure, the Calabi-Yau metric components

change according to

δgāb̄ = −
1

||Ω||2
Ω̄ cd

ā (χα)cdb̄δt
α, where ||Ω||2 = 1

6
ΩabcΩ̄

abc. (3.123)

where tα are local coordinates for the complex structure moduli space, with α = 1, . . . , h2,1

and the χα are a set of (2,1)-forms. We therefore write the metric on the complex structure

moduli space as

ds2 = 2Gαβ̄δt
αδt̄β̄, (3.124)

and using these equations as well as (3.123) we can express this metric, called the Weil-

Petersson metric, through scalar products of harmonic forms

Gαβ̄ =
1

V
(χα, χ̄β̄) =

−i
∫
M
χα ∧ χ̄β̄

i
∫
M
Ω ∧ Ω̄

, (3.125)

Under a change in complex structure the holomorphic (3, 0)-form Ω becomes a linear

combination of a (3, 0)-form and (2, 1)-forms since dz becomes a linear combination of dz

and dz̄. More precisely we have

∂αΩ = KαΩ + χα, (3.126)

where ∂α = ∂
∂tα

and Kα depends on the coordinates tα but not on the coordinates of the

Calabi-Yau manifold M . Using this relation, we can see that we can derive the complex

structure moduli space metric from the following Kähler potential

K2,1 = − log

(
i

∫
Ω ∧ Ω̄

)
. (3.127)

We now exploit a relation between complex structures on M and the periods of the

holomorphic top-form Ω. Choosing a complex structure on M amounts to specifying a

decomposition of the third de-Rham cohomology group into Dolbeaut cohomology groups

H3(M) = H3,0

∂̄
(M)⊕H2,1

∂̄
(M)⊕H1,2

∂̄
(M)⊕H0,3

∂̄
(M). (3.128)

Such a decomposition is obtained by picking one of the b3 = 1 + h2,1 + h2,1 + 1 harmonic

forms and declaring it to be the holomorphic top-form.

We now choose a basis (AI , BI), I = 0, . . . , h2,1 of the third homology group H3(M,Z)
of M , with normalization

AI ·BJ = δIJ = −BJ · AI , and AI · AJ = BI ·BJ = 0. (3.129)
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where · is the intersection product (which is defined by counting intersection points be-

tween submanifolds, weigthed with orientation). The Poincaré dual cohomology basis is

denoted by (αI , β
I) and we have∫

AJ

αI =

∫
αI ∧ βJ = δJI and

∫
BJ

βI =

∫
βI ∧ αJ = −δIJ . (3.130)

The group of transformations that preserves these properties is the symplectic modular

group Sp(2h2,1 + 2;Z). We can define coordinates XI on the moduli space by using the

A periods of the holomorphic three-form Ω

XI =

∫
AI

Ω with I = 0, . . . , h2,1. (3.131)

The number of coordinates defined this way is one more than the number of moduli

fields. However, the coordinates XI are only defined up to a complex rescaling , since the

holomorphic three-form can be rescaled as Ω→ λΩ, λ ∈ C∗. We therefore define

tα =
Xα

X0
with α = 1, . . . , h2,1. (3.132)

This gives the right number of coordinates to describe the complex-structure moduli.

Since we have the right number of coordinates, the B periods

FI =

∫
BI

Ω (3.133)

must be functions of X, that is FI = FI(X). It follows that

Ω = XIαI − FI(X)βI . (3.134)

A consequence of (3.126) is ∫
Ω ∧ ∂IΩ = 0, (3.135)

which implies

FI = XJ ∂FJ

∂XI
=

1

2

∂

∂XI
(XJFJ), (3.136)

or equivalently

FI =
∂F

∂XI
where F =

1

2
XIFI . (3.137)

As a result, all the B periods are expressed in terms of a single function F called the

prepotential. Moreover, since

2F = XI ∂F

∂XI
, (3.138)

it implies that F is homogeneous of degree two. Using the general rule for closed three-

forms ∫
M

α ∧ β = −
∑
I

(∫
AI

α

∫
BI

β −
∫
AI

β

∫
BI

α

)
, (3.139)
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we can write the Kähler potential as a function of the prepotential

K2,1 = − log

[
i

∫
M

Ω ∧ Ω̄

]
= − log

[
−i(XI(z)F̄I(z)− FI(z)X̄

I(z))
]
. (3.140)

The cases where we can express the Kähler potential in such a fashion is what characterizes

special geometry6.

3.4.2 Kähler structure moduli space

We now turn to the Kähler structure moduli and we will show that this moduli space

is again described by special geometry. We first consider an inner product on the space

of (1,1) cohomology classes defined by

G(ρ, σ) =
1

2V

∫
M

ρad̄σb̄cg
ab̄gcd̄
√
gd6x =

1

2V

∫
M

ρ ∧ ⋆σ, (3.141)

where ⋆ is the Hodge-star operator on the Calabi-Yau manifold. We define the cubic form

κ(ρ, σ, τ) =

∫
M

ρ ∧ σ ∧ τ. (3.142)

Using the following identity

⋆ σ = −J ∧ σ +
1

4V
κ(σ, J, J)J ∧ J, (3.143)

we can rewrite

G(ρ, σ) = − 1

2V
κ(ρ, σ, J) +

1

8V 2
κ(ρ, J, J)κ(σ, J, J). (3.144)

We recall that the complexified Kähler form can be expanded in terms of harmonic (1, 1)-

forms as follows

J = B + iJ = t̃αbα with α = 1, . . . , h1,1. (3.145)

Therefore the metric on the moduli space is then

Gαβ̄ =
1

2
G(bα, bβ) =

∂

∂t̃α
∂

∂¯̃tβ̄
K1,1, (3.146)

where

e−K1,1

=
4

3

∫
J ∧ J ∧ J = 8V. (3.147)

These equations show that the space spanned by t̃α is a Kähler manifold and the Kähler

potential is given by the logarithm of the volume of the Calabi-Yau.

6To be more precise, in the cases in which the prepotential does not exist, in special Kähler manifolds,

one can always perform a duality transformation to a symplectic frame where a prepotential exists
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We also define the intersection numbers

καβγ = κ(bα, bβ, bγ) =

∫
bα ∧ bβ ∧ bγ, (3.148)

in order to form

G(t̃) =
1

6

καβγ t̃
αt̃β t̃γ

t̃0
=

1

6t̃0

∫
J ∧ J ∧ J , (3.149)

where we have introduced t̃0 in order to make it a homogeneous function of degree two.

We can finally write

K1,1 = − log(8V ) = − log

[
i

(
t̃A
∂Ḡ

∂¯̃tA
− ¯̃tA

∂G

∂t̃A

)]
. (3.150)

It is understood that in this formula the right hand-side is evaluated at t̃0 = 1. We again

have the Kähler potential expressed in terms of a prepotential G(t̃) so we indeed see that

the Kähler structure moduli space is described by special geometry.

3.4.3 Special geometry of N = 2, D = 4 supergravity

When compactifying Type II supergravity theories on Calabi-Yau threefolds, one ob-

tains N = 2 supergravity theories in four dimensions coupled to vectormultiplets and

hypermultiplets. In the next chapter we will delve into the resulting scalar geometries of

these theories. We will therefore not give a detailed account of these geometries here but

only mention how the different moduli are distributed in the different supermultiplets. We

will also mention how the results are affected when considering higher order corrections.

Moduli are either allocated to vector multiplets, where the geometry of the target

space is (projective) special Kähler, or to hypermultiplets, where the geometry is quater-

nionic Kähler7. The dimension of a quaternionic Kähler manifold is divisible by four.

Hypermultiplets contain a mixture of moduli of the metric, moduli resulting from reduc-

ing p-form gauge fields, and, for Type II string theory, the dilaton and the axion obtained

from dualizing the Kalb-Ramond two-form. In IIA compactifications, complex structure

moduli sit in hypermultiplets and Kähler moduli sit in vector multiplets while in IIB

compactifications it is the other way around. The special Kähler spacesM1,1 andM2,1

are Kähler submanifolds of the scalar target manifolds, at least to lowest order in α′.

Type IIA compactified on a Calabi-Yau threefold M results in a four-dimensional the-

ory containing h1,1 abelian vectormultiplets and h2,1 + 1 hypermultiplets. So the moduli

space again takes locally the product form

M1,1(M)×M2,1(M). (3.151)

7Note that in general a quaternionic Kähler manifold is not Kähler. However, in our context, the

manifolds of hypermultiplets will always be special quaternionic Kähler.
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Each vectormultiplet contains two real scalar fields so the dimension ofM1,1(M) is 2h1,1.

This space is a special-Kähler manifold with a holomorphic prepotential. Each hypermul-

tiplet contains four real scalars so the dimension ofM2,1(M) is 4(h2,1 + 1).

Type IIB compactified on a Calabi-Yau threefoldW yields h2,1 abelian vectormultiplets

and h1,1 + 1 hypermultiplets. The corresponding moduli space takes the form

M1,1(W )×M2,1(W ). (3.152)

Here the case is opposite to Type IIA, because now we have M2,1(W ) which is special

Kähler andM1,1(W ) which is quaternionic Kähler.

An important consequence of the product structure of the moduli space is that the

complex structure prepotential F is exact in α′. Indeed, the α′ expansion is an expansion

in terms of the Calabi-Yau volume V which belongs to M1,1(M) and it is independent

of position in M2,1(M), i.e. the complex structure. We can now exploit the fact that

Type IIA and Type IIB compactified on mirror Calabi-Yau manifolds are conjectured to

be equivalent and deduce the consequences for the moduli spaces. First of all we have

M1,1(M) =M2,1(W ) and M1,1(W ) =M2,1(M). (3.153)

We note that the prepotential of the Type IIB vectormultiplets is independent of the

Kähler moduli and the dilaton. As a result, it is exact both in α′ and gS. Mirror symmetry

maps the complex structure moduli space of Type IIB compactified on W to the Kähler-

structure moduli space of Type IIA compactified on the mirror M . The Type IIA side

receives α′ corrections. This means that a purely classical result is mapped to an infinite

series of quantum corrections. Said another way, a classical computation of the periods of

Ω in W is mapped to a problem of counting holomorphic curves in M . Both sides should

be exact in gS since the IIA dilaton is not part of M1,1(M) and the IIB dilaton is not

part ofM2,1(W ).
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Type II Calabi-Yau

compactifications in general

spacetime signature

What is time? If nobody asks

me, I know; but if I were

desirous to explain it to one

that should ask me, plainly I

know not.

Augustine of Hippo

In this chapter we will present the results of the work performed in [1]. We ob-

tain the bosonic Lagrangians of vector and hypermultiplets coupled to four-dimensional

N = 2 supergravity in signatures (0, 4), (1, 3) and (2,2) by compactification of Type

II string theories in signatures (0,10), (1,9) and (2,8) on a Calabi-Yau threefold. De-

pending on the signature and the distinctions between Type IIA/IIA∗/IIB/IIB∗/IIB’ the

resulting scalar geometries are special Kähler or special para-Kähler for vector multiplets

and quaternion-Kähler or para-quaternion Kähler for hypermultiplets. By spacelike and

timelike reductions we obtain three-dimensional N = 4 supergravity theories coupled to

two sets of hypermultiplets. We determine the c-maps relating vector to hypermultiplets,

and show how the four-dimensional theories are related by spacelike, timelike and mixed,

signature-changing T-dualities.

73
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4.1 Introduction

String theory is a web of perturbatively defined theories which are related to each

other by various dualities. In particular, ten-dimensional Type II string theories, which

have the maximal amount of supersymmetry, are related to each other by T-duality and

S-duality. If one includes timelike T-duality, then besides the familiar Type IIA and Type

IIB theories there exist two further theories in Lorentz signature, Type IIA∗ and Type

IIB∗, and there also exist further Type II theories in all possible ten-dimensional spacetime

signatures [53,108,109]. The formal properties of these theories as well as their potential

applications in model building and cosmology have been investigated further in [54,110].

Exotic Type II theories have unusual features and their ultimate role in string theory

remains to be understood. From the point of view of symmetries and string geometry, it

is natural to include them. Timelike dimensional reduction is a valid solution-generating

technique, and timelike T-dualities exist whenever one can find an alternative dimensional

up-lift. Symmetries which become manifest in dimensional reduction give information

about the hidden symmetries of the full theory [111]. Including time in the reduction as

a strategy for uncovering the full symmetry structure underlying string theory has been

advocated in [112]. In the frameworks of doubled and exceptional geometry and field

theory, Type II∗ theories seem to be on the same footing as the conventional ones [113,114].

Since Type II and Type II∗ theories have the same Euclideanized version [108], it is natural

to think of them as resulting from the same underlying Euclidean partition function.

When combining timelike T-duality with S-duality, string symmetries also lead to

backgrounds with non-Lorentzian signatures. While their interpretation is challenging,

they cannot be discarded ad hoc, since string theory is believed to be a single theory with

all of its consistent backgrounds connected by physical processes. The relevant question is

therefore whether vacua with exotic signature can be generated, and evidence for this has

been presented in [54]. It has also been argued that string theories in exotic signature can

be defined holographically as duals of gauge theories based on Lie supergroups [54]. We

also note that the network of Type II string theories and of the related eleven-dimensional

M-theories realizes all possible ten- and eleven-dimensional supersymmetry algebras with

32 real supercharges [115], so that when allowing exotic signatures in string theory, all

maximally symmetric supergravities in all signatures can be realized as limits. Moreover,

the maximally supersymmetric supergravity theories in ten and eleven dimensions can all

be related to real forms of a single complex ortho-symplectic Lie superalgebra [116, 117].

Finally, the inclusion of non-Lorentzian signatures is natural from the point of view of

the Euclidean approach to quantum gravity, since complex saddle points contribute to

the functional integral. Recently, the role of complex spacetime metrics in quantum field

theory and quantum gravity has been emphasised in [60,118,119]. As a natural extension,

one can complexify all fields, which would imply to consider all Type II theories as part
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of a single complex configuration space. We remark that complex saddle points can

contribute to Euclidean path integrals for scalar fields, and that there are examples where

actions with inverted kinetic terms can be viewed as arising from manipulating integration

contours in complexified field space, see [120] for an elementary example.

Calabi-Yau compactifications of Lorentz signature Type IIA/B string theories give

rise to four-dimensional N = 2 supergravity theories with vector and hypermultiplets

[121–123]. This is a much studied class of theories which while not phenomenologically

realistic, has rich and complex dynamics, since the scalar geometry is not rigid but depends

on functions of the scalar fields. N = 2 supersymmetry still severely restricts the quantum

and stringy corrections that these functions can receive, so that one often can find exact

non-perturbative results. Applications range from the study of field theories, to black

holes and their entropy, and to the AdS/CFT correspondence. It is therefore interesting

to extend these studies to the Calabi-Yau compactifications of exotic Type II theories.

The Calabi-Yau compactification of the Type IIA theory in Euclidean signature (0, 10)

has been worked out in [124]. Moreover, the vector multiplet sectors of five- and four-

dimensional supergravity in arbitrary signature have been found in [125] through an anal-

ysis of Killing spinor equations combined with the reductions of eleven-dimensional su-

pergravity theories in signatures (1,10), (2,9) and (5,6) on Calabi-Yau threefolds, followed

by the reduction to four dimensions on spacelike and timelike circles.

In this chapter we will obtain the bosonic actions for four-dimensional N = 2 su-

pergravity coupled to vector and hypermultiplets in signatures (0, 4), (1, 3) and (2, 2) by

compactification of Type II string theories in signatures (0, 10), (1, 9), (2, 8) on Calabi-Yau

threefolds. Carrying out these reductions is straightforward since for Type IIA one can

adapt the computations of [122, 124], while the corresponding results for Type IIB are

fixed by mirror symmetry. Therefore, our main focus is the interpretation of the relative

sign flips between terms in the resulting four-dimensional Lagrangians in terms of the

special geometry of their vector and hypermultiplet manifolds. These geometries vary be-

tween signatures and between Type II and Type II∗. There is an intimate relation between

these signs and the variation of the R-symmetry groups of the underlying supersymmetry

algebras between signatures, and between standard and twisted (type-*) supersymmetry

algebras.

As is well known, in signature (1, 3) the scalar geometry of vector multiplets coupled

to supergravity is special Kähler, while the geometry of hypermultiplets is quaternionic-

Kähler, see [97,126–128] for review. In Euclidean signature the scalar geometry of vector

multiplets becomes special para-Kähler, which is reflected by a change of the abelian

factor of the R-symmetry group from U(1) to SO(1, 1) [129, 130]. In three Euclidean

dimensions the geometry of hypermultiplets is para-quaternionic Kähler [131]. In [132] it

was observed that there exists a twisted version of the N = 2 supersymmetry algebra,
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which has a non-compact R-symmetry group. The vector multiplet Lagrangian differs

from the standard one by a sign flip of some kinetic terms, which is analogous to the

difference between Type II and Type II∗ theories. The same type of sign flip was observed

in [125], when reducing five-dimensional vector multiplets coupled to supergravity from

signature (2, 3) to signature (1, 3). One should therefore expect that N = 2 theories

which realize the twisted N = 2 algebra can be obtained as Calabi-Yau compactifications

of Type II∗ theories. In this chapter we will verify this explicitly, as part of obtaining a

complete list of scalar geometries for four-dimensionalN = 2 supergravity with vector and

hypermultiplets for all signatures through the dimensional reduction of Type II theories

on Calabi-Yau threefolds.

In addition, we will perform all possible spacelike and timelike dimensional reductions

from four to three dimensions. After reduction, vector multiplets can be dualized into

hypermultiplets, so that one obtains a scalar manifold which is the product of two hyper-

multiplet manifolds. The map relating a vector multiplet manifold to a hypermultiplet by

reduction is know as the c-map [133,134]. By starting in arbitrary signature and including

timelike reductions, one obtains variants of the c-map, which we describe for all possible

cases. Whenever a dimensional reduction can be combined with a different dimensional

lifting (equivalently, whenever the same three-dimensional theory can be obtained from

two different four-dimensional theories by reduction), this realizes a T-duality between the

underlying Type II string theories. We map out the complete network of spacelike, time-

like and mixed T-dualities, where mixed T-dualities combine spacelike reduction/lifting

with timelike lifting/reduction and thus change the four-dimensional signature.

We briefly mention further motivations and future application of the work contained

in this chapter. One is the study of solutions to four-dimensional N = 2 theories with

twisted supersymmetry and with non-Lorentzian signature, as well as their dimensional

uplifts to ten and eleven dimensions. In particular, according to [135, 136], there is a

correspondence between the planar cosmological solutions in N = 2 vector multiplet

theories that can be embedded into Type II string theory, and planar black hole solutions

in vector multiplet theories realizing the twisted N = 2 supersymmetry algebra, which, as

we show in this chapter, can be embedded into Type II∗. Both solutions can be related to

the same four-dimensional Euclidean partition function, which explains that their Killing

horizons satisfy the same thermodynamic relations [136]. This is consistent with Type II

and Type II∗ having the same Euclideanized form [108]. For other work on solutions of

exotic N = 2 theories see [125,137–141].

Another potential application is topological string theory. Standard Type II Calabi-

Yau compactifications allow two topological twists, which define two topological world-

sheet theories, the A-model and the B-model, which are sensitive to the Kähler and com-

plex structure moduli respectively. Since Calabi-Yau compactifications of exotic Type
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II theories work analogously to standard Type II theories, and given that we will show

that the geometry of the resulting moduli spaces can be determined in the supergravity

approximation, we expect that a world-sheet perspective for these compactifications can

be developed too. Topological string theories encode a subsector of the full string the-

ories, and may also be related to a ‘topological phase’ of string theory, where more of

its symmetries become manifest [142]. We remark that in such a topological phase, the

expectation value of the spacetime metric is zero, which makes it natural that phases with

non-Lorentzian signature coexist in the theory with conventional Lorentzian phases.

The outline of this chapter is as follows. We start from the classification of four-

dimensional N = 2 and three-dimensional N = 4 supersymmetry algebras and explain

how most of the qualitative features of the scalar geometries of vector and hypermultiplets

as well as their mutual relations by T-dualities can already be predicted by inspection of

the R-symmetry groups. We present the bosonic vector and hypermultiplet Lagrangians,

and explain the effects of changing the supersymmetry algebra on the scalar geometries.

This includes a brief review of special para-Kähler and para-quaternion-Kähler geometries,

which replace the familar special Kähler and quaternion-Kähler geometries for certain sig-

natures. We perform all possible spacelike and timelike reductions from signatures (0,4),

(1,3) and (2,2) to signatures (0,3) and (1,2), and show that the six resulting c-maps which

map vector multiplet manifolds to hypermultiplet manifolds fall into three distinct classes,

depending on whether the resulting hypermultiplet manifold is quaternionic-Kähler, para-

quaternionic-Kähler with a special Kähler base or para-quaternionic-Kähler with a special

para-Kähler base.

Then we review Type II string theories in ten dimensions and catalogue the relative

sign flips of their kinetic terms. Next, we explain how these sign flips affect compactifi-

cations on Calabi-Yau threefolds, and obtain the corresponding sign flips of the resulting

four-dimensional vector and hypermultiplet Lagrangians. While in the main part of the

chapter we just trace the kinetic terms, we provide a full derivation in appendix C. Here

we use that the reduction of all individual terms is available from the work of [122] on the

reduction of Type IIA with signature (1,9) and of [124] on the reduction of Type IIA with

signature (0,10). Combining the results from dimensional reduction with the previous

results on c-maps we obtain six types of T-dualities by identifying all possible combina-

tions of reductions from four to three with ‘oxidations’ from three to four dimensions.

These T-dualities organise into two orbits, one which relates Type IIA/IIB/IIA∗/IIB∗

through ‘pure’ – that is spatial or timelike T-dualities, the other which relates Type

IIA(0,10)/IIB’(1,9)/IIA(2,8) through ‘mixed’, signature changing T-dualities. This separation

coincides with the one between worldsheet theories with Lorentzian and with Euclidean

signature [53]. Both orbits could only be related through the S-duality between Type IIB∗

and Type IIB’, which is not expected to be valid for generic N = 2 compactifications,

though it may be realized for non-generic ‘N = 4-like’ compactifications.
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4.2 Vector and hypermultiplets in four and three di-

mensions

4.2.1 Supersymmetry algebras in four and three dimensions

Four-dimensional N = 2 supersymmetry algebras, that is four-dimensional supersym-

metry algebras with eight real supercharges,1 have been classified for arbitrary signature

in [132]. They are completely characterized by their R-symmetry groups, which we list in

Table 4.1. While the N = 2 algebra is unique in Euclidean signature (0, 4) and in neu-

tral signature (2,2), there are two non-isomorphic algebras in Lorentz signature (1,3).2

Besides the standard N = 2 algebra with compact R-symmetry group U(2) there exists

a second algebra with non-compact R-symmetry U(1, 1), which we will refer to as the

twisted N = 2 algebra. The change of the R-symmetry group reflects itself in certain

sign flips in the bosonic Lagrangian [132], which are similar to those which distinguish

Type II and Type II∗ string theories [108]. We will see later that theories realizing the

twisted N = 2 algebra are obtained by the compactification of Type II∗ string theories on

Calabi-Yau threefolds. The uniqueness of the supersymmetry algebras in Euclidean and

neutral signature reflects the uniqueness of Type II string theories in signatures (0,10) and

(2,8), from which such theories can again be obtained as Calabi-Yau compactifications.

Three-dimensional N = 4 supersymmetry algebras have been classified, for arbitrary

signature in [115], and are again characterized uniquely by their R-symmetry groups,

see Table 4.2. The embeddings U∗(2) ⊂ SO∗(4), U(2) ⊂ O(4), U(1, 1) ⊂ O(2, 2) and

GL(2,R) ⊂ O(2, 2) indicate how these algebras are related to four-dimensional N =

2 algebras by spacelike or timelike dimensional reduction, see Table 4.3. There is no

candidate for a dimensional lift of the algebra with R-symmetry O(1, 3). In the following

sections we will review vector and hypermultiplets, in particular, the geometry of their

scalar manifolds, and how this geometry is tied to the R-symmetry group.

1In Euclidean signature this is the smallest supersymmetry algebra. Our convention is to count

supersymmetries in multiples of Majorana spinors, irrespective of whether Majorana spinors exist is the

particular signature. This convention is natural if one considers supersymmetry algebras in different

signatures at the same time.
2We use the mostly plus convention, so(1, 3) means that the metric has 3 positive eigenvalues and 1

negative eigenvalue.
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Signature R-symmetry VM geometry HM geometry

(0, 4) U(2)∗ ∼= SO(1, 1)× SU(2) SPK QK

(1, 3) U(2) ∼= U(1)× SU(2) SK+ QK

U(1, 1) ∼= U(1)× SU(1, 1) SK− PQK

(2, 2) GL(2,R) ∼= SO(1, 1)× SL±(2,R) SPK PQK

Table 4.1: Four-dimensional N = 2 supersymmetry algebras, their R-symmetry groups

and their scalar geometries. We use the acronyms SK = special Kähler, SPK = spe-

cial para-Kähler, QK = quaternionic Kähler and PQK = para-quaternionic Kähler. See

Section 4.2.2 for further explanations.

Signature R-symmetry HM1 geometry HM2 geometry

(0, 3) SO∗(4) ∼= SL(2,R)× SU(2) PQK QK

(1, 2) O(4) ∼= SU(2)× SU(2) QK QK

O(1, 3) − −
O(2, 2) ∼= SL(2,R)× SL(2,R) PQK PQK

Table 4.2: Three-dimensional N = 4 supersymmetry algebras, their R-symmetry groups

and their scalar geometries. See Section 4.2.3 for further explanations.

4.2.2 Vector multiplets

We start in signature (1,3) with the standard N = 2 supersymmetry algebra with

R-symmetry group U(2) ∼= U(1) × SU(2). A vector multiplet contains a complex scalar

z, an SU(2) doublet of spinors, and a gauge field Aµ. The scalar and gauge field are

neutral under SU(2). Under the U(1), the scalars, spinors and vectors carry charges

∓1,∓1
2
, 0 respectively. The scalar manifold is an affine special Kähler manifold for rigid

supersymmetry and a projective special Kähler manifold for local supersymmetry. We

refer to [127] for a review of special geometry which uses the same conventions and termi-

nology as used in this chapter. Both types of special Kähler geometries (SK geometries)

have in common that the Kähler metric gαβ̄(z, z̄), α, β = 1, . . . , nV of the scalar manifold

can be expressed in terms of a holomorphic function F(zα), called the prepotential. Spe-

cial Kähler geometry is intimately related to the invariance of the field equations under

symplectic transformations, which generalize and contain electric-magnetic duality trans-

formations [143, 144]. We are interested in the case where the nV vector multiplets are

coupled to N = 2 supergravity. The supergravity multiplet contains one further vector

field A0
µ. A simple, linear action of the symplectic group Sp(2nV + 2,R) is obtained

by taking certain field-dependent linear combinations AI
µ, I = 0, 1, . . . , nV of the vector

fields A0
µ, A

α
µ. The associated field strengths F I

µν , when combined with their duals GI|µν
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form a vector (F I
µν , GI|µν) which transforms linearly under Sp(2nV +2,R). The dual field

strengths are dependent quantities, which are defined as G±
I|µν = ∂L/∂F±|I

µν , where L is

the Lagrangian, and where F
±|I
µν and G±

I|µν are the (anti-)selfdual parts of F I
µν and GI|µν .

We remark that the linear action of the symplectic group is obvious if one uses the gauge

equivalence between N = 2 Poincaré supergravity with nV vector and nH hypermulti-

plets to N = 2 conformal supergravity with nV +1 vector and nH +1 hypermultiplets. In

the superconformal setting AI
µ are the vector fields of the nV + 1 superconformal vector

multiplets. The corresponding scalars XI allow a symplectically covariant description of

the scalar sector. In terms of the XI the prepotential is a holomorphic function F (X)

which is homogeneous of degree 2, F (λX) = λ2F (X). Combining the scalars XI with

FI = ∂F/∂XI one obtains another symplectic vector (XI , FI). The scalars zα can be

recovered as ratios zα = Xα/X0. The couplings between scalar and vector fields are

encoded in a complex matrix NIJ = RIJ + iIIJ , which can be expressed in terms of the

prepotential. The kinetic terms for the scalar and vector fields are positive definite if gαβ̄
is positive definite and if IIJ is negative definite (in our convention).

The Lagrangian for the bosonic degrees of the supergravity multiplet and of nV vector

multiplets takes the form

LG+VM =
1

2
⋆ R4 − gαβ̄(z, z̄)dzα ∧ ⋆dz̄β̄ −

λ

4
IIJF I ∧ ⋆F J +

1

4
RIJF

I ∧ F J , (4.1)

where λ = −1.

We now turn to the modifications which occur if we change the supersymmetry alge-

bra. In signature (1,3) we have the twisted algebra with R-symmetry group U(1, 1). For

this algebra the Lagrangian takes exactly the same form, but with λ = 1, that is, the

signs of the kinetic terms for all vector fields are flipped [132].3 While the scalar manifold

remains the same (for a given prepotential), we will use the notation SK±= SK∓λ to keep

track of the relative sign between scalar and vector fields. Note that SK+ corresponds to

the case with standard kinetic terms, λ = −1.

Something more drastic happens in signatures (0,4) and (2,2), where special Kähler

geometry is replaced by special para-Kähler geometry. We will provide a concise summary

and refer to the review [127] as well as the original papers [129,130,132] for details. Para-

complex geometries are modelled on the para-complex numbers (also called split complex

numbers) in the same way as complex geometries are modelled on the complex numbers.

The para-complex numbers are obtained by replacing the complex unit i, which satisfies

i2 = −1 and ī = −i by the para-complex unit e, which satisfies e2 = 1 and ē = −e. This
allows one to define ‘para-analogues’ of almost complex, complex, Hermitian, Kähler

3This sign flip had already been observed in [145] by comparing the reductions of vector multiplets

coupled to supergravity from signatures (1,4) and (2,3) to signature (1,3). See [132] for a detailed

explanation how this sign flip is related to the underlying R-symmetry groups.
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and of affine and projective special Kähler geometry. For example, an almost para-

complex structure J on an even-dimensional real manifoldM is an endomorphism field

J ∈ End(TM) which satisfies J2 = IdTM and has an equal number of eigenvalues ±1. If
J is integrable, M admits local para-complex coordinates zi = xi + eyi, and is a para-

complex manifold. Special para-Kähler (SPK) geometry is the para-analogue of special

Kähler geometry. All usual formulae take the same form (assuming some care in placing

factors e), with the prepotential now a para-holomorphic function of para-complex scalar

fields zα.

The change from complex to para-complex target geometry is reflected by the change

in the abelian factor of the R-symmetry group. For special Kähler targets, the infinitesimal

action of U(1) ⊂ U(2) is given by multiplication by the complex structure I. Similarly

the infinitesimal action of SO(1, 1) ⊂ U(1, 1) is given by multiplication by the para-

complex structure J [129]. Thus Table 4.1 tells us immediately that the vector multiplet

geometry is SK for signature (1,3) but SPK for signature (0,4) and (2,2). This can

also be verified by explicit construction of the vector multiplet representations, which in

addition fixes the relative sign between the scalar and vector field terms [129,132]. As we

will review later, SPK geometry arises when reducing Euclidean IIA supergravity on a

Calabi-Yau threefold [124]. Note that if the scalar manifold is SPK, this relative sign does

not really matter, that is we can take λ = −1 or λ = 1, because this sign can be flipped

by a local field redefinition [132]. This reflects that in signatures (0, 4) and (2, 2) the

supersymmetry algebra is unique, whereas in signature (1, 3) there are two inequivalent

supersymmetry algebras, whose vector multiplet representations are distinguished by the

relative sign between scalar and vector field terms. In Minkowski signature sign flips of

the gauge kinetic term map solutions of one theory to solutions of the other. For planar

Reissner-Nordstrom-like solutions, this defines a map which exchanges the regions inside

and outside horizons, and maps cosmological to black hole solutions [136]. In contrast, in

Euclidean and neutral signature solutions with flipped vector kinetic terms are related to

one another by a field redefinition [145].

4.2.3 Hypermultiplets

Hypermultiplets exist in all dimensions D ≤ 6. Their field content is four real scalars

and a doublet of spinors. The scalar geometry does not change under dimensional re-

duction. In Lorentz signature the scalar geometry is hyper-Kähler (HK) in the rigid case

and quaternion-Kähler (QK) in the local case. A detailed review in conventions close to

ours can be found in [97]. In both cases the scalar manifold N carries the action of a

quaternionic structure, which is spanned (at least locally) by three complex structures Ii,

i = 1, 2, 3, which satisfy the quaternionic algebra, that is they mutually anticommute and

satisfy IiIj = Ik for i, j, k cyclic. Hypermultiplet scalars are charged under a non-abelian
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subgroup SU(2) of the R-symmetry group, and the infinitesimal action of SU(2) is given

by multiplication with the complex structures Ii. The corresponding finite action is given

by the unit quaternions, a1 + bI1 + cI2 + dI3, where a
2 + b2 + c2 + d2 = 1, which form

a group isomorphic to SU(2). Three-dimensonal hypermultiplets can be obtained from

four-dimensional vector multiplets by dimensional reduction. This induces a map between

(generic) SK manifolds and (non-generic) QK manifolds. This map is known as the c-

map [133,134]. The resulting QK manifolds contain the SK manifold they are constructed

from as a totally geodesic submanifold, and the QK manifold is a group bundle over an

SK base.

Table 4.3 shows that in various four- and three-dimensional signatures a factor SU(2)

of the R-symmetry group is replaced by SU(1, 1) relative to the standard Lorentz signa-

ture algebra. This indicates that the quaternionic structure of the HM scalar manifold is

replaced by a para-quaternionic structure. The para-quaternions (also called split quater-

nions) are obtained by replacing two of the three complex units by para-complex units.

The para-quaternionic algebra is isomorphic to the algebra R(2) of real 2 × 2 matrices,

and the group of unit para-quaternions is isomorphic to SU(1, 1). The para-analogues of

hyper-Kähler (HK) and quaternion-Kähler (QK) geometry are called para-hyper-Kähler

(PHK) and para-quaternion-Kähler (PQK) geometry. We refer to [131, 146] and the re-

view [127] for details. As we will discuss below, there are versions of the c-map which

map SK and SPK manifolds to PQK manifolds.

One case where we expect that the hypermultiplet geometry is PQK is signature (0,3).

This has been verified explicitly by dimensional reduction from signature (1,3) to signature

(0,3), which defines the temporal c-map, and from signature (0,4) to signature (0,3), which

defines the Euclidean c-map [131]. More generally the results of [131] imply the following:

suppose thatM2nV
is a (projective) SK or SPK manifold with coordinates zα = xα+iϵ1y

α,

metric gαβ̄, α, β = 1, . . . , nV and vector coupling matrix NIJ = RIJ + iϵ1IIJ , where

ϵ1 = −1, i−1 = i for SK and ϵ1 = 1, i1 = e for SPK. In the SK case we assume that gαβ̄
is positive definite and that IIJ is negative definite.4 Consider the two-parameter family

of bosonic Lagrangians for nH = nV + 1 hypermultiplets,

L
(ϵ1,ϵ2)
HM =− gαβ̄dzα ∧ ⋆dz̄β̄ −

1

4
dφ ∧ ⋆dφ

+ ϵ1e
−2φ

[
dϕ̃+

1

2

(
ζIdζ̃I − ζ̃IdζI

)]
∧ ⋆
[
dϕ̃+

1

2

(
ζIdζ̃I − ζ̃IdζI

)]
− ϵ2

2
e−φ

[
IIJdζI ∧ ⋆dζJ − ϵ1IIJ

(
dζ̃I +RIKdζ

K
)
∧ ⋆
(
dζ̃I +RIKdζ

K
)]

,

(4.2)

where ϵ2 = ±1 is a second parameter. It was shown in [131], that the resulting HM

manifold N4nH
= N4nV +4 is QK for (ϵ1 = −1, ϵ2 = −1) and PQK for the other three

4If this condition is relaxed one obtains QK manifolds of indefinite signature. See [147] for special

geometry with indefinite signature SK and QK target spaces.
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Domain Image Parameters c-map

SK QK ϵ1 = −1, ϵ2 = −1 spatial

SK PQKSK ϵ1 = −1, ϵ2 = 1 temporal

SPK PQKSPK ϵ1 = 1, ϵ2 = ±1 Euclidean

Table 4.4: As far as the scalar geometries are concerned, there are three distinct c-maps.

The parameters refer to the hypermultiplet ‘master Lagrangian’ (4.2).

cases. Moreover for (ϵ1 = −1, ϵ2 = 1) the PQK manifold is a group bundle over an SK

base (the space parametrized by the complex scalars zα), while for (ϵ1 = 1, ϵ2 = ±1)
it is a group bundle over an SPK base (the space parametrized by the para-complex

scalars zα). Finally, the manifolds with (ϵ1 = 1, ϵ2 = ±1) are isometric (keeping the base

manifold fixed). Thus there are three inequivalent cases: QK, PQK with an SK base

and PQK with an SPK base, see Table 4.4 for a summary. If we need to empasize the

base we will write PQKSK or PQKSPK . We remark that the c-maps M2nV
→ N4nV +4

are maps between S(P)K manifolds and Q(P)K manifolds, which are well defined on

their own, that is without reference to supermultiplets, Lagrangians and dimensional

reduction. In particular the resulting QK/PQK manifolds are admissible (though non-

generic) HM target manifolds in all signatures for dimensions up to six, provided that

they are compatible with the R-symmetry group. We will see that QK/PQK manifolds

of all of these types appear in Type II compactifications on Calabi-Yau threefolds.

4.2.4 Reduction to three dimensions

Let us consider the dimensional reduction of N = 2 supergravity with nV vector mul-

tiplets and nH hypermultiplets to three dimensions. The field content and scalar geometry

of the HM sector does not change, while vector multiplets can be dualized into hyper-

multiplets after reduction. Moreover, the bosonic degrees of freedom of the supergravity

multiplet, that is the metric and the graviphoton, give rise to an additional hypermultiplet,

so that we end up with three-dimensional N = 4 supergravity with (nV +1)+ nH hyper-

multiplets. Since the four-dimensional HMs play a passive role, we only need to consider

the bosonic Lagrangian (4.1) for gravity and nV vector multiplets. There are four differ-

ent starting points: signature (1,3) with either the standard or twisted N = 2 algebra,

signature (0,4) and signature (2,2). The scalar geometry and relative signs are encoded in

two parameters: ϵ1 = ∓1 distinguishes between SK (signature (1,3)) and SPK (signatures

(0,4), (2,2)), while λ = ±1 encodes the relative sign between scalar and vector terms. As

mentioned earlier, the choice of this sign is only relevant in signature (1,3), since in the

other signatures it can be changed by a field redefinition. We introduce another parameter

ϵ = ∓1, which distinguishes between spacelike reduction and timelike reduction. After the
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reduction, the Einstein-Hilbert term is non-dynamical, and the local degrees of freedom

of the four-dimensional metric reside in the KK-scalar φ and the scalar ϕ̃ which is dual

to the KK-vector. The four-dimensional vector fields AI
µ decompose into scalars ζI and

three-dimensional vector fields which we dualize into scalars ζ̃I . Together with the (para-)

complex scalars zα, this is the field content of nH + 1 hypermultiplets. The computation

is the same as in [134] and [131], except that we now include the case λ = +1. The

Lagrangian takes the form

e−1L3 =
1

2
R3 −

1

4
∂µϕ∂

µϕ− gαβ̄∂µzα∂µz̄β̄

+ ϵ1e
−2ϕ

[
∂ρϕ̃+

1

2

(
ζI∂ρζ̃I + ζ̃I∂

ρζI
)] [

∂ρϕ̃+
1

2

(
ζI∂ρζ̃I − ζ̃I∂ρζI

)]
+
λϵ

2
e−ϕ

[
IIJ∂µζI∂µζJ − ϵ1IIJ

(
∂ρζ̃I −RIK∂

ρζK
)(

∂ρζ̃J −RJL∂ρζ
L
)]

.

(4.3)

By comparison to (4.2) we read off that λϵ = −ϵ2. All of these spaces are either QK,

PQKSK or PQKPSK . Starting with four theories in four dimensions, we have six different

cases.

1. Start with VMs in signature (1,3), with the standard N = 2 algebra, and reduce

over space, (1,3)→ (1,2). Then ϵ1 = −1 and ϵ = −1, λ = −1 which implies ϵ2 = −1.
This is the standard (‘spatial’) c-map of [134] which maps SK+ → QK.

2. Start with VMs in signature (1,3), with the standard N = 2 algebra, and reduce

over time, (1,3) → (0,3). Then ϵ1 = −1 and ϵ = 1, λ = −1 which implies ϵ2 = 1.

This is the temporal c-map [131], which maps SK+ → PQKSK .

3. Start with VMs in signature (0,4) and reduce over space, (0,4)→ (0,3). Then ϵ1 = 1

and ϵ = −1, λ = ±1 which implies ϵ2 = ±1. This is the Euclidean c-map [131], which

maps SPK → PQKSPK .

4. Start with VMs in signature (2,2) and reduce over time, (2,2) → (1,2). Then

ϵ1 = 1 and ϵ = 1, λ = ±1 which implies ϵ2 = ±1. This works like the Euclidean

c-map, SPK → PQKSPK , but if we want to emphasize the context of dimensional

reduction, that is, that we reduce over time rather than space, we will call it the

neutral c-map.

5. Start with VMs in signature (1,3), with the twisted N = 2 algebra, and reduce over

space, (1,3)→ (1,2). Then ϵ1 = −1 and ϵ = −1, λ = 1 which implies ϵ2 = −1. This
maps SK to PQK with a SK base: SK− → PQKSK . Thus the sign flip between

scalar and vector fields exchanges the roles of the spatial and temporal c-map. In

the case at hand we obtain a PQK manifold from an SK manifold through spatial
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4d signature Source 3d signature Image c-map

(0,4) SPK (0,3) PQKSPK Euclidean

(1,3) SK+ (0,3) PQKSK temporal

(1,3) SK− (0,3) QK twisted temporal ∼= spatial

(1,3) SK+ (1,2) QK spatial

(1,3) SK− (1,2) PQKSK twisted spatial ∼= temporal

(2,2) SPK (1,2) PQKSPK neutral ∼= Euclidean

Table 4.5: When reducing four-dimensional vector multiplets to three dimensions, there

are six distinct cases, although there are only three distinct types of hypermultiplet man-

ifolds that arise from the construction.

reduction. While this works like the temporal c-map as far as the scalar geometries

are concerned, we will call this the twisted spatial c-map if we want to emphasize

the context of dimensional reduction, that is, that we reduce over space, but start

with flipped four-dimensional gauge kinetic terms.

6. Start with VMs in signature (1,3), with the twisted N = 2 algebra, and reduce

over time, (1,3) → (0,3). Then ϵ1 = −1 and ϵ = 1, λ = 1 which implies ϵ2 = 1.

This maps SK to QK despite that we are reducing over time: SK− → QK. While

this works like the spatial c-map as far as the manifolds are concerned, we will call

this the twisted temporal c-map if we need to emphasize the context of dimensional

reduction.

See Table 4.5 for a summary.

If we start with a theory of nV vector and nH hypermultiplets in four dimensions,

with scalar manifold M2nV
× Ñ4nH

, reduction to three dimensions leads us to a theory

with (nV +1)+nH hypermultiplets, where the two hypermultiplet manifolds form a direct

product:

M2nV
× Ñ4nH

→ N4nV +4 × Ñ4nH
.

If both factors are ‘in the image of the c-map’, the three-dimensional theory can be lifted

to a different four-dimensional theory with n′
V = nH−1 vector multiplets and n′

H = nV +1

hypermultiplets.

M2nV
× Ñ4nH

→ Ñ4nV +4 × Ñ4nH
← Ñ4nV +4 × M̃2nH−2 = Ñ4n′

H
× M̃2n′

V
. (4.4)

In the context of string theory, the relations between the four-dimensional theories are

T-dualities, which we call spacelike, timelike and mixed depending on how they combine

spacelike/timelike reduction with spacelike/timelike oxidation. Which T-dualities exist
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depends on the details of the HM sectors of the four-dimensional theories. Therefore we

will now consider the Calabi-Yau compactifications of Type II theories in signature (0,10),

(1,9) and (2,8), which give rise to four-dimensional N = 2 theories in signatures (0,4),

(1,3) and (2,2).

4.3 Ten-dimensonal Type II string theories

As explained before, Type IIA and Type IIB string theory are related by T-duality.

When performing a timelike T-duality (meaning a T-duality where the compact dimension

is a time-like coordinate), one finds that Type IIA and Type IIB are no longer T-dual to

each other and instead they are respectively dual to two new theories dubbed IIB* and

IIA*, as summarized in Figure 4.1 [108].

IIA

IIA∗IIB∗

IIB
TS

TS

TT TT

Figure 4.1: Diagram showing the relationship between II and II∗ theories, where TS(TT )

denotes a spacelike (timelike) T-duality.

At first glance, this procedure raises questions since we are considering theories on

backgrounds with closed time-like curves. Moreover, the dual theories have ghosts in their

low energy limits. However there is no known mechanism in string theory that explicitly

prevents the formation of closed timelike curves, in the spirit of Hawking’s chronological

protection conjecture [148]. The presence of ghosts in the low energy effective theories is

not necessarily inconsistent either.

To see why, let us consider Yang-Mills on a timelike circle which gives a Euclidean theory

with a scalar A0 from the reduction that is ghost-like. If we were to consider the whole

theory without truncation, then in the sector without Wilson lines, the ghost can be

gauged away, and only appears as a ghost from the low energy point of view. The

situation for the II* theories could be similar. Indeed, truncated to their supergravity

limits these theories appear to have ghosts, but if the whole tower of string states is kept

it could happen that these ghosts are an artefact of the low energy description, and the
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whole theory is itself consistent. Indeed if the procedure of timelike T-duality is valid,

then the II* theories are equivalent to the regular Type II theories which are ghost free.

The difference between Type IIA and Type IIA∗ and between Type IIB and Type IIB∗

lies in certain phase factors, which at the level of the effective supergravity Lagrangian

manifest themselves in sign flips of the kinetic terms of the R-R fields, as well as factors

of powers of i in the fermionic terms. For Type IIB/IIB∗ the scalar manifolds are differ-

ent, namely SL(2,R)/SO(2) for Type IIB and SL(2,R)/SO(1, 1) for Type IIB∗. It was

observed that supersymmetry is realized in Type II∗ theories in a modified, twisted form,

which can be interpreted as a generalized O(p, q) Majorana condition [53]. In [115] the R-

symmetry groups for supersymmetry algebras in arbitrary dimension and signature were

classified, which allows to put this observation into a wider context. It was found that

in certain signatures there exist several non-isomorphic supersymmetry algebras with the

same number of supercharges (and, where applicable the same chirality properties), whose

R-symmetry groups are different real forms of the same complex Lie group. For example,

in signature (1,9), chiral supersymmetry algebras with N left-moving (or right-moving)

supercharges are real forms of a complex supersymmetry algebra with R-symmetry group

O(N ,C). Real supersymmetry algebras are obtained by imposing O(p, q) Majorana con-

ditions, with p + q = N , which leads to real supersymmetry algebras with R-symmetry

group O(p, q). For ten-dimensional chiral supersymmetry algebras with 32 real super-

charges the two possible cases are O(2) and O(1, 1) which correspond to Type IIB/IIB∗.

There also are two inequivalent non-chiral algebras, which have the same discrete R-

symmetry group but differ by a relative sign in the reality condition imposed on left-

and right-moving supercharges, corresponding to Type IIA/IIA∗. Similarly, N -extended

supersymmetry algebras in four-dimensions are real forms of a complex supersymmetry

algebra with R-symmetry GL(N ,C) and the reality conditions defining real supersymme-

try algebras in signature (1,3) lead to R-symmetry groups of the form U(p, q), p+ q = N .

For N = 2 the two possibilities are U(2) and U(1, 1). For completeness we note that for

N = 2 the reality conditions defining real supersymmetry algebras in signatures (0,4) and

(2,2) lead to unique algebras with R-symmetry U∗(2) and GL(2,R), respectively, see [115]
for details.

All Type II theories have the same NS-NS sector which consists of the graviton GMN ,

Kalb-Ramond field BMN and dilaton Φ. The R-R sector of Type IIA/IIA∗ contains a one

form C1 and a three-form C3 while the R-R sector of Type IIB/IIB∗ contains a zero-form

C0, a two-form C2 and a four-form C4 whose field strength is self-dual or anti-self-dual,

∗G5 = ±G5.
5 The difference between the bosonic actions of Type II and Type II∗ is a

sign flip of the kinetic terms for all fields in R-R sector, see Tables 4.6 and 4.7.6

5We will specify our choice of sign below.
6The information for Type IIA is taken from Table 1 in [53]. Note that their notation for signature

is (s, t), where s corresponds to positive eigenvalues of the metric, and t to negative eigenvalues of the
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Type GMN BMN Φ C1 C3

IIA(1,9) + + + + +

IIA∗
(1,9) + + + − −

IIA(0,10) + − + − +

IIA(2,8) + − + + −

Table 4.6: Relative signs for kinetic terms in ten-dimensional Type IIA theories. A + sign

corresponds to a standard kinetic term in Lorentz signature, thus discarding the overall −
sign with which these terms appear in the action when using the mostly plus convention

for the metric.

Type GMN BMN Φ C0 C2 C4

IIB(1,9) + + + + + +

IIB∗
(1,9) + + + − − −

IIB’(1,9) + − + − + −

Table 4.7: Relative signs for kinetic terms in ten-dimensional Type IIB theories. A

+ indicates the standard sign for a theory in Lorentz signature using the mostly plus

convention.
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The bosonic actions for Type IIA/IIA∗ take the form [53]

S
IIA/IIA∗

(1,9) =

∫
d10x

√
|G|e−2Φ

(
R + 4(∂Φ)2 −H2 + λG2

2 + λG2
4

)
+ · · · (4.5)

where we omitted the Chern-Simons terms, and where H,G2, G4 are the field strength of

B,C1, C3, respectively. Type IIA corresponds to λ = −1 while Type IIA∗ corresponds to

λ = 1. Taking into account that we use the mostly plus convention for the metric, this

means that all bosonic fields have positive kinetic energy for λ = −1. In Table 4.6 this

corresponds to a row where all entries are +, that is we discard the overall minus sign

that these terms have in the action. Generally, in this and other tables, we record sign

flips relative to standard kinetic terms in Lorentz signature, which correspond to a row

with only + signs. Note that the kinetic term of the dilaton in the action (4.5) has a +

sign, since we are in the string frame. When going to the Einstein frame, this sign flips,

showing that the dilaton has positive kinetic energy.

For Type IIB/IIB∗ there is no simple covariant action, since the five-form field strength

is self-dual. However one can use a pseudo-action, whose variation gives the field equation

except the self-duality condition G5 = ± ∗G5, which is then imposed by hand [53]:7

S
IIB/IIB∗

(1,9) =

∫
d10x

√
|G|e−2Φ

(
R + 4(∂Φ)2 −H2 + λG2

1 + λG2
3 + λG2

5

)
+ · · · (4.6)

where Gp+1 = dCp + · · · are the field strength and where again we only display the

Maxwell-like terms. Type IIB corresponds to λ = −1, where all kinetic terms have their

standard sign, while Type IIB∗ exhibits a sign flip for all R-R fields.

Type II string theories exist for all ten-dimensional signatures. We will use the nota-

tion Type II(t,s) for a theory where the metric has t negative and s positive eigenvalues.

Since we prefer the mostly plus convention for Lorentz signature, we will usually refer to

the t directions as timelike and the s directions as spacelike. Theories where t and s are

exchanged have been shown to be equivalent [53]. The unique theories in signatures (0,10)

and (2,8) are IIA theories, denoted IIA(0,10) and IIA(2,8). These theories are non-chiral

and have the same R-R sector as Type IIA(1,9). Their actions have the same structure as

the Type IIA(1,9) action, but with some sign flips for the Maxwell-like terms [53], which

are listed in Table 4.6. In both signatures the B-field has a flipped kinetic term, while in

the R-R sector either C1 or C3 has a sign flip:

SIIA
(0,10) =

∫
d10x

√
|G|e−2Φ

(
R + 4(∂Φ)2 +H2 +G2

2 −G2
4

)
+ · · · , (4.7)

metric, while we use (t, s).
7The sign in the self-duality relation is correlated with the sign of terms which we have not displayed

(Chern-Simons and fermionic terms), see for example [149] for a general discussion. Full bosonic Type II

Lagrangians, which however use a different notation and normalization for the bosonic fields, can be found

in [54]. In their conventions the sign is correlated with whether the worldvolume theories of fundamental

strings and D-strings are Lorentzian or Euclidean, resulting in a (+)-sign for Type IIB and a (−)-sign
for Type IIB∗/IIB’.
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SIIA
(2,8) =

∫
d10x

√
|G|e−2Φ

(
R + 4(∂Φ)2 +H2 −G2

2 +G2
4

)
+ · · · . (4.8)

Type II string theories in different signatures are related by what we call mixed

T-dualities, that is T-dualities which combine a spacelike/timelike reduction with a time-

like/spacelike oxidation (lifting). For this to work one needs to make use of the S-dual of

the Type IIB∗ theory, which is called Type IIB’. As shown in [53] Buscher T-duality along

an isometric direction X♯ in the target space of the worldsheet sigma model preserves the

sign of the term G♯♯∂αX
♯∂αX♯ if the worldsheet theory has Lorentzian signature, but

reverses it if the worldsheet theory has Euclidean signature. In the Type IIB∗ theory,

D-branes are replaced by E-branes, which have a Euclidean worldvolume. If one applies

S-duality, fundamental IIB∗-strings and E-strings are exchanged, so that in the resulting

IIB’-theory fundamental strings have a Euclidean worldvolume. The Type IIA(0,10) and

Type IIA(2,8) theories are then obtained from the Type IIB’(1,9) theory by T-dualities which

involve a timelike/spacelike reduction combined by a spacelike/timelike oxidation [53]. At

the supergravity level, S-duality exchanges the B-field and the R-R two-form C2, resulting

in the sign flips recorded in Table 4.7,

SIIB′

(1,9) =

∫
d10x

√
|G|e−2Φ

(
R + 4(∂Φ)2 +H2 +G2

1 −G2
3 +G2

5

)
+ · · · (4.9)

Note that while G5 is an S-duality singlet, Φ and C0 parametrize the indefinite sig-

nature coset space SL(2,R)/SO(1, 1) on which S-duality acts non-linearly. In summary,

the complete duality web of Type II theories in arbitrary signatures is depicted below

Figure 4.2: 10 dimensional duality web of Type II theories in arbitrary signatures. Full

lines represent T-dualities and dashed lines S-duality. The first sign in exponents is + if

the fundamental string is Lorentzian and - if it is Euclidian. The second sign tells the

same information about the D1/D2-brane. Diagram adopted from [110]
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4.4 Type II Calabi-Yau compactifications

By compactification of Type II string theories one obtainsN = 2 supergravity coupled

to vector and hypermultiplets. Since we always compactify six spatial dimensions to go

from signatures (0,10), (1,9), (2,8) to signatures (0,4), (1,3), (2,2), the only essential

difference in these reductions is between Type IIA and Type IIB, which are distinguished,

as far as bosonic degrees of freedom are concerned, by the field content of their R-R

sectors. Otherwise the bosonic Type IIA/IIA∗ actions only differ from one another by

relative sign flips that one has to follow through, and the same applies to the Type

IIB/IIB∗/IIB’ theories. Since the mechanics of Calabi-Yau compactifications is well known

from the standard cases of IIA(1,9) [122] and IIB(1,9) [123], we will not go through the

computational details but highlight how the ten-dimensional sign flips modify the resulting

four-dimensional actions. More details are given in appendix C. The reduction of the

Euclidean IIA(0,10) theory was worked out in detail in [124].

4.4.1 Type IIA Calabi-Yau compactifications

We start with Type IIA theories, where we have the cases Type IIA(1,9), IIA∗
(1,9),

IIA(0,10) and IIA(2,8). We first consider aspects which work the same in all cases.

The metric. In a general real six-fold compactification, the massless four-dimensional

fields resulting from the reduction of the metric GMN are the four-dimensional metric gµν ,

vector fields, and scalar fields. Massless vector fields are on one-to-one correspondence

with Killing vector fields, and since CY3-folds (Calabi-Yau threefolds) do not have isome-

tries, there are no massless vectors in our case. The massless scalar fields are in one-to-

one with deformations of the six-fold metric which preserve Ricci-flatness. For CY3-folds

these deformations are, due to the existence of a holomorphic (3,0)-form, in one-to-one

correspondence with the deformations of the complex structure and of the (real) Kähler

form. This gives rise to h2,1 complex scalars zα, α = 1, . . . , h2,1 and h1,1 real scalars yA,

A = 1, . . . , h1,1, where hi,j are the Hodge numbers of the CY3-fold.

p-form fields. A ten-dimensional p-form decomposes into products of four-dimensional

p′-forms and six-dimensional p′′-forms, where p′ + p′′ = p. Massless p′-forms are in one-

to-one correspondence with harmonic p′′-forms, which are counted by the Betti-numbers

bp′′ of the compact space. For a CY3-fold the Betti numbers are related to the Hodge

numbers by bp′′ =
∑

i+j=p′′ h
i,j. Moreover, for a CY3-fold

h0,0 = h3,0 = h0,3 = h3,3 = 1 , h1,0 = h0,1 = h3,2 = h2,3 = 0 ,

so that the only numbers that vary between CY3s are h1,1 = h2,2 ≥ 1 and h1,2 = h2,1 ≥ 0.

The B-field. The B-field BMN gives rise to h1,1 real scalars xA, as well as a four-

dimensional B-field, which we dualize into a scalar ϕ̃.
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10d 4d

GMN gµν Metric

zα Complex structure moduli

yA (Real) Kähler moduli

BMN bµν ∼ ϕ̃ Universal axion

xA h1,1 real scalars

Φ φ Dilaton

Table 4.8: Massless fields in Type II Calabi-Yau compactifications, NS-NS sector.

10d 4d

CM A0
µ vector

CMNP Cµnp ∼ AA
µ h1,1 vectors

Cmnp ∼ ζI , ζ̃I 2h2,1 + 2 scalars

Table 4.9: Massless fields in Type IIA Calabi-Yau compactifications, R-R sector.

The dilaton. The ten-dimensional dilaton Φ gives rise to a four-dimensional scalar φ,

which differs from Φ by a field-redefinition. Essentially, one absorbs a factor proportional

to the volume of the internal space, in order that the four-dimensional action acquires

standard form.

The R-R sector. The R-R one-form CM gives rise to a vector A0
µ. The R-R three-

form CMNP gives rise to h1,1 vectors AA
µ and 2h2,1+2 real scalars ζI , ζ̃I , I = 0, 1, . . . , h2,1.

The massless fields originating from the NS-NS sector are summarized in Table 4.8, those

from the R-R sector in Table 4.9.

Collecting all these fields, this is the bosonic field content of the N = 2 Poincaré

supergravity multiplet, (gµν ,A0
µ), of nV = h1,1 vector multiplets (yA, xA,AA

µ ), and of

nH = h2,1+1 hypermultiplets (zα, φ, ϕ̃, ζI , ζ̃I). The signs of the kinetic terms of the scalar

fields can be inferred from those of the higher-dimensional ones, and are listed in Table

4.10.

Signs are taken relative to the standard IIA(1,9) theory, where all kinetic terms have

the standard sign, denoted +. In IIA∗
(1,9) half of the signs in the HM sector are flipped,

so that the HM scalar manifold has neutral signature. In the Euclidean IIA(0,10) theory

only the signs of the scalars xA which descend from the B-field are flipped, which gives

the VM manifold neutral signature. Finally in the IIA(2,8) case, we have signs flips for

xA, ζI , ζ̃I , so that both VM and HM scalar manifold have neutral signature.8

8Note that in both cases the sign flip of the four-dimensional B-field bµν is compensated by a second

sign flip when we dualize this two-form into the scalar ϕ̃. Dualization flips the sign of the kinetic term
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yA xA zα φ ϕ̃ ζI ζ̃I A0
µ AA

µ

IIA(1,9) + + + + + + + + +

IIA∗
(1,9) + + + + + − − − −

IIA(0,10) + − + + + + + − +

IIA(2,8) + − + + + − − + −

Table 4.10: Signs of the kinetic terms for scalar and vector fields resulting from Type IIA

CY3 compactifications. A + indicates a standard kinetic term. The fields yA, xA are the

vector multiplet scalars.

The ten-dimensional sign flips also affect the four-dimensional vector kinetic terms.

For Type IIA∗
(1,9) the signs of all vector kinetic terms are flipped, whereas for Type IIA(0,10)

only the sign of A0
µ is flipped, while for Type IIA(2,8) only the signs of AA

µ are flipped. Thus

the vector kinetic terms have signatures (+)h
1,1+1, (−)h1,1+1, (+)h1,1(−), and (+)(−)h1,1

,

respectively.

The interactions of these fields are encoded in certain coupling matrices that one

obtains when performing the dimensional reduction. For a four-dimensional N = 2 theory

these coupling matrices can be interpreted as geometrical data on the scalar manifolds

M2h1,1 of the vector and N4h2,1+4 of hypermultiplets, which have real dimensions 2h1,1 and

4h2,1 + 4, respectively. These are the geometries that we have reviewed in the previous

section. At this point the sign flips become relevant since they determine the signatures

of the metrics ofM2h1,1 and N4h2,1+4.

The vector multiplet sector

Let us first consider the vector multiplet scalars yA and xA. In signature (1, 9) their

kinetic terms come with same sign, and the manifoldM2h1,1 can be shown to be a complex

manifold. The real scalars yA and xA can be combined into complex scalars zA = yA+ixA,

which provide holomorphic coordinates forM2h1,1 . The scalar fields yA parametrize the

moduli space of real Kähler forms J on the CY3, while xA parametrize the deformations of

the internal components of the B-field, which corresponds to a harmonic (1,1)-form on the

CY3. The combined moduli space parametrized by zA can be viewed as a complexification

of the real moduli space of Kähler forms, and is usually just called the Kähler moduli

space. This space carries itself a Kähler metric gAB̄(z, z̄), which appears in the four-

dimensional action as the generalized kinetic term (sigma model) of the scalars zA, that is

L ∼ gAB̄(z, z̄)∂µz
A∂µz̄B̄. Moreover, this Kähler metric is not generic, but special, because

its Kähler potential K(z, z̄) can be obtained from a holomorphic prepotential F(z). Thus

for a p-form field if and only if the metric has an even number of negative eigenvalues.
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gAB̄(z, z̄) is a (projective) special Kähler metric or SK metric for short.

Let us next look at the four-dimensional vector fields, still restricting ourselves to

signature (1,9). We have obtained h1,1 + 1 vector fields, of which one, A0
µ, belongs to

the supergravity multiplet and is called the graviphoton, while the others, AA
µ , belong

to the h1,1 vector multiplets. We denote the corresponding field strength by F0
µν and

FA
µν . As explained before, the vector fields can be rearranged into linear combinations

AΣ
µ , Σ = 0, . . . , nV = h1,1 so that the field strength FΣ

µν together with their duals GΣ|µν

form a symplectic vector. By carrying out the reduction explicitly, one finds that the

couplings between scalars and vectors are encoded by the complex coupling matrix NΣΛ =

RΣΛ + iIΣΛ, which depends on the scalars zA through the prepotential F(zA).

The resulting bosonic Lagrangian for the supergravity multiplet and nV vector multi-

plets has the form (4.1), and the only difference between Type IIA and Type IIA∗ is the

overall sign flip for the vector fields AΣ
µ . Since we use a convention where IΣΛ is negative

definite, Type IIA corresponds to λ = −1, while Type IIA∗ corresponds to λ = 1:

L
(1,3)IIA/IIA∗

G+VM =
1

2
⋆ R4 − ḡAB̄(z, z̄)dz

A ∧ ⋆dz̄B − λ

4
IΣΛF

Σ ∧ ⋆FΛ +
1

4
RΣΛF

Σ ∧ FΛ ,

(4.10)

where A,B = 1, . . . , nV = h1,1 and Λ,Σ = 0, . . . , nV = h1,1. For λ = −1 this is the

standard result of [122]. For the Type IIA∗ the sign flips in the ten-dimensional Lagrangian

induce a sign flip in the four-dimensional Maxwell term.

In signatures (0, 10) and (2, 8) Table 4.10 shows that the metric ofM2h1,1 has neutral

signature. The four-dimensional N = 2 supersymmetry algebra requires SPK geometry

for the vector multiplets in these cases. The case (0,10) → (0,4) has been worked out in

full detail in [124]. As far as the vector multiplet sector is concerned, the only difference

between this and the case (2,8) → (2,2) is an overall sign flip of the Maxwell term. Note

that in both cases the vector kinetic terms have Lorentz signature and therefore are

indefinite. As mentioned before, the overall sign of the Maxwell term is conventional in

the sense that it can be flipped by a field redefinition. Therefore we can take either value

of λ = ±1 in the following Lagrangian:

L
(0,4),(2,2)
G+VM =

1

2
⋆ R4 − ḡAB̄(z, z̄)dz

A ∧ ⋆dz̄B +
λ

4
IΣΛF

Σ ∧ ⋆FΛ +
1

4
RΣΛF

Σ ∧ FΛ . (4.11)

Compared to (4.10) the scalar geometry is now SPK and the scalar fields zA are para-

complex fields. The couplings ḡAB̄, IΣΛ andRΣΛ are determined by the standard formulae

of special geometry, but using a para-holomorphic instead of a holomorphic prepotential,

see [124,129,130] for details.
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The hypermultiplet sector

The scalars zα, α = 1, . . . , h2,1 parametrize the deformations of the complex structure

of the CY3 metric. They provide coordinates on a special Kähler submanifold of the

hypermultiplet manifold, with metric gαβ̄(z, z̄) and prepotential F(zα).

The additional scalars φ (dilaton), ϕ̃ (axion) and ζI , ζ̃I , I = 0, . . . h2,1 (R-R scalars)

extend this SK manifold either to a quaternion-Kähler manifold (QK manifold) or to a

para-quaternion-Kähler manifold (PQK manifold). Which case is realized depends on the

signs of the kinetic terms of the R-R scalars. The HM Lagrangian takes the form

LIIA
HM =− G̃αβ̄dz

α ∧ ⋆dz̄β̄ − 1

4
dφ ∧ ⋆dφ

− e−2φ

[
dϕ̃+

1

2

(
ζIdζ̃I − ζ̃IdζI

)]
∧ ⋆
[
dϕ̃+

1

2

(
ζIdζ̃I − ζ̃IdζI

)]
− λ

2
e−φ

[
IIJdζI ∧ ⋆dζJ + IIJ

(
dζ̃I +RIKdζ

K
)
∧ ⋆
(
dζ̃I +RIKdζ

K
)]

,

(4.12)

where λ = −1 for Type IIA(1,9) [122] and Type IIA(0,10) [124] and λ = 1 for Type IIA∗
(1,9)

and Type IIA(2,8). The coupling matrices IIJ and RIJ depend on the complex scalars

zα and are determined by the prepotential F(zα) by the same formulae as vector field

couplings for vector multiplets. This reflects that the HM manifolds resulting from CY3

compactifications are not generic, but of a special type, which can be obtained from SK

manifolds by the c-map. In the case at hand the SK manifold is the complex structure

moduli space, and the c-map is either the standard c-map or the temporal c-map. These

c-maps can be defined using the reduction of a Lorentz signature VM Lagrangian to three

dimensions either over space or over time. That the same types of HM manifolds occur in

CY3 compactifications is no coincidence, but related to the fact that T-duality of Type II

CY3 compactifications exchanges VMs and HMs, as we will see later. The HM geometry

is QK for Type IIA(1,9) and Type IIA(0,10) (and positive definite, since in our convention

IIJ is negative definite), and PQK for Type IIA∗
(1,9) and Type IIA(2,8). Note that in all

cases the submanifold parametrized by the scalars zα is an SK manifold.

4.4.2 Type IIB Calabi-Yau compactifications

We now turn to Type IIB compactifications. The NS-NS sector is the same as for

Type IIA. In the R-R sector the zero form C0 gives rises to a scalar c. The two-form

C2 gives rise to a two-form Cµν which we dualize into a scalar a, and to h1,1 scalars uA,

A = 1, . . . , h1,1. Taking into account the self-duality of the five-form G5, the four-form C4

gives rise to h1,1 two-forms CA
µν which we dualize to scalars vA, and 1 + h2,1 vectors A0

µ

and Aα
µ. The first vector is associated to the harmonic (3,0)-form of the CY3, while the

other vectors correspond to the harmonic (2,1)-forms. See Table 4.11 for a summary.
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10 d 4 d

C c scalar

CMN Cµν ∼ a scalar

Cmn ∼ uA h1,1 scalars

CMNPQ Cµνmn ∼ vA h1,1 scalars

Cµmnp ∼ A0
µ,AA

µ 1 + h2,1 vector fields

Table 4.11: Massless fields in Type IIB Calabi-Yau compactifications, R-R sector.

Together with the NS-NS fields, these fields are the bosonic content of the supergravity

multiplet, (gµν ,A0
µ), of h

2,1 vector multiplets (zα, Aα
µ), and of h1,1 + 1 hypermultiplets

(yA, xA, φ, ϕ̃, uA, vA, c, a). The vector fields can be rearranged into linear combinations AI
µ

with field strength F I
µν which together with the dual field strength GI|µν form a symplectic

vector. The relative signs between the kinetic terms are determined by those between the

ten-dimensional fields and are listed in Table 4.12.

While one can perform the reduction of Type IIB theories explicitly, see for example

[123] for IIB(1,9), we can infer the result by using mirror symmetry and tracing sign flips.

As is well known, Type IIA(1,9) compactified on a CY3 with Hodge numbers (h1,1, h2,1)

is equivalent to IIB(1,9) compactified on the mirror CY3 with Hodge numbers (h′1,1 =

h2,1, h′2,1 = h1,1). Both theories have nV = h1,1 = h′2,1 vector multiplets and nH =

h2,1+1 = h′1,1+1 hypermultiplets. In IIA compactifications complex structure moduli sit

in hypermultiplets and Kähler moduli in vector multiplets while in IIB compactifications

it is the other way round. We would like to compactify the IIB theory on the same CY3

as the IIA theory, but this is the same as compactifying the IIA theory on the mirror. The

resulting theory has nV = h2,1 vector multiplets and nH = h1,1 + 1 hypermultiplets, and

the action can be brought to our preferred standard form of a vector and hypermultiplet

action. To adapt results from Type IIB to Type IIB∗ and Type IIB’, we then only have

to trace the effect of the ten-dimensional sign flips.

As a result, the bosonic Lagrangian for the supergravity multiplet and the nV = h2,1

vector multiplets takes the form

L
IIB/IIB∗/IIB′

G+VM =
1

2
⋆ R4 − ḡαβ̄(z, z̄)dzα ∧ ⋆dz̄β̄ −

λ

4
IIJF I ∧ ⋆F J +

1

4
RIJF

I ∧ F J ,

(4.13)

where λ = −1 for IIB, and λ = 1 for IIB∗ and IIB’. The geometry is SK, with the two

cases distinguished by an overall sign flip of the gauge fields.

In the hypermultiplet sector we can rearrange the scalars into linear combinations
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zα yA xA φ ϕ̃ c a uA vA AI
µ

IIB + + + + + + + + + +

IIB∗ + + + + + − − − − −
IIB’ + + − + − − + + − −

Table 4.12: Signs of the kinetic terms for scalar and vector fields resulting from Type

IIB CY3 compactifications. A + indicates a standard kinetic term. The fields zα are the

vector multiplet scalars.

ζI ∼ c, vA and ζ̃I ∼ a, uA. The IIB HM Lagrangians take the form

L
IIB/IIB∗/IIB′

HM =− G̃AB̄dz
A ∧ ⋆dz̄B̄ − 1

4
dφ ∧ ⋆dφ

+ ϵ1e
−2φ

[
dϕ̃+

1

2

(
ζIdζ̃I − ζ̃IdζI

)]
∧ ⋆
[
dϕ̃+

1

2

(
ζIdζ̃I − ζ̃IdζI

)]
− ϵ2

2
e−φ

[
IIJdζI ∧ ⋆dζJ − ϵ1IIJ

(
dζ̃I +RIKdζ

K
)
∧ ⋆
(
dζ̃I +RIKdζ

K
)]

.

(4.14)

For Type IIB the scalars zA = yA+ ixA are complex and parametrize an SK submanifold.

The parameters ϵ1, ϵ2 take the values (ϵ1, ϵ2) = (−1,−1), the HM manifold is positive

definite and QK. For Type IIB∗ the signs of all R-R scalars are flipped, and (ϵ1, ϵ2) =

(−1, 1). The scalars zA are again complex and span an SK submanifold, and the HM

manifold is PQK. When going from IIB∗ to IIB’, the signs of xA, ϕ̃ and of ζ̃I ∼ a, uA are

flipped. The scalars yA and xA now combine into para-complex scalars zA = yA + exA

which parametrize an SPK submanifold. We now have (ϵ1, ϵ2) = (1, 1). This is again

a PQK manifold, but with a PSK submanifold instead of an SK manifold. Thus the

S-duality relating Type IIB∗ to Type IIB’ changes the HM manifolds in a significant way,

while keeping it consistent with the same supersymmetry algebra.

Comparing Type IIA with Type IIB compactifications on the same CY3, we see that,

loosely speaking, vector and hypermultiplet get exchanged. A Type IIA compactification

has nV = h1,1 vector and nH = h2,1 + 1 hypermultiplets, while a Type IIB compactifica-

tion has n′
V = h2,1 vector and n′

H = h1,1 + 1 hypermultiplets. As indicated by the Hodge

numbers, complex structure moduli of the CY3 metric end up in HMs for Type IIA and

in VMs for Type IIB, while (para)-complexified Kähler moduli end up in VMs for Type

IIB and in HMs for Type IIA. In both cases there is a universal HM which contains the

dilaton, axion and two R-R fields. Moreover, in both cases all model dependence, that is

the dependence on the choice of the CY3, is encoded in two functions, the holomorphic

prepotential of the complex structure moduli space and the (para)-holomorphic prepo-

tential of the (para)complexified Kähler moduli space.9 The complex structure moduli

space is of course always complex, but the Kähler moduli space becomes para-complex

9To see that the two prepotentials are on the same footing one must go beyond a simple dimensional
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for Type IIA(0,10) and Type IIA(2,8) as well as Type IIB’(1,9) due to the sign flip of the

Kalb-Ramond field. The HM manifolds are completely determined by their distinguished

S(P)K submanifold through a c-map. This structure is consistent with certain pairs of

compactifications being ‘on the same moduli’ after compactification to three dimensions.

As a result, Type II compactifications are mutually related by T-dualities transverse to

the CY3. This will be studied in detail in the next section.

4.5 T-duality

We can now combine the results about c-maps with those about CY3 compactifications

to determine how the four-dimensional theories resulting from Type II CY3 compactifica-

tions are related by T-duality. Type IIA(1,9) string theory compactified on a circle of radius

R, measured in string units
√
α′, is equivalent to Type IIB(1,9) compactified on a circle of

radius 1/R [64, 65]. Moreover, Type IIB(1,9) string theory on ten-dimensional Minkowski

space can be obtained as an alternative decompactification limit R→ 0 of the circle com-

pactified Type IIA(1,9) theory, with winding modes playing the roles of momentum modes,

and vice versa. This is what is meant when saying that the uncompactified theories ‘are

T-dual to each other.’ T-duality extends to backgrounds which include a compact factor

transverse to the circle. In particular Type IIA(1,9) compactified on X ×S1
R, is equivalent

to Type IIB(1,9) compactified on X × S1
1/R, where X is the same CY3. By taking the

alternative decompactification limit R →∞, one can map the four-dimensional effective

field theories for Type IIA(1,9) and Type IIB(1,9), compactified on the same CY3 X, to

one another, and the relation between the respective vector and hypermultiplet sectors

is given by the c-map and its inverse [133]. Timelike T-dualities and mixed T-dualities

which combine spacelike/timelike reduction with timelike/spacelike oxidation, together

with S-duality, relate all ten-dimensional Type II theories to one another [53, 108]. In

this section we extend these T-dualities to CY3 compactifications. We remark that it is

straightforward though somewhat tedious to work out the explicit relations between the

fields of two T-dual four-dimensional effective field theories. T-duality operates naturally

in the string frame, and therefore we would need to convert our actions from the Einstein

frame to the string frame, perform the reductions of T-dual theories over circles of radii

R and 1/R, and then read off the relations between the fields. While the explicit map

between fields is needed for some applications, in particular for mapping solutions from

one theory to solutions of a T-dual theory, we will only be interested in how the various

Type II CY3 compactifications are related to each other by T-duality and S-duality. For

this it is sufficient to match the hypermultiplet manifolds that we get after reduction to

reduction and include the α′-corrections to the Kähler moduli space. We refer to [150] for a review of

string theory on Calabi-Yau manifolds.
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three dimensions, as this shows that both four-dimensional theories reduce to the same

three-dimensional theory. All that we need for this comparison was worked out in section

2. Explicit maps between the fields will be given in the next chapter where we will study

the action of T-duality on solutions of the four-dimensional effective field theories.

4.5.1 Signature (1,3) and spacelike/timelike T-duality

To start exploring the web of relations between four-dimensional theories we begin

with the CY3 compactification of the Type IIA(1,9) theory.

• Type IIA(1,9) string theory on a Calabi-Yau threefold has nV = h1,1 vector and

nH = h2,1 + 1 hypermultiplets. It realizes the standard N = 2 algebra with R-

symmetry U(2) ∼= U(1)× SU(2) and the scalar manifold has the form

MIIA =MSK+

2h1,1 × ÑQK
4h2,1+4 .

Upon spacelike reduction the scalar manifold becomes the product of two QK man-

ifolds

M(1,2) = NQK
4h1,1+4 × Ñ

QK
4h2,1+4 .

If one swaps the roles of the two factors and lifts back over space, one obtains

MIIB = NQK
4h1,1+4 × M̃

SK+

2h2,1

as required for a Calabi-Yau compactification of Type IIB string theory. This is

the standard, spatial T-duality between Type IIA and Type IIB, extended to their

Calabi-Yau compactifications. It employs the standard, spatial c-map in both di-

rections.

• If we start again with Type IIA, but perform a timelike reduction, we obtain a

theory in signature (0,3) with scalar target

M(0,3) = N PQK
4h1,1+4 × Ñ

QK
4h2,1+4 ,

where the first factor is now PQK rather than QK. Swapping the two factors and

lifting back over time we obtain a scalar manifold of the form

MIIB∗
= N PQK

4h1,1+4 × M̃
SK−
2h2,1 .

Note that after the oxidation we have flipped gauge field terms (recorded as SK−)

since we need such a sign in order to obtain a QK manifold by timelike reduction.

The resulting four-dimensional theory realizes the twisted Lorentz signature algebra

with R-symmetry U(1, 1) ∼= U(1)×SU(1, 1). Thus we obtain the timelike T-duality

between Type IIA and Type IIB∗, extended to their Calabi-Yau compactifications.

It employs the temporal c-map for reduction and the twisted temporal c-map for

oxidation.



Chapter 4. Type II Calabi-Yau compactifications in general spacetime signature 101

• If we start with Type IIA∗ the initial scalar manifold is

MIIA∗
=MSK−

2h1,1 × Ñ PQKSK

4h2,1+4 .

Upon space-like reduction this becomes

M(1,2) = N PQKSK

4h1,1+4 × Ñ
PQKSK

4h2,1+4 ,

which lifts back to

MIIB∗
= N PQKSK

4h1,1+4 × M̃
SK−
2h2,1 .

This realizes the spacelike T-duality between Type IIA∗ and Type IIB∗, extended

to their Calabi-Yau compactifications. Here we employ the twisted spatial c-map in

both directions.

• If we start with Type IIA∗ and reduce over time we obtain instead

M(0,3) = NQK
4h1,1+4 × Ñ

PQKSK

4h2,1+4 ,

which lifts back to

MIIB = NQK
4h1,1+4 × M̃

SK+

2h2,1 ,

and we realize the timelike T-duality between Calabi-Yau compactifications of Type

IIA∗ and Type IIB. Here we use the twisted temporal c-map for reduction and the

temporal c-map for oxidation.

The relations between the four-dimensional theories are summarized by the lower face of

the cubic diagram in Figure 4.3.

4.5.2 Mixed T-dualities and signature change

Let us now mix spacelike/timelike reduction with timelike/spacelike oxidation in order

to relate four-dimensional theories across signatures. If we start with the CY3 compacti-

fication of Type IIA(0,10) we have a scalar manifold which is the product of an SPK and

a QK manifold:

MIIA,(0,4) =MSPK
2h1,1 × ÑQK

4h2,1+4 .

Upon spacelike reduction to signature (0, 3), the scalar manifold becomes

M(0,3) = N PQKSPK

4h1,1+4 × ÑQK
4h2,1+4 ,

where the first PQK manifold has an SPK base. This step involves the Euclidean c-map.

We now need to identify a IIB theory that gives rise to the same scalar manifold upon

timelike reduction. To obtain the QK manifold ÑQK
4h2,1+4 by timelike reduction we need
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A

A∗B∗

B
CS

CS

CTCT

IIA

IIA∗IIB∗

IIB
TS

TS

TTTT

CY 3

CY 3CY 3

CY 3

Figure 4.3: The spacelike and timelike T-dualities TS, TT between the four Type II

string theories in ten-dimensional Minkwoski space induce relations between the four-

dimensional supergravity theories, denoted A, B, A∗, B∗ obtained by compatification on

the same Calabi-Yau threefold. The number nV of vector multiplets and nH of hypermul-

tiplets is related to the Hodge number of the Calabi-Yau threefold by (nV , nH) = (m,n) =

(h1,1, h2,1 + 1) for type-A and (nV , nH) = (m′, n′) = (h2,1, h1,1 + 1) for type-B. The the-

ories denoted A∗, B∗ have the same structure, but a modified supersymmetry algebra

with a non-compact R-symmetry group which results in sign flips in the Lagrangian and

modifications of the scalar geometry. The maps relating the four-dimensional theories are

denoted CS, CT , depending on whether they use a spacelike or timelike reduction and

oxidation.

to start with vector multiplets which have SK geometry and a sign flip between scalar

and vector term, denoted SK−. This could be either the CY3 compactification of IIB∗ or

IIB’. The map M̃SK−
2h2,1 → ÑQK

4h2,1+4 is the twisted version of the temporal c-map. The HM

manifold of the partner theory must match N PQKSPK

4h1,1+4 , that is, it must be a PQK manifold

with an SPK base. Therefore we need to choose IIB’, which has a scalar manifold of the

type

MIIB′
= N PQKSPK

4h2,1+4 × M̃SK−
2h1,1 .

This shows the existence of a mixed T-duality relating the CY3 compactifications of Type

IIA(0,10) and Type IIB’(1,9), which uses the Euclidean c-map for reduction and the twisted

temporal c-map for oxidation.

If we reduce the IIB’ theory over space, the resulting scalar manifold is

M(1,2) = N PQKSPK

4h2,1 × Ñ PQKSK

4h1,1+4 ,

where M̃SK−
2h1,1 → Ñ PQKSK

4h1,1+4 is the twisted version of the spatial c-map.
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By lifting this back over time we obtain the scalar manifold of the CY3 compactifica-

tion of IIA(2,8),

MIIA,(2,2) =MSPK
2h1,1 × Ñ PQKSK

4h2,1+4 .

This step involves the inverse of the neutral c-map which maps SPK to PQK through

a timelike reduction. In summary we have shown the existence of a mixed T-duality

relating the CY3 compactifications of Type IIB’(1,9) and Type IIA(2,8) which uses the

twisted spatial c-map for reduction and the neutral c-map for oxidation. We summarize

the six T-dualities which relate Type IIA and Type IIB theories in four dimensions in

Table 4.13. Note that under T-duality the compactifications organise into two orbits: the

orbit of ‘pure’ T-dualities relating IIA/IIA∗/IIB/IIB∗ in signature (1,3), and the orbit of

mixed T-dualities relating Type IIA theories in signatures (0,4) and (2,2) to the Type IIB’

theory in signatures (1,3). In order to connect these two orbits to one another we would

need to use the duality between IIB∗ and IIB’, which is an S-duality. It is important to

notice that we are now working at the level of the 4-dimensional effective field theory

and we are therefore strictly speaking about the S-duality that arises generically in 4

dimensions for theories with N = 4 supersymmetry, which is different from the 10D S-

duality of the fundamental theory. For example the 4D S-duality acts on the 4-dimensional

dilaton, which differs from the 10-dimensional one by a rescaling from the Calabi-Yau

volume. Moreover the 10D S-duality acts non-linearly on the coset space defined by Φ

and C0 whereas in 4D S-duality acts on the coset space defined by ϕ and ϕ̃. Since CY3

backgrounds only preserve four-dimensional N = 2 supersymmetry, there is not good

reason to expect that S-duality is valid, and therefore we should expect that there are

two distinct classes of compactifications. The relation of the backgrounds within each

orbit relies on T-duality for backgrounds of the form CY3 × S1 which is an established

perturbative symmetry of string theory. Note however, that there are special, non-generic

N = 2 compactifications which are ‘N = 4-like’ and exhibit S-duality. For this class all

Type II CY3 compactifications should form a single orbit at the non-perturbative level

by combining pure T-dualities, mixed T-dualities and S-duality. Note that for S-duality

to work, there has to exist, for the HM manifolds of these special models, an isomorphism

of PQK manifolds, which replaces an SK base with an SPK base. Such an isomorphism

can only exist in special case when the structure of the prepotential for the S(P)K base

is very simple.

Let us finally point out that considering the other ten-dimensional signatures will add

nothing new. The Type II(5,5) theories cannot be compactified on CY3 folds, and the

theories IIA(10,0), IIA
∗
(9,1), IIA(8,2) are related to those we have considered by an overall

sign change of the metric, which maps (t, s) → (s, t). Theories related in this way have

been shown to be equivalent [53]. The Type IIA(4,6) and Type IIA(6,4) reduce to theories

in signature (4,0) and (0,4) which are equivalent to those we have considered. From the

higher-dimensional point of view the chain of mixed T-dualities is projected onto the
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IIA in 4d Scalar mfd. 3d sig. Scalar mfd. IIB in 4d Scalar mfd.

IIA(0,4) SPK × QK (0,3) PQKSPK × QK IIB’(1,3) PQKSPK × SK−

IIA(1,3) SK+ × QK (0,3) PQKSK × QK IIB∗
(1,3) PQKSK × SK−

IIA∗
(1,3) SK− × PQKSK (0,3) QK × PQKSK IIB(1,3) QK × SK+

IIA(1,3) SK+ × QK (1,2) QK × QK IIB(1,3) QK × SK+

IIA∗
(1,3) SK− × PQKSK (1,2) PQKSK × PQKSK IIB∗

(1,3) PQKSK × SK−

IIA(2,2) SPK × PQKSK (1,2) PQKSPK × PQKSK IIB’(1,3) PQKSPK × SK−

Table 4.13: Summary of T-dualities between Type IIA and Type IIB Calabi-Yau com-

pactifications for all (inequivalent) four-dimensional signatures. In the middle we specify

the three-dimensional theory to which the T-dual four-dimensional theories reduce.

chain we have described. Since the four-dimensional theory in signature (0,4) is unique,

the difference between Type IIA(0,10) and Type IIA(4,6) is lost from the four-dimensional

perspective. Similarly the Type IIB(3,7) and Type IIB(7,3) reduce to theories in signatures

(3, 1) of (1,3), which are of the Type IIB’ type, and the distinction between Type IIB’(3,7)

and Type IIB’(1,9) is lost from the four-dimensional perspective.10 We have already pointed

out that in order to relate such a theory to Type IIB∗, and thus to the other T-duality

orbit, we need to use S-duality, which can only be expected to be a symmetry for non-

generic N = 2 compactifications. Signatures (3,7) and (7,3) have a unique theory of Type

IIB’, but they can be related through mixed T-dualities to signatures (1,9) and (9,1)

where by using S-duality they can be related to Type IIB∗ and from there by T-dualities

to Type IIA/IIA∗ and Type IIB. Thus for N = 2 compactifications which preserve S-

duality, we can connect the CY3 compactifications of all Type II theories in signatures

(0,10) , . . . (4,6) to one another (and the same applies to signature obtained by an overall

sign flip). All in all, for generic N = 2 we have to expect two disjoint T-duality orbits,

as shown in the following figure.

B

A

x

B*

t

B

A*

t

B*

x

B’
S

A(2,2)

x/t

A(4,0)

t/x

Figure 4.4: 4-dimensional duality web of Type II theories in arbitrary signatures com-

pactified on Calabi-Yau threefolds.

10The actions of IIB’(1,9)/(9,1) and IIB’(3,7)/(7,3) differ by an overall sign flip of the R-R fields [53, 54].

Upon compactification on a CY3, this results in a flip of the parameter ϵ2 in the hypermultiplet sector,

but the resulting hypermultiplet manifolds are isometric.
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4.6 Outlook

In this chapter we have obtained the CY3 compactifications of all ten-dimensional

Type II string theories and analyzed how they are related to one another by T-duality

and S-duality. At the level of symmetries and effective supergravity, we get a full and

satisfactory picture which is consistent with the idea that exotic string theories and their

compactifications fit into an extended string theory landscape and allow one to realize all

maximally supergravity theories in all signatures as limits. Of course, admitting back-

grounds with multiple time directions, as well as inverted kinetic terms in the effective

action raises conceptual questions. Instead of repeating the arguments of [53,54,108,110],

let us ask what new insights and future directions result from our work.

Apart from symmetry considerations, a reason to consider the inclusion of exotic

string theories into the string theory landscape is string universality, and the observation

that bubbles of exotic spacetime signature can be generated [54]. One future direction is

to explore in more detail whether and how dynamical signature change can be realized

as a physical process in string theory. It would be interesting to relate this to the recent

work [60,118,119] on complex spacetime metrics, which was in part motivated by earlier

work [59] on topology change. Gravity with a dynamical signature has recently been

discussed in [151] within the framework of Einstein-Cartan gravity.

To make a preliminary remark on this topic, we note that the T-duality orbit along

which spacetime signature can change in Type II CY3 compactifications is connected to

the orbit of the standard IIA/IIB compactifications and their IIA∗/IIB∗ partners by S-

duality, which we cannot expect to be valid in generic N = 2 compactifications. This

suggests that in backgrounds with less than N = 4 supersymmetry, there is, generically

(with the exception of special ‘N = 4 like’ backgrounds), a separation between a phase

with Lorentzian string worldsheets and fixed Lorentzian spacetime signature, and a phase

with Euclidean string worldsheets and arbitrary spacetime signature.11 Thus signature

change may only be relevant cosmologically if the universe goes through a phase of high

unbroken supersymmetry.12

Based on the results of this chapter, solutions of exotic string theories can now be

explored systematically from a four-dimensional N = 2 perspective in addition to the

ten-dimensional perspective. Future work will include how solutions transform under du-

alities, whether solutions of different theories can be connected to one another, including

the question of dynamical signature change. Staying within the class of theories with

11Lorentizan string worldsheets are also possible in neutral signature (5,5), but this signature does not

give rise to CY3 compactifications. Also, to connect it to the standard IIA/IIB theories, one needs to

use S-duality.
12Our universe could still be a brane world embedded into a higher-dimensional universe with multiple

time directions, an option that has been explored in [110].
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Lorentzian string worldsheets, there are interesting questions regarding the relation be-

tween solutions in Type II and Type II∗. The results of this chapter imply that the dual

pair of planar cosmological and black hole solutions described in [135,136] lifts to a ‘dual

pair’ of solutions in Type IIA and Type IIA∗. This raises the question whether these

‘dual solutions’ can be related by T-duality (which is not obvious). Both solutions have

horizon thermodynamics that can be related to the same Euclidean thermal partition

functions, and one can now ask whether the Type II embedding provides insights into the

underlying microscopic physics. One could also study whether these solutions correspond

to admissible saddle points, in the sense of [60,118,119], of the Euclidean path integral.



Chapter 5

T-duality across non-extremal

horizons

I think mathematics has been

overused.

Radu Tatar

In this chapter we will present some results of a work to appear [2]. Our aim is

to study the global action of T-duality on spacetimes with non-extremal Killing horizons

which means that the Killing vector changes between spacelike and timelike. In particular

we want to investigate what happens to the singularities and the horizons after performing

T-duality. Indeed, it has been observed that singularities and horizons are exchanged after

performing T-duality [152], and we want to check this for our solutions. The solutions

that we study are black hole and cosmological solutions of Einstein (anti-)Maxwell theory

with planar symmetry, they can essentially be thought of as a planar version of Reissner-

Nordström. This chosen class of metric is suitable for our investigation because of the

relative simple structure of the metrics. In order to apply T-duality to these solutions, we

derive a 4-dimensional version of Buscher rules1. including spacelike/timelike reductions

as well as including fields that come from the Ramond-Ramond sector once embedded

into string theory.

1In this chapter we will use the terms T-duality and Buscher rules interchangeably. However one has

to keep in mind that the true T-duality between Type II theories only applies when the background has a

compact circle, the theories being physically inequivalent in the decompactification limit. The derivation

of Buscher rules only requires a background with a (not necessarily compact) isometry. In that sense,

Buscher rules are more general than the O(d, d,Z) T-duality, and should therefore be thought of as a

solution generating technique rather than a strict physical equivalence between theories.
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5.1 Introduction

In [135, 136], some planar solutions of the STU and anti-STU model were studied.

The anti theory is identical to the original theory up to sign flips for some kinetic terms.

Such sign flips have been discussed and parametrized in the previous chapter. The STU

model is an N = 2, D = 4 supergravity theory coupled to three vectormultiplets. The

prepotential has the simple form F = STU where S, T, U are respectively the scalar fields

belonging in each vectormultiplet. The corresponding scalar target space is
(

SU(1,1)
U(1)

)3
.

These solutions describe respectively cosmological and black hole solutions. By setting

the scalar fields of these solutions to be constant one obtains solutions of Einstein (anti-

) Maxwell theory which can famously be obtained as a consistent truncation of N =

2, D = 4 supergravity. In order to dualize solutions, we need to have a 4-dimensional

version of the T-duality Buscher rules that includes the Ramond sector. It is known how

to derive these rules in 10 dimensions from a spacetime perspective [116] which has the

merit of incorporating the Ramond sector (see appendix B for an explicit derivation).

The procedure is to perform a dimensional reduction on the first action either on space or

time, perform a field redefinition in 3 dimensions, and then uplift to the other action in 4

dimensions. We will derive these rules explicitly in the case of Einstein-Maxwell coupled

to the universal hypermultiplet (UHM). We will explain in a moment the necessity to

include this multiplet but for now let us pause to state explicitly which framework we

have in mind to discuss these solutions.

In this chapter, all results and dualization rules are performed in a purely 4-dimensional

perspective (provided we know which field corresponds to the 4D dilaton) and can there-

fore be studied independently of the details of the embedding into string theory since we

are looking at a universal sector. The N = 2 language is used to interpret the different

fields coming from the UHM. The UHM is a hypermultiplet that is always present when

compactifying Type II theories on Calabi-Yau manifolds and is comprised of the dila-

ton, the universal axion, and two scalar fields coming from the Ramond-Ramond sector.

Einstein-Maxwell is a common subsector of N = 2 and N = 8 supergravity but the STU

model is not obtainable as a generic Calabi-Yau compactification (even though it can be

obtained from a specific self-mirror Calabi-Yau orbifold see [153]). However, this theory

can be seen as a consistent truncation of N = 8, D = 4 supergravity whose scalar coset

is
E7(7)

SU(8)
[154], whence making it embeddable into Type II supergravities which allows

for an explicit dimensional uplift. Therefore in the rest of the chapter we will use the

N = 2 language to talk about the fields from the universal hypermultiplet but whenever

an explicit uplift will be needed, we will adopt the N = 8 point of view.

Even though the solutions of interest do not support scalar fields, we need to include

the UHM scalar sector in the action in order to have a matching of degrees of freedom.
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This can be understood from two different perspectives. From the supergravity point of

view, reducing the supergravity multiplet to 3 dimensions gives the UHM. Therefore if

we want to uplift to 4 dimensions to a different theory, the dual theory will need to be

a gravity theory coupled to the UHM. From the point of view of Calabi-Yau manifolds,

the supergravity multiplet+UHM is the field content that is universal irrespective of the

specific choice of manifold. Formally, it can be seen as the field content of a Calabi-Yau

with all geometric moduli frozen h1,1 = h2,1 = 0 (even though such Calabi-Yau manifolds

don’t exist). The c-map works as long as the number of vectormultiplets is greater or

equal to zero and the number of hypermultiplets is greater or equal to one. The case

at hand is therefore the minimal case where there are no vectormultiplets and a single

hypermultiplet. This is a special case because performing the spacelike c-map on Einstein-

Maxwell-UHM will dualize the theory to itself making the c-map a self-duality in this case

where the scalar manifold is in the image of the c-map. Generically, the c-map relates a

theory with nV vectormultiplets and nH hypermultiplets to a theory with n′
V = nH − 1

vectormultiplets and n′
H = nV + 1 hypermultiplets.

5.2 4-dimensional Buscher rules

Our starting point is therefore the Einstein-Maxwell-UHM action in the Einstein frame

which has the form

S4 =
∫
d4x
√
ĝE

(
R̂E −

1

2
ĝµρE ĝ

νλ
E F̂µνF̂ρλ − 2ĝµνE ∂µφ∂νφ

− 2e4φ [ ∂µφ̃+
1

2
(ζ∂µζ̃ − ζ̃∂µζ)] [ ∂µφ̃+

1

2
(ζ∂µζ̃ − ζ̃∂µζ)] (5.1)

− e2φ
[
∂µζ∂

µζ + ∂ρζ̃∂ρζ̃
] )

.

Notice that compared to the previous chapter, the dilaton has been rescaled as φ→ −2φ
and there is an overall factor of 2 in order to fit with string theory interpretation. This

action describes the metric and graviphoton coming from the supergravity multiplet, and

the universal hypermultiplet comprised of 4 scalars which are the dilaton φ, the universal

axion φ̃ and two Ramond-Ramond scalars ζ and ζ̃. As explained before, we are here

assuming a Calabi-Yau embedding but even if the embedding is a toroidal one, there

should be a U-duality frame adapted to an N = 2 truncation. The target space geometry

of the universal hypermultiplet is U(2, 1)/U(2)×U(1) in the spacelike reduction case and

U(2, 1)/(U(1, 1)× U(1)) in the timelike reduction case [131].

T-duality is naturally expressed in the string frame so we need to perform the following

conformal transformation

ĝEµν = e−2φĝSµν . (5.2)
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The transformation rule of the Ricci scalar under a conformal rescaling is a known formula

which in our case gives

R̂E = e2φR̂S + 6e2φ∆Sφ− 6ĝµνS e2φ∂µφ∂νφ. (5.3)

After a suitable integration by parts we obtain the following action in 4 dimensions in

string frame

S4 =
∫
d4x
√
ĝS

[
e−2φ

(
R̂S + 4ĝµνS ∂µφ∂νφ

)
− 1

2
ĝµρS ĝ

νλ
S F̂µνF̂ρλ

− 2e2φ [ ∂µφ̃+
1

2
(ζ∂µζ̃ − ζ̃∂µζ)] [ ∂µφ̃+

1

2
(ζ∂µζ̃ − ζ̃∂µζ)]

−
(
∂µζ∂

µζ + ∂ρζ̃∂ρζ̃
) ]
.

(5.4)

We need to perform one more transformation. This is because the universal axion φ̃ is

actually the Kalb-Ramond B-field, that was dualized (in the sense of Hodge duality) into

a scalar because we are in 4 dimensions. From the point of view of T-duality it is more

natural to have the B-field as a 2-form so we need to undualize φ̃. We therefore perform

the usual procedure of adding a Lagrange multiplier that enforces the Bianchi identity as

an equation of motion (see appendix D for details).

All in all our final action in 4 dimensions in string frame is

S4 =
∫
d4x
√
ĝS

[
e−2φ

(
R̂S + 4ĝµνS ∂µφ∂νφ

)
− 1

2
ĝµρS ĝ

νλ
S F̂µνF̂ρλ

− 1

12
e−2φĤµνρĤ

µνρ − 1

6
(ζ∂λζ̃ − ζ̃∂λζ)ϵµνρλĤµνρ

−
(
∂µζ∂

µζ + ∂ρζ̃∂ρζ̃
) ] (5.5)

We are now ready to perform the dimensional reduction. Our reduction ansatzes are the

following

• For the metric

ĝSµ̂ν̂ =

(
gSµν + e2σVµVν e

2σVν

e2σVµ e2σ

)

• For the Kalb-Ramond field

B̂S
µ̂ν̂ =

(
Bµν − V[µA′

ν] A
′
ν

−A′
µ 0

)

For convenience we write Ĥ3 = H̃3 + F ′ ∧ (dy + V ) where F ′ = dA′ and H̃3 =

H3 − dV ∧ A′.

• And for the gauge field Âµ = ξdy + (Aµ − ξVµ)dxµ. The scalars reduce trivially.



Chapter 5. T-duality across non-extremal horizons 111

The resulting action after reduction is therefore

S3 =
∫
d3x
√
gS

(
e−2φ̄RS + 4e−2φ̄gµνS ∂µφ̄∂νφ̄− e−2φ̄gµνS ∂µσ∂νσ −

1

4
e−2(φ̄−σ)VµνV

µν

− 1

2
eσ(Fµν − 2∂[µξVν])(F

µν − 2∂[µξV ν])− e−σ∂µξ∂
µξ

− 1

12
e−2φ̄H̃µνρH̃

µνρ − 1

4
e−2(φ̄+σ)F ′

µνF
′µν

− 1

2
ϵµνyλF ′

µν(ζ∂λζ̃ − ζ̃∂λζ)

− eσ
[
∂µζ∂

µζ + ∂ρζ̃∂ρζ̃
])

(5.6)

where φ̄ = φ− 1
2
σ. This action has a symmetry that is not yet manifest in this parametriza-

tion. To make it manifest we first perform the following field redefinition A∗
µ = Aµ − ξVµ

therefore Fµν−2∂[µξVν] → F ∗
µν+ξVµν . Moreover we need to dualize this gauge field into a

scalar, and the procedure is the same as before, we add the following Lagrange multiplier

Lm = −ϵµνρF ∗µν∂ρξ̃. (5.7)

After more manipulations we finally obtain the reduced action

S3 =
∫
d3x
√
gS

(
e−2φ̄RS + 4e−2φ̄gµνS ∂µφ̄∂νφ̄− e−2φ̄gµνS ∂µσ∂νσ −

1

4
e−2(φ̄−σ)VµνV

µν

− e−σ
[
∂µξ∂

µξ + ∂ρξ̃∂ρξ̃
]

+ ϵµνρξVµν∂ρξ̃

− 1

12
e−2φ̄H̃µνρH̃

µνρ − 1

4
e−2(φ̄+σ)F ′

µνF
′µν

− ϵµνyλF ′
µνζ∂λζ̃

− eσ
[
∂µζ∂

µζ + ∂ρζ̃∂ρζ̃
])

,

(5.8)

which is manifestly invariant under the following transformations

φ̄→ φ̄, σ → −σ, σ̃ ↔ φ̃, ξ̃ ↔ ζ̃ , ξ ↔ ζ, A′
µ ↔ −Vµ, Bµν → Bµν + A′

µVν − A′
νVµ. (5.9)

We can then see that for all the fields in the NS-NS sector, all the rules in 4 dimensions

are identical to the ones we find in 10 dimensions (see appendix B). For the R-R fields,

we see easily that the rules give

ζ4D = ζ3D → ξ = Ây. (5.10)

However, for the transformation of ζ̃ we can not give the rules directly for the field but only

its derivative because of the dualization condition in 3 dimensions. This is not an issue
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since the action possesses a shift isometry, even though it is not manifest, see [134, 155]

for details.

After some computations we find that the 4 dimensional Buscher rules for the R-R

sector fields are

ζ ′ = Ây (5.11)

∂λζ̃
′ =

1

2
ϵ̂yµνλ

√
ĝyy

[
F̂ µν + Ây

(
∂µ
(
ĝνy

ĝyy

)
− ∂ν

(
ĝµy

ĝyy

))]
(5.12)

Â′
y = ζ (5.13)

F̂ ′µν = −
√
ĝyy ϵ̂

yµνρ∂ρζ̃ + ζ
(
∂µ(B̂νy)− ∂ν(B̂µy)

)
(5.14)

One can check explicitly that the same symmetries found before are still present in the

cases where the duality relates theories with flipped kinetic signs, other signatures and

with timelike reduction. The resulting Buscher rules will then have some sign flips which

however are not relevant in our analysis.

5.3 Dualization of the cosmological solution

We recall the cosmological solution of Einstein-Maxwell theory [135,136] :

ds2 = −f(r)dt2 + dr2

f(r)
+ r2 (dx2 + dy2) , f(r) =

(
−2M

r
+ e2

r2

)
e =

√
Q2 + P 2, F = −Q

r2
dt ∧ dr + Pdx ∧ dy

(5.15)

whose Penrose diagram is (after maximal extension)

Figure 1. Cosmological solution

We will restrict ourselves to a purely electric solution which means that in our case we

have A = − e
r
dt.
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This solution was obtained in the Einstein frame, but it takes the same form in string

frame as the solution does not support a dilaton. We can therefore apply the Buscher

rules derived previously. The metric describes the two regions I and II, one exterior with

a spacelike isometry and one interior with a timelike isometry. We want to dualize the

interior patch I so we perform a timelike duality and the resulting metric is

ds′2 = − dt2

f(r)
+

dr2

f(r)
+ r2(dx2 + dy2) (5.16)

Since the starting metric is diagonal, we still have a trivial B-field in the dualized solution.

The new dilaton is

φ′ = −1

2
ln |f(r)|. (5.17)

Moreover we have

ζ ′ = −e
r
, (5.18)

and

∂λζ̃
′ = 0. (5.19)

We also have trivially

A′
y = 0 and F ′

µν = 0. (5.20)

By construction this is a solution but we want to perform a sanity check that this is indeed

a solution of the equations of motion of the target theory, namely Einstein anti-UHM. To

do this we go back to Einstein frame where the metric takes the form

ds′2 = −dt2 + dr2 + (e2 − 2Mr)(dx2 + dy2) (5.21)

The corresponding Einstein tensor is

Gµν =


M2(2Mr − e2)−2 0 0 0

0 M2(2Mr − e2)−2 0 0

0 0 M2(2Mr − e2)−1 0

0 0 0 M2(2Mr − e2)−1


(5.22)

We also have

ζ ′ = −
√
2
e

r
(5.23)

The reason why a factor of
√
2 appeared is because the original solutions were derived

with the usual normalisation, but our action has a factor 1/2 instead of 1/4 in front of

the Maxwell term.

The stress energy tensor is

Tµν = 4(∂µφ
′∂νφ

′ − 1

2
gµν(∂

ρφ′∂ρφ
′))− 2e2φ

′
(
∂µζ

′∂νζ
′ − 1

2
gµν(∂

ρζ ′∂ρζ
′)

)
(5.24)
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where the sign flip comes from the fact that we are in the anti-UHM theory. Applied to

our solution we find

Tµν =4

([
e2 −Mr

e2r − 2Mr2

]2
δrr −

1

2
gµν

[
e2 −Mr

e2r − 2Mr2

]2)
(5.25)

− 2

(
−2M

r
+
e2

r2

)−1(
2e2

r4
δrr −

1

2
gµν

2e2

r4

)
(5.26)

We evaluate for the diagonal components and find

Ttt = Trr =
2M2

(e2 − 2Mr)2
(5.27)

and

Txx = Tyy =
2M2

2Mr − e2
(5.28)

We therefore indeed find that our solution satisfies as expected the equations of motions

Gµν = 2Tµν (5.29)

where again the factor of 2 comes from our normalisation convention.

5.4 Analysis of the dualized solution

Let us first display the profile of the dilaton

φ′ = −1

2
ln |f(r)| = −1

2
ln |−2M

r
+
e2

r2
| (5.30)

Figure 2. Dilaton profile of the dualized interior patch of the cosmological solution.
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The dilaton becomes divergent at the loci r = 0 and r = e2/2M .

Now let us look at curvature. In Einstein frame the Ricci tensor is

Rµν =
2M2

(e2 − 2Mr)2
δrr (5.31)

so Ricci scalar is

R =
2M2

(e2 − 2Mr)2
(5.32)

In the string frame we have

Rµν = diag(
e4 − 2e2Mr + 2M2r2

r2(e2 − 2Mr)2
,
3e4 − 10e2Mr + 6M2r2

r2(e2 − 2Mr)2
,−e

2 − 2Mr

r2
,−e

2 − 2Mr

r2
)

(5.33)

R =
4M2

r2(−e2 + 2Mr)
(5.34)

We can see that both scalar invariants blow up at the position where the horizon was in

the cosmological solution, and is now a curvature singularity. This is an expected feature

of T-duality which exchanges horizons and singularities [152].

At r = 0, the Ricci scalar is regular in Einstein frame but singular in string frame

which may look less problematic than the image of the horizon. However, the relation

between Einstein and string frame becomes singular

r → 0 φ′ → −∞ g
′(4)
S = eφ

′ → 0

r → r∗ φ
′ → +∞ g

′(4)
S = eφ

′ →∞

It does not matter whether we consider Einstein or string frame as the “right frame”

since the question is whether or not a solution is regular as a whole. In the swampland

program, the distance conjecture states that for any effective field theory coupled to

gravity that has a moduli space, if a modulus moves towards a point at an infinite geodesic

distance in moduli space, then one encounters an infinite tower of states which becomes

exponentially light (for more details see [156]). For the string coupling, it implies a singular

ratio between the string scale set by the string tension T = 1
2πα′ and by the Planck scale

set by gravitational interactions with coupling κ. We know from equation (2.89) that in

D spacetime dimensions we have the following relation

κ = (α′)(D−2)/4eφ
′
. (5.35)

Reexpressed in terms of mass and length scales this gives

e
φ′
4 =

κ
1/4
(10D)√
α′
∝ L

(10D)
P

LS

=
MS

M
(10D)
P

. (5.36)



116 5.4. Analysis of the dualized solution

Irrespective of the details of the uplift of the solution to 10D IIB* theory, we know that

the 4D and 10D dilaton are related by

e−2φ′
(4D) ∝ Ve−2φ′

(10D) , (5.37)

where V is the volume of the internal space. However the volume of the internal space is

proportional to a scalar field that does not sit in the universal hypermultiplet, this means

that for our solutions the internal volume is kept constant. Approaching r = 0 therefore

means that we have
MS

M
(10D)
P

∝ eφ
′
(10)

/4 → 0. (5.38)

If we keep MP fixed and take MS → 0, α′ →∞ then from the string mass formula

M2

M2
S

∝ α′M2 = 4

(
N + Ñ +

1

2
k2L +

1

2
k2R + const

)
, (5.39)

We see that for a state with fixed N and Ñ this limit implies that M → 0. In this

limit the whole tower of massive string excitations “collapses” and become all massless.

This is known as a tensionless string limit as T = 1
2πα′ → 0 (this limit of string theory has

connections with higher spin theories and Vasiliev gravity see [157]). This signals that our

effective description of the theory breaks down as expected from the swampland distance

conjecture.

For r → e2/2M (which means close to the image of the horizon) we find instead that

φ′ → +∞ so that g′S → +∞ which is a strong coupling limit. If we are permitted to

perform S-duality, for example by embedding into a toroidal compactification or using

an “exact” STU-model (one in which the prepotential does not receive higher order cor-

rections, these models are known to exist see [153] and [158]) then this is equivalent to

g′′S = 1
g′S
→ 0 in the S-dual IIB’-theory, and we again have a tensionless string limit.

Lastly we want to see if these singular regions can be reached using geodesics. We

want first to investigate if r = 0 is located at a finite distance interval for a spacelike

geodesic, meaning that we have dt = dx = dy = 0 and whence

ds′2 =
1

−2M/r + e2/r2
dr2 (5.40)

which gives

λ = −

(
−e2
√
e2

3M2
+
e2
√
e2 − 2MR

3M2
+
R
√
e2 − 2MR

3M

)
(5.41)

where λ is the affine parameter and which here is finite. We now want to probe the same

region with a radial null geodesic. We write the metric in the following way

− hdt2 + hdr2 + r2(dx2 + dy2) (5.42)
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We look at a null geodesic parametrized as

Xµ = (−r + r0, r, 0, 0) and Ẋµ = (−1, 1, 0, 0) (5.43)

for which the non vanishing Christoffel symbols are

Γt
rt =

1

2
h−1ḣ, Γx

rx = r−1 Γr
tt =

1

2
h−1ḣ Γr

rr =
1

2
h−1ḣ Γr

xx =
1

2
h−1(−2r) (5.44)

Geodesic equation for t:

Γt
rtẊ

rẊ t + Γt
trẊ

tẊr (5.45)

= 2.
1

2
h−1ḣ(−1)(1) = −h−1ḣ = h−1ḣẊ t. (5.46)

Geodesic equation for r:

Γr
ttẊ

tẊ t + Γr
rrẊ

rẊr + Γr
xxẊ

xẊx + Γx
yyẊ

yẊy (5.47)

= Γr
tt + Γr

rr = h−1ḣẊr (5.48)

so all in all we have

Ẍµ + Γµ
νρẊ

νẊρ = F (r)Ẋµ (5.49)

with F (r) = h−1ḣ. This is the geodesic equation for a non-affine parameter. To find the

affine parameter we use
dλ

dr
= e

∫ r F (s)ds = h(r) (5.50)

so

λ =

∫ 0

R

h(r) =

∫ 0

R

1

−2M/r + e2/r2
=

[
−2Mr(Mr + e2) + e4 ln(|e2 − 2Mr|)

8M3

]0
R

(5.51)

which is finite.

If we now want to probe the image of the horizon we do

λ =

∫ e2/2M

R

h(r) =

∫ e2/2M

R

1

−2M/r + e2/r2
=

[
−2Mr(Mr + e2) + e4 ln(|e2 − 2Mr|)

8M3

]e2/2M
R

(5.52)

which diverges.

5.5 Dualization of the black hole solution and other

patches

We repeat the process of the previous section without details. The black hole solution

is
ds2 = +f(r)dt2 − dr2

f(r)
+ r2 (dx2 + dy2) , f(r) =

(
−2M

r
+ e2

r2

)
e =

√
Q2 + P 2, F = −Q

r2
dt ∧ dr + Pdx ∧ dy

(5.53)

whose Penrose diagram is (when maximally extended)
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Figure 2

now we dualize on space (internal patch) so the dual solution is

ds′2 =

(
1

f(r)
dt2 − 1

f(r)
dr2 + r2

(
dx2 + dy2

))
(5.54)

and the Ramond-Ramond sector is the same as the case of the dualized cosmological

solution. In Einstein frame the metric takes the form:

ds′2 = dt2 − dr2 + (e2 − 2Mr)(dx2 + dy2) (5.55)

As previously we can check that this is indeed a solution to the equations of mo-

tion. This solution has the same Einstein tensor except for a sign flip in the xx and yy

components

Gµν =


M2(2Mr − e2)−2 0 0 0

0 M2(2Mr − e2)−2 0 0

0 0 −M2(2Mr − e2)−1 0

0 0 0 −M2(2Mr − e2)−1


(5.56)

the stress energy tensor for this solution is

Tµν =4

([
e2 −Mr

e2r − 2Mr2

]2
δrr +

1

2
gµν

[
e2 −Mr

e2r − 2Mr2

]2)
(5.57)

− 2

(
−2M

r
+
e2

r2

)−1(
2e2

r4
δrr +

1

2
gµν

2e2

r4

)
(5.58)

and when we evaluate its components we find indeed that Gµν = 2Tµν .

The dilaton has the same profile as before. The probing of the singularity and horizon

is unaffected by the sign flips so the interpretations are identical as in the previous case.

Fo the exterior patches with r > e2/2M , the spacelike dual of the cosmological solution

is the same as in the timelike case except the patch lives in Einstein-UHM and not Einstein

anti-UHM. The same goes for the timelike dual of the black hole solution.

We want to look at the radial null geodesics in order to probe r = e2/2M again. The

integrals are the same except the bounds are exchanged, so the behavior is the same up
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to a sign however it is interesting to note that one distinction with the comsological case

is that the singularity in the original black hole solution was spacelike and not timelike.

We make a final remark on possibly relating the dualized solutions. Let us focus on

the dualized interior patches that are solutions of Einstein anti-UHM. In [136] it was found

that the Euclidian action and grand potential as well as other thermodynamic relations

are the same for the original cosmological and black hole solutions, except for the range

of some of the variables. This could indicate that the two solutions could be interpreted

as two phases of the same underlying solution. If we compare the metrics of the interior

patches in Einstein frame after dualization we have

• dual of cosmological solution

ds′2 =
(
−dt2 + dr2 +

(
e2 − 2Mr

) (
dx2 + dy2

))
(5.59)

• dual of black hole solution

ds′2 =
(
dt2 − dr2 +

(
e2 − 2Mr)

) (
dx2 + dy2

))
(5.60)

The solutions are identical up to sign flips in the first two components, therefore they

cannot be identified right away. However they could still be two different localizations

of the same E-brane system. Indeed, in [135] the uplift of the cosmological solution was

performed where it was found that it corresponds (in the extremal case) to a D1 and

D5 brane system with momentum along common direction and a Taub-NUT space when

uplifted to Type IIB supergravity. Uplifted to 11D supergravity, it is described by a

system of 3 M5 branes intersecting over a string with a PP-wave superimposed along

the intersection direction. Performing a dimensional reduction of this sytem would then

give the IIA embedding which would correspond to a D0-D4-D4-D4 system as described

in [159]. It is therefore natural to expect that the solution of Einstein- anti Maxwell will

uplift to a Euclidean version of this brane system in Type IIB* theory. A 10 dimensional

analysis of these solutions will therefore shed light on the microscopic relation between the

cosmological and black hole solution where the different solutions could be interpreted as

different localizations of the same underlying brane system. To illustrate this, let’s take

the example of a D1- and D2-brane, which are T-dual to eachother. The D2-brane metric

is

ds2 = H−1/2(y1, ..., y7)(−dt2 + dx2 + dy2) +H1/2(y1, ..., y7)(dy
2
1 + ...+ dy27), (5.61)

where H is a function harmonic on the transverse space which means ∆⊥H = 0. Per-

forming a T-duality along the y direction we get, according to the Buscher rules

ds2 = H−1/2(y1, ..., y7)(−dt2 + dx2) +H1/2(y1, ..., y7)(dy
2
1 + ...+ dy27 + dy2). (5.62)
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In order to obtain the metric for the D1 brane we therefore need to “localize” by assuming

that the harmonic function H now depends on the coordinate y. Assuming this we indeed

get the metric of a D1-brane

ds2 = H−1/2(y1, ..., y7, y)(−dt2 + dx2) +H1/2(y1, ..., y7, y)(dy
2
1 + ...+ dy27 + dy2). (5.63)

Therefore what we mean by our solutions being two different localizations means that

choosing appropriate coordinate dependencies of the E-brane system will recover both

metrics (5.59) and (5.60).



Chapter 6

Outlook

人の夢は終わらねエ!

マーシャル・D・ティーチ

We started this thesis by introducing the classical and quantum bosonic string, red-

eriving its massless spectrum and studying its compactification on a circle, which lead to

the important concept of T-duality. After describing the supersymmetric string focusing

on Type II theories we showed how they are related by T-duality. We presented the

necessary tools from supergravity and geometry, reviewing supersymmetry algebras and

their representation theory, and introducing Kaluza-Klein dimensional reduction in this

supergravity setting. We finally described Calabi-Yau manifolds as well as the “special

geometry” of their moduli spaces.

With these tools, we were able to perform Calabi-Yau compactifications of Hull’s ex-

otic Type II supergravity theories and interpret the sign flips of the resulting 4-dimensional

Lagrangians of N = 2, D = 4 supergravity in terms of special geometry of the scalar sec-

tor. The different c-maps between the vector multiplet and the hypermultiplet geometries

were classified and the 4-dimensional duality web was obtained as a projection of the one

found in 10D. We then presented the action of T-duality on some spacetimes with non-

extremal Killing horizons, which are solutions of Einstein (anti)-Maxwell theory with

planar symmetry, which required the derivation of a 4-dimensional version of Buscher

rules. We concluded with a discussion of the embedding of the dualized solutions into

Type II* supergravity.

One could go further and embed these solutions in a T-duality covariant framework.

Double Field Theory (DFT) has initially been constructed as the massless effective theory

of the closed string field theory on a double toroidal background. This background is truly

doubled in the sense that it is comprised of the torus coordinates as well as coordinates

dual to the winding modes [160]. In this way DFT incorporates T-duality as a manifest
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symmetry in an effective field theory framework. At first glance, this might seem absurd

– indeed T-duality is strictly stringy in nature because the string is able to wind around

compact dimensions, which a particle can not do. However this is precisely taken into

account in DFT thanks to the doubled coordinates. When the compactification scale is

much higher than the string scale, the winding modes are not present at low energies since

it is hard for strings to wrap cycles. In DFT, this corresponds to the case where the fields

do not depend on the dual coordinates. Oppositely, in the T-dual description where the

compactification scale is small compared to the string scale, the momentum modes get

heavy and DFT only depends on the dual coordinates.

The fundamental fields of DFT are the metric gij, the Kalb-Ramond B-field bij and

the dilaton ϕ which in the string theory context correspond to the universal massless

Neveu-Schwarz sector. However, in DFT we need quantities covariant under the T-duality

transformations which correspond to the group O(d, d). In DFT the metric and B-field

are therefore unified in a single object called the generalized metric defined as

HM,N =

(
gij −gikbkj
bikg

kj gij − bikgklblj

)
, (6.1)

where M,N = 1, . . . , 2D. Written in terms of the generalized metric, the DFT action

takes the form

S =

∫
dXe−2d

(
4HMN∂M∂Nd− ∂M∂NHMN

− 4HMN∂Md∂Nd+ 4∂MHMN∂Nd

+
1

8
HMN∂MHKL∂NHKL

− 1

2
HMN∂MHKL∂KHNL +∆(SC)R

(6.2)

where the field d is a T-scalar combining the dilaton and the determinant of the metric,

with e−2d =
√
ge−2ϕ. The last term vanishes upon imposing the independence of the fields

with respect to the dual coordinates (known as the strong constraint).

When all the dimensions are non-compact and the dual coordinates are projected out,

one finds that the DFT action reduces to the familiar 10D supergravity action

S =

∫
dx
√
ge−2ϕ

(
R + 4(∂ϕ)2 − 1

12
HijkH

ijk

)
. (6.3)

Since this action is invariant under diffeomorphisms and gauge transformations of the two-

form, the DFT action must be invariant under generalized diffeomorphisms incorporating

the two. Interestingly, an extension of DFT known as exceptional field theory, that

incorporates the full U-duality group as a manifest symmetry, has also been proposed.

For reviews on these extended field theories (ExFT), we refer the reader to [76,161,162].

Embedding our solutions into these extended geometric frameworks would allow us to

probe interesting features of spacetime from a genuinely stringy point of view. Embedding
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branes in ExFT has been explored in the past (see for example [163]). Moreover our

planar solutions support Ramond-Ramond fields, and DFT can be extended to support

this sector [113]. One particularly interesting aspect to investigate would be to see if, in

this framework, our non-extremal solutions with Ramond fluxes exhibit a resolution of

spacetime singularities for example in the spirit of [164].



Appendix A

Basics of geometry and topology

We give here some basic geometry and topology needed for this thesis as well as fixing

conventions. We follow [63] but refer the reader to [165] for more details and a more

rigorous approach.

Real manifolds A real d-dimensional Riemannian manifold is a space that locally looks

like Euclidean space Rd. A manifold is defined by considering a covering with open sets, on

which local coordinates systems are introduced. The manifold is constructed by pasting

the open sets together and in regions when two overlap, the two sets of local coordinates

are related by smooth transition functions. Many topological aspects of real manifolds

can be studied using homology and cohomology. In the following we will assume that our

manifold M is compact without boundary.

A p-form Ap is an antisymmetric tensor of rank p. The components of Ap are

Ap =
1

p!
Aµ1...µpdx

µ1 ∧ · · · ∧ dxµp , (A.1)

where ∧ is the wedge product (an antisymmetrized tensor product). The possible values

of p are p = 0, 1, . . . , d where d is the dimension of M .

The exterior derivative d gives a linear map from the space of p-forms to the space of

(p+ 1) forms

dAp =
1

p!
∂µ1Aµ2...µp+1dx

µ1 ∧ · · · ∧ dxµp+1 . (A.2)

An important property is that d2 = 0 making this operator nilpotent. A p-form is called

closed if

dAp = 0, (A.3)

and exact if there exists a globally defined (p− 1)-form Ap−1 such that

Ap = dAp−1. (A.4)

124
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A closed p-form can always be written locally in the form dAp−1 but not necessarily

globally. Therefore a closed form is not necessarily exact but an exact form is always

closed.

We denote the space of closed p-forms onM by Cp(M) and the space of exact p-forms

on M by Zp(M). Then the p-th de Rham cohomology group Hp(M) is defined to be the

following quotient space

Hp(M) = Cp(M)/Zp(M). (A.5)

Hp(M) is therefore the space of closed forms in which two forms that only differ by an

exact form are considered to be equivalent. The dimension of Hp is called the Betti

number. These numbers are topological invariants characterizing the manifold. Another

important topological invariant is the Euler characteristic which can be expressed as

χ(M) =
d∑

i=0

(−1)ibi(M). (A.6)

The Betti numbers also give the dimensions of the homology groups, which are defined

in a similar way to the cohomology groups. The analog of the exterior derivative is the

boundary operator δ which acts on submanifolds of M . If N is a submanifold of M ,

then δN is its boundary. This operator associate with each submanifold its boundary

(with signs to take into account the orientation). This operator is also nilpotent since the

boundary of a boundary is always 0. It can therefore be used to define homology groups of

M in the same way as the cohomology groups were defined using the exterior derivative.

Arbitrary linear combinations of submanifolds of dimension p are called p-chains. A chain

that has no boundary is called closed and a chain that is a boundary is called exact. A

closed chain zp, also called a cycle, satisfies

δzp = 0. (A.7)

The simplicial homology group Hp(M) is defined to consist of equivalence classes of p-

cycles. Two p-cycles are equivalent if and only if their difference is a boundary.

Poincaré duality Given a real manifold M , let A be an arbitrary p-form and let N be

an arbitrary (p+ 1)-chain. Stokes theorem states∫
N

dA =

∫
∂N

A. (A.8)

This formula provides an isomorphism between Hp(M) and Hd−p(M) called Poincaré

duality. To every closed p-form A there corresponds a (d− p)-cycle N with the property∫
M

A ∧B =

∫
N

B, (A.9)

for all closed (d− p)-forms B. Poincaré duality allows us to determine the Betti numbers

of a manifold by counting the non-trivial cycles of the manifold. For example, SN has

Betti numbers b0 = 1, b1 = 0, . . . , bN = 1.
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Riemannian geometry We now consider manifolds endowed with a metric of indefinite

signature, making the manifold a pseudo-Riemannian manifold. The metric is a symmetric

tensor characterized by an infinitesimal line element

ds2 = gµν(x)dx
µdxν . (A.10)

The metric tensor can be expressed in terms of the frame. Frames are d linearly indepen-

dant one-forms eα that are defined locally on M . In a basis of one-forms we write

eα = eαµdx
µ. (A.11)

The components eαµ form a matrix called the vielbein. Let ηαβ be the flat metric then we

have the following relation

gµν = ηαβe
α
µϵ

β
ν . (A.12)

Next we define the Laplace operator that acts on p-forms which is given by

∆p = d†d+ dd† = (d+ d†)2, (A.13)

where

d† = (−1)dp+d+1 ⋆ d⋆ (A.14)

for Euclidian signature and with an extra sign for Lorentzian signature. The Hodge

⋆-operator acting on p-forms is defined as

⋆ (dxµ1 ∧ · · · ∧ dxµp) =
εµ1...µpµp+1...µd

(d− p)!|g|1/2
gµp+1νp+1 . . . gµdνddx

νp+1 ∧ · · · ∧ dxνd . (A.15)

The Levi-Civita symbol ε transforms as a tensor density while ε/|g|1/2 is a tensor. A

p-form A is said to be harmonic if and only if

∆pA = 0. (A.16)

Harmonic p-forms are in one to one correspondence with the elements of Hp(M). Indeed,

if we consider a harmonic form Ap and a positive-definite scalar product then

(Ap, (dd
† + d†d)Ap) = 0 =⇒ (d†Ap, d

†Ap) + (dAp, dAp) = 0. (A.17)

which means that Ap is both closed and co-closed. The Hodge theorem states that on a

compact manifold with a positive-definite metric, a p-form has a unique decomposition

into harmonic, exact and co-exact pieces

Ap = Ah
p + dAe

p−1 + d†Ace
p+1 (A.18)

If we consider a closed form Ap then by definition dAp = 0. We can write

0 = (dAp, A
ce
p+1) = (dd†Ace

p+1, A
ce
p+1) = (d†Ace

p+1, d
†Ace

p+1) =⇒ d†Ace
p+1 = 0. (A.19)
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Therefore a closed form can always be written in the form

Ap = Ah
p + dAe

p−1. (A.20)

Since the Hodge dual turns a closed p-form into a co-closed (d− p)-form and vice versa,

then the Hodge dual defines an isomorphism between the space of harmonic p-forms and

the space of harmonic (d− p)-forms, therefore

bp = bd−p. (A.21)

Another fundamental geometric concept is the connection. There are actually two of

them, the affine connection and the spin connection. They are used in forming covariant

derivatives so as to map tensors to tensors. Their expressions can be deduced from the

requirement that the vielbein is covariantly constant

∇µe
α
ν = ∂µe

α
ν − Γρ

µνe
α
ρ + ω α

µ βe
β
ν = 0. (A.22)

This equation determines the affine connection Γ and the spin connection ω up to a

contribution characterized by a torsion tensor. In this work we will assume that the

torsion vanishes, therefore the affine connection is the Levi-Civita connection given by

Γρ
µν =

1

2
gρλ(∂µgνλ + ∂νgµλ − ∂λgµν). (A.23)

The formula for the spin connection is

ω α
µ β = −eνβ(∂µeαν − Γλ

µνe
α
λ). (A.24)

The curvature tensor can be constructed from either of the two connections. We construct

it from the spin connection ω, which is a Lie-algebra valued one-form ωα
β = ω α

µ βdx
µ. The

algebra is SO(N) in the Riemannian case, and a non-compact form of it in the indefinite

signature case. We can regard this connection as a Yang-Mills gauge field and thus, the

curvature two-form associated to this connection is just the corresponding field-strength

Rα
β = dωα

β + ωα
γ ∧ ω

γ
β. (A.25)

Written with the base-space components included we have R α
µν β. The indices can be

moved up and down by contracting with metrics and vielbeins and one can form Rµ
νρλ

which coincides with the Riemann curvature tensor that one constructs from the affine

connection. Contracting a pair of indices gives the Ricci tensor

Rνλ = Rµ
νµλ, (A.26)

and a further contraction gives the scalar curvature

R = gµνRµν . (A.27)
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Holonomy groups The holonomy group of a Riemannian manifold M of dimension d

describes the way objects transform under parallel transport around closed curves. These

objects can be tensors or spinors, in our case we will focus on spinors since the manifolds

we consider are endowed with a spin structure. The spinors are more informative since

the most general transformation of a vector is a rotation, which is an element of SO(d)
1. The corresponding transformation for a spinor is an element of the covering group

Spin(d). If we parallel transport a spinor along a closed curve, it is rotated from its

original orientation

ε→ Uε, (A.28)

where U is an element of Spin(d). If we consider doing two consecutive paths each time

leaving and returning to the same point then

ε→ U1U2ε = U3ε. (A.29)

As a result, the U matrices build a group called the holonomy group H(M) of the manifold

M .

The generic holonomy group of a Riemannian spin manifold M of real dimension d is

Spin(d). One can consider special classes of manifolds where the holonomy group H(M)

is only a subgroup of Spin(d). Such manifolds are called manifolds of special holonomy.

This lead to a complete classification by Berger [166]

• H ⊆ U(d/2) if and only if M is Kähler

• H ⊆ SU(d/2) if and only if M is Calabi-Yau

• H ⊆ Sp(d/4) if and only if M is hyper-Kähler

• H ⊆ Sp(d/4) · Sp(1) ̸⊆ Sp(d/4) if and only if M is quaternionic Kähler

• H ⊆ G2 is possible in 7 dimensions

• H ⊆ Spin(7) is possible in 8 dimensions

For the first two cases d needs to be a multiple of two and the next two cases it needs to

be a multiple of four. We will describe Kähler manifolds in the following sections. Calabi-

Yau manifolds are introduced in detail in chapter 3. The special Kähler geometries are

also introduced there. The manifolds of G2 holonomy have been explored as possible

compact spaces for compactification of M-theory (see [167] for a recent review) and the

manifolds of Spin(7) holonomy for compactification of F-theory (see for example [168])

1We assume that the manifold is orientable
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Complex manifolds A complex manifold of complex dimension n is a special case of

a real manifold of dimension d = 2n. It is defined in an analogous manner using complex

local coordinates systems. In this case, the transition functions are biholomorphic which

means that they and their inverse are holomorphic functions. We denote complex local

coordinates as za(a = 1, . . . , n) and their complex conjugates z̄ā.

A complex manifold admits a tensor J which in complex coordinates has components

J b
a = iδ b

a , J b̄
ā = −iδ b̄

ā , J b̄
a = J b

ā = 0. (A.30)

These equations are preserved by holomorphic changes of variables, so they describe a

globally well-defined tensor.

If one has a real manifoldM of dimensions 2n, there are requirements for it to define a

complex manifold. The first requirement is the existence of a tensor Jm
n called an almost

complex structure that satisfies

J n
m J p

n = −δ p
m . (A.31)

The second condition is that the almost complex structure is a complex structure. The

obstruction to this is given by the Nijenhuis tensor

Np
mn = J q

m ∂[qJ
p

n] − J
q

n ∂[qJ
p

m] . (A.32)

When this tensor is identically zero, J is a complex structure. Then it is possible to choose

complex coordinates in every open set such that J satisfies (A.30) and the transition

functions are biholomorphic.

On a complex manifold one can define (p, q)-forms as

Ap,q =
1

p!q!
Aa1...apb̄1...b̄qdz

a1 ∧ · · · ∧ dzap ∧ dz̄b̄1 ∧ · · · ∧ dz̄z̄b̄q . (A.33)

The real exterior derivative can be decomposed into holomorphic and anti-holomorphic

pieces

d = ∂ + ∂̄, (A.34)

with

∂ = dza
∂

∂za
and ∂̄ = dz̄ā

∂

∂z̄ā
. (A.35)

∂ and ∂̄ are called Dolbeaut operators which are maps from (p, q)-form to (p+1, q)-forms

and (p, q + 1)-forms, respectively. Each of them is nilpotent

∂2 = ∂̄2 = 0, (A.36)

and anticommute

∂∂̄ + ∂̄∂ = 0. (A.37)
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Complex geometry We now consider a complex Riemannian manifold. The metric

tensor in terms of complex coordinates is given by

ds2 = gabdz
adzb + gab̄dz

adz̄b̄ + gābdz̄
ādzb + gāb̄dz̄

adz̄b̄. (A.38)

The reality of the metric implies that gab and gāb̄ are complex conjugates and so are gab̄
and gāb. A hermitian manifold is a special case where

gab = gāb̄ = 0. (A.39)

The Dolbeaut cohomology group Hp,q

∂̄
(M) of a hermitian manifold consists of equivalent

classes of ∂̄-closed (p, q)-forms. The dimension of Hp,q

∂̄
(M) is called the Hodge number

hp,q. We can define the Laplacians

∆∂ = ∂∂† + ∂†∂ and ∆∂̄ = ∂̄∂̄† + ∂̄†∂̄. (A.40)

A Kähler manifold is defined to be a hermitian manifold on which the Kähler form

J = igab̄dz
a ∧ dz̄b̄ (A.41)

is closed

dJ = 0. (A.42)

It follows that the metric on these manifold satisfies ∂agbc̄ = ∂bgac̄, as well as the complex

conjugate relation. The metric can therefore be written locally as

gab̄ =
∂

∂za
∂

∂z̄b̄
K(z, z̄), (A.43)

where K(z, z̄) is the Kähler potential and thus

J = i∂∂̄K. (A.44)

The Kähler potential is defined up to the addition of an arbitrary holomorphic and anti-

holomorphic functions f(z) and f̄(z̄) since

K̃(z, z̄) = K(z, z̄) + f(z) + f̄(z̄) (A.45)

leads to the same metric. On Kähler manifolds, the various Laplacians all become identical

∆d = 2∆∂̄ = 2∆∂. (A.46)

The various possible choices of cohomology groups (based on d, ∂ and ∂̄) each have a

unique harmonic representative of the corresponding type just like in the real case. In

Kähler manifolds they all become identical

Hp,q

∂̄
(M) = Hp,q

∂ (M) = Hp,q(M). (A.47)
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As a consequence, the Hodge and Betti numbers are related by

bk =
k∑

p=0

hp,k−p. (A.48)

If ω is a (p, q)-form on a Kähler manifold with n complex dimensions, then the complex

conjugate form ω⋆ is a (q, p)-form. It follows that

hp,q = hq,p. (A.49)

Similarly, if ω is a (p, q)-form then ⋆ω is a (n− p, n− q)-form, which implies

hn−p,n−q = hp,q. (A.50)

In terms of complex local coordinates, only the mixed components of the Ricci tensor are

nonvanishing for a hermitian manifold. Therefore, one can define a (1,1)-form, called the

Ricci form, by

R = iRab̄dz
a ∧ dz̄b̄. (A.51)

For a hermitian manifold, the exterior derivative of the Ricci form is proportional to the

torsion. For Kähler manifolds, the torsion always vanishes and therefore the Ricci form

is always closed

dR = 0. (A.52)

It is therefore a representative of a cohomology class belonging to H1,1(M). This class is

called the first Chern class

c1 =
1

2π
[R]. (A.53)
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Derivation of generalized Type II

Buscher rules

This section is dedicated to the derivation of the generalized Type II Buscher rules.

This means that we derive the rules for arbitrary signature, spacelike and timelike duali-

ties, and we include the Ramond-Ramond sector rules. The procedure is to take the Type

IIA and Type IIB supergravity actions, dimensionally reduce them, and then compare

the actions in the lower dimension in order to have a dictionary between the 10D fields.

This section follows [54] giving more details for pedagogical purposes.

We start with the 10D Type IIA theories actions in string frame as follows

S =
1

2κ210

∫
d10x

√
|ĝ|
(
e−2Φ̂

[
R̂ − α

2
|Ĥ3|2 + 4(∇Φ̂)2

]
− αβ

2
|F̂2|2 −

β

2
| ˜̂F4|2

)
− 1

4κ210

∫
B̂2 ∧ F̂4 ∧ F̂4.

(B.1)

The parameters α, β and γ are sign parameters which indicate respectively if the fun-

damental string has Lorentzian or Euclidean worldsheet, the D2-brane has Lorentzian or

Euclidean worldvolume and if the compact dimension is spacelike or timelike.

We use the following reduction ansatzes

ds210 = ds29 + γe2σ (dy + A1)
2 ,

˜̂
F4 = F̃4 + F̃3 ∧ (dy + A1) , Ĉ3 = C3 + C2 ∧ (dy + A1)
˜̂
F2 = F̃2 + F1 ∧ (dy + A1) , Ĉ1 = C1 + C0 ∧ (dy + A1)

Ĥ3 = H̃3 +H2 ∧ (dy + A1) , B̂2 = B2 +B1 ∧ (dy + A1)

(B.2)

where γ = ±1 specifies the signature of the compact dimension, and G2 = dA1, Hp =

dBp−1, Fp = dCp−1 and

F̃4 ≡ F4 +G2 ∧ C2 − H̃3 ∧ C1, F̃2 ≡ F2 +G2 ∧ C0

F̃3 ≡ F3 +H2 ∧ C1 − H̃3 ∧ C0, H̃3 ≡ H3 −G2 ∧B1

(B.3)

132
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These satisfy the modified Bianchi identities

dF̃4 = G2 ∧ F̃3 + H̃3 ∧ F̃2, dF̃2 = G2 ∧ F1,

dF̃3 = H2 ∧ F̃2 + H̃3 ∧ F1, dH̃3 = −G2 ∧H2.
(B.4)

The reduction of the Ricci scalar and the gauge kinetic term have been performed explicitly

in the general case in chapter 3 and we refer the reader to that section for details. In this

case we obtain

R̂ = R− 1

2
γe2σ |G2|2 − 2e−σ∇2eσ,

√
|ĝ| = eσ

√
|g|∣∣∣ ˜̂F4

∣∣∣2 = ∣∣∣F̃4

∣∣∣2 + γe−2σ
∣∣∣F̃3

∣∣∣2 , ∣∣∣ ˜̂F2

∣∣∣2 = ∣∣∣F̃2

∣∣∣2 + γe−2σ
∣∣∣F̃1

∣∣∣2∣∣∣Ĥ3

∣∣∣2 = ∣∣∣H̃3

∣∣∣2 + γe−2σ |H2|2 .

(B.5)

Plugging in all these in the action we find

S =
1

2κ29

∫
d9x
√
|ĝ|
(
eσ−2Φ̂

[
R− 1

2
γe2σ|G2|2 − 2e−σ∇2eσ − α

2
(|H̃3|2 + γe−2σ|H2|2) + 4(∇Φ̂)2

]
− αβ

2
eσ(|F̃2|2 + γe−2σ|F̃1|2)−

β

2
eσ(|F̃4|2 + γe−2σ|F̃3|2)−

1

4κ210

∫
B̂2 ∧ F̂4 ∧ F̂4,

(B.6)

where κ29 = κ210/(2πR). We manipulate the Ricci part doing an integration by parts∫
d9xeσ

√
ge−2Φ̂(−2)e−σ∇2eσ =

∫
d9x
√
ge−2Φ̂ 1

√
g
(−2)∂µ(

√
ggµν∂νe

σ)

=

∫
d9x2∂µ(e

−2Φ̂)
√
ggµνeσ∂νσ

=

∫
d9x(−4)e−2Φ̂+σ∂µΦ̂∂νσ

√
ggµν .

Moreover the Chern-Simons term is reduced as follows

CS = − 1

4k210

∫
B̂2 ∧ F̂4 ∧ F̂4

= − 1

4k210

∫
B̂2 ∧ dĈ3 ∧ dĈ3

= − 1

4k210

∫
B1 ∧ dy ∧ d(C3 + C2 ∧ A1) ∧ d(C3 + C2 ∧ A1)

+ 2(B2 +B1 ∧ A1) ∧ d(C2 ∧ dy) ∧ d(C3 + C2 ∧ A1)

= − 1

4k210

∫
B1 ∧ d(C3 + C2 ∧ A1) ∧ d(C3 + C2 ∧ A1) ∧ dy

+ 2(B2 +B1 ∧ A1) ∧ dC2 ∧ d(C3 + C2 ∧ A1) ∧ dy

= −2πR

4k210

∫
B1 ∧ (dC3 + dC2 ∧ A1 + C2 ∧ dA1) ∧ (dC3 + dC2 ∧ A1 + C2 ∧ dA1)
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+ 2B2 ∧ dC2 ∧ (dC3 + dC2 ∧ A1 + C2 ∧ dA1)

+ 2B1 ∧ A1 ∧ dC2 ∧ (dC3 + dC2 ∧ A1 + C2 ∧ dA1)

= − 1

4k29

∫
B1 ∧ Ḟ4 ∧ Ḟ4

+B1 ∧ dC2 ∧ A1 ∧ (Ḟ4 + dC2 ∧ A1)

+B1 ∧ (Ḟ4 + dC2 ∧ A1) ∧ dC2 ∧ A1

+ 2B2 ∧ F3 ∧ Ḟ4

+ 2B1 ∧ A1 ∧ dC2 ∧ (Ḟ4 + dC2 ∧ A1)

= − 1

4k29

∫
B1 ∧ Ḟ4 ∧ Ḟ4 + 2B2 ∧ F3 ∧ Ḟ4,

where we have defined Ḟ4 = F4 +G2 ∧ C2. So all in all the 9D Type IIA actions are

S =
1

2κ29

∫
d9x
√
|g|eσ−2Φ

[
R+ 4∇Φ · ∇(Φ− σ)− α

2
|H̃3|2 −

αγ

2
e−2σ|H2|2 −

γ

2
e2σ|G2|2

]
− 1

4κ29

∫
d9x
√
|g|
[
αβγe−σ|F1|2 + αβeσ|F̃2|2 + βγe−σ|F̃3|2 + βeσ|F̃4|2

]
− 1

4κ29

∫ [
B1 ∧ Ḟ4 ∧ Ḟ4 + 2B2 ∧ F3 ∧ Ḟ4

]
.

(B.7)

We now turn to the reduction of the Type IIB theories. The 10D actions are

S =
1

2κ210

∫
d10x

√
|ĝ|e−2Φ̂

[
R̂ − α

2
|Ĥ3|2 + 4(∇Φ̂)2

]
− 1

4κ210

∫
d10x

√
|ĝ|
[
αβ|F̂1|2 + β| ˜̂F3|2 +

αβ

2
| ˜̂F5|2

]
− 1

4κ210

∫
B̂2 ∧ F̂3 ∧ F̂5,

(B.8)

where
˜̂
F3 = F3 −H3 ∧ C0 and

˜̂
F5 = F5 −H3 ∧ C2. As usual with the Type IIB actions,

the equations of motion derived from these actions need to be supplemented with the

self-duality constraint
˜̂
F5 = αβ ⋆

˜̂
F5.

The reduction of the Neveu-Schwarz sector is identical as previously, and the reduction

of the kinetic terms of the Ramond-Ramond sector is very similar so we do not detail them.

We however give the details for the reduction of the Chern-Simons term. If it were to be

performed directly, the computation becomes quite cumbersome. Instead we use a trick

to write the Chern Simons term as a boundary term

− 1

4κ210

∫
X11

Ĥ3 ∧ ˜̂
F3 ∧ ˜̂

F5, (B.9)

which as we can see is equal to our Chern-Simons term

− 1

4κ210

∫
X11

Ĥ3 ∧ ˜̂
F3 ∧ ˜̂

F5
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= − 1

4κ210

∫
X11

Ĥ3 ∧ (F3 −H3 ∧ C0) ∧ (F5 −H3 ∧ C2)

= − 1

4κ210

∫
X11

Ĥ3 ∧ F3 ∧ F5

= − 1

4κ210

∫
X11

d
(
B̂2 ∧ F3 ∧ F5

)
= − 1

4κ210

∫
X10

B̂2 ∧ F3 ∧ F5 = SIIB
CS .

We now proceed with the dimensional reduction

SCS = − 1

4κ210

∫
X11

H2 ∧ dy ∧ (F̃3 + F̃2 ∧ A1) ∧ (F̃5 + F̃4 ∧ A1)

+ (H̃3 +H2 ∧ A1) ∧ F̃2 ∧ dy ∧ (F̃5 + F̃4 ∧ A1)

+ (H̃3 +H2 ∧ A1) ∧ (F̃3 + F̃2 ∧ A1) ∧ F̃4 ∧ dy

= − 1

4κ210

∫
X11

H2 ∧ F̃3 ∧ F̃5 ∧ dy +H2 ∧ F̃3 ∧ F̃4 ∧ A1 ∧ dy

+H2 ∧ F̃2 ∧ A1 ∧ F̃5 ∧ dy +H2 ∧ F̃2 ∧ A1 ∧ F̃4 ∧ A1 ∧ dy
− H̃3 ∧ F̃2 ∧ F̃5 ∧ dy − H̃3 ∧ F̃2 ∧ F̃4 ∧ A1 ∧ dy
−H2 ∧ A1 ∧ F̃2 ∧ F̃5 ∧ dy −H2 ∧ A1 ∧ F̃2 ∧ F̃4 ∧ A1 ∧ dy
+ H̃3 ∧ F̃3 ∧ F̃4 ∧ dy + H̃3 ∧ F̃2 ∧ A1 ∧ F̃4 ∧ dy
+H2 ∧ A1 ∧ F̃3 ∧ F̃4 ∧ dy +H2 ∧ A1 ∧ F̃2 ∧ A1 ∧ F̃4 ∧ dy

= − 1

4κ29

∫
X10

[
H2 ∧ F̃3 ∧ F̃5 − H̃3 ∧ F̃2 ∧ F̃5 + H̃3 ∧ F̃3 ∧ F̃4

]
.

We now need to exploit the following relations

d
[
F̃ 4 ∧ F̃5

]
= −H2 ∧ F̃3 ∧ F̃5 + H̃3 ∧ F̃2 ∧ F̃5 −G2 ∧ F̃4 ∧ F̃4 + H̃3 ∧ F̃3 ∧ F̃4, (B.10)

d
[
A1 ∧ Ḟ4 ∧ Ḟ4 − 2Ḃ2 ∧ F3 ∧ Ḟ4

]
= G2 ∧ F̃4 ∧ F̃4 − 2H̃3 ∧ F̃3 ∧ F̃4, (B.11)

where Ḟ4 ≡ F4 − H2 ∧ C2 and Ḃ2 ≡ B2 + B1 ∧ A1. The proof of the first one goes as

follows

d
[
F̃ 4 ∧ F̃5

]
= dF̃4 ∧ F̃5 + F̃4 ∧ dF̃5

= d(F4 −H2 ∧ C2 − H̃3 ∧ C1) ∧ F̃5 + F̃4 ∧ d(F5 −G2 ∧ C3 − H̃3 ∧ C2)

= −H2 ∧ F3 ∧ F̃5 − dH̃3 ∧ C1 ∧ F̃5 + H̃3 ∧ F2 ∧ F̃5

− F̃4 ∧G2 ∧ F4 − F̃4 ∧ dH̃3 ∧ C2 + F̃4 ∧ H̃3 ∧ F3

= −H2 ∧ F3 ∧ F̃5 +H2 ∧G2 ∧ C1 ∧ F̃5 +H2 ∧ H̃3 ∧ C0 ∧ F̃5

−H2 ∧G2 ∧ C1 ∧ F̃5 −H2 ∧ H̃3 ∧ C0 ∧ F̃5

+ H̃3 ∧ F2 ∧ F̃5 − H̃3 ∧H2 ∧ C0 ∧ F̃5
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+ H̃3 ∧H2 ∧ C0 ∧ F̃5

−G2 ∧ F̃4 ∧ F4 +G2 ∧ F̃4 ∧H2 ∧ C2 +G2 ∧ F̃4 ∧ H̃3 ∧ C1

−G2 ∧ F̃4 ∧H2 ∧ C2 −G2 ∧ F̃4 ∧ H̃3 ∧ C1

+ H̃3 ∧ F3 ∧ F̃4 − H̃3 ∧G2 ∧ C1 ∧ F̃4 − H̃3 ∧ H̃3 ∧ C0 ∧ F̃4

+ H̃3 ∧G2 ∧ C1 ∧ F̃4 + H̃3 ∧ H̃3 ∧ C0 ∧ F̃4

− dH̃3 ∧ C1 ∧ F̃5 − F̃4 ∧ dH̃3 ∧ C2

= −H2 ∧ F̃3 ∧ F̃5 + H̃3 ∧ F̃2 ∧ F̃5 −G2 ∧ F̃4 ∧ F̃4 + H̃3 ∧ F̃3 ∧ F̃4

−H2 ∧G2 ∧ C1 ∧ F̃5 −H2 ∧ H̃3 ∧ C0 ∧ F̃5 + H̃3 ∧H2 ∧ C0 ∧ F̃5 −G2 ∧ F̃4 ∧H2 ∧ C2

−G2 ∧ F̃4 ∧ H̃3 ∧ C1 + H̃3 ∧G2 ∧ C1 ∧ F̃4 − dH̃3 ∧ C1 ∧ F̃5 − F̃4 ∧ dH̃3 ∧ C2.

In the last equality, the first line is what we want and we can see that the last two lines

vanish

=−H2 ∧G2 ∧ C1 ∧ F̃5 −G2 ∧ F̃4 ∧ H̃3 ∧ C1 − dH̃3 ∧ C1 ∧ F̃5 − F̃4 ∧ dH̃3 ∧ C2

=−H2 ∧G2 ∧ C1 ∧ F̃5 −G2 ∧ F̃4 ∧H2 ∧ C2 +G2 ∧H2 ∧ C1 ∧ F̃5 + F̃4 ∧G2 ∧H2 ∧ C2 = 0.

The proof of the second relation goes as

d
[
A1 ∧ Ḟ4 ∧ Ḟ4 − 2Ḃ2 ∧ F3 ∧ Ḟ4

]
= dA1 ∧ Ḟ4 ∧ Ḟ4 − 2A1 ∧ dḞ4 ∧ Ḟ4

− 2dḂ2 ∧ F3 ∧ Ḟ4 − 2Ḃ2 ∧ F3 ∧ dḞ4

= G2 ∧ Ḟ4 ∧ Ḟ4 − 2A1 ∧ dḞ4 ∧ Ḟ4 − 2d(B2 +B1 ∧ A1) ∧ F3 ∧ Ḟ4 + 2Ḃ2 ∧ F3 ∧ dḞ4

= G2 ∧ (F̃4 + H̃3 ∧ C1) ∧ (F̃4 + H̃3 ∧ C1)− 2A1 ∧ (−H2 ∧ dC2) ∧ (F4 −H2 ∧ C2)

− 2H3 ∧ F3 ∧ Ḟ4 − 2H2 ∧ A1 ∧ F3 ∧ Ḟ4 + 2B1 ∧G2 ∧ F3 ∧ Ḟ4 + 2Ḃ2 ∧ F3 ∧ (−H2 ∧ dC2)

= G2 ∧ F̃4 ∧ F̃4 + 2G2 ∧ F̃4 ∧ H̃3 ∧ C1 + 2A1 ∧H2 ∧ F3 ∧ F4 − 2A1 ∧H2 ∧ F3 ∧H2 ∧ C2

− 2H3 ∧ F3 ∧ Ḟ4 − 2H2 ∧ A1 ∧ F3 ∧ Ḟ4 + 2B1 ∧G2 ∧ F3 ∧ Ḟ4 − 2Ḃ2 ∧ F3 ∧H2 ∧ F3

= G2 ∧ F̃4 ∧ F̃4 − 2H̃3 ∧ F3 ∧ Ḟ4 + 2G2 ∧ F̃4 ∧ H̃3 ∧ C1

= G2 ∧ F̃4 ∧ F̃4 − 2H̃3 ∧ F̃3 ∧ F̂4

= G2 ∧ F̃4 ∧ F̃4 − 2H̃3 ∧ F̃3 ∧ F̃4.

We know that the action of Type IIB supergravity needs to be supplemented with self-

duality condition for the 5-form field strength in order to account for the correct number

of degrees of freedom. We need to get the corresponding 9-dimensional version of that

constraint. We start with the 10D constraint which is written as

F̃
(10)
5 = αβ ⋆ F̃

(10)
5 . (B.12)

The decomposition of the higher dimensional Hodge star is as follows (to obtain this

formula one can write the expression in components and use the reduction ansatzes)

⋆̂F̃
(10)
5 = −γe−σ ⋆ F̃4 + eσ(A1 + dy) ∧ ⋆F̃5 (B.13)
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which implies

(F̃5 + F̃4 ∧ A1) + F̃4 ∧ dy = −αβγ(e−σ ⋆ F̃4 − γeσA1 ∧ ⋆F̃5) + αβeσ ⋆ F̃5 ∧ dy. (B.14)

Identifying we get

αβeσ ⋆ F̃5 = F̃4 ⇒ ⋆2F̃5 = αβe−σ ⋆ F̃4. (B.15)

However, we have (see for example [165]): ⋆2F̃5 = −γF̃5. Therefore we get

F̃5 = −αβγe−σ ⋆ F̃4. (B.16)

This means that the potentials are not independant. The terms that depend on F̃5 are

Ŝ = − 1

4κ29

∫ [
αβ

2
eσF̃5 ∧ ⋆F̃5 − F̃4 ∧ F̃5

]
, (B.17)

and the equation of motion for the field F5 yields

δŜ = − 1

4κ29

∫
δF5 ∧

(
eσαβ ⋆ F̃5 − F̃4

)
, (B.18)

which is proportional to the self-duality constraint. Therefore we can add a Lagrange

multiplier that enforces it and treat F5 as an auxiliary field Λ5, which, when integrated

out, finally gives

Ŝ = − 1

4κ29

∫
αβγ

2
e−σF̃4 ∧ ⋆F̃4. (B.19)

So overall the reduced IIB actions are

S =
1

2κ29

∫
d9x
√
|g|eσ−2Φ

[
R+ 4∇Φ · ∇(Φ− σ)− α

2
|H̃3|2 −

αγ

2
e−2σ|H2|2 −

γ

2
e2σ|G2|2

]
− 1

4κ29

∫
d9x
√
|g|
[
αβeσ|F1|2 + βγe−σ|F̃2|2 + βeσ|F̃3|2 + αβγe−σ|F̃4|2

]
− 1

4κ29

∫ [
−A1 ∧ F̂4 ∧ F̂4 + 2B̂2 ∧ F3 ∧ F̂4

]
.

(B.20)

We have obtained the reduced actions of Type IIA and Type IIB theories so we are

now ready to derive the generalized Buscher rules. In order to go from one action to the

other, we need to perform the following field redefinitions

σ → −σ,
Φ→ Φ− σ,
A1 → −B1,

B1 → −A1,

B2 → B2 +B1 ∧ A1.

(B.21)

Moreover the sign parameters are related as follows

IIAα,β
γ → IIBα,αβγ

αγ . (B.22)
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We can show explicitly that the |H̃3|2 term is invariant

|H̃3|2 = (dB2 − dA1 ∧B1) ∧ ⋆(dB2 − dA1 ∧B1)

→ (d(B2 +B1 ∧ A1)− dB1 ∧ A1) ∧ ⋆(d(B2 +B1 ∧ A1)− dB1 ∧ A1)

= (dB2 + dB1 ∧ A1 −B1 ∧ dA1 − dB1 ∧ A1) ∧ ⋆(dB2 + dB1 ∧ A1 −B1 ∧ dA1 − dB1 ∧ A1)

= (dB2 −G2 ∧B1) ∧ ⋆(dB2 −G2 ∧B1)

= |H̃3|2.

We now prove all the rules starting with the Neveu-Schwarz sector.

For the dilaton

Φ̂′ = Φ′ → Φ− σ = Φ− 1

2
ln |αγgyy| = Φ− 1

2
ln |gyy|. (B.23)

As a side note we can show that this formula is consistent with the relationship between

coupling constants. Indeed

Φ̃ = Φ− 1

2
ln |gyy|

=⇒ e⟨Φ̃⟩ = e⟨Φ⟩− 1
2
ln |⟨gyy⟩|

=⇒ g̃S = gS
1

e⟨σ⟩
=

√
α′

R
gS,

after restoring string units which indeed matches (2.181).1

For the metric

ĝ′mn = g′mn + γe2σ
′
A′

1mA
′
1n

→ gmn + αγe−2σ(−B1m)(−B1n)

= ĝmn − γe2σ(A1mA1n) + αγe−2σB1mB1n

= ĝmn +
αB̂ymB̂yn − ĝymĝyn

ĝyy
.

(B.24)

For the Kaluza-Klein vector

ĝ′my = γe2σ
′
A′

1m → −αγe−2σB1m = −αB̂my

gyy
=⇒ g′ym = α

B̂ym

gyy
. (B.25)

For the Kaluza Klein scalar

ĝ′yy = γe2σ
′ → αγe−2σ = α

1

ĝyy
. (B.26)

1To be accurate, the true parameter that should appear is the physical radius ρ that we introduced

before but most references do not distinguish between the physical radius ρ and the parametric radius R.
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For the Kalb-Ramond B-field

B̂′
mn = B′

2mn + (B′
1 ∧ A′

1)mn

= B′
2mn + (B′

1mA
′
1n −B′

1nA
′
1m)

→ B2mn + (B1mA1n − A1mB1n) + (A1mB1n − A1nB1m)

= B2mn

= B̂mn − (B1mA1n − A1mB1n)

= B̂mn −
(
B̂myγe

2σĝny − B̂nyγe
2σĝmy

)
= B̂mn −

(
B̂myĝny − B̂nyĝmy

)
ĝyy

.

(B.27)

For the winding vector

B̂′
my = B′

1m → −A1m = −γe−2σgmy = −
gmy

gyy
=⇒ B′

ym =
gym
gyy

. (B.28)

Now we give the Ramond-Ramond sector rules. We give the IIA fields expressed in terms

of IIB fields but the reverse works with the same logic

ĈA
1 |y = CA

0 → CB
0 = ĈB

0 , (B.29)

ĈA
1 |�y = CA

1 + CA
0 ∧ AA

1 → CB
1 + CB

0 ∧ (−BB
1 ) = ĈB

2 |y − ĈB
0 ∧ B̂B

2 |y, (B.30)

ĈA
3 |y = CA

2 → CB
2 + CB

1 ∧ AB
1 − CB

1 ∧ AB
1 = ĈB

2 |�y − Ĉ
B
2 |y ∧

ĝBym
ĝByy

, (B.31)

ĈA
3 |�y = CA

3 + CA
2 ∧ AA

1 → CB
3 + CB

2 ∧ (−BB
1 )

= Ĉ4|y + (CB
2 + CB

1 ∧ AB
1 − CB

1 ∧ AB
1 ) ∧ (−BB

1 )

= ĈB
4 |y − ĈB

2 |�y ∧ B̂
B
2 |y + ĈB

2 |y ∧
ĝBym
ĝByy
∧ B̂B

2 |y,

(B.32)

where |y and |
�y
indicates if one of the coordinates is the one on which we reduce or not.

Thus concludes the derivation of the generalized Type II Buscher rules.



Appendix C

Details of Type II on Calabi-Yau

In this appendix we provide some more details on Calabi-Yau compactifications of

Type IIA theories. Since this has been worked out in detail for IIA(1,9) in [122] and for

IIA(0,10) in [124] all we need in order to include the additional cases of IIA∗
(1,9) and IIA(2,8),

is to trace the ten-dimensional sign flips through the computation. The results from the

reduction of the individual terms is taken from [124] whose conventions and notation we

follow. We refer to [104, 106, 127] for further background on CY3 compactifications and

special geometry.

C.1 Ten-dimensional Lagrangians

In Section 4.3 we used the string frame parametrization of [108] to display the various

Type IIA Lagrangians.1 In order to use the results of [122] and [124] on CY3 compactifi-

cations, we use the following Einstein frame parametrization:

SIIA =

∫
M10

1

2
⋆ R10 −

9

16
d log ϕ ∧ ⋆d log ϕ− α1

4
ϕ

9
4dV ∧ ⋆dV

− α2

2
ϕ− 3

2H3 ∧ ⋆H3 −
α3

2
ϕ

3
4 (F4 + dV ∧B2) ∧ ⋆ (F4 + dV ∧B2)

−
√
2

2
(F4 + dV ∧B2) ∧ F4 ∧B2 −

√
2

6
dV ∧B2 ∧ dV ∧B2 ∧B2 .

(C.1)

Note that the dilaton has been redefined according to Φ ∝ log ϕ. Moreover we now use

the same notations for form-fields as in [122] and [124]: V is the RR one-form, while F4 is

the four-form field strength. The three parameters αi, i = 1, 2, 3 encode the various sign

flips, see Table C.1.

1Complete bosonic string frame (pseudo-)Lagrangians for all Type II theories can be found in the

appendix of [54].
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Type α1 α2 α3

IIA(1,9) 1 1 1

IIA∗
(1,9) −1 1 −1

IIA(0,10) −1 −1 1

IIA(2,8) 1 −1 −1

Table C.1: Relative signs for kinetic terms in ten-dimensional Type IIA theories. A plus

sign corresponds to a standard kinetic term in Lorentz signature, as realized in IIA(1,9).

As a quick check, note that this action is consistent with Table 4.6. We also note

that the three signs are not independent, since α3 = α1α2. This reflects that the three

signs encode four independent theories, rather than six. For Type IIA(0,10) and Type

IIA(1,9) it was shown in [124] that these Lagrangians arise from dimensional reduction of

eleven-dimensional supergravity with signature (1,10). For signature (1,9) one recovers the

Lagrangian of [122].2 The Lagrangians for Type IIA∗
(1,9) and Type IIA(2,8) are obtained by

a similar computation starting from the Lagrangian for eleven-dimensional supergravity

in signature (2,9) given in [108]. Since these Lagrangians only differ by relative signs, and

since in all cases we reduce on the same manifold, we can use the results of [122] and [124]

for the individual terms, and afterwards assemble them into four distinct four-dimensional

Lagrangians.

C.2 Reduction of the graviton-dilaton sector

Since the Einstein-Hilbert and dilaton term are the same for all cases we can discuss

them at once.

Following [122] and [124] the reduction of

SEH+ϕ =

∫
M10

1

2
⋆ R10 −

9

16
d log ϕ ∧ ⋆ log ϕ

results in

SEH+ϕ =

∫
M4

1

2
⋆ R4 −

1

2
GAB(v)dv

A ∧ ⋆dvB − 1

4
dφ ∧ ⋆dφ− gαβ̄(z, z̄)dzα ∧ ⋆dz̄β̄ . (C.2)

Here zα are the complex structure moduli with their special Kähler metric gαβ and vA

are the real Kähler moduli with their special real metric GAB(v). Following the notation

2As remarked in [124] the second term in the third line is absent in [122], but present in [121]. It is

straightforward to check that this term is generated by the field redefinition described explicitly in [124].
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of [124] we define the following integrals

K =

∫
CY3

J ∧ J ∧ J , KA =

∫
CY3

V A ∧ J ∧ J ,

KAB =

∫
CY3

V A ∧ V B ∧ J , KABC =

∫
CY3

V A ∧ V B ∧ V C .

Using the expansion J =MAV A of the Kähler form, we obtain

K = KABCM
AMBMC =: (KMMM) , KA = KABCM

BMC =: (KMM)A ,

KAB = KABCM
C =: (KM)AB ,

so that

GAB(M) = −3
(

(KM)AB

(KMMM)
− 3

2

(KMM)A(KMM)B
(KMMM)2

)
. (C.3)

The real Kähler moduli zα are related to the MA by the field redefinition

MA =
√
2ϕ−3/4vA . (C.4)

The four-dimensional dilaton φ is related to the ten-dimensional dilaton ϕ by

φ = log
(
2Vϕ−3

)
.

Further details are given in [124].

C.3 Contribution of the B-field to the vector multi-

plet sector

Next we turn to terms descending from the B-field kinetic term, which arise from

taking the internal part of the B-field to be a harmonic two-form. Following [122] and [124]

we say that terms which arise from harmonic two-forms belong to the H2-cohomology

sector. These are precisely the terms which contribute to the gravity plus vector multiplet

sector of the four-dimensional theory. The ten-dimensional term takes the form

SH2(B2) = α2

∫
M10

−1

2
ϕ−3/2H3 ∧ ⋆H3

∣∣∣∣
H2

where the sign depends on which theory we start with. We denote the projection of terms

onto the H2-cohomology sector by |H2 . Decomposing B2|H2 = aAV A and integrating over

the CY3, we obtain

SH2(B2) = α2

∫
M4

−1

2
GAB(v)da

A ∧ ⋆daB ,
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where aA are four-dimensional scalar fields. We can combine this term with one of the

terms obtained from the reduction of the Einstein-Hilbert term to obtain∫
M4

−1

2
GAB(v)

(
dvA ∧ ⋆dvB + α2da

A ∧ ⋆daB
)
.

Making the field redefinition

vA =
1

21/6
yA, aA = − 1

21/6
xA, KABC = cABC , (C.5)

we can rewrite this contribution as∫
M4

−ḡAB(y)
(
dxA ∧ ⋆dxB + α2dy

A ∧ ⋆dyB
)

where we have defined the new coupling matrix by

ḡAB :=
1

2
α2GAB = −3

2
α2

(
(cy)AB

(cyyy)
− 3

2

(cyy)A(cyy)B
(cyyy)2

)
. (C.6)

C.4 Contribution of R-R-kinetic terms to the vector

multiplet sector

Next we consider the contribution of the kinetic term of the R-R three-form, including

its Chern-Simons like improvement term, to the H2-sector, that is to the four-dimensional

vector multiplets. Depending on which theory we start with, the ten-dimensional term is

SH2(A3) = α3

∫
M10

1

2
ϕ3/4 (F4 + dV ∧B2) ∧ ⋆ (F4 + dV ∧B2)

∣∣∣∣
H2

.

Following [124] we decompose F4 and B2 as

F4

∣∣
H2 = FA ∧ V A, B2

∣∣
H2 = aAV A, (C.7)

where FA are four-dimensional field strengths, FA = dAA. Inserting this into the above

action, we obtain an action ready to integrate over:

SH2(A3) = α3

∫
M4

1

2
ϕ3/4

(
FA + aAdV

)
∧ ⋆
(
FB + aBdV

) ∫
CY3

V A ∧ ⋆V B .

Performing the integral we obtain

SH2(A3) = α3

∫
M4

√
2

3!
K(v)GAB(v)

(
FA + aAdV

)
∧ ⋆
(
FB + aBdV

) ∣∣∣∣
H2

.

Similarly, the reduction of the kinetic term of the R-R one-form

SV = α1

∫
M10

1

4
ϕ

9
4dV ∧ ⋆dV
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becomes

SV = α1

∫
M4

√
2

2 · 3!
K(v)F0 ∧ ⋆F0

after integration over the CY3, where we have set F0 = dV and used the field redefinition

(C.4).

Using that α3 = α1α2, we can combine terms as

SH2(A3) + SV =α1

∫
M4

√
2

(
1

12
(Kvvv) + α2

6
(Kvvv)GABa

AaB
)
F0 ∧ ⋆F0

+

√
2α2

3
(Kvvv)GABa

BFA ∧ ⋆F0 +

√
2α2

6
(Kvvv)GABFA ∧ ⋆FB ,

where (Kvvv) := KABCv
AvBvC . Rescaling the gauge fields

FA =
1

21/6
FA

as well as the scalars, and using (C.6), we can express the above as

SH2(A3) + SV =α1

∫
M4

1

2
(cyyy)

(
1

6
+

2

3
(gxx)

)
F 0 ∧ ⋆F 0

− 2

3
(cyyy)(gx)AF

A ∧ ⋆F 0 +
1

3
(cyyy)gABF

A ∧ ⋆FB .

C.5 Contribution of the topological terms to the vec-

tor multiplet sector

The final contribution to the gravity plus vector multiplet sector comes from the

topological terms

SH2(top) =

∫
M10

−
√
2

2
(F4 + dV ∧B2) ∧ F4 ∧B2 −

√
2

6
dV ∧B2 ∧ dV ∧B2 ∧B2

∣∣∣∣
H2

.

According to [124], after reduction and field redefinitions this takes the form

SH2(top) =

∫
M4

1

6

[
3(cx)ABFA ∧ FB − 3(cxx)AFA ∧ F0 + (cxxx)F0 ∧ F0

]
.
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C.6 Final result for the gravity and vector multiplet

sector

Combining everything obtained so far gives us the bosonic Lagrangian for the gravity

multiplet and the vector multiplets:

SG+VM =

∫
M4

1

2
⋆ R4 − ḡAB(y)

(
dxA ∧ ⋆dxB + α2dy

A ∧ ⋆dyB
)

− α1

[
1

2
(cyyy)

(
1

6
+

2

3
(gxx)

)
F0 ∧ ⋆F0

− 2

3
(cyyy)(gx)AFA ∧ ⋆F0 +

1

3
(cyyy)gABFA ∧ ⋆FB

]
+

1

6

[
3(cx)ABFA ∧ FB − 3(cxx)AFA ∧ F0 + (cxxx)F0 ∧ F0

]
.

As shown in [130], one can introduce complex fields zA = xA + iyA if α2 = 1 and para-

complex fields zA = xA + eyA if α2 = −1. Then the second term in the first line becomes

a sigma model ∫
M4

−ḡAB̄(z, z̄)dz
A ∧ ⋆dz̄B̄

with a target space which is projective special Kähler for α2 = 1 and projective spe-

cial para-Kähler for α2 = −1. More generally, the results of [130] imply that the full

Lagrangian can be rewritten into the form

SG+VM =

∫
M4

1

2
⋆ R4 − ḡAB̄(z, z̄)dz

A ∧ ⋆dz̄B̄ +
α1

4
IΣΛF

Σ ∧ ⋆FΛ +
1

4
RΣΛF

Σ ∧ FΛ ,

where Σ,Λ = 0, 1, . . . , nV = h1,1, and where the vector coupling matrices IΛΣ andRΛΣ can

be expressed by a holomorphic or para-holomorphic prepotential through the standard

formulae of special geometry. This completes the derivation of the bosonic gravity plus

vector multiplet Lagrangians for the four Type IIA theories. Our result indeed matches

(4.10) and (4.11). For signature (1,3), where α2 = 1 and α1 = α3 = −λ = ±1 we obtain a

complex, (projective) SK scalar manifold, and the sign of the Maxwell term distinguishes

between Type IIA and Type IIA∗. For signatures (0,4) and (2,2), where α2 = −1, we
obtain a para-complex, (projective) SPK manifold, and both signatures differ by the

sign of the Maxwell term, which is controlled by α1 = −α3 = −λ. However, in these

signatures the supersymmetry algebra is unique and the sign can be changed by a field

redefinition [132].
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C.7 Contribution of the kinetic R-R-terms to the hy-

permultiplet sector

We now turn to contributions from terms where the internal part is a harmonic 3-

form. So far we have discussed one such term, which arises from the reduction of the

Einstein-Hilbert term. This results in the sigma model −G̃αβ̄(z, z̄)dz
α ∧ ⋆dz̄β̄, where zα

parametrize the deformations of the complex structure of the CY3, with (projective) SK

metric gαβ̄(z, z̄). The R-R one-form does not contribute, but there are contributions for

the R-R three-form and from the Kalb-Ramond field.

We start with the contribution of the kinetic term of the four-form field strength

F4 = dA3,

SH3(A3) =

∫
M10

−α3

2
ϕ3/4F4 ∧ ⋆F4

∣∣∣∣
H3

.

It has been shown in [122], [124] that

F4|H3 = dǍ = 21/4dζI ∧ αI + 21/4dζ̃I ∧ βI = P I ∧ ΦI + Q̄ ∧ Ω̄ + h.c. (C.8)

where the complex one-forms P I , Q̄ ∈ Ω1(M4) ⊗ C can be expressed in terms of special

geometry data associated with complex structure moduli as

P I = i21/4
(
dζ̃J +NJKdζ

K
)
N IJ , Q̄ = −i21/4 XI

(XNX̄)

(
dζ̃I +NIJdζ

J
)
. (C.9)

While the four-dimensional hypermultiplet scalars ζI , ζ̃I are defined through the ex-

pansion of dǍ in terms of αI , β
I , the expansion of dǍ in terms of ΦI ,Ω is used to carry

out the integration over the CY3:

SH3(A3) =

∫
M4

−α3ϕ
3/4P I ∧ ⋆P̄ J

∫
CY3

ΦI ∧ ⋆Φ̄J +

∫
M4

α3ϕ
3/4Q̄ ∧ ⋆Q

∫
CY3

Ω̄ ∧ ⋆Ω .

Following [124] this can be evaluated and ultimately brought to the form

SH3(A3) =

∫
M4

α3

2
e−φ

[
IIJdζI ∧ ⋆dζJ + IIJ

(
dζ̃I +RIKdζ

K
)
∧ ⋆
(
dζ̃J +RJKdζ

K
)]

,

where φ is the four-dimensional dilaton.

C.8 Contribution of topological terms and of the B-

field to the hypermultiplet sector

The topological contribution to the H3-sector comes from

SH3(top) =

∫
M10

−
√
2

2
F4 ∧ F4 ∧B2

∣∣∣∣
H3
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Inserting in the expansions of these fields, we obtain

SH3(top) =

∫
M4

−
√
2B2 ∧ P I ∧ P̄ J

∫
CY3

ΦI ∧ Φ̄J +

∫
M4

√
2B2 ∧ Q̄ ∧Q

∫
CY3

Ω̄ ∧ Ω .

Following [124] this can be evaluated and ultimately be brought to the form

SH3(top) = −
∫
M4

2B2 ∧ dζI ∧ dζ̃I =
∫
M4

2H3 ∧ ζIdζ̃I , (C.10)

where H3 = dB2 is the field strength of the four-dimensional Kalb-Ramond field B2.

To this we add the contribution from the reduction of the kinetic term of the ten-

dimensional Kalb-Ramond field. (Here the internal part is a zero-form, so this belongs to

the ‘H0 sector.’)

SH3(top) + SH0(B2) =

∫
M4

2H3 ∧ ζIdζ̃I − α2e
2φH3 ∧ ⋆H3 .

Following [124] we dualize the four-dimensional Kalb-Ramond field B2 into ϕ̃.

SH3(top) + SH0(ϕ̃) = −
∫
M4

e−2φ

[
dϕ̃+

1

2

(
ζIdζ̃I − ζ̃dζI

)]
∧ ⋆
[
dϕ̃+

1

2

(
ζIdζ̃I − ζ̃dζI

)]
.

Note that α2 has cancelled, because in signatures (0,10) and (2,8), where α2 = −1, the
Hodge dualization generates an additional sign compared to signature (1,9), where α2 = 1.

C.9 Final result for the hypermultiplet sector

By collecting all terms contributing to the hypermultiplet sector we obtain

SH =

∫
M4

− G̃αβ̄dz
α ∧ ⋆dz̄β̄ − 1

4
dφ ∧ ⋆dφ

− e−2φ

[
dϕ̃+

1

2

(
ζIdζ̃I − ζ̃IdζI

)]
∧ ⋆
[
dϕ̃+

1

2

(
ζIdζ̃I − ζ̃IdζI

)]
+
α3

2
e−φ

[
IIJdζI ∧ ⋆dζJ + IIJ

(
dζ̃I +RIKdζ

K
)
∧ ⋆
(
dζ̃I +RIKdζ

K
)]

where α, β = 1, . . . , h2,1 = nV − 1 and I, J = 1, . . . , nV = h2,1 + 1. This indeed agrees

with (4.12) upon identifying α3 = −λ. This completes the derivation of the four Type

IIA hypermultiplet Lagrangians from dimensional reduction. For Type IIA(1,9) and Type

IIA(0,10), where α3 = −λ = 1, the geometry is QK (α3 = 1), while for Type IIA∗(1, 9)

and Type IIA(2, 8) where α3 = −λ = −1, the geometry is PQK. In both cases the

distinguished submanifold is the SK manifold provided by the complex structure moduli

space.
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Undualizing the Kalb-Ramond field

in 4 dimensions

If we were to directly substitute the universal axion by its Hodge dual at the level of the

action the resulting kinetic term might get sign errors. The correct way to dualize fields

at the level of the action is to promote the associated field strength as the fundamental

field and add a Lagrange multiplier to the action that enforces the Bianchi identity. In

our case we therefore write

S =

∫
d4x
√
ĝS(−2)e2φ [ ∂µφ̃+

1

2
(ζ∂µζ̃−ζ̃∂µζ)] [ ∂µφ̃+

1

2
(ζ∂µζ̃−ζ̃∂µζ)]+KϵµνρλĤµνρ(∂λφ̃),

(D.1)

whereK is an undetermined constant that we will fix by requiring canonical normalization.

We have

δ∂σφ̃S =

∫
d4x
√
ĝS(−2)e2φ2 [ ∂σφ̃+

1

2
(ζ∂σ ζ̃ − ζ̃∂σζ)] +KϵµνρσĤµνρ = 0

⇒ ∂σφ̃ = −1

2
(ζ∂σ ζ̃ − ζ̃∂σζ) + 1

4
Ke−2φϵµνρσĤµνρ.

Plugging back in the action we get:

S =

∫
d4x
√
ĝS(−2)e2φ

[
1

4
Ke−2φϵµνρσĤµνρ

] [
1

4
Ke−2φϵµ′ν′ρ′σĤ

µ′ν′ρ′
]

+KϵµνρλĤµνρ
1

4
Ke−2φϵµ′ν′ρ′λĤ

µ′ν′ρ′ − 1

2
K(ζ∂λζ̃ − ζ̃∂λζ)ϵµνρλĤµνρ.

We use the following formula

ϵµνρλϵµ′ν′ρ′λ = −1!δµνρµ′ν′ρ′ = −6δ
µ
µ′δ

ν
ν′δ

ρ
ρ′ , (D.2)

and we end up with

S =

∫
d4x
√
ĝS
−6K2

8
e−2φĤµνρĤ

µνρ − K

2
(ζ∂λζ̃ − ζ̃∂λζ)ϵµνρλĤµνρ. (D.3)
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We pick K = 1
3
and get

S =

∫
d4x
√
ĝS

(
− 1

12
e−2φĤµνρĤ

µνρ − 1

6
(ζ∂λζ̃ − ζ̃∂λζ)ϵµνρλĤµνρ

)
. (D.4)

So the final 4D Einstein-Maxwell-UHM action in string frame is

S4 =
∫
d4x
√
ĝS

[
e−2φ

(
R̂S + 4ĝµνS ∂µφ∂νφ

)
− 1

2
ĝµρS ĝ

νλ
S F̂µνF̂ρλ

− 1

12
e−2φĤµνρĤ

µνρ − 1

6
(ζ∂λζ̃ − ζ̃∂λζ)ϵµνρλĤµνρ

−
(
∂µζ∂

µζ + ∂ρζ̃∂ρζ̃
) ]
.

(D.5)
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