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Abstract

The failure probability function (FPF) expresses the probability of failure as a function of the1

distribution parameters associated with the random variables of a reliability problem. Knowledge2

on this FPF is of much relevance for reliability sensitivity analysis and reliability-based design op-3

timisation. However, its calculation is usually a challenging task. Therefore, this paper presents4

an efficient approach for estimating the FPF based on on an adaptive strategy and a combina-5

tion algorithm. The proposed approach involves three basic elements: 1) a Weighted Importance6

Sampling approach, which allows determining local FPF estimates; 2) an adaptive strategy for7

determining at which realisations of the distribution parameters it is necessary to perform lo-8

cal FPF estimation; and 3) an optimal combination algorithm, which allows to aggregate local9

FPF estimations together to form a global estimate of the FPF. Test and practical examples are10

presented to demonstrate the efficiency and feasibility of the proposed approach.11

Keywords: Failure probability function, Importance Sampling, Combination algorithm,

Adaptive strategy

1. Introduction

Recent advances in computational mechanics allow to explicitly model the unavoidable effects12

of uncertainty on the performance of engineering systems [1]. Typically, one is interested in13

assessing the reliability of the system through metrics such as the failure probability, including14

either its sensitivity [2] or even optimising the system’s design considering its level of reliability [3].15

In all of the aforementioned cases, it is of importance to determine the relation between the16



probability of failure and the distribution parameters associated with the random variables of a17

reliability problem. Such relation has been termed in the literature as the Failure Probability18

Function (FPF). The main objective of this work is to propose an efficient numerical procedure19

for approximating this FPF.20

The current approaches for FPF estimation can be roughly grouped into three classes. The first21

class comprises surrogate modelling approaches. In essence, a surrogate models involves selecting22

some predefined interpolation points in the space of the distribution parameters by means of design23

of experiments. Then, reliability analyses are carried on these interpolation points, allowing24

to train the surrogate model. For example, Gasser [4] adopts a predefined quadratic function25

to approximate the logarithm of FPF. Jensen [5] adopted a linear function to approximate the26

logarithm of FPF. Note that other types of surrogate model methods such as Kriging [6, 7], Support27

vector machine [8, 9], etc., which are widely applied in reliability analysis to approximate the limit28

state function [10, 11], can be also used to approximate the FPF. The second class of approaches29

provides a local approximation of the FPF with respect to distribution parameters by performing30

a standard reliability analysis. In this context, local implies that the approximation of the FPF is31

valid over a small neighbourhood around an expansion point. For example, Zou and Mahadevan32

[12] expressed the FPF as a linear function of the distribution parameters by applying a first-33

order Taylor series about an expansion point based on reliability sensitivity information. Yuan34

[13] proposed a weighted approach to obtain the FPF. In the latter approach, the estimate of FPF35

is expressed as a function of a set of samples of the distribution parameters which are generated36

in a single reliability analysis. Further, an advanced Line sampling approach is proposed to solve37

the FPF in [14], which is similar to the weighted approach, as it only needs one simulation run of38

Line Sampling. The third class of strategies for estimating the FPF involves the formulation of39

the reliability problem in an augmented space. The seminal work of Au [15] proposes to calculate40

the FPF by using the Bayes’ rule and a single augmented reliability analysis. In this context,41

augmented implies that distribution parameters are modelled as random variables. Naturally,42

this is just a convenient artefact that allows applying the Bayes’ rule. Ching and Hsieh [16, 17]43

follow the augmented reliability idea and adopted the maximum entropy principle to estimate the44

posterior distribution associated with distribution parameters. Taflanidis and Beck [18] perform45

minimisation of the FPF in the augmented space by means of stochastic search. Feng et al. [19]46

investigates the application of augmented space in conjunction with a binning algorithm. Ling et47
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al. [20] also apply the augmented space idea, and combine adaptive Kriging with Monte Carlo48

simulation to estimate the FPF. Yuan and coworkers [21] further developed the aforementioned49

concept to estimate the FPF with respect to distribution parameters by sample average which50

can relieve the distribution fitting step. Zhang et al. [22] proposed an ensemble model method51

based on Bayes’ rule and augmented theory for estimating the FPF by using a weighted form to52

combine numerous surrogate models.53

As noted from the above discussion, approximating the FPF has been a topic of active re-54

search. Despite all progresses made, there are still open issues which require further research. For55

example, the first class of methods produces an approximation of the FPF estimator without ad-56

ditional information regarding its precision. The second class of methods actually provides a local57

approximation of FPF, which may lack accuracy for some problems, especially when the design58

space associated with the distribution parameters is large. Finally, the third class of methods59

may not be suitable for problems which involve a considerable number of distribution parame-60

ters. Therefore, in this contribution, a global FPF estimation based on Adaptive strategy and61

Combination algorithm (AC) is proposed. AC consists of the following three key elements.62

1. The weighted approach developed in [13] is adopted as fundamental simulation tool to obtain63

a local approximation of the FPF about specified values of distribution parameters.64

2. An optimal combination algorithm is proposed to aggregate local FPF estimations together65

to form the global FPF estimator.66

3. An adaptive strategy is proposed to actively determine the values of distribution parameters67

at which the local FPF estimation is carried out. This adaptive strategy is actually an active68

search which seeks to minimise an error measure.69

Note that it is worth pointing out the differences between the proposed approach with various70

Importance Sampling (IS) methods. It has been observed in [20, 23] that most IS methods71

address the computation of failure probability for specific values of the distribution parameters72

of a reliability problem. Weighted Importance Sampling (WIS) [13] extends the traditional IS73

approach by introducing an instrumental IS density function that admits a range of values for the74

distribution parameters of a reliability problem. In that way, it is possible to determine a closed-75

form estimator for the FPF. However, WIS is typically a local approximation method. Therefore,76

the adaptive strategy and an optimal combination algorithm proposed in this work allow to extend77

its capability from local estimation to global estimation. In this sense, the proposed approach can78
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be seen as an extended version of the weighted approach reported in [13].79

This contribution is organised as follows. In Section 2, the formal definition of FPF estimation80

is briefly presented. Then, the mathematical formulation of the proposed framework is developed81

in Section 3. In Section 4, various examples are presented to show the performance of the proposed82

approach. Finally, Section 5 lists the conclusions of the paper.83

2. Problem definition84

The objective of this contribution is calculating failure probability as a function of distribution85

parameters associated with the random variables of a reliability problem. This is termed as86

failure probability function (FPF) and is denoted as PF (θ), where PF denotes failure probability;87

θ = [θ1, · · · , θnθ
] ∈ S is the vector of distribution parameters and S the hyper-rectangular design88

space to which the distribution parameters belong to. Note that S is bounded either by the89

physics of the problem under consideration or by a priori considerations. In addition, note that90

the vector of distribution parameters θ can be also interpreted as a design vector [3].91

The failure probability function PF (θ) is defined as:92

PF (θ) =

∫
IF (x)f(x | θ)dx, (1)

where x is a vector-valued realisation of the random variable vector X that characterises the93

uncertain inputs of a reliability problem; f(x | θ) is the PDF of X conditioned on the distribution94

parameters θ; and IF (x) is the indicator function, which assumes the value IF (x) = 1 if x ∈ F and95

IF (x) = 0 otherwise. Note that F represents the failure domain associated with the realisations96

of the random variable vector. It is defined as F = {x : g(x) < 0}, where g(x) is the performance97

function, which assumes a value equal or smaller than zero in case that the realisation x of the98

uncertain input parameters causes an unacceptable system’s behaviour. Inspection of the above99

equation indeed reveals that, in order to fully map PF (θ), a full reliability analysis is required for100

each θ ∈ S.101

3. Proposed approach for global FPF estimation102

3.1. Overview of the proposed approach103

This section presents the proposed approach to estimate the FPF efficiently with high global104

accuracy, which is based on an adaptive strategy and a combination algorithm. The global FPF105
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estimator P̂ (k)
F,C(θ) is obtained by combining a number of k local estimators, and is explicitly given106

by:107

P̂
(k)
F,C(θ) =

k∑
i=1

wi(θ)P̂
(i)
F (θ), (2)

where P̂
(i)
F (θ) is the i− th local estimator, whose calculation is explained in detail in Section 3.2;108

k is the total number of different local estimators; and wi(θ) is a weight function. Note that109 ∑k
i=1wi(θ) = 1 is imposed for each value of θ. Thus, as long as P̂

(i)
F (θ) is unbiased, then the110

obtained P̂F,C(θ) is also unbiased. The exact values of each wi(θ) are obtained via a combination111

algorithm, as explained in detail in Section 3.3. Furthermore, the identification of the realisations112

of θ at which a local FPF estimator is required is carried out by means of active learning, as113

described in detail in Section 3.4.114

Before continuing, it is useful to derive some properties of the global FPF estimator shown115

in Eq. 2. In case that the FPF components, P̂ (i)
F (θ), are mutually independent, the variance of116

P̂
(k)
F,C(θ) can be easily obtained by117

V ar
[
P̂

(k)
F,C(θ)

]
=

k∑
i=1

w2
i (θ)V ar

[
P̂

(i)
F (θ)

]
(3)

Further, if all the FPF components, P̂ (i)
F (θ), are unbiased estimators, i.e., E[P̂

(i)
F (θ)] = PF (θ),118

then the coefficient of variation (C.o.V.) of P̂ (k)
F,C(θ) is given by119

Cov[P̂
(k)
F,C(θ)] =

√∑k
i=1wi(θ)2V ar[P̂

(i)
F (θ)]

PF (θ)
=

√√√√ k∑
i=1

w2
i (θ)Cov2[P̂

(i)
F (θ)] (4)

3.2. Local estimate of FPF by the weighted approach120

A local estimate of the FPF is produced by means of the Weighted Importance Sampling121

(WIS) approach presented in [13]. The first step of WIS consists of introducing an instrumental122

probability density function H(x). Then, the FPF in Eq. (1) is rewritten as:123

PF (θ) =

∫
IF (x)f(x | θ)

H(x)
H(x)dx (5)

which is further expressed as:124

PF (θ) = EH

[
IF (x)f(x | θ)

H(x)

]
= EH [IF (x)r(x,θ)] (6)
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where r(x,θ) = f(x | θ)/H(x) is the ratio of two distributions. Assume that N samples are125

generated according to H(x), that is,
{
x(j), j = 1, . . . , N

}
. Then, the FPF can be estimated as:126

P̂F (θ) =
1

N

N∑
j=1

IF
(
x(j)
)
f
(
x(j) | θ

)
H (x(j))

(7)

The above equation provides a generic expression for the local approximation of the FPF127

produced by means of Weighted Importance Sampling. For the i − th (i = 1, 2, . . . , k) local128

estimator of the FPF, an Importance Sampling Density (ISD) function H(x) is established around129

the support point θ
(i)
H . Specifically, the so-called ISD based on the design point [24] is considered130

here, which is given as:131

H(x) = H
(
x | x∗(i)) (8)

where x∗(i) is the design point solved according to the current support parameter point θ = θ
(i)
H ,132

that is, when x is distributed as f(x | θ(i)
H ).133

Suppose that a number of N (i) samples are generated according to H
(
x | x∗(i)), i.e., {x(j) ∼134

H
(
x | x∗(i)) , j = 1, . . . , N (i)}. According to Eq. (6), PF (θ) can be estimated based on these135

samples by136

P̂
(i)
F (θ) =

1

N

N∑
j=1

IF
(
x(j)
)
f
(
x(j) | θ

)
H (x(j) | x∗(i))

(9)

Obviously, the estimator in Eq. (9) is unbiased for each value of θ. The corresponding variance137

and coefficient of variation are given by138

V ar[P
(i)
F (θ)] ≈ 1

N − 1

 1

N

N∑
j=1

[
IF
(
x(j)
)
f
(
x(j) | θ

)
H (x(j) | x∗(i))

]2
− [P̂

(i)
F (θ)]2

 (10)

Cov[P
(i)
F (θ)] =

√
V ar[P̂

(i)
F (θ)]

PF (θ)
≈

√
V ar[P̂

(i)
F (θ)]

P̂
(i)
F (θ)

(11)

The local estimate of FPF in Eq. (9) provides sufficient accuracy when θ is near the current139

support parameter point θ
(i)
H . However, it may show a large coefficient of variation for values of140

θ far from θ
(i)
H . The latter is undesirable, as it may imply considerable error in the prediction141

of the FPF and can be particularly problematic for large design spaces S. Such issue can be142

circumvented by means of a combination algorithm, which is explained in the following.143
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3.3. Combination algorithm144

An optimal Combination algorithm is proposed to determine the weights function wi(θ) in145

Eq. (2). Note that the performance of Combination algorithm depends highly on the calculated146

weights, and hence, the approach used to calculate these weights is highly influential. There147

are three approaches for combination algorithm proposed in this paper: (1) equal weights; (2)148

determination of an optimal wi(θ) that minimises the variance of P̂ (i)
F,C(θ); and (3) determination149

of an optimal wi(θ) that minimises the C.o.V. of P̂ (i)
F,C(θ). These approaches are discussed and150

evaluated in the following.151

3.3.1. Combination based on average weights152

The most straightforward way to combine the local approximations of FPF is to add them153

considering equal weights, that is154

wi(θ) =
1

k
(i = 1, · · · , k) (12)

Generally, the combination based on average weights is quite easy to apply. However, it may155

provide poor estimates in other cases, as discussed later on.156

3.3.2. Optimal combination based on minimising the variance157

A set of optimal weights can be selected such that the variance of the FPF estimator P̂ (k)
F,C(θ),158

as given in Eq. (2), is minimised. As explained in detail in Appendix A, the optimal weights that159

fulfill such criterion are:160

wi(θ) =
V ar−1

[
P̂

(i)
F (θ)

]
∑k

j=1 V ar−1
[
P̂

(j)
F (θ)

] (i = 1, · · · , k) (13)

This equation shows that the optimal weight associated with P̂
(i)
F (θ) decreases with increase of161

the variance of P̂ (i)
F (θ). Furthermore, substitution of Eq. (13) into Eq. (3), yields the variance of162

the estimate for the FPF, which is equal to163

V ar[P̂
(k)
F,C(θ)] =

1∑k
i=1 V ar−1[P̂

(i)
F (θ)]

(14)

3.3.3. Optimal combination based on minimising the C.o.V.164

The third approach consists of determining the weights such that P̂ (k)
F,C(θ) possesses the smallest165

C.o.V. The optimal weights are then given by:166

wi(θ) =
Cov−2

[
P̂

(i)
F (θ)

]
∑k

j=1Cov−2
[
P̂

(j)
F (θ)

] (i = 1, · · · , k) (15)
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The detailed derivation of Eq. (15) is presented in Appendix A. Eq. (15) shows that the optimal167

weight of P̂ (i)
F (θ) decreases with increase of the C.o.V. of P̂ (i)

F (θ).168

Furthermore, substitution of Eq. (15) into Eq. (4) yields the final C.o.V. of the estimate of169

FPF, which is equal to:170

Cov[P̂
(k)
F,C(θ)] =

1√∑k
i=1Cov−2[P̂

(i)
F (θ)]

(16)

Since Cov[P̂
(i)
F (θ)] ̸= 0, thus Cov[P̂

(i)
F (θ)]2 > 0, then it is easy to further deduce that:171

Cov[P̂
(k)
F,C(θ)] ≤ Cov[P̂

(i)
F (θ)], (i = 1, · · · , k) (17)

which means that the combined estimate will own the smallest C.o.V. in theory compared with172

the local estimates of the FPF.173

It should be noted that the optimal weights in Eqs. (13) and (15) depend on variance and co-174

variance, which are not available in closed form. In this case, the corresponding sample estimators175

could be used instead, but would introduce bias in the estimation, as discussed in [25]. However,176

the estimates presented in the paper are biased but consistent, which means that they will converge177

asymptotically to the correct value as the number of samples involved increases. This point is178

demonstrated through a lemma given in Appendix B and a test example in Subsection 4.1, which179

confirms that this effect is negligible for the purposes of this work.180

3.3.4. Comparison of criteria for combination181

A two-dimensional academic example is given to illustrate the three different combination182

criteria described previously. Suppose that the limit state function is given as g(x) = 4−x1−x2,183

where x1 ∼ N(θ, 1), x2 ∼ N(0, 1) are the basic random variables, and θ ∈ [−2, 2] is the distribution184

parameter for which the FPF is sought. Weighted Importance Sampling is applied twice, each185

time considering one of the following two design points: x∗
L = [1, 3] and x∗

U = [3, 1]. It can be186

shown that these two are the design points when the distribution parameter is set as θ = −2187

and θ = 2, respectively. Each implementation of Weighted Importance Sampling (WIS) is carried188

out using N = 100 samples. The results by different settings and methods are plotted in Fig.189

1. In this figure, ‘WIS(x∗
L)’ and ‘WIS(x∗

U)’ denote the weighted approach with sampling centres190

on x∗
L and x∗

U , respectively; ‘Average weights’, ‘Variance weights’ and ‘C.o.V. weights’ denotes191

the combination based on average weights, minimising the variance of P̂ (k)
F (θ) and the C.o.V. of192

P̂
(k)
F (θ), respectively. Note that these combination estimators are constructed based on the two193

independent simulations of WIS, that is, k = 2.194

8



It can be seen from Fig. 1 that the local FPF estimates obtained by means of WIS (that is,195

WIS(x∗
U) and WIS (x∗

L)) can possess a large coefficient of variation. The approaches that combine196

the two local estimates of the FPF by means of weights exhibit a smaller coefficient of variation.197

Among these, the approach that uses weights that minimise the C.o.V exhibits the best accuracy.198

Based on this observation, in this work, only the combination algorithm based on minimising the199

C.o.V. is adopted and further investigated.200

Figure 1: Comparison of the FPF estimators and C.o.V.’s by different ways.

3.4. Adaptive strategy201

The above discussion has addressed the construction of a local estimate of the FPF (see Section202

3.2) as well as the aggregation of different local FPF into a combined estimator (see Section 3.3).203

Nonetheless, the issue on how to select the support point θ
(i)
H (i = 2, 3, . . . , k) for constructing a204

local approximation P̂
(i)
F (θ) remains open. In principle, these support points can be selected a205

priori, e.g., through a predefined experimental design heuristics, like centre design, or following206

random approaches, such as MCS, Latin Hypercube Sampling (LHS) or other low-discrepancy207

sequences. However, such a priori experimental design may not be the most efficient approach.208

Hence, a novel way to determine the location of the support points associated with the construction209

of the local FPF estimators based on active learning is developed here. Since the C.o.V. is a good210

estimator of the precision of an estimator, the C.o.V. of the aggregated global FPF estimator211
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is used as a learning function to select the next support point for constructing a new local FPF212

estimate to augment (or improve) the quality of the current global estimate. Specifically, the point213

θ ∈ S that possesses the largest value of C.o.V. should be chosen as the next support point.214

Suppose that the i− th estimator of the FPF P̂
(i)
F,C(θ) is calculated according to Eq. (2), and215

the C.o.V. of the estimator is obtained according to Eq. (4), then the next support parameter216

point θ
(i+1)
H is determined by solving the following optimisation problem:217

Find θ
(i+1)
H = θmax

Max Cov[P̂
(i)
F,C(θ)]

s.t. θj ≤ θj ≤ θ̄j (j = 1, 2, . . . , nθ) .

(18)

where θj and θj denote the lower and upper bounds for θj. Note that this optimisation problem218

does not involve any evaluation of limit state function. Thus, it can be readily solved by adopting219

any appropriate optimisation algorithm. In this contribution, the optimisation problem in Eq. (18)220

is solved by means of MCS, as its implementation is quite straightforward. When the dimension221

of θ is large (i.e., larger than 10), other algorithms, e.g., Particle Swarm Optimisation, can be222

used to solve Eq. (18).223

Note that active strategy in Eq. (18) can be repeated, until convergence is reached. The224

stopping criterion can be selected as max
(
Cov[P̂F (θ)]

)
≤ ctol, where ctol is a given tolerance225

value.226

3.5. Summary of the proposed approach227

The proposed approach to estimate the global FPF in an active way can be summarised in228

the following steps, which are also depicted in a flow diagram in Fig. 2.229

1. Initialise design. Set i = 1. Choose an initial value of θ
(1)
H . A possible choice is θ

(1)
H =230

(θ − θ)/2, where θ and θ denote the maximum and minimum values that θ may assume.231

2. Carry out Weighted Importance Samplig (WIS). Based on the Importance Sampling density232

function, H(x) given in Eq. (8) and the support point θ(i)
H , produce samples

{
x(j) : j = 1, . . . , N

}
.233

The local FPF estimator is established by means of Eq. (9).234

3. Produce the global FPF estimator with the optimal combination algorithm. Calculate the235

weights according to Eq. (15), and then produce the global FPF estimate following Eq. (2).236

4. Determine the next support parameter point by active learning. Solve the optimisation237

problem in Eq. (18) to obtain next support parameter point θ
(i+1)
H .238
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5. In case that the maximum coefficient of variation of the global FPF estimate is above the239

tolerance ctol, return to step 2 with i = i+ 1. Otherwise, stop the iteration.240

Initialise the support design point θ
(1)
H and stopping criterion ctol

Carry out WIS

considering θ
(i)
H

Build the local FPF estimator

using Eq. (9)

Perform the optimal combination to construct the

global FPF estimator according to Eq. (2)

Convergence?

Determine the next support

parameter point θ
(i+1)
H

by adaptive design in Eq. (18)

Obtain the final estimate of FPF

No

Yes

Figure 2: Flowchart of the proposed approach.

4. Examples241

In this section, three examples are presented to illustrate the performance of the proposed242

approach. These examples are solved by means of three different approaches:243

(a) The proposed approach (which is denoted as AC) with weights selected such that the C.o.V.244

of the global FPF estimate is minimised, as described in Section 3.3.3.245

(b) The WIS approach, which corresponds to a local FPF estimation [13]. Note that this approach246

is described in Section 3.2.247

(c) An augmented space integral (ASI) approach implemented with Importance Sampling, as248

proposed in [14]. It produces a global FPF estimation through reliability analysis in an249

augmented reliability space.250
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Note that these selected approaches are comparable between them, as they are simulation-based251

methods where the corresponding C.o.V. of FPF is available. Note that methods based on response252

surface (or surrogate model) [5] or the augmented space method with density fitting [16] are not253

included in the comparison. Such decision is made as the latter methods require additional254

assumptions and they do not produce information on the C.o.V. of the probability estimates.255

Direct MCS and IS are also applied to obtain the point-wise values of failure probability which256

are regarded as the ‘exact values’. The optimisation problem in Eq. (18) is solved by random257

search using MCS. The stopping criterion ctol = 0.2 is set for all the examples.258

4.1. Example 1: A test example259

The first example considers a simple limit state function, which is given by260

g(x) = 1 + exp(−0.5x1)− x2 (19)

where x1 and x2 are normal distributed random variables, i.e., x1 ∼ N(θ1, 1) and x2 ∼ N(θ2, 1),261

where the mean values of x1 and x2 are taken as the design parameters, and the design domains262

are θ1 ∈ [−2.5, 2.5] and θ2 ∈ [−2.5, 2.5].263

4.1.1. Results of the proposed approach264

The proposed approach is applied to estimate the global FPF of this problem. First θ
(1)
H =265

[−2.5,−2.5] is set, which is located in the lower bound of the design region. Then, the corre-266

sponding design point x∗(1) = [0.4851, 1.8646] is determined, and WIS based on this design point267

is performed with N = 100 samples. Note that the design point is solved by using Advance First268

Order and Second Moment (AFOSM) [26] method and 30 evaluations of the performance function269

are required.270

Fig. 3 shows the two-dimensional FPF estimates obtained by the proposed method, as well271

as the two-dimensional C.o.V. of estimator. It can be seen that the final C.o.V. values are all272

less than 0.2. Further, Fig. 4a and 4b show two one-dimensional projections of the FPF, namely273

PF (θ1, θ2 = 0) and PF (θ1 = 0, θ2), with respect to the number of iterations, respectively. Direct274

MCS is applied with N = 107 samples for each point-wise value of FPF which is take as the ‘exact’275

value (denoted by ‘circle’). It can be seen that the FPF estimate is improved at each step of the276

iterative process. For example, in Fig. 4a, some error exists in the FPF estimator in the early277

steps, e.g., over the left and right sides of design region of θ1. The corresponding C.o.V.s are also278
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large. As the iteration process advances, the results are improved until the stopping criterion is279

reached.280

In order to illustrate the effectiveness of the adaptive design, the C.o.V. of the estimator in281

each iteration, as well as the support parameter points θ(i)
H (i = 1, ..., 4) determined by the adaptive282

strategy, are shown in Fig. 5. The support points which are also the points with the biggest C.o.V.283

values in each iteration are shown in the figure (denoted by red dots). It can be noted that the284

C.o.V. of the estimator monotonically decreases as the iteration process continues.285

Figure 3: The FPF results by the proposed approach (Example 1).

(a) PF (θ1, θ2 = 0) (b) PF (θ1 = 0, θ2)

Figure 4: The one-dimensional FPF results by the proposed method (Example 1).
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Figure 5: The C.o.V.s of the FPF results in each iteration by the proposed approach (Example 1). The red points

denote the locations of θ(k+1)
H (k = 1, ..., 4).

4.1.2. Comparison with other methods286

The proposed method is compared with WIS and ASI in this subsection. First, all these287

methods are implemented with the same number of simulated samples, i.e., NT = N×k = 100×4288

for the proposed approach, and N = 400 for the WIS and ASI-IS. The design point x∗(1) in289

the proposed approach is also used for WIS and ASI. Note that the computation cost of solving290

the design point is not included here since it is negligible compared to the limit state function291

evaluations in these approaches.292

Fig. 6a and 6b shows the one dimensional FPF results (as well as their C.o.V. estimators). It293

can be seen in Fig. 6a that the FPF result of AC is consistent with the ‘Exact’ results by direct294

MCS, while those of both ASI and WIS posses considerable error when θ1 ∈ [−2.5,−0.5]. In both295

figures, ASI has the largest C.o.V. and also the proposed approach obtains the smoothest C.o.V.296

which owns the smallest maximum value of C.o.V. over the design region.297

In addition, all these methods are implemented with the same stop criterion Cov[P̂F (θ)] ≤298

ctol = 0.2. Table 1 shows the total number of evaluations of the performance function (including299

the design points identification) by different methods through an average over 10 independent300

runs. Different initial support parameter points θ
(1)
H are also considered, i.e., (1) initial design 1:301

θ
(1)
H = [−2.5,−2.5], (2) initial design 2: θ(1)

H = [0, 0], and (3) initial design 3: θ(1)
H = [2.5, 2.5]. It can302

be seen that the total number of evaluations of the performance function by WIS varies according303

to different starting points, i.e., from 5840 to 87100, while those of ASI-IS and are relatively304

steady. Among them, the proposed method based on an adaptive strategy and combination305
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algorithm (AC) requires the least number of calls to the performance function. This illustrates306

that, in this case, the proposed approach is more efficient and effective than WIS and ASI-IS.307

(a) PF (θ1, θ2 = 0) (b) PF (θ1 = 0, θ2)

Figure 6: The one-dimensional FPF results by different methods with the same number of simulated samples NT

(Example 1).

Table 1: Average number of samples for different methods under the same stopping criterion (average results over

10 runs) (Example 1).

Methods Initial design 1 Initial design 2 Initial design 3

WIS 16640 5840 47070

ASI-IS 3470 3010 2578

AC (N = 100) 1270 952 1056

4.1.3. Parametric Analysis308

The performance under different settings of the proposed approach is investigated here, i.e.,309

with respect to different numbers of samples (N) and initial support parameter points (θ(1)
H ). The310

proposed approach is carried out considering several repeated runs with a number of samples311

from 50 to 500, and different initial support parameter point θ
(1)
H , i.e., (1) initial design 1: θ

(1)
H =312

[−2.5,−2.5], (2) initial design 2: θ
(1)
H = [0, 0], and (3) initial design 3: θ

(1)
H = [2.5, 2.5].313

Fig. 7 shows the performance of the proposed approach, which gives the total number of314

iterations with respect to the number of samples used in each iteration and under different initial315
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support parameter points employing the proposed approach. It can be seen that, (1) when the316

number of samples N increases, the number of iterations k decreases, but the number of simulation317

samples generated by WIS (denoted as NT ) increases; (2) the total number of evaluations of the318

performance function Nall is first smooth when N is over about 50 to 400 and then increases when319

N > 400. Note that Nall includes both the simulation samples and the computational cost of320

solving the design point in each iteration. In this example, the design point is solved at cost of321

about 30 to 100 evaluations of the performance function.322

It is concluded that the selection of N affects the efficiency of the proposed method. First,323

it is recommended N is selected according to the stopping criterion, e.g., if Cov[P̂F (θ)] < 0.2324

is expected, then N should be large enough to ensure Cov[P̂
(i)
F (θ

(i)
H )] < 0.2. Second, the other325

relevant factor that needs to be considered is the computational cost of solving the design point326

involved in the each iteration. It is also recommended that the number of samples N should327

be larger than the number of calls in solving the design point of the performance function, thus328

leading to a smaller overall computational cost.329

Figure 7: The performance of the the proposed approach with respect to the number of samples used in each

iteration and different initial designs (Example 1).
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4.1.4. Convergence Analysis330

In this subsection, it will be shown that while the results of the proposed AC are biased, this331

bias is sufficiently small. In this test example, for each value of the distribution parameter vector332

θ, two independent runs of WIS are carried out, one of which is used for producing the local FPF333

estimator P̂
(i)
F (θ) and the other is used solely for determining the weights w(i)(θ) by means of334

Eq. (15). By following this approach, the obtained estimator will become immediately unbiased,335

because the weights are determined using samples which are different (completely independent)336

from those used for calculating P̂
(i)
F (θ). This approach is denoted as ‘AC(independent)’.337

(a) PF (θ1, θ2 = 0) (b) PF (θ1 = 0, θ2)

Figure 8: The one-dimensional FPF results by the proposed AC and AC(independent) when N = 100 (Example

1).

Fig. 8 shows the obtained results in one dimension when N = 100. The C.o.V. and relative338

error ϵ(θ) =
|P̂F (θ)−P exact

F (θ)|
P exact
F (θ)

where P exact
F (θ) is the exact value calculated by MCS. AC takes a339

number of k = 7 iterations to converge. AC(independent) uses the same information (support340

parameter points and component FPF estimators) but calculating the weights through a different341

WIS in each iteration. It can be seen from the figure that the results produced with the unbiased342

estimator through AC(independent) are almost the same as those of the biased estimator through343

AC.344

4.2. Example 2: Thermal Stress Analysis of Jet Engine Turbine Blade345

The second example considers a jet engine turbine blade, as shown in Fig. 9. This blade346

has interior cooling ducts, through which the flow of cool air maintains the temperature of the347
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blade within the limit for its material. The turbine is a radial array of blades typically made of348

nickel alloys. These alloys resist the extremely high temperatures of the gases. At such tempera-349

tures, the material expands significantly, producing mechanical stress in the joints and significant350

deformations of several millimetres. To avoid mechanical failure and friction between the tip of351

the blade and the turbine casing, the blade design must account for the mechanical stresses and352

deformations. Failure is defined as the maximum von Mises stress of the structure exceeding the353

given allowable value σa = 1.5GPa, and the corresponding limit state function is:354

g(x) = σa − σmax(x) (20)

where σmax(x) is the maximum von Mises stress of the blade caused be the combination of thermal355

and pressure effects; x = [E, λ, γCTE, P1, P2, Kapp, T1, T2] is the vector of basic random variables;356

E, λ, γCTE and Kapp are the Young’s modulus, Poisson’s ratio, coefficient of thermal expansion357

and the thermal conductivity for nickel-based alloy (NIMONIC 90), respectively; P1 and P2 are358

the pressure loads on the pressure and suction sides of the blade which is due to the high-pressure359

gas surrounding these sides of the blade; T1 is the temperature of the interior cooling air and360

T2 is the temperature on the pressure and suction sides. All these variables are assumed to be361

independent truncated normal random variables and their distribution parameters are given in362

Table 2.363

There are three distribution parameters which are of interest in this example, namely θ =364

[µE, µγCTE
, µT2 ], which are the mean values of E, γCTE and T2. These parameters are contained365

within the sets θ1 ∈ [170, 290] (GPa), θ2 ∈ [10, 18] (1/K) and θ3 ∈ [700, 1300](◦C), respectively.366

The proposed approach is applied to estimate the global FPF of this problem, which is a three-367

dimensional function. For this purpose, the initial support point is selected as θ(1)
H = [170, 10, 700]368

which corresponds to the lower bound of the design region. Then, N = 300 is set for construct-369

ing each local estimate of the FPF through Weighted Importance Sampling (WIS) considering370

the support point θ
(i)
H which is selected according to the active learning scheme. Traditional Im-371

portance Sampling (IS) is adopted to estimate the point-wise failure probability with N = 1000372

samples for each simulation run. The results from Importance Sampling as regarded as the ‘Exact’373

values. The proposed scheme combining an adaptive strategy and combination (denoted as AC) is374

compared with Weighted Importance Sampling (denoted as WIS) and Augmented Space Integral375

using Importance Sampling (denoted as ASI-IS). When performing comparisons, the same number376

of simulations is considered for each approach.377
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Figure 9: The geometry and von Mises stress of a turbine blade (Example 2).

Table 2: The distribution information of the basic random variables (Example 2).

Random variable Mean value Standard deviation

E(GPa) θ1 = µE ∈ [170, 290] 23

γCTE(10
−6)(1/K) θ2 = µγCTE

∈ [10, 18] 1.4

λ 0.27 0.027

P1(kPa) 500 50

P2(kPa) 450 45

Kapp(W/m/K) 11.5 1.15

T1(
◦C) 150 15

T2(
◦C) θ3 = µT2 ∈ [700, 1300] 100
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Fig. 10 shows the one-dimensional FPF results obtained by different methods, as well as the378

‘Exact’ values. It is noticed that the FPF increases with all the design parameters, i.e., the mean379

values of Young’s modulus, coefficient of thermal expansion and the temperature on the pressure380

and suction sides. It can be seen from Fig. 10a that the maximum of C.o.V. value by the proposed381

approach (AC) is less than ctol = 0.2, while those associated with WIS and ASI-IS possess larger382

maximum C.o.V. values. Though the C.o.V. by the proposed AC is not necessarily the smallest383

among these methods for all θ1 over the whole design region, the maximum value of C.o.V. is384

the smallest. In this sense, the proposed approach can obtain more smooth and consistent results385

under the same computational cost (in terms of the number of samples). The same phenomenon386

can also be seen in both Figs. 10b and 10c. The effectiveness and advantages of the proposed387

approach have been demonstrated through this three-dimensional FPF problem.388

(a) PF (θ1, θ2 = 14, θ3 = 1000) (b) PF (θ1 = 230, θ2, θ3 = 1000)

(c) PF (θ1 = 230, θ2 = 14, θ3)

Figure 10: The one-dimensional FPF results by different methods (Example 2).
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4.3. Example 3: Shear-beam oscillator389

This example is taken from [27] and has been adjusted for the purposes of this work. In this390

example, a ten-degree-of-freedom shear-beam oscillator is considered, in which the effects of the391

uncertainties in both the system parameters and loading are included. The governing equation is392

given by:393

Mü(t) +Cu̇(t) +Ku(t) = F (t) (21)

where394

M =


m1 0 · · · 0

0 m2 · · · 0

· · · · · 0

0 · · · 0 m10

 (22)

C =


c1 + c2 −c2 · · · 0

−c2 c2 + c3 · · · 0

· · · · · ·

0 0 −c10 c10

 (23)

K =


k1 + k2 −k2 · · · 0

−k2 k2 + k3 · · · 0

· · · · · ·

0 0 −k10 k10

 (24)

represent the mass, damping and stiffness matrices, respectively, and the random excitation has395

the form F (t) = p(t) · [m1, · · ·m10]
T, with T indicating transpose of the argument. The random396

excitation possesses duration T = 20 s and its discretization interval is ∆t = 0.05s. The values397

of the base random excitation at a given number of time steps constitute the vector of random398

parameters. Thus, there are nT = T/∆t = 401 input random variables to discretise the excitation399

F (t) at time instants tk = (k − 1)∆t (k = 1, 2, . . . , nT ). It is assumed that the mass parameters400

m1, · · · ,m10 and stiffness parameters k1, · · · , k10 and ξ1, · · · , ξ10 are all independent (truncated)401

Gaussian random variables with mean values of µmi
= 10Mg, µki (design parameter), and µξi =402

0.04. The standard deviations for these variables are listed in Table 3. It is also assumed that403

ci = 2 ξi
√
miki (i = 1, 2, . . . , 10).404

The uncertain excitation is modelled by a modulated filtered Gaussian white noise as follows:405

p(t) = ω2
1v1 + 2ω1ζ1v̇1 − ω2

2v2 − 2ω2ζ2v̇2 (25)
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where406

d

dt


v1

v̇1

v2

v̇2

 =


0 1 0 0

−ω2
1 −2ω1ζ1v̇1 0 0

0 0 0 1

ω2
1 2ω1ζ1v̇1 −ω2

2 −2ω2ζ2v̇2




v1

v̇1

v2

v̇2

+


0

w(t)

0

0

 (26)

where w(t) is Gaussian white noise with the autocorrelation function E[w(t)w(t+τ)] = Iδ(τ)h2(t)407

in which I denotes the intensity of the white noise, δ(·) is the Dirac delta and h(·) is an envelope408

function defined as:409

h(t) =



0 t ≤ 0 s

t/2 0 s ≤ t ≤ 2 s

1 2 s ≤ t ≤ 10 s

exp[−0.1(t− 10)] t ≥ 10 s

(27)

The values ω1 = 15.0 rad/s, ζ1 = 0.8, ω2 = 0.3 rad/s, ζ2 = 0.995, and I = 0.08m2/s3 are410

used to model the filter. Failure is defined as an event where the relative displacement of the first411

degree of freedom exceeds 0.06m, and the limit state function given by412

g(x, z) = b− nT
max
j=1

(|Y1j(x, z)|) (28)

where b=0.06 m; Y1j denotes the structural response of the first degree of freedom at time step j;413

x = [x1, x2, . . . , xn] is the vector of the random variables associated with the structural parameters;414

z = [z1, z2, . . . , znt ] is the vector of the random variables used to characterise the stochastic415

excitation, which are assumed as i.i.d. standard Gaussian variables in this contribution; and bi is416

the i-th threshold level.417

Table 3: The distribution information of the basic structural random variables (Example 3).

Random variable Mean value Standard deviation

k1(MN/m) θ = µk1 ∈ [20, 60] 4

ki(i = 2, ..., 10)(MN/m) 40 4

mi(i = 1, ..., 10)(Mg) 10 0.5

ξi(i = 2, ..., 10) 0.04 0.008
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In this example, the mean stiffness µk1 is taken as the design parameter, i.e., θ = µk1 for which418

the design region is θ = µk1 ∈ [30, 60]MN/m.419

The proposed approach based on adaptive strategy and combination (AC) is applied with420

N = 100, and ctol = 0.2. It is found that a total of k = 9 iterations are required to achieve conver-421

gence. Traditional Importance Sampling (IS) is also carried out to obtain the point-wise failure422

probabilities which are taken as the ‘exact’ values, where 1000 samples are used to estimate each423

probability value. In addition, the FPF is calculated by means of Weighted Importance Sampling424

(WIS) and Augmented Space Integral (ASI). Both WIS and ASI are implemented considering a425

total of NT = N×k = 100×9 = 900 samples, in order to ensure a fair comparison with the results426

produced with the proposed approach. The estimates for the FPF obtained with the aforemen-427

tioned methods are shown in Fig. 11. It is seen that the FPF decreases with respect to the mean428

value of k1. This makes sense from a physical viewpoint, as a larger stiffness helps to control the429

maximum displacement. While errors exist in the results of WIS and ASI, the proposed approach430

obtains an accurate result that is consistent with the reference values. Meanwhile, the C.o.V. of431

FPF estimate by the proposed approach is smooth over the design region and it is always less432

than 0.2 (which is consistent with the convergence criterion set beforehand). On the contrary, the433

maximum values of the coefficient of variation associated with WIS and ASI are about 0.4 and434

0.8, respectively. The advantage of the proposed approach is clearly shown.435

5. Conclusions436

This paper presents an efficient approach based on adaptive strategy and combination algo-437

rithm (AC) for structural global failure probability function (FPF) estimation. It approximates438

the global FPF by aggregating local estimates of FPF. These local estimates are constructed439

around support points which are selected in an adaptive manner. Furthermore, these local esti-440

mates are aggregated optimally according to a prescribed criterion that minimised the coefficient441

of variation of the global FPF estimate. The local estimation of the FPF is carried out resorting442

to Weighted Importance Sampling.443

Through the examples addressed in this contribution, the following conclusions can be made:444

• The proposed adaptive strategy is effective in identifying the design value possessing the445

largest C.o.V. estimator.446
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Figure 11: The FPF results by different methods (Example 3).

• The proposed optimal combination based on minimising the C.o.V. of the FPF estimate can447

result in an estimate with a C.o.V. smaller than any of the local FPF estimators.448

• The proposed approach is numerically more efficient than the augmented space integral449

(ASI) method when both of them use Importance Sampling (IS) as the simulation method.450

• The proposed approach is numerically more accurate than the Weighted Importance Sam-451

pling (WIS) when both of them use Importance Sampling (IS) as the simulation method.452

Future research efforts will aim at expanding the scope of application of the proposed frame-453

work. For example, one possible path is exploring the assessment of local FPF estimators by means454

of Weighted Importance Sampling by using an adaptive Importance Sampling Density function.455

Furthermore, the proposed strategy can be implemented with other simulation strategies for esti-456

mating local FPF, such as weighted Monte Carlo Simulation or weighted Subset Simulation. At457

last, the application of the proposed approach to other problems should be explored as well, such458

as reliability-based design optimization and imprecise reliability estimation.459
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Appendix A. Selection of Weights in combination algorithm463

This Appendix presents detailed deductions for the optimal weights which minimize the C.o.V.464

and variance as given by Eqs. (15) and (13), respectively.465

As the optimization problem of minimizing the Cov[P̂ k
F,C(θ)] is equal to minimizing the466

Cov2[P̂ k
F,C(θ)], then the optimal weights based on minimizing the C.o.V. can be stated as fol-467

lows:468

min Cov2[P̂ k
F,C(θ)] =

k∑
i=1

w2
i (θ)Cov2

[
P̂

(i)
F (θ)

]
s.t.

k∑
i=1

wi(θ) = 1

(A.1)

This problem can be solved by the method of Lagrange multipliers. The Lagrangian of the469

problem in Eq. (A.1) is:470

L(w, λ) =
k∑

i=1

w2
i (θ)Cov2

[
P̂

(i)
F (θ)

]
+ λ

(
k∑

i=1

wi(θ)− 1

)
(A.2)

The first-order necessary conditions for optimality read:471

∂L(w, λ)

∂wi(θ)
= 0,

∂L(w, λ)

∂λ
= 0 (A.3)

Solving this equation will result in the following expressions472

wi(θ) = −λ

2
Cov−2

[
P̂

(i)
F (θ)

]
λ = − 2∑k

i=1Cov−2
[
P̂

(i)
F (θ)

] (A.4)

which leads to:473

wi(θ) =
Cov−2

[
P̂

(i)
F (θ)

]
∑k

j=1Cov−2
[
P̂

(j)
F (θ)

] (i = 1, · · · , k) (A.5)

Since the objective function is convex (quadratic in w ) and the constraint is affine, the result of474

Eq. (A.5) is the global optimum.475
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Similarly, the optimal weights that minimise the variance can be also obtained by solving the476

following optimization problem477

min
k∑

i=1

w2
i (θ)V ar[P̂

(i)
F (θ)]

s.t.

k∑
i=1

wi(θ) = 1

(A.6)

and the cooresponding optimal weights are given by:478

wi(θ) =
V ar−1

[
P̂

(i)
F (θ)

]
∑k

j=1 V ar−1
[
P̂

(j)
F (θ)

] (i = 1, · · · , k) (A.7)

Appendix B. Convergence of the optimal combination algorithm479

In this Appendix, we obtain the following lemma for the estimator P̂ (k)
F,C(θ) in Eq. (2) associated480

with the proposed optimal combination algorithm.481

Lemma 1. Provided that Cov
[
P̂

(j)
F (θ)

]
is finite, the estimator P̂

(k)
F,C(θ) in Eq.(2) converges to482

PF (θ) when N goes to infinity.483

As P̂ (i)
F (θ) is unbiased for each i = 1, · · · , k, thus according to the central limit theory, we have484

lim
N→+∞

P̂
(i)
F (θ) = PF (θ) (B.1)

When N goes to infinity,

lim
N→+∞

P̂
(k)
F,C(θ) = lim

N→+∞

k∑
i=1

wi(θ)P̂
(i)
F (θ) =

k∑
i=1

lim
N→+∞

wi(θ)PF (θ) (B.2)

And according to Eqs. (10) and (B.1), the limit of the weights in Eq.(B.2) becomes

lim
N→+∞

wi(θ) = lim
N→+∞

Cov−2
[
P̂

(i)
F (θ)

]
∑k

j=1Cov−2
[
P̂

(j)
F (θ)

] =
P 2
F (θ) limN→+∞ V ar−1

[
P̂

(i)
F (θ)

]
∑k

j=1 P
2
F (θ) limN→+∞ V ar−1

[
P̂

(j)
F (θ)

] (B.3)

=
V −1
i∑k

j=1 V
−1
j

(B.4)

where

Vi = lim
N→+∞

 1

N

N∑
j=1

[
IF
(
x(j)
)
f
(
x(j) | θ

)
H (x(j) | x∗(i))

]2
− [P̂

(i)
F (θ)]2

 (B.5)

=

{∫ [
IF (x)f(x | θ)
H(x|x∗(i))

]2
H(x|x∗(i))dx− [PF (θ)]

2

}
(B.6)
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It is known that H(x|x∗(i)) ̸= IF (x)f(x|θ)
PF (θ)

as it is based on design point x∗(i), then Vi > 0. Thus485 ∑k
i=1 limN→+∞ wi(θ) = 1 also holds. Lemma 1 can be derived straightforwardly by rewriting486

above Eq. (B.2) as487

lim
N→+∞

P̂
(k)
F,C(θ) = PF (θ)

k∑
i=1

lim
N→+∞

wi(θ) = PF (θ) (B.7)

Note that Eq. (B.7) does not hold for an extreme case, e.g., Cov
[
P̂

(j)
F (θ)

]
is infinite. Thus, in488

practical computation, these extreme cases should be taken care.489
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