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Abstract

This thesis presents the results of an experiment in which high-precision measurements of the

atomic hyperfine structure of chromium isotopes were made via an experimental technique

known as collinear laser spectroscopy. This thesis presents the previously unknown changes in

nuclear mean-square charge radii relative to stable 52Cr for three isotopes of chromium: 48Cr,

49Cr, and 51Cr. Additionally, the changes in mean-square charge radii relative to 52Cr for the

stable isotopes of chromium (50Cr, 53Cr, and 54Cr) have been remeasured, as have the magnetic

dipole moments of the odd-A chromium isotopes mentioned above.

For the first time laser spectroscopy experiments have been performed on unstable isotopes

of chromium. All measurements made during this work were performed at the IGISOL-IV

facility at the University of Jyväskylä, Finland. This experimental operation was formed of

three individual campaigns: an initial offline campaign performed to determine the spectro-

scopic efficiencies of several atomic transitions in chromium; the main online campaign during

which measurements of both the short-lived and stable isotopes of chromium were made on two

lines: the 358 nm (3d5 (6S)4s 7S3 → 3d4 (5D)4s4p(3P ) 7P4) and 425 nm (3d5 (6S)4s 7S3 →

3d5 (6S)4p 7P4) atomic transitions; a second offline campaign during which additional mea-

surements of the stable isotopes were made on the 425 nm line.

The trends in the changes of mean-square charge radii for isotopes of chromium, titanium,

and calcium, relative to their N = 28 isotope are compared, and from the available data, it is

shown that the magnitude of odd-even staggering along each isotope chain decreases as pairs

of protons are added to the 1f7/2 orbital. The newly obtained changes in mean-square charge

radii are then compared to recently published, theoretical predictions made using state-of-the-

art ab-initio and density functional theory calculations, which were developed to model the

previously observed regional systematics.
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Chapter 1

Introduction

Nuclear physics is one of the cornerstones of modern physics. With applications spanning from

diagnosis and treatment of disease to radio-dating in archaeology, energy production via nuclear

power, and defence, it is clear that the underlying importance of nuclear research for society

cannot be understated. These applications of nuclear physics could not have been developed

if not for the extensive research already performed by physicists working to achieve a better

understanding of nuclear phenomena, and in turn, the fundamental interactions that bind a

nucleus together.

The basis of all scientific endeavour is experimentation, and nuclear physics is no exception.

The field itself is organised into many different, but inter-related disciplines, for example, those

which relate to measuring the disintegration of nuclei such as decay spectroscopy, and those

which are concerned with measuring the properties of a nucleus in a given state: notably high

precision mass measurements and optical spectroscopy techniques like those employed in this

work.

1.1 Laser Spectroscopy in Nuclear Physics Research

The work reported in this thesis is based on an experimental technique known as laser spec-

troscopy, an incredibly powerful tool available to nuclear physicists, which allows for model-

independent determination of four nuclear properties: the magnetic dipole moment, the spec-

troscopic electric quadrupole moment, the change in mean-square charge radius relative to

another isotope, and the nuclear spin [1].

In order to understand the phenomenology of nuclear systems, it is imperative that the struc-

1



Figure 1.1: A diagram showing all of the known nuclides. Black squares represent stable
nuclides, grey squares represent the known radioactive nuclides, and red squares represent
radioactive isotopes which have been investigated by online optical spectroscopy experiments
as of September 2022 [2].

ture of both stable and radioactive nuclei are studied. One of the challenges of studying these

radioactive isotopes is that they often have very short half-lives, and as such, it may be difficult

to isolate a sufficient number of them to prepare a sample in a given period of time to be studied

before they decay. Radioactive ion beam factories can be used to overcome this challenge by

producing short-lived isotopes of interest onsite and delivering them to an appropriate experi-

mental station almost instantaneously. Figure 1.1 shows which isotopes have been investigated

using online optical spectroscopy techniques. It is clear that optical spectroscopy techniques are

very successful at studying nuclei far from stability, but that there are also gaps along the chart

of nuclides where studies have yet to take place, for example, the elements spanning calcium to

nickel.

Laser spectroscopy experiments are performed at facilities across the globe (see figure 1.2), and

the experimental data used in this work were obtained at the IGISOL-IV facility at the Uni-

versity of Jyväskylä, Finland, which houses an ISOL (Isotope Separator OnLine) facility and

utilises a method of laser spectroscopy known as anti-collinear laser spectroscopy.

The purpose of this work is to investigate the evolution of nuclear properties in a region of the

chart of nuclides spanning between Z = 20 and Z = 28, henceforth referred to as the calcium-

nickel region, specifically changes of the charge-radii along the chromium isotope chain. There

2



Figure 1.2: A map to show the nations home to facilities capable of performing laser spec-
troscopy experiments for nuclear structure studies as of 2010 [1].

is a very limited amount of experimental data available in this region, namely due to the diffi-

culty in producing the refractory elements that form it, particularly the short-lived radioactive

species. The isotope production method employed at IGISOL is able to overcome this hurdle,

and as such a campaign is currently underway to make more spectroscopic measurements of

these elements. Recent experimental runs include those for chromium (the focus of this work),

iron, and cobalt.

A more detailed discussion of the behaviours observed in this region of the chart of nuclides is

provided in the next sub-section, however, the main motivation of this work can be summarised

very concisely: more experimental data, particularly relating to nuclear charge radii, is required

to test and further develop the models currently used to describe the trends in nuclei properties

observed between the Z = 20 and Z = 28 shell closures.

This thesis presents charge radii measurements of unstable isotopes of chromium for the first

time, in addition to re-measurements of the nuclear magnetic dipole moments of 49Cr and

51Cr and the charge radii of the four stable isotopes of chromium. The charge radii and

nuclear moments were calculated using isotope shifts and hyperfine parameters, respectively,

these themselves being obtained through analysis of experimentally obtained hyperfine spectra.

Table 1.1 presents the chromium isotopes investigated as part of this work.

3



Isotope (A) t1/2 Mole Fraction
〈
r2
〉
(fm2) µ (µN )

48 21.56 h - new -

49 42.3 m - new re-measurement

50 stable 0.04345(13) re-measurement -

51 27.7015 d - new re-measurement

52 stable 0.83789(18) reference -

53 stable 0.09501(17) re-measurement reference

54 stable 0.02365(7) re-measurement -

Table 1.1: A table to show the isotopes of chromium investigated in this work. The table outlines
which properties are being reported for the first time and which are re-measurements or were
used as references. It is not possible to determine the magnetic moment of even-A isotopes due
to their lack of nuclear spin. Half-lives are taken from the NUBASE2020 evaluation of nuclear
physics properties [3], and mole fractions are taken from de Laeter et al. [4].

1.2 Physics Motivation

The calcium-nickel region has been sparsely explored, particularly as one approaches theN = 20

neutron shell closure. That being said, the limited data available for this region is very inter-

esting. For example, data obtained from recent laser spectroscopy experiments on neutron-rich

calcium isotopes at ISOLDE, CERN [5] and proton-rich calcium isotopes at Michigan State

University [6] have been added to the known mean-square charge radii, and the isotope chain

now extends beyond both of the doubly-magic calcium nuclei. This isotope chain is the only one

in the region for which charge radii measurements have been made across both the N = 20 and

N = 28 shell closures. The observed trend in the charge radii, which follow a parabola between

the two shell closures, is as far as we know, unique to the calcium isotope chain. Figure 1.3

shows that below the N = 28 neutron shell closure, the proton dependence of the charge radii

for nuclei in the region is significant, whereas, above the shell closure, there is little dependence.

As can be seen in figure 1.3, each of the N = 28 isotones in the calcium-nickel region exhibits

enhanced shell-closure effects: a kink in the course of the charge radii is observed as one crosses

the shell closure. Above this shell closure, the changes in mean-square charge radii appear to

increase steeply and relatively uniformly for each isotope chain, regardless of the number of

protons. This trend of steadily and steeply increasing charge radii above shell closures is ob-

served in other regions of the chart of nuclides, for example, the N = 50, 82 shell closures. The

uniformity of the increase in the charge radii above the N = 28 shell closure is explained in the

work of Kreim et al. [7] when reporting on the charge radii of potassium isotopes: above the

shell closure, neutrons fill the 2p3/2 orbital and the increase in charge radii is dependent wholly
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on the collective polarization of the protons by the neutrons, rather than by any particular

configuration of protons.

An understanding of regional systematics developed by means of experimentation is invaluable

as it allows for cogent predictions of the properties of other nuclei in the region to be made

based on a minimal number of assumptions. For example, in the work of Heylen et al. [8], when

determining the experimental charge radii along the manganese isotope chain from isotope shift

measurements, it was not possible to perform a King plot analysis using non-optical data to

calibrate the atomic parameters due to the lack of known charge radii. The absolute charge

radius of only one isotope of manganese is known from non-optical methods. Accordingly, it

was necessary to take a theoretical approach to calculate appropriate atomic parameters: these

often have large uncertainties (mainly that associated with the mass shift factor), which are car-

ried through to the calculated charge radii. As each isotope chain measured above the N = 28

shell closure appears to follow the same trend, and there is a consensus as to why this is, it

was possible to explore what changes could be made to the theoretically determined atomic

parameters to ensure the best agreement between the changes in charge radii along the man-

ganese isotope chain and those of neighbouring isotope chains. This pseudo-calibration showed

that by scaling the atomic mass shift factor by 1.05, the changes of the manganese charge radii

then closely mirrored those in neighbouring isotope chains immediately after the N = 28 shell

closure. A similar issue to that discussed above will be encountered during the studies of cobalt

and vanadium, therefore understanding the regional systematics is pertinent and falls within

the scope of the work performed here.

As one moves into the 1f7/2 neutron shell, the calcium charge radii follow a parabolic trend:

moving from the N = 28 shell closure to the mid-shell the charge radii increase, moving from

the mid shell to the N = 20 shell closure they decrease. It is noteworthy that 40Ca and 48Ca

have the same charge radii despite the latter nucleus containing eight additional nucleons. The

parabolic trend in charge radii is also present in the Z < 20 isotope chains, but with the N = 20

isotopes smaller than at N = 28. It is not presently possible to conclude whether or not the

observed parabolic trend persists as proton occupation of the 1f7/2 orbital increases for even-Z

elements; the charge radii of titanium isotopes generally appear to increase as one moves to

lower neutron numbers and the chain does not exhibit any sign of being parabolic.
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Figure 1.3: Top: A plot to show the changes in means square charge radii of various isotopes

in the calcium-nickel region. Bottom: The same plot as above with an arbitrary offset applied

to better visualise trends. The dashed lines represent the N = 20 and N = 28 shell neutron

closures. Statistical errors are presented where the reference material reported both statistical

and systematic uncertainties. Values obtained from Koszorus et al. [9] (K), Garcia Ruiz et al.

[5] (Ca), Miller et al. [6] (Ca), Aufmuth et al. [10] (Cr), Heylen et al [8] (Mn), and Angeli and

Marinova [11].
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In addition to the parabola, the trend in calcium charge radii shows significant odd-even stag-

gering (OES). This is the phenomenon where the even-A nuclei along an isotope chain have a

larger charge radius than the average of their odd-A neighbours, resulting in deviations from a

smooth pattern in the charge radii. A blocking effect in odd-N nuclei leads to a reduced neu-

tron pairing density, which affects the proton pairing density and thus the charge radius. This

odd-even staggering pattern is not unique to the calcium isotope chain, it is observed across

the nuclear chart and in this region is exhibited in the argon (Z = 18), potassium (Z = 19),

scandium (Z = 21), and titanium (Z = 22) isotope chains. The magnitude of the staggering is

enhanced in the even-Z chains and appears to be the most pronounced in the calcium chain.

At present, there is insufficient data to determine how the odd-even staggering evolves as a

function of increasing proton number in even-Z isotopes.

Following from the discussion above, it becomes apparent that additional charge radii measure-

ments are required to better understand the behaviours observed in the calcium-nickel region.

Chromium, which has a half-full 1f7/2 proton shell, is an ideal candidate for study. Only the

four stable isotopes of chromium have known charge radii, but the trend observed deviates from

those of the calcium and titanium isotope chains: the slope of the charge radii is much steeper

for these elements as one moves to either side of the shell closure. Moreover, with measurements

of neutron-deficient chromium isotopes it will become possible to compare the magnitude of

any odd-even staggering to that observed in the calcium and titanium chains.

Moreover, the scope of this work includes determining the charge-radius of the self-conjugate

nucleus 48Cr. Self-conjugate nuclei such as this may be used to investigate isospin pairing mech-

anisms within nuclear systems. A consequence of isospin pairing is that the proton-neutron pair

of an odd-odd, N = Z nucleus should behave the same as a like-nucleon pair in an even-even

N = Z nucleus if both are in the T = 1 (I = 0) state. This charge-independent pairing of

nucleons is a prominent feature of shell model calculations, however, proton-neutron pairing

interactions remain an area of research interest as mean-field descriptions of the nucleus con-

tinue to be developed. The experimentally determined charge radii of these types of nuclei may

be used to verify the charge independence of this nucleon pairing mechanism. For example, if

one were to plot the change in mean-square charge radius (relative to an arbitrary nuclide) of

N = Z isotopes, the T = 1 (I = 0) state of an odd-odd nucleus should lie exactly on the line

connecting the T = 1 (I = 0) states of its even-even neighbours. Recent studies investigating

these types of nuclei in the calcium-nickel region include those of Bissell et al. [12] and Kos-

zorus et al. [13], which established this was in fact the case for 38K and 42Sc, respectively. The
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determination of the charge radius of 48Cr would add to the data available when developing

our understanding of these pairing mechanisms by acting as one of the even-even anchor points

for the self-conjugate isotopes of vanadium and manganese.

Finally, new measurements can be used to test the ability of the Density Functional Theory

(DFT) to accurately reproduce the charge radii of nuclei. This functional theory approach

is at the forefront of research being performed in the field at present and has been tested in

studies spanning many different regions of the nuclear chart. DFT has proven to be able to

successfully predict the charge radii of cadmium (2018) [14], calcium (2019) [6], tin (2019) [15],

and copper (2020) [16], and has shown limited success when being used to model exotic nuclei

such as neutron-rich isotopes of potassium [9] (2021), and deformed open-shell nuclei such as

palladium [17] (2022). For example, in the investigation of exotic potassium nuclei performed

by Koszorus et al. [9], DFT was only able to reproduce global trends rather than accurately

determine the individual charge radii. In the work relating to palladium performed by Geldhof

et al. [17], all the functionals tested were able to describe the parabolic trend of the measured

charge radii, but each had its own limitation, for example, either underestimating the absolute

charge radii, overestimating the magnitude of the odd-even staggering, or predicting odd-even

staggering patterns opposite to those observed. It may be the case that due to the half-filled

proton shell, deformation becomes a more significant driver in the evolution of the chromium

charge radii. If the chromium nuclei exhibit significant deformation, as would be indicated by

the electric quadrupole moments or alternatively the mean-square charge radii measured, this

work would provide an excellent testbed for further evaluation of this theoretical approach for

modelling the nucleus.
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Chapter 2

Nuclear Models

In 1909 Hans Geiger and Ernest Marsden performed the famous “Gold Foil Experiment”. The

experiment measured the angular distribution of alpha particles deflected by the atoms within

a piece of gold foil. It was observed that a small number of the alpha particles were deflected

through large angles, and in some instances, back towards the direction they came from [18].

This observation could not be explained using the model of the atom accepted at the time -

the plum-pudding model proposed by Sir Joseph John Thompson. In 1911, Ernest Rutherford

proposed a new model of the atom to be able to explain this observation, known now as the

Rutherford model. The Rutherford model assumed that the atom is mainly empty space and

that the majority of the mass of the atom is contained within a central, positively charged body,

surrounded by a distribution of electrons [19]. Thus the nuclear model of the atom was born.

The discovery of the nucleus was one of the most significant discoveries of early 20th-century

physics and marked the start of a novel branch of physics: nuclear physics. Our understanding

of the nucleus has continued to evolve since its discovery, and so have the many models used

to describe it. Three of the most important are discussed in this chapter: the liquid drop

model, the single particle spherical-shell model, and the deformed shell model, known as the

Nilsson model. There will also be a brief discussion of two contemporary theories: the ab-initio

approach, and density functional theories.

2.1 The Liquid Drop Model

The liquid drop model and related semi-empirical mass formula are used to describe global

trends in nuclear size, mass and binding energy. The model assumes that the nucleus can be

described as an incompressible droplet of nuclear fluid [20].
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To a first approximation the binding energy of the nucleus is proportional to the number of

nucleons, A, thus EB ∝ aVA where av is the nuclear volume term:

EB = avA. (2.1.1)

Corrections to the binding energy must be made to replicate experimental findings. For exam-

ple, if one assumed that each nucleon was attracted to every other nucleon, the binding energy

would be proportional to A(A− 1), which is not the case. The binding energy appears to scale

linearly with A, suggesting that a nucleon only interacts with its nearest neighbours. As such,

additional corrections must be made as equation 2.1.1 to better replicate experimental data.

Equation 2.1.1 treats the contribution to binding energy by nucleons at the centre of the nucleus

to be the same as those at the surface. This is not the case as nucleons on the surface of the

nucleus have fewer neighbouring nucleons and are therefore less tightly bound to the nucleus.

The number of nucleons at the surface scales with the surface area of the nucleus, which itself

increases with A2/3. Accordingly, the surface term correction, as(A
2/3), is subtracted from the

binding energy:

EB = avA− as(A
2/3). (2.1.2)

A correction to account for the reduction in binding resulting from the Coulomb repulsion be-

tween protons must also be considered. As the electromagnetic force is a long-range interaction,

the correction must account for all of the interactions between every proton with every other

proton; hence the magnitude of this Coulomb correction scales with Z(Z − 1), and the binding

energy equation becomes:

EB = avA− as(A
2/3)− acZ(Z − 1)

A1/3
. (2.1.3)

A further consideration made for this model of nuclear binding accounts for the fact that for

light, stable nuclei Z ≈ A/2; this trend becomes less significant in heavier nuclei as the Coulomb

repulsion rapidly increases and further neutrons are required to maintain stability. A symmetry

correction accounts for this phenomenon by becoming increasingly weak as the proton number

increases:

EB = avA− as(A
2/3)− acZ(Z − 1)

A1/3
− asym · (A− 2Z)2

A
. (2.1.4)
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The final correction to the binding energy formula is one which accounts for the fact that like

nucleons preferentially pair together resulting in increased stability. An even-even nucleus will

have additional binding energy as each proton and each neutron has a partner with whom to

spin-couple, whereas an odd-odd nucleus will have reduced binding as there are two unpaired

nucleons in this configuration (i.e. neither the odd proton nor odd neutron has a partner to

spin-couple with). The final equation for binding energy becomes:

EB = avA− as(A
2/3)− acZ(Z − 1)

A1/3
− asym · (A− 2Z)2

A
± δ. (2.1.5)

The binding energy determination leads to the semi-empirical mass formula [20]:

M(Z,A) = Zm1H +Nmn − EB

c2
, (2.1.6)

where mH is the mass of a 1H atom, and mn is the neutron mass.

Although the liquid drop model is successful in predicting the general trend of masses and

binding energies, it fails to describe the sudden upticks in binding energies for nuclei with

particular proton and neutron numbers - known as magic numbers. In order to understand

these magic nuclei, a model which uses the teaching of quantum mechanics had to be developed.

The inspiration of this new model builds upon the understanding of electron shells in atomic

systems, which themselves are attributed to the observed peaks in the ionisation potentials of

atoms.

2.2 The Single Particle Spherical Shell Model

The single particle model, also known as the nuclear shell model, takes a quantum mechanical

approach to the description of the nucleus. Much like the model of atomic electrons, this model

describes the nucleus in terms of orbitals at specific energies that can only house a particu-

lar number of particles. Furthermore, using this model the properties of the nucleus may be

determined by looking only at the valence nucleon(s), as in this model the properties of the nu-

cleus are dictated by the interactions between the valence nucleon and the average nuclear field

produced by the rest of the nucleons which reside in fully occupied shells; again, this is anal-

ogous to the valence electron of an atom largely dictating the chemical properties of an element.

The single particle model is derived by solving the three-dimensional Schrödinger equation for

a given potential, most commonly the Woods-Saxon potential [21], which has been modified to
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correct for the nuclear spin-orbit interaction.

The Woods-Saxon potential is a spherical potential that takes the form:

V =
V0

1 + e
R−r0

a

, (2.2.1)

where V0 is the depth of the potential at the centre of the nucleus, a is the diffuseness parameter,

and r0 is the radius of the nucleus given by equation 2.2.2 [20]:

r0 = 1.25× 10−15 ·A1/3. (2.2.2)

Figure 2.1: A plot of the Woods-Saxon potential (black curve) for a nucleus with A = 50 and
a = 0.5 fm, where the red line indicates R.

The modified spin-orbit potential, VSOl · s, increases the number of nuclear orbitals, and ne-

cessitates the adoption of atomic spectroscopic notation for individual orbitals to be easily

referenced. Orbitals are referenced using their level number, n, orbital angular momentum, l,

and total angular momentum, j.

For a nucleon with spin, s = 1/2, and orbital angular momentum, l, the possible j values are:

j = l + s and j = l − s. Therefore, for each value of orbital angular momentum, there are two
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orbitals in which a nucleon can reside. The degeneracy of each orbital is given by (2j + 1).

These orbitals are referred to as spin-orbit doublets, and the energy separation between the

doublet states is proportional to:

⟨l · s⟩j=l+1/2 − ⟨l · s⟩j=l−1/2 =
1

2
(2l + 1)ℏ2, (2.2.3)

therefore, as l increases, so does the energy separation between the states of the doublet. When

the spin-orbit potential is taken to be negative, the state with the larger total angular momen-

tum is assigned a lower energy. This redistribution of states leads to a banded structure of

states, known as shells, with large separations in energy between each shell. Fully occupied

shells occur at the known magic numbers: 2, 8, 20, 28, 50, 82, and 126 [20]. Figure 2.2 illus-

trates how the spin-orbit correction leads to the emergence of the nuclear magic numbers.

The emergence of the nuclear magic numbers from the single particle model is remarkable,

and the model has proven to be very successful at predicting and reproducing the properties

of nuclei close to closed shells of nucleons. Evidence in support of the single particle model

includes an above-average number of stable isotopes for Z = 20 and Z = 50 and isotones

for N = 50 and N = 82, a relative increase in the binding energy per nucleon for magic nu-

clei, and sharp discontinuities in trends of two-neutron separation energies for magic nuclei [22].

There are limitations to the single particle model, for example away from closed shells where

nuclear deformation is more prevalent (e.g. 150 < A < 194), the single particle model is less

successful at reproducing nuclear properties. This is because the model assumes a spherical

nuclear potential and deformed nuclei have deformed potentials. In order to make accurate

predictions of the properties of these deformed nuclei, a model that accounts for deformation

needed to be developed.
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Figure 2.2: A visual representation of the shell model of the nucleus. The numbers on the

far right represent the cumulative number of protons/neutrons as the orbitals are filled, the

numbers second from the right show the degeneracy of each orbital, and the numbers between

the shells represent the nuclear magic numbers.
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2.3 The Nilsson Model

The Nilsson model, often referred to as the deformed single particle or deformed shell model,

was formulated in the 1950s following the understanding of collective rotational motion in nuclei

[23]. A spherical nucleus is unable to have rotational bands as a consequence of its symmetrical

geometry, and thus, a spherical potential like the Woods-Saxon of the nuclear shell model is

insufficient when describing deformed nuclei.

The potential used in the Nilsson model is an anisotropic oscillator potential, which has an

axis of symmetry along the z axis. This potential is shaped similarly to that of a quadrupole-

deformed nucleus and may be written as:

V (r) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)− Cl · s−Dl2, (2.3.1)

where the potential vibrates in the x, y and z directions with a frequency of ωx, ωy, and ωz

respectively, and where ωx = ωy [24]. The volume of the nucleus is assumed to remain constant

throughout the oscillations. The Cl · s term accounts for the spin-orbit correction discussed

previously, and the Dl2 term is a correction added to flatten the potential well so that it better

resembles the nuclear shape [25].

With reference to figure 2.3, it can be seen that the magnitude of the deformation parameter,

denoted as ε2 in this figure, heavily influences the structure of the nucleon orbitals, and that

when the measure of deformation is greater than zero, the quantum number j is no longer a

good quantum number. Instead, it is appropriate to use the individual projections of j onto the

z axis, Ω, to describe nucleon orbitals, each of which has a maximum occupancy of either two

protons or two neutrons. The complete notation to describe an orbital in the Nilsson scheme

is Ωπ[Nn3Λ], where:

Λ = lz, (2.3.2)

Σ = sz = ±1

2
, (2.3.3)

Ω = jz,= Λ+ Σ, (2.3.4)
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π = (−1)l or (−1)N , (2.3.5)

N = n1 + n2 + n3. (2.3.6)

N is the oscillator quantum number and n1,2,3 denote the x, y and z axes components of N .

Figure 2.3: A diagram of the energies of nuclear sub-shells as a function of nuclear deformation

as predicted by the Nilsson model up to N = 50 [26].
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Another noteworthy consequence of the Nilsson model is that the distribution of energy levels

for a given single-particle state is dependent not only on the magnitude of the deformation,

but also on the type of deformation. This can be explained with reference to figure 2.4, which

shows the individual jz projections for J= 7/2, and the associated nucleon orbitals for both an

oblate and prolate nucleus. In either case, the angle between the z axis and the orbital planes

is greatest for the jz = 1/2. Therefore, in the case of a prolate nucleus, the jz = 1/2 orbital

has a greater spatial overlap with the nuclear volume, and as a consequence, the nucleons in

this orbital are more tightly bound compared to those in the other orbitals. The opposite is

true for the oblate nucleus, as the jz = 7/2 orbital will have the greatest spatial overlap with

the nuclear volume. The more strongly bound a nucleon is to the nucleus, the lower the energy

of the orbital it occupies.

Figure 2.4: A diagram to show the different jz projections and the associated nucleon orbitals

for a prolate (left) and an oblate (right) nuclear core.

As the magnitude of deformation increases, the more complex the orbital structure becomes

due to increased band-crossing. With reference to the Nilsson diagram in figure 2.3, it becomes

clear that the large energy separations between shells predicted by the single particle model

diminish as the nucleus becomes sufficiently deformed; explaining why magicity is less common

for deformed nuclei.

2.4 Contemporary Nuclear Models

In addition to the classical models discussed above, modern approaches that rely on the calcu-

lation power of computers have been developed. Two of these modern approaches are discussed

below: the ab-initio approach and the density functional theory. Nuclear charge radii may be
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directly calculated using either approach.

2.4.1 The ab-initio Approach

An alternative approach to modelling a nucleus is to consider the individual constituent nucle-

ons and the strong, weak, and electromagnetic interactions between them. This proves to be

very difficult due to the non-perturbative nature of the strong force at low energies (the energies

at which nuclei exist), coupled with the fact that protons and neutrons have their own substruc-

ture of interacting quarks, anti-quarks and gluons. It is clear that modelling each individual

interaction is a complex problem and one that grows exponentially with the addition of nucleons.

Due to the complexity of modelling individual nucleon interactions, effective field theories, such

as chiral effective field theory, are employed instead. The field theories act as a starting point

for modelling the fundamental forces that govern nucleon interactions. The ab-initio calcula-

tions involve solving the relativistic many-body Schrödinger equation starting from only the

interactions between nucleons. These models are then used to predict the properties of nuclei

and have proven to be very successful when modelling the lightest of nuclei. As ab-initio calcu-

lations become more sophisticated, they are also beginning to be able to accurately predict the

properties of heavier, more complex systems [27]. Modelling heavier systems is only possible in

the vicinity of good shell closures where it may be assumed that there are no particle excitations

beyond the shell closure.

A recent example of using ab-initio approaches to model heavier nuclei can be found in the work

of Malbrunot-Ettenauer et al. [28], where the charge radii of nickel isotopes were modelled using

the following methods: the self-consistent Green’s function (SCGF) approach, the valence-space

in medium similarity renormalization group (VS-IMSRG) method, and the coupled cluster (CC)

method. This work showed that remarkable agreement between the absolute charge radii and

changes in mean-square charge radii predicted by theory and measured experimentally could be

achieved when using the chiral effective field theory based nuclear potential NNLOsat (next-to-

next-to leading order) [29] in any of the above-mentioned ab-initio approaches. Furthermore,

NN + 3N(lnl) [30] and 1.8/2.0(EM) [31] interactions were used in the SCGF and VS-IMSRG

calculations, respectively, and strong agreement was again achieved between the theoretically

and experimentally determined changes in mean-square charge radii, however, these methods

were unable to reproduce the absolute charge radii.
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2.4.2 Density Functional Theories

A second ground-up approach to modelling nuclei is the nuclear Density Functional Theory

(DFT). DFT is based upon a theorem proposed in 1964 by Hohenberg and Kohn [32], who

were attempting to model the ground state of an electron gas interacting with an external field,

v(r). They discovered that it was possible to do so using a universal functional of the electron

density, F [n(r)], which was independent of the external field, and reproduced the correct ground

state energy for a given external potential when used in the expression:

E =

∫
v(r)n(r)dr + F [n(r)]. (2.4.1)

It is apparent that this functional approach is very powerful: for a complex N-body system it

is possible to deduce all ground state properties from just three variables, rather than perform

calculations accounting for all possible interactions between the N constituents [33]. This func-

tional approach was extended to describe the properties of nuclei by developing nuclear density

functionals which account for the differences between nuclear matter and electron gases. For

example, in the case of a system of electrons there is an external potential, however, this is not

true for a nucleus, which is itself a self-bound entity. The nuclear functional approach must

also account for the fact that nuclear interactions will dominate the system, whereas in the sys-

tem of electrons it is the Coulomb force that dominates. Nuclear interactions are also strongly

dependent on spin, and the short-range nature of the strong force means that the constituent

nucleons do not often share mutual interactions [34].

There are various energy density functionals such as the Skyrme type, the Gogny type and

the Relativistic Mean Field (RMF) model with classical meson fields, but the most relevant in

the field at present is the Fayans density functional [35]. This functional was developed as an

attempt towards a universal nuclear density functional capable of describing nuclei across the

entire chart of nuclides. The relevance of DFT was highlighted in the introduction of this thesis

with reference to many recent experimental campaigns; it is particularly noteworthy that in all

of the works referenced ([6], [9], [14], [15], [16], and [17]) a variation, or variations of the Fayans

density functional were used.

The advantage the Fayans density functional has over other functionals is its ability to accurately

predict the charge radii along semi-magic isotope chains of spherical nuclei. For example, and

with particular relevance to this work, the Fayans functional has successfully been used to

accurately model the charge radii along the calcium isotope chain, which as discussed in the
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introduction has many complex features. Alternative functionals are able to reproduce the

charge radii along isotope chains reasonably well, but often fail to reproduce localised features

or severely underestimate the magnitude of any odd-even staggering [36].
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Chapter 3

The Hyperfine Structure and

Isotope Shift

Laser spectroscopy is based fundamentally on two principles: electron excitation by resonant

photon absorption and detection of the subsequent de-excitation via photon emission. Resonant

excitation occurs when the energy of a photon is equal to that which separates two electron

energy states:

Ephoton = ∆E = E2 − E1. (3.0.1)

Upon excitation, an electron will only occupy an excited state for a brief period of time (typ-

ically in the order of nanoseconds) before it de-excites into a lower energy state via photon

emission. This principle is illustrated in figure 3.1. One may investigate the electronic struc-

ture of an atomic system by using an external source of radiation such as a laser. The frequency

of the laser is varied and the photons emitted following resonant absorption are detected and

counted to generate a spectrum. The peaks of the spectrum correspond to the electron transi-

tion energies, and therefore the electronic structure of an atom is determined.

At high resolution, the distribution of electron states is influenced by the properties of the

nucleus to which they are bound - this is known as the hyperfine structure. Studies of the

hyperfine structure allow for direct determination of these nuclear properties. The fine structure

transition energies are known and tabulated for all elements up to and including nobelium [37],

meaning that the transitions can be conveniently located for study at higher resolution in order

to probe their associated hyperfine transitions.
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Figure 3.1: A diagram to show the promotion of an electron to a higher energy level via photon
absorption, followed by electron de-excitation to a different energy level via photon emission.

3.1 Physical Origins of the Hyperfine Structure

The fine structure of an atomic system allows for effects such as the spin-orbit coupling of an

electron to be observed, manifesting itself as the splitting of electron energy levels into sub-

states. The fine structure defines the total electronic angular momentum, J, as the sum of the

orbital and intrinsic angular momentum of the electrons, denoted as L and S, respectively: J

= L + S. At the precision of the fine structure, the electron transition energies are independent

of the isotope being probed, well known, and tabulated in databases.

The hyperfine structure is the level of substructure that follows the fine structure resulting from

the isotope dependent properties of the constituent nucleus. It may be observed by studying

the fine structure at higher precision. The quantum mechanical formulae used to describe the

hyperfine structure are analogous to those used for the fine structure. For example, in the

hyperfine structure, a new total angular momentum, F, is defined by the coupling of J and I,

where I is the spin of the nucleus: F = J + I. Figure 3.2 illustrates the coupling of the nuclear

spin and total electronic angular momentum.

The vector coupling of I and J to form F is illustrated below and is once again analogous to the

coupling of L and S to form J. For example, by taking the square of F (F2 = J2 + 2J · I+ I2)

it is possible to isolate I · J:

I · J =
1

2
[F2 − J2 − I2], (3.1.1)
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Figure 3.2: An illustration of the vector coupling of the total electronic angular momentum
vector J and the nuclear spin vector I, where I and J precess around F.

∴ ⟨I · J⟩ = ℏ2

2
[F (F + 1)− I(I + 1)− J(J + 1)] =

ℏ2

2
K, (3.1.2)

where,

K = F (F + 1)− J(J + 1)− I(I + 1). (3.1.3)

The number of F states is given by:

F = J + I, (J + I)− 1, ..., |J − I|. (3.1.4)

The allowable transitions between the F states of the upper and lower J states are dictated by

the hyperfine selection rules [20]:

∆F = 0,±1, (3.1.5)
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but where,

F = 0 → F = 0, (3.1.6)

is a forbidden transition. These selection rules arise from the principle of conservation of angu-

lar momentum and the fact that electrons transition between hyperfine states via absorption

and emission of electric dipole photons, which carry one unit of angular momentum.

Two fine structure transitions were used when probing the hyperfine structure in this work.

Both transitions originate from the atomic ground state, J = 3, and for both the excitation is

to an upper state with J = 4. These transitions were selected for use in this study owing to

their high spectroscopic efficiencies. These transitions will henceforth be referred to the 358 nm

and 425 nm lines. The properties of each transition are presented in table 3.1.

Transition Lower State Lower State Upper State Upper State A coefficient

(nm) Energy (cm−1) Energy (cm−1) (107s−1)

357.87 3d5(6S)4s 7S3 0 3d4(5D)4s4p(3P ) 7P4 27935.2412 14.83

425.43 3d5(6S)4s 7S3 0 3d5(6S)4p 7P4 23498.8156 3.148

Table 3.1: A table to present the properties of the two atomic transitions used to probe the

hyperfine structure in this work. Information taken from Kurucz spectral line database [38]

and National Institute of Standards and Technology spectral line database [39].

Figure 3.3 serves to illustrate the hyperfine splitting of the aforementioned J states into their

respective F states and the allowable transitions between F states when probing 53Cr (I = 3/2)

via the 425 nm transition.
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Figure 3.3: A diagram to show the hyperfine Splitting in 53Cr (I = 3/2) of the J = 3, 4 states

into their respective F states. The red lines show the allowable transitions between the F

states and the purple dashed lines lead to the corresponding peaks in the modelled hyperfine

spectrum.

There are two contributing properties of the nucleus which dictate the relative distribution of

the F states and thus the hyperfine structure: the magnetic dipole moment and the electric

quadrupole moment.

3.1.1 The Magnetic Dipole Moment

The magnetic dipole moment of the nucleus originates from the motion of the charged particles

that form the nuclear substructure. The movement of the charged particles is akin to a current

moving through a wire, therefore a vector potential, A(r), can be formed by summing the

individual currents:

A(r) =
µ0

4π

∫
j(r′)dv′

|r − r′|
, (3.1.7)

where j(r′) is the current density, r′ is a vector defining a point of the nucleus relative to a

fixed origin, and r is the vector defining the point of observation relative to the origin. This

vector potential may be rewritten as:
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A(r) =
µ0

4π

[
1

r

∫
j(r′)dv′ +

1

r3

∫
(j(r′)(r · r′)dv′ + ...+

]
, (3.1.8)

∴ A(r) =
µ0

4π

µ× r

r3
+ ...+, (3.1.9)

when

µ =
1

2

∫
r′ × j(r′)dv′. (3.1.10)

The primary term in this multi-polar expansion corresponds to the magnetic dipole moment

of the nucleus. Accounting for the fact that the cross product of r′ and v′ is simply equal to

l/m for a particle of mass m, where l is the dimensionless orbital angular momentum quantum

number, and that the charge density may be expressed in terms of a probability function, the

expression above may be rewritten as:

µ =
e

2m

∫
ψ∗(r′)lψ(r′)dv′. (3.1.11)

Assuming that this wave-function represents a definite component of lz, the only none vanishing

term is the one which corresponds to the z component of the integral, therefore:

µz =
e

2m

∫
ψ∗(r′)lzψ(r

′)dv′, (3.1.12)

and

∴ µz =
eℏ
2m

ml, (3.1.13)

where lz = mlℏ. The magnetic dipole moment is defined to correspond to the maximum value

of ml. Accordingly, the magnetic moment of an individual nucleon and is given by:

µ =
eℏ
2m

l, (3.1.14)

as the maximum value ml can adopt is +l. The eℏ/2m coefficient accounts the dimensions of

the magnetic moment. When m adopts the value of the proton mass, this quantity is known as

the nuclear magneton:

µN =
eℏ
2mp

= 3.15245 · 10−8 eV/T. (3.1.15)

A more conventional way to express the magnetic moment of a nucleon in terms of the nuclear
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magneton is:

µ =
gll

µN
, (3.1.16)

where gl is the orbital gyromagnetic factor or ‘g-factor’ of a free nucleon. The value of gl is 0 and

1 for a proton and neutron, respectively. The l term only accounts for the orbital contribution

to the magnetic moment, in order to account for the contribution from the intrinsic spin of

nucleons, equation 3.1.16 is modified to become:

µ = µl + µs = (gll+ gss)
µN

ℏ
, (3.1.17)

where gs is the gyromagnetic spin factor, which can only be determined for free particles and is

measured to be equal to 5.5856912 for a proton and−3.8260837 for a neutron. When considering

the contribution from each of the constituent nucleons, the magnetic moment of the nucleus

may be calculated as the sum of the magnetic moments of its individual constituent nucleons:

µI =

A∑
i=1

[gl,ili + gs,isi]
µN

ℏ
. (3.1.18)

Unfortunately, the magnetic moment of a nucleus cannot be calculated this trivially as a result

of the complex nature of the strong nuclear interactions and relative spin orientations of the

constituent nucleons, rather model-based assumptions must be used. For example, using the

single particle model, we assume that in odd-A nuclei A − 1 nucleons pair together to form

spin-zero duads, which do not contribute to the magnetic moment, and that the orbital and

spin angular momentum of the remaining nucleon dictates the magnetic moment of the nucleus.

In more complex cases in which the bulk nucleons do not pair into spin zero-duads, it is necessary

to assign to them a collective g-factor, gR, so that their contribution to the nuclear magnetic

moment is not neglected. In these cases the magnetic moment may be calculated using:

µI =

[
gRIc +

A∑
i=1

(gl,ili + gs,isi)

]
µN

ℏ
. (3.1.19)

The motion of electrons in their atomic orbits can be considered to be an electrical current,

which consequently produces a magnetic field. This magnetic field interacts with the magnetic

dipole moment of the nucleus causing the fine structure energy states to split into multiple

distinct hyperfine energy states. The magnitude of the hyperfine structure splitting is given by:

∆EM = −µI ·Be, (3.1.20)
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where Be is the magnetic field produced by the orbital electrons.

The magnitude of the magnetic field generated by an electron is proportional to its total angular

momentum. As such, equation 3.1.20 may also be expressed as:

∆EM =
A

2
[F (F + 1)− I(I + 1)− J(J + 1)] =

AK

2
, (3.1.21)

where A is the magnetic dipole hyperfine parameter.

From equation 3.1.21, it can be understood that there is no energy level splitting due to the

magnetic dipole contribution when I = 0 (as is the case for the ground states of all even-even

nuclei), or when J = 0 [20].

3.1.2 The Electric Quadrupole Moment

The electric quadrupole moment provides an insight into the deformation of a nucleus from a

spherical shape. Spherical nuclei are the exception (such as those found at magic numbers),

and therefore the quadrupole moment is an incredibly powerful indicator that can be used to

gauge the trends in deformation along isotope chains. The charge distribution of the nucleus

generates an electric potential, which from an external vantage point takes the form of [20]:

V (r) =
1

4πϵ0

∫
ρ(r′)dv′

|r − r′|
, (3.1.22)

where ρ(r′) is the nuclear charge density, r is the vector between an origin and an external

vantage point, and r′ is the vector defining the distance between the origin and the distribu-

tion of nuclear charges. The denominator of the integrand can be expressed as a multi-polar

expansion of the electric field:

|r − r′|−1 = r−1

[
1 +

r′2

r2
− 2

r′

r
cos θ

]−1/2

≈ 1

r

[
1− 1

2

(
r′2

r2
− 2

r′

r
cos θ

)
+

3

8

(
r′2r2 − 2

r′

r
cos θ

)2

+ ...

]
, (3.1.23)

where θ is the angle between r and r′. Substituting the expansion into the original potential

gives:
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V (r) =
1

4πϵ0

[
1

r

∫
ρ(r′)dv′ +

1

r2

∫
ρ(r′) cos θdv′ +

1

r3

∫
ρ(r′)r′2 · 1

2
(3 cos2 θ − 1)dv′ + ...

]
.

(3.1.24)

The integral of the first term in the expansion provides the total charge of the nucleus, the

second term of the expansion becomes zero in regular circumstances as the nucleus does not

exhibit an electric dipole moment, and the third term in the expansion is related to the electric

quadrupole moment, Q, which we define as:

eQ =

∫
ρ(r′)r2(3 cos2 θ − 1)dv′ =

∫
ρ(r′)(3z′2 − r′2)dv′. (3.1.25)

A quadrupole moment equal to zero is characteristic of a spherical nuclear configuration. If the

quadrupole moment is positive, the 3z2 term dominates as the charge density is concentrated

along the z axis, and the nucleus has a prolate (cigar) shape. A negative electric quadrupole

occurs when the r2 term dominates, meaning that the charge distribution extends along the

equatorial plane perpendicular to the z axis and that the nucleus is oblate (discus) in shape [40].

The magnitude of the quadrupole moment indicates to what extent the nucleus is deformed.

Figure 3.4: A pictorial representation of a spherical nucleus (left), a prolate nucleus (centre),
and an oblate nucleus (right), each with a retained axis of symmetry.

The contribution of the electric quadrupole moment to the hyperfine structure originates from

the quadrupole moment of the nucleus interacting with the gradient of the electric field produced

by the orbital electrons,
∂2V

∂z2
. The magnitude of the hyperfine structure splitting due to the

spectroscopic quadrupole moment, Qs is given by [20]:

∆EQ = eQs ·
〈
∂2V

∂z2

〉
· 3K(K + 1)− I(I + 1)J(J + 1)

8I(2I − 1)J(2J − 1)
. (3.1.26)

From equation 3.1.26, it can be understood that there is no energy level splitting due to the
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electric quadrupole contribution when I or J ≤ 1/2.

The spectroscopic electric quadrupole moment is related to the intrinsic quadrupole moment

via the relationship [1]:

Qs = Q

(
3Ω2 − I(I + 1)

(I + 1)(2I + 3)

)
, (3.1.27)

where Ω is the projection of nuclear spin along the intrinsic axis of symmetry. The intrinsic

quadrupole moment may be expressed in terms of the static deformation parameter, ⟨β2⟩, using

the approximation:

Q ≈
5Z
〈
r2
〉
0√

5π
⟨β2⟩ (1 + 0.36 ⟨β2⟩), (3.1.28)

where
〈
r2
〉
0
is the mean-square charge radius of a spherical nucleus, which when modelled using

the liquid drop model assuming a homogeneous distribution of nuclear material is given by [41]:

〈
r2
〉
0
=

3

5
r20A

2/3. (3.1.29)

3.1.3 Combined Hyperfine Contributions

The combined contribution to the fine structure splitting by the magnetic dipole moment and

electric quadrupole moment is given by:

Ehfs =
A

2
K +

B

4
· 3K(K + 1)− 4I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)
. (3.1.30)

A is the magnetic dipole moment hyperfine parameter and B is the electric quadrupole moment

hyperfine parameter. A and B are related to their corresponding nuclear moments by the

following equations [42]:

A =
µIBe

IJ
, (3.1.31)

B = eQs

〈
∂2V

∂z2

〉
. (3.1.32)

Equations 3.1.31 and 3.1.32 illustrate that, for a given fine structure level, A ∝ µ

I
and B ∝ Qs.

Accordingly, these relationships can be used to determine unknown magnetic dipole and electric

quadrupole moments using appropriate reference hyperfine parameters and moments:

µ = µref
IA

IrefAref
, (3.1.33)
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Qs = Qs,ref
B

Bref
. (3.1.34)

Furthermore, equations 3.1.35 and 3.1.36 show that the ratio of the A or B hyperfine parameter

of an upper J state to that of a lower J state is isotope independent and remains constant for

a given fine structure transition:

Al

Au
=

(
µBe

IJ

)
l(

µBe

IJ

)
u

=
(Be/J)l
(Be/J)u

= constant, (3.1.35)

and

Bl

Bu
=

(
eQs

〈
∂2V

∂z2

〉)
l(

eQs

〈
∂2V

∂z2

〉)
u

= constant. (3.1.36)

3.1.4 Defining Hyperfine Transitions

A resonance peak in a hyperfine spectrum may be defined according to the difference in energy

between the two F states the transition occurs between [1]:

γ = v + αuAu + βuBu − αlAl − βlBl, (3.1.37)

where the quantum numbers and hyperfine parameters of the upper and lower states are in-

dicated by their respective subscripts, v is the centroid frequency of the central point around

which the hyperfine splitting is based,

α =
K

2
, (3.1.38)

and

β =
3K(K + 1)− 4I(I + 1)J(J + 1)

8I(2I − 1)(2J − 1)
. (3.1.39)

3.2 The Nuclear Mean-Square Charge Radius

The mean-square charge radius of a nucleus,
〈
r2
〉
, is an observable that provides information

about the spatial extension of the nucleus (more specifically the constituent protons), and the

deformation and rigidity of the nucleus. A general expression for the mean-square charge radius

for a nucleus with a charge density function, ρ(r), is [41]:
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〈
r2
〉
=

∫
ρ(r)r2dV∫
ρ(r)dV

, (3.2.1)

where the total charge of the nucleus is given by the denominator. If one were to describe the

mean-square charge radius of a deformed nucleus, the expression above is modified to account

for the deviation from sphericity:

〈
r2
〉
=
〈
r2
〉
0

(
1 +

5

4π

∞∑
i=2

〈
β2
i

〉)
, (3.2.2)

where
〈
β2
i

〉
is the deformation parameter of the order i. Due to the dominance of the contri-

bution from the quadrupole deformation, the expression above is often approximated as:

〈
r2
〉
≈
〈
r2
〉
0

(
1 +

5

4π

〈
β2
2

〉)
, (3.2.3)

where
〈
r2
〉
0
is the mean-square charge radius of a spherical nucleus.

The dynamic nature of the deformation of a nucleus may be interpreted via a comparison

between the square of the static deformation parameter, ⟨β2⟩2, and the quadrupole deformation

parameter,
〈
β2
2

〉
, using the relationship [1]:

〈
β2
2

〉
= ⟨β2⟩2 +

(〈
β2
2

〉
− ⟨β2⟩2

)
= β2

static + β2
dynamic. (3.2.4)

Once one has determined the static component of the electric quadrupole deformation, the

rigidity of the deformation may be determined by using the square of β2
static in place of

〈
β2
2

〉
in equation 3.2.3. If the value of the mean-square charge radius calculated differs from that

determined experimentally, and other contributions towards deformation are not present, this

is emblematic of β-softness [1].

3.3 Isotope Shifts

The spectrum of one isotope is always shifted in frequency relative to that of a neighbouring

isotope. This phenomenon is known as the isotope shift, δv. Whilst all isotopes with non-zero

spin exhibit hyperfine resonances due to their nuclear moments, the isotope shift is a phe-

nomenon observed in all isotopes regardless of spin, meaning that laser spectroscopy still yields

useful information even without the presence of a hyperfine structure to probe. There are two

independent contributions to the isotope shift: the mass shift contribution and the field shift

contribution. These will be discussed in more detail in the following subsections.
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Historically, there has been a lack of consistency in the literature as to what is the best con-

vention for stating the isotope shift between two isotopes as well as the notation for doing so.

For example, some define the isotope shift as:

δv = vA − vA
′
, (3.3.1)

where vA
′
is the centroid frequency of the heavier of the two isotopes, and vA is the centroid

frequency of the lighter, reference isotope. Others define the isotope shift as:

δv = vA − vA
′
> 0, (3.3.2)

meaning that the isotope shift is always positive. Both of these conventions can become incon-

venient as the reference isotope may differ for each isotope of interest, and therefore additional

calculations are required in order to compare the isotope shifts relative to a single isotope. A

more convenient way of defining the isotope shift, and the approach adopted in modern laser

spectroscopy, is:

δvA,A′
= vA

′
− vA, (3.3.3)

where vA
′
is the centroid frequency of the isotope of interest and vA is the centroid frequency

of the reference isotope. This definition does not require the isotope shift to be positive, and

the same reference may be used for all isotopes along an isotope chain, regardless of whether

they are heavier or lighter than the isotope of interest.

As mentioned previously, different notation conventions are also adopted by different authors.

For example, Cheal and Flanagan define the isotope shift using equation 3.3.3 [1], whereas

Berengut et al. define the isotope shift as [43]:

δvA
′,A = vA

′
− vA, (3.3.4)

where vA
′
is the centroid frequency of the isotope of interest and vA is the centroid frequency of

the reference isotope. In these examples, the order of the superscript is reversed on the δv term.

The convention and notation adopted for this work and used throughout this thesis is:

δvA,A′
= vA − vA

′
, (3.3.5)
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where vA is the centroid frequency of the isotope of interest and vA
′
is the centroid frequency

of the reference isotope. Note that using this notation convention, the prime notation is used

oppositely to the examples outlined above.

3.3.1 The Mass Shift Contribution

In an atomic system, in response to the motion of orbital electrons, the nucleus is forced to

recoil with a momentum equal and opposite to the momenta of the electrons. The recoil energy

of the nucleus is therefore calculable using the following expression [44]:

EMS =
1

2M

(∑
i

pi

)2

=
1

2M

∑
i

p2
i +

1

2M

∑
i>j

(2pi · pj), (3.3.6)

where pi is the momentum of a given electron, and M is the mass of the nucleus. Accord-

ingly, there is a discrepancy between the recoil energies of nuclei with different masses. This

discrepancy is given by:

δEMS =
1

2mu

(
A−A′

AA′

)∑
i

p2
i +

∑
i>j

(2pi · pj),

 . (3.3.7)

The mass shift contribution to the isotope shift may therefore be expressed by the following

equation:

δvA,A′

MS =M
A−A′

AA′ , (3.3.8)

where,

M = kNMS + kSMS . (3.3.9)

M is the mass shift factor, kNMS and kSMS are the normal and specific mass shift factors,

respectively, and A and A′ represent the atomic masses of an isotope and a reference isotope,

respectively. The prime notation here mirrors that of the notation used for the isotope shift.

The masses of the isotopes have generally been measured to very high precision using Penning

traps [45].

While the specific mass shift factor is complex to calculate, the normal mass shift factor can be

calculated relatively easily using the following equation:

kNMS =
me

mu
v, (3.3.10)
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whereme is the electron mass,mu is the atomic mass unit, and v is the transition frequency [43].

In essence, the normal mass shift accounts for the fact that the centre of mass of an atom

does not lie at the centre of the nucleus due to the presence of the orbital electrons, whereas

the specific mass shift accounts for the collective momenta of multiple atomic electrons. When

atomic electrons are evenly distributed around the nucleus, the centre of mass between the

nucleus and the electrons lies more centrally with respect to the atom as a whole, whereas

when the distribution of electrons is asymmetric, the centre of mass lies less centrally. This

shift in the centre of mass either acts to enhance or reduce the contribution of the normal mass

shift to the total isotope shift. A schematic example of the specific mass shift is illustrated in

figure 3.5. Simply put, a change in the centre of mass will modify the kinematics of the atomic

system, leading to the energies of electron states shifting, and resulting in a shift of the central

frequency of the spectrum.

Figure 3.5: A diagram showing how the centre of mass of an atom (black point) may be shifted
from the centre of the nucleus depending on the electron configuration of the atom.

3.3.2 The Field Shift Contribution

The second contribution to the isotope shift is the field shift contribution. The field shift contri-

bution can be understood in terms of the electrostatic potential produced by a nucleus, which

itself is dictated by the configuration of nucleons within the nucleus. Each isotope or isomer

has a unique nuclear charge distribution, which produces a unique electrostatic potential for
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electrons to interact with. The magnitude of the perturbations to the electron structure differs

for each electrostatic potential, and thus so to does the energy at which hyperfine resonances

become detectable.

The electrostatic potential outside of the nucleus can be considered to be the same as that of a

point-like nucleus and is therefore the same for each isotope. It is inside the nucleus where the

difference in electrostatics between different isotopes plays a role in the field shift contribution;

only the electrons which spend time within the vicinity of the nuclear volume, those which

occupy the s orbitals, are perturbed directly by the nucleus, however, the rest of the energy

levels in the atomic system are indirectly perturbed by electron screening effects.

The change in the energy of an atomic electron due to the field shift is estimated to be the

following using non-relativistic first-order perturbation theory [44]:

δEi =

∫
ψ∗
i (r)eδVcψi(r)dτ, (3.3.11)

where ψi(r) is the wave-function of an atomic electron, and δVc is the difference in the Coulomb

potential experienced by an electron within the vicinity of the nuclear charge distribution for

two isotopes. The contribution of the field shift to the isotope shift can be expressed as:

δvFS =
Ze2

6hϵ0
∆|ψ(0)|2δ⟨r2⟩, (3.3.12)

where ∆|ψ(0)|2 represents the change in electron density between the two atomic states being

probed, and δ
〈
r2
〉A,A′

is the difference between the nuclear mean-square charge radii of each

isotope. Equation 3.3.12 is often expressed as:

δvA,A′

FS = Fδ
〈
r2
〉A,A′

. (3.3.13)

The change in mean-square charge radius provides information not only about the nuclear size,

but also the shape [42]. This is particularly useful as information about the size and shape of

nuclei which do not exhibit a spectroscopic quadrupole moment (i.e nuclei with spins I = 0, 1/2)

can still be garnered.

3.3.3 Combined Isotope Shift

The total shift between two isotopes of the same element is the sum of the mass shift contribution

and the field shift contribution:
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δvA,A′
=M

A−A′

AA′ + Fδ
〈
r2
〉A,A′

, (3.3.14)

where A represents the isotope of interest, and A′ represents the reference isotope, therefore

the change in mean-square charge radius is calculated relative to the isotope of interest, hence

why the prime notation mirrors that adopted when defining the isotope shift in equation 3.3.5.

It can be understood that for a given transition between J states, the mass shift factor and field

shift factor are isotope independent and thus remain constant along an isotope chain as they are

determined purely based on the electronic properties of the atom. Therefore, the mean-square

charge radii along an isotope chain are calculable from the measured isotope shifts once the

mass and field shift factors have been calibrated.

3.4 The King Plot

Mass and field shift factors are difficult to determine by calculation alone, however, as they

are constant for a given transition between two J states and independent of the isotopes being

investigated, a convenient way of determining mass and field shift factors is by using a King

plot [46]. The mass and field shift factors may be calibrated using one of two different types of

King plot: those that use optical data and those that use non-optical data. The King plot that

uses non-optical data uses known changes in mean-square charge radii and modified isotope

shifts for a given transition to directly extract the mass and field shift factors. The King plot

that uses optical data allows for indirect determination of the mass and field shift factors by

plotting the modified isotope shifts of two transitions against one another, where the mass and

field shift factors of one transition are already known.

Regardless of which type of King plots is used, a modification factor, µ, must be applied to the

isotope shifts and/or changes in mean-square charge radii; µ is defined as:

µ =
AA′

A−A′ , (3.4.1)

where A and A′ are the atomic masses of the isotope of interest and the reference isotope re-

spectively.

For the King plot that uses non-optical data, each term of equation 3.3.14 is multiplied by µ.

The equation is then conveniently already in a y = mx+ c format:
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AA′

A−A′ δv
A,A′

= F
AA′

A−A′ δ
〈
r2
〉A,A′

+M. (3.4.2)

From equation 3.4.2 it becomes apparent that plotting the modified changes in mean-square

charge radii against the corresponding modified isotope shifts allows for determination of the

mass and field shift factors, as they are equal to the intercept and gradient of a line of best fit,

respectively.

In the case of the King plot that uses optical data, the mass and field shift factors are again

determined using equation 3.3.14. This equation is used twice; one for each of the two transitions

being investigated:

δvA,A′

i =Mi
A−A′

AA′ + Fiδ
〈
r2
〉A,A′

, (3.4.3)

δvA,A′

j =Mj
A−A′

AA′ + Fjδ
〈
r2
〉A,A′

. (3.4.4)

These equations are again multiplied by the modification factor µ:

µδvA,A′

i = µMi
A−A′

AA′ + µFiδ
〈
r2
〉A,A′

, (3.4.5)

µδvA,A′

j = µMj
A−A′

AA′ + µFjδ
〈
r2
〉A,A′

. (3.4.6)

As the difference in mean-square charge radii is independent of the transition being investigated,

the two equations are related by this commonality:

µδvA,A′

i −Mi

µFi
=
µδvA,A′

j −Mj

µFj
. (3.4.7)

A simple rearrangement equation 3.4.7 yields another that resembles the equation of a straight

line:

δvi
Fi

− Mi

µFi
=
δvj
Fj

− Mj

µFj
, (3.4.8)

∴
δvj
Fj

=
δvi
Fi

− Mi

µFi
+
Mj

µFj
, (3.4.9)

∴ δvj =
Fj

Fi
δvi −

Fj

Fi

Mi

µ
+
Mj

µ
, (3.4.10)
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∴ µδvj = µ
Fj

Fi
δvi −

Fj

Fi
Mi +Mj , (3.4.11)

∴ µδvj =
Fj

Fi
µδvi +

[
Mj −

Fj

Fi
Mi

]
. (3.4.12)

From the derivation above it becomes clear that by plotting the modified isotope shifts of two

transitions against one another, the mass and field shift factors of one transition are deter-

minable, should the factors for the other be known. As in the previous case (see equation

3.4.2), the field shift factor may be determined from the gradient, m, of the line of best fit, and

the mass shift factor from the intercept, c:

m =
Fj

Fi
, (3.4.13)

and

c =Mj −
Fj

Fi
Mi. (3.4.14)

3.5 Spectral Line Shapes

When fitting the hyperfine spectra, it is important that the shapes of the peaks modelled to

the data are representative of the line shapes found in nature. For this reason, it is important

to understand the phenomena that contribute to the line shape.

3.5.1 The Natural Line Width

Each hyperfine resonance peak will have a natural line width attributed to the lifetime of the

decaying state. The lifetime of the state is related to the energy of the transition between two

states in accordance with the Heisenberg uncertainty principle:

∆E∆t ≥ ℏ
2
, (3.5.1)

where E is the transition energy, t is the lifetime of the state, and ℏ is the reduced Planck

constant. Therefore, the shorter the lifetime of the state, the more enhanced the natural line

width will be. The natural line width may be modelled using a Lorentzian line shape. The

simplest way to understand why this is to consider an electron moving from one energy state

to another via spontaneous emission, where the lifetime of the state is τ . This two-level system

may be described by the wave function:
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Ψ = a0Ψ0 + a1Ψ1, (3.5.2)

where a0 and a1 are constants in the absence of any external electromagnetic radiation. When

the electron is promoted to the higher energy state, for example via absorption of a resonant

photon, a dipole moment is generated, this being the electric dipole moment (change of elec-

tromagnetic polarity within the system) associated with the transition between the two states.

This dipole moment can be determined using the dipole moment operator [47]:

M = ⟨Ψ|d |Ψ⟩ . (3.5.3)

When considering only the real contributions to the dipole moment, and accounting for the fact

that the dipole moment oscillates at the natural transition frequency of the system, ω10, M

becomes:

∴ M = 2d1,0a0a1 cos(ω10t), (3.5.4)

where d1,0 is the transition dipole moment. The amount of population in the higher energy

state must decrease as a consequence of spontaneous emission, and accordingly, the magnitude

of the dipole moment also decreases, thus behaving as a damped harmonic oscillator:

M = M0e
−At/2 cos(ω10t), (3.5.5)

where M0 is the initial amplitude of the oscillating dipole moment and A is the Einstein

coefficient, which represents the transition probability per unit time for spontaneous emission

[48]:

A = 1/τ. (3.5.6)

In order to determine the distribution of frequencies that when summed together give the

damped harmonic oscillator waveform a Fourier analysis may be performed. Performing a

Fourier transform on the time-dependent part of M gives [47]:

F (ω) =

∫ ∞

−∞
e−At/2 · cos(ω10t) · e−iωt)dt (3.5.7)

∴ F (ω) =
1

2

∫ ∞

0

e−At/2 ·
(
e−i(ω−ω10t) + e−i(ω+ω10t)

)
dt (3.5.8)
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∴ F (ω) =
1

2

(
1

A/2 + i(ω − ω10)
+

1

A/2 + i(ω + ω10)

)
, (3.5.9)

which to good approximation may be written as:

F (ω) ≈ 1

2

1

A/2 + i(ω − ω10)
, (3.5.10)

as when using the rotating wave approximation the non-resonant term is negligible in compar-

ison to the resonant term. The function used to describe the line shape is proportional to the

rate at which the oscillating transition dipole radiates power:

|F (ω)2| ∝ 1

A2/4 + (ω − ω10)2
, (3.5.11)

which when normalized using the condition:

∫ ∞

−∞
g(ω − ω10)dω =

∫ ∞

−∞
g(v − v10)dv = 1, (3.5.12)

gives a Lorentzian profile:

g(v − v10) =
A

(A/2)2 + 4π2(v − v10)2
, (3.5.13)

using the relation

v = 2πω. (3.5.14)

The full-width-half-maximum of this function, ∆vl, can be expressed as:

∆vl =
A

2π
=

1

2πt
, (3.5.15)

and therefore the normalized Lorentzian function may be expressed as:

g(v − v10) =
∆vL

π/2(∆v2l ) + 2π(v − v10)2
. (3.5.16)

This normalized Lorentzian function can be applied to all atoms and ions. For this reason,

natural line broadening is referred to as a homogeneous broadening phenomenon [47].

3.5.2 Doppler Broadening

Doppler broadening is an inhomogeneous broadening phenomenon. In the lab frame, an atom

with a velocity, u, approaching a laser of fixed frequency, vs, will achieve resonance at a fre-
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quency of v0. If the atom is travelling with a different velocity, u′, its resonance frequency will

become v′0 according to the relativistic Doppler transformation:

v′0 =
v0

1± u′/c
. (3.5.17)

In spectroscopy experiments the atoms or ions of interest will have a non-uniform velocity

profile for a given axis (in this case the axis of beam propagation), which follows the Maxwell-

Boltzmann distribution:

ρvdv =
( m

2πkT

)2
e−mv2/2kT dv, (3.5.18)

where m is the mass of the atom/ion, k is the Boltzmann constant, and T is the temperature of

the system. Accordingly, there will be a distribution of resonance frequencies, which correspond

to the Maxwell-Boltzmann velocity distribution. The line shape function used to describe this

is: [47]:

gD(v − v0) =
1

v0

(
mc2

2πkT

)1/2

e−mc2(v−v0)
2/(2kTv2

0), (3.5.19)

and the FWHM of this component is taken as:

∆vD = 2v0

√
2kT ln(2)

mc2
. (3.5.20)

The Doppler line shape function can be written in terms of the FWHM as [47]:

gD(v − v0) =
2

∆vD

√
ln(2)

π
e4 ln(2)[(v−v0)/∆vD]2 . (3.5.21)

An advantage of using collinear laser spectroscopy is that the Doppler contribution to the

width of the spectral peaks may be reduced by three orders of magnitude [1]. The act of

accelerating the ion bunch in the form of a beam down a beamline results in the distribution of

ion velocities along the axis of propagation becoming compressed; as the ions are accelerated

to a well-defined energy, the original spread of energies is conserved at the cost of the velocity

spread being reduced [41]:

δv =
1√
2mE

δE. (3.5.22)

This principle is illustrated in figure 3.6.
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Figure 3.6: A diagram to illustrate how velocity compression is achieved by accelerating ions

to higher energies.

3.5.3 Power Broadening

During a laser spectroscopy experiment it is important that an optimal amount of laser power

is used - too little and a smaller fraction of the atoms/ions will be excited and fluoresce, which

reduces the efficiency of the experiment, too much power and the width of the spectral peaks

increases, which reduces the precision to which hyperfine parameters and centroid frequencies

can be determined. The broadening of spectral peaks due to this phenomenon is referred to as

power broadening.

Power broadening occurs in steady-state systems, for example, the atomic/ionic systems be-

ing studied in laser spectroscopy experiments, where an equilibrium between the excitation of

electrons into a higher energy state by a continuous-wave laser and the relaxation of electrons

via photon emission has been achieved. In this setup, the intensity of the signal detected by

the photo-multiplier tube, S, is directly proportional to the population of the excited state, P2,

and the spectral line profile is defined by the measure of de-tuning, ∆:

S ∝ P2 =
1

2

(I/Isat)

1 + (∆/β)2 + (I/Isat)
, (3.5.23)

where
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∆ = vB − v, (3.5.24)

I is the intensity of the laser radiation, Isat is the characteristic saturation intensity for the

given transition, β is the width parameter of the weak-excitation limit, vB is the natural fre-

quency of the transition, and v is the frequency of the laser.

From equation 3.5.23, it can be seen that an increase in the intensity of the laser radiation

results in an increase in the width of the spectral profile; this results from the fact that in the

presence of a more intense radiation field, the electrons spend a greater proportion of the time

in the excited state. The line width is proportional to the range of values ∆ can adopt, and

this range increases with increasing laser power, thus broadening the spectral peaks [49].

3.5.4 Line Shape Summations

Each of the broadening phenomena contribute to the observed peak profile observed in laser

spectroscopy experiments. It should be noted that Doppler broadening in an inhomogeneous

phenomenon, which observes Gaussian statistics. In order to be able to model both the

Lorentzian and Gaussian natures of the aforementioned broadening phenomena, a Voigt profile

may be used to model the spectral peaks.

The Voigt profile is a convolution of both the Lorentzian and Gaussian contributions, and is

mathematically defined as [50]:

V (x, σ, α) =

∫ ∞

−∞
G(x′, σ) · L(x− x′, α)dx′. (3.5.25)

The Gaussian and Lorentzian profiles are defined, respectively, as:

G(x, σ) =
1

σ
√
2π
e−x2/2σ2

, (3.5.26)

L(x, α) =
α/π

(x2 + α2)
, (3.5.27)

where

σ =
∆vG

2
√
2 ln 2

, (3.5.28)
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α =
∆vL
2

, (3.5.29)

and ∆vG and ∆vL are the full-width half maxima of the Gaussian and Lorentzian line shapes,

respectively.
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Chapter 4

Experimental Methodology: The

IGISOL-IV Facility

IGISOL is an acronym for Ion Guide Isotope Separator OnLine, and IGISOL-IV is the fourth

generation of the ISOL facility at the University of Jyväskylä. The university has a very well-

established accelerator laboratory home to many different experimental setups. The IGISOL-

IV facility is located in one of two experimental halls and feeds into five different experimental

setups:

• the spectroscopy line (used in various decay spectroscopy experiments and can be equipped

with a variety of detectors),

• RAPTOR (Resonant ionisation spectroscopyAndPurificationTraps forOptimised spectRoscopy,

• JYFLTRAP (a cylindrical double Penning trap mass spectrometer),

• MORA (Matter’s Origin from the RadioActivity of trapped and polarized isotopes),

• and the laser spectroscopy beamline utilized for this work.

The following discussion will focus on the production of radioactive ions, delivery of said ions

to the laser spectroscopy beamline, and the composition of key components used in the exper-

imental setup. Figure 4.1 provides a schematic overview of the IGISOL-IV facility (excluding

MORA and RAPTOR).

4.1 Radioactive Ion Production and Extraction

One of the key defining features of the IGISOL facility is its ability to produce isotopes of

interest in a chemically insensitive way - this is done within the target chamber. In operation,
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Figure 4.1: A pictorial representation of the IGISOL-IV facility at the University of Jyväskylä.
Schematic taken from [51].

a beam of protons is accelerated up to 30MeV by one of the two cyclotrons employed at the

facility, the MCC-30/15 or the K-130, and directed downstream into the target chamber via

a series of magnetic quadrupoles and steerers. Figure 4.2 shows a photograph of a magnetic

quadrupole used at the facility.

The target chamber comprises a metallic vessel continuously supplied with a stream of helium

gas, known as the ion guide. Installed within this chamber is a thin-foil target into which the

proton beam is directed. The proton beam has sufficient energy that when impinging onto the

target foil the protons are able to overcome the Coulomb repulsion of the atoms in the target

material and induce nuclear reactions.

The advantage of using a thin-foil target as opposed to a thick target, and the underlying reason

that IGISOL produces isotopes in a chemically insensitive way, is that the reaction products are

able to recoil directly out of the target and into the target chamber. When using a thick target,

the reaction products do not have sufficient energy to recoil out of the material, and instead,

the target material must be baked to achieve extraction; this results in longer extraction times,

which prevents measurements from being made on isotopes with short half-lives. Additionally,

as the pathway out of a thick target is longer there is more opportunity for reaction products

to collide with atoms in the lattice of the target material, reducing their kinetic energies and

increasing the likelihood of the reaction products getting trapped within the material. This

trapping effect may be enhanced further depending on the chemical properties of both the re-
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action product and target material.

Figure 4.2: A photograph of a magnetic quadrupole used to steer protons/ions from the K-130

cyclotron to the target chamber of the IGISOL.

Three targets were used in this investigation; a natural chromium target, a 50Cr enriched target,

and a 54Cr enriched target. As noted previously, the isotopic abundances of natural chromium

are: 4.345(13)% 50Cr, 83.789(18)% 52Cr, 9.501(17)% 53Cr, and 2.365(7)% 54Cr [4]. The lighter

radioactive isotopes investigated in this work (48Cr, 49Cr, and 51Cr) were produced by imping-

ing protons onto the natural chromium target and 50Cr enriched target. Attempts to measure

the hyperfine structure of 55Cr were also made as part of this work, and this isotope was pro-

duced by impinging deuterons onto the 54Cr enriched target.

The reaction products that recoil out of the target have a range of kinetic energies and charge

states. This is unsuitable for ion manipulation as the kinematic properties of each ion differs.

This would result in a multitude of ion trajectories. Collisions between the reaction products

and the helium buffer gas act to thermalise the reaction products whilst simultaneously putting

many of them in a singly charged state. The improved uniformity of these properties makes ion

manipulation more consistent amongst the reaction products. The buffer gas-reaction product
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amalgam is then extracted from the target chamber via a 1mm aperture in the form of a su-

personic gas jet, and into a radio-frequency sextupole ion beam guide henceforth referred to as

the SPIG.

The SPIG is formed from two combined segments, each of which houses six cylindrical rods ar-

ranged in a hexagonal structure. The cylindrical rods have oscillating, radio-frequency voltages

applied to them. One segment of the SPIG is enclosed in order to maintain high pressure and

collimate the gas jet, whereas the other is open and allows for the buffer gas and other neutral

artefacts to be pumped away through the gaps between the rods using a series of Roots blowers.

Direct current potentials may be applied to each segment of the SPIG to create an increasingly

negative voltage gradient that efficiently guides positive ions downstream. Electrodes are lo-

cated at either end of the SPIG, the upstream electrode is referred to as the ‘repeller’ and the

downstream electrode is referred to as the ‘end electrode’. These electrodes are used to optimise

transport through the SPIG by preventing ions from escaping [52]. The SPIG forces the ions

along a central axis, reducing their transverse emittance and thus forcing the ions into a beam

profile. This ion beam is then focused using a conical Einzel lens and subsequently directed

down the beamline where it is accelerated to 30 keV by a potential applied to the IGISOL

platform. The processes of isotope production and beam formation are illustrated in figure 4.3.

Figure 4.3: A pictorial representation of how a beam of reaction products is formed using the

SPIG and the conical Einzel lens following isotope production in the target chamber.

4.2 The Offline Sources

In addition to the online cyclotron sources, there are also a number of offline sources that may

be used to produce ions of interest. These ions are typically stable or long-lived and do not
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need to be produced by inducing nuclear reactions. The offline sources are particularly use-

ful when setting up for an experiment; for example by producing a sufficient number of ions

for diagnostic beam tuning, and when investigating the efficiencies and sensitivity to nuclear

properties of different fine structure transitions. Time using the online sources must be applied

for in advance and is very costly, thus having readily available offline sources maximises the

time during an experiment spent collecting data of interest. Furthermore, the stable isotopes

produced by the offline sources may be used as reference ions during online experiments. By

frequently checking the centroid positions of the reference spectra, it is possible to determine if

any systematic drifts of the tuning voltage or laser frequency are occurring.

One of the most commonly used offline sources is the spark ion source. In this setup a nee-

dle made of the isotope of interest, and contained within a chamber filled with helium gas, is

connected to the cathode of a high-voltage power supply. The high potential leads to sparking

events which ionise the helium atoms. The helium ions are accelerated by the potential towards

the needle cathode, causing ions of interest to be sputtered from the needle. These ions are

then extracted and accelerated down the beamline in the same manner as for the online sources.

Although such offline sources can be placed within the IGISOL for preparatory tests, an al-

ternative offline source is the ion source station located on the second floor of the facility, an

illustration of which is provided in figure 4.4. The ion source station can house 3 different ion

sources, two on the horizontal plane and one on the vertical, and currently houses a range of

discharge sources. In operation, the ions produced by either source are guided by a skimmer

electrode, which gives them a beam profile, before being injected into a quadrupole bender and

subsequently focused by an Einzel lens. Steering electrodes are used to align the beam and

transport it to a 90 degree deflector located on the first floor, which itself then deflects the

beam onto the horizontal plane where the ions may be transported into the beamline [53].
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Figure 4.4: A render of the internals of the offline ion source station. Taken from Vilen et al.

[53].

4.3 Isotope Separation

The ion beam extracted from the target chamber and directed down the beamline is a cocktail

beam, meaning that it is not isotopically pure. As such, it is necessary to separate the ions

of interest from the remainder of the beam prior to them being directed to the experimental

stations. This is achieved using a bender: a 55 degree dipole separator magnet.

Ions in a magnetic field experience a force perpendicular to the direction of the magnetic field

and their velocity, meaning that the ions follow a curved path. The centripetal force experienced

by an ion of mass m with charge q, propagating through a magnetic field of strength B, at a

velocity v is given by:

F = qvB =
mv2

r
, (4.3.1)

∴ r =
mv

qB
, (4.3.2)

where r is the radius of the path the ion follows. The kinetic energy of the ion is equal to the

product of the charge of the ion and the acceleration voltage, V , supplied to the ion:
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qV =
mv2

2
, (4.3.3)

∴ v =

√
2qV

m
. (4.3.4)

Hence substituting equation 4.3.4 into equation 4.3.2 gives:

r =

√
2V

B2
· m
q
. (4.3.5)

From equation 4.3.5, it becomes apparent that for an ion with a given mass-to-charge ratio,

the radius of the arc that the ion follows can be dictated by the strength of the magnetic

field. This phenomenon can be exploited using the bender to selectively deflect ions of interest

downstream, whilst deflecting ions with other mass-to-charge ratios into a beam dump. This

principle is illustrated in figure 4.5.

Figure 4.5: A diagram to show how mass selection is achieved using a bender magnet. At

IGISOL the bender deflects ions of interest by 55 degrees rather than 90 degrees as illustrated

in this figure.
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4.4 The Cooler-Buncher

Directly downstream from the bender is a radio-frequency cooler-buncher. The cooler-buncher

comprises a gas-filled radio-frequency quadrupole positioned atop a high-voltage platform but

biased a couple of hundred volts lower than the +30 kV IGISOL platform potential. This

arrangement means that the positively charged ions are repelled and accelerated down the

beamline by the positive IGISOL platform potential, before again being repelled but deceler-

ated by the slightly less positive high-voltage platform. This mechanism ensures that the ions

have sufficient kinetic energy to drift into the cooler-buncher, but not so much that cooling and

bunching would not be possible. The quadrupole itself is made of four stainless steel rods which

have a radio-frequency voltage applied to them. Each rod is divided into sixteen segments. At

the inlet of the quadrupole is a pair of cylindrical electrostatic lenses used to focus the ions

beam as they enter. Located at the outlet of the cooler-buncher is an end-plate electrode, and

an intersecting, smaller, secondary quadrupole, which maintains the transverse emittance of

the ions before they are released to a high-vacuum further down the beamline.

The cooler-buncher is filled with a low-pressure helium buffer gas. Interactions with this gas

thermalise the ions as they are directed downstream to a ‘trapping region’ by an axial field

applied along the length of the cooler-buncher. Within the trapping region, a stronger axial

field gradient is applied to the ions by the last two segments of each rod and the secondary

quadrupole. A +20V potential can be applied to the end-plate electrode which produces a

potential well used to trap ions into bunches. Lowering the end-plate potential to 0V releases

the bunched ions. Typically, ions will be accumulated for around 100ms before the bunched

ions are released; the end-plate voltage will be set to 0V for 100µs, producing bunches with a

temporal width of 10-20µs [54]. Figure 4.6 demonstrates how the trapping potential is used to

accumulate ions into bunches.

There are two key advantages of using cooled ion bunches in laser spectroscopy experiments.

Firstly, as the bunches have a limited temporal width, a time gate may be applied to the

recorded data. This time gate corresponds to the time period during which the ion bunch was

passing directly in front of the photo-multiplier tube used to detect photons. This method,

therefore, allows for suppression of background statistics in the measured spectra, which may

be attributed to scattered laser photons, and has been shown to reduce the background statis-

tics by up to four orders of magnitude [55]. Time-gating will be discussed in more detail in a

subsequent chapter.
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Figure 4.6: A pictorial representation of how a trapping potential is used to accumulate ions

into bunches in the cooler-buncher.

The second advantage of using the cooler-buncher is a natural consequence of reducing the

kinetic energy of the ions; the Doppler broadening of spectral peaks is reduced:

E =
1

2
mv2, (4.4.1)

∴
dE

dv
= mv, (4.4.2)

∴ ∆E = mv∆v. (4.4.3)

A reduction in the spread of the ions’ kinetic energies achieved by cooling directly corresponds to

a reduction in the velocity spread of the ions, which accordingly reduces the Doppler broadening

of the resonance peaks and improves emittance for beam transport.

4.5 The Laser Spectroscopy Line

Once extracted from the cooler, the ion bunch can be directed to the laser spectroscopy line. A

schematic overview of the laser spectroscopy beamline is provided in figure 4.7. A laser beam of

fixed frequency is directed upstream from the laser cabin along the beamline. The laser beam
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and ion bunches overlap one another but propagate in opposite directions. This is an anti-

collinear geometry, hence the technique is referred to as ‘anti-collinear laser spectroscopy’. The

‘anti’ prefix is often neglected, despite the fact that ‘collinear laser spectroscopy’ also exists,

where the laser beam and ion beam co-propagate in the same direction. The main components

of the laser spectroscopy line are the acceleration electrodes, the charge-exchange-cell (CEC),

the light interaction region, and the laser cabin.

Figure 4.7: A schematic representation of the elements that form the laser spectroscopy line.

The acceleration electrodes and laser cabin are positioned at the upstream and downstream

ends of the beamline, respectively.

On the laser line ion bunches are decelerated or accelerated by a tuning potential applied to

electrodes upstream from the charge-exchange-cell and to the cell itself. This tuning potential

is variable and is altered through a pre-specified range of voltages during a resonance scan.

This is because resonances are detected (and hyperfine spectra mapped) by Doppler tuning

the frequency of the laser in the reference frame of the atom by applying this tuning voltage.

The total voltage applied to the ion is equal to the cooler voltage minus the tuning voltage.

Consequently, the ions may be accelerated or decelerated by the tuning voltage according to its

polarity, thus providing access to a range of laser frequencies in the reference frame of the atom

despite the the frequency of the laser in the lab frame remaining the same. Accordingly, if one

were to scan through a range of tuning voltages, one voltage increment per bunch of ions, each

bunch would experience a different frequency of laser light. Resonances (the absorption and

subsequent emission of a photon by an atom/ion) will be achieved when the observed frequency

of the laser corresponds to the energy of a hyperfine transition. Therefore, one can map the

hyperfine structure of an atom/ion by measuring the number of photons detected by the photo-

multiplier tube as a function of the tuning voltage applied to the ion bunch. To ensure that a

sufficient number of counts are detected to form a spectrum, sweeps through the tuning voltage

range are repeated many times for any given measurement.
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4.5.1 The Charge-Exchange-Cell

The charge-exchange-cell is mounted upon an electrically insulated platform, which allows a

tuning potential within ±4 kV to be applied to the cell for Doppler tuning the ions before neu-

tralisation. The cavity of the charge-exchange-cell is filled with a low-pressure alkali vapour

(typically sodium or potassium), which acts to neutralise the ions as they move downstream to

the light interaction region.

The charge-exchange process is utilised when atomic transitions need to be studied rather than

ionic transitions; the energies required to probe their ionic electron structure may be inaccessi-

ble/inconvenient using the photon energies producible using the laser, or the ionic transitions

available may not be sensitive to the nuclear properties. The spectral peaks obtained when

measuring ions are symmetric, whereas those obtained when measuring neutralised atoms often

exhibit an asymmetry. Symmetric profiles are preferable because the process of fitting models

to the spectra is simplified, however for the reasons discussed above it is not always preferable

to study ionic systems. This is the case for chromium and in this experiment the chamber of the

charge-exchange-cell was filled with low-pressure potassium vapour to facilitate neutralisation.

As such, it is important to understand the mechanisms that cause the asymmetry so that it

may be accounted for it when fitting models to the spectra.

There are two mechanisms by which the incoming ions may be neutralised: ground-state charge

exchange and excited-state charge exchange. Examples of these mechanisms are as follows:

Ground-state charge exchange mechanism:

Cr+ +K → Cr(Ground State) +K+ − δE. (4.5.1)

Excited-state charge exchange mechanism:

Cr+ +K → Cr(Excited State) +K+ − (δE +∆E). (4.5.2)

If direct population of the ground state is achieved via the ground-state mechanism, a small

amount of kinetic energy corresponding to the difference between the ionisation potentials of

chromium and potassium, δE, is taken from the beam. Regardless of which charge-exchange

pathway is taken this loss will occur, therefore this energy loss does not manifest itself as a

source of asymmetry in the spectra. Alternatively, via the excited-state mechanism, the ground
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state is populated indirectly as an excited neutral atom is produced. As the excited state elec-

tron relaxes to the ground state, it emits a photon with an energy corresponding to the energy

separation of the two states, ∆E, and an equivalent amount of energy is taken from the kinetic

energy of the beam in addition to δE [56].

Accordingly, through this excited-state pathway, a subset of the atoms in the beam have less

kinetic energy and require additional acceleration before they achieve resonance; a higher tun-

ing voltage is therefore required. This excited-state exchange phenomenon manifests itself in

a spectrum as an asymmetry of the resonance peaks, which is caused by unresolved ‘satellite

peaks’ in the spectra. The frequency offset between the resonance peak and a satellite peak

corresponds to the difference in energies between the electronic ground state and the excited

state occupied during neutralisation. These satellite peaks become particularly pronounced at

high vapour pressures and temperatures, which result in more significant peak asymmetries. If

these satellite peaks are left unaccounted for they may result in an incorrect determination of

the hyperfine parameters and centroid positions of the spectra in the fitting process.

The probability, P , that upon neutralisation an electron will occupy an excited state is modelled

using Poisson statistics:

P =
λke−λ

k!
, (4.5.3)

where λ is the expected rate of occurrence, e is Euler’s number, and k is the number of occur-

rences.

It is possible that satellite peaks may be present in the spectra of this work as a result of

these excited-state charge exchange mechanisms. In order to address this, analysis has been

performed to determine how these satellite peaks should be accounted for when modelling the

hyperfine spectra.

4.5.2 The Light Interaction Region

Once neutralised, the atoms drift downstream and into the light interaction region. The light

interaction region is formed of a vacuum chamber and a photo-multiplier tube. The inside of

the chamber is painted black to minimise the number of photon scattering events detected by

the photo-multiplier tube. Resonance photons emitted by fluorescing atoms are focused into

the photo-multiplier tube by a series of lenses.
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In order to maximise the resonance detection rate, it is necessary to maximise the number of

atoms interacting with the laser. This is achieved by optimising the ion/atom delivery rate

down the beamline, and ensuring that the beam and laser beam are aligned and overlapping

one another. Alignment is achieved using a series of three apertures positioned in parallel to

one another. Two adjustable apertures are located within the laser cabin directly downstream

from the entrance to the light interaction region. A third aperture, with a 1mm fixed diameter,

is positioned within the light-interaction region. The third aperture can be manually lowered

into (and raised out of) the light interaction region. Alignment of the laser beam is achieved by

tuning the angles of steering mirrors within the laser cabin so that the path of the laser beam

intersects all three apertures.

A series of detectors are positioned throughout the beamline and are used to maximise the ion

beam transport efficiency. The voltages of steering electrodes positioned along the beamline are

manually adjusted and the number of ions/atoms detected is monitored using either Faraday

cups, a silicon detector, or a MagneToF detector. The transport efficiency is maximised by

tuning the steering electrodes sequentially, starting from the upstream end of the IGISOL and

ending at the laser spectroscopy line. Finally, to maximise the overlap between the atom/ion

beam and the laser, the alignment of the beam is tuned through the 1mm aperture located in

the light interaction region using the MagneToF detector. The 1mm aperture is raised out of

the path of the atoms/ions/laser prior to measurements being taken.

4.6 Laser Light Production

As mentioned previously, a tuning voltage is applied to the ions of interest prior to neutral-

isation in the charge-exchange-cell to Doppler tune them into resonance with the laser. The

laser light can only be Doppler tuned through a relatively small range of frequencies, so it is

key that the frequency of the light produced by the laser is as close to the desired range of

frequencies as possible. The laser used in this series of experiments was a continuous-wave

titanium-sapphire laser (Matisse 2 TiSa), henceforth referred to as the TiSa. The TiSa was

pumped using a neodymium-doped yttrium aluminium (Nd:Y3Al5O12) laser; henceforth re-

ferred to as the ‘Nd:YAG’. The laser light produced by either laser is directed along the desired

path using a series of specialised optics, which are optimised to reflect light within a specific

range of frequencies.
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Figure 4.8: A pictorial representation of the elements of Matisse 2 TiSa laser system. The
diagram illustrates how the laser light interacts with each element and cycles within the cavity
[57].

With reference to figure 4.8, it can be seen that pump laser light from the Nd:YAG enters the

Matisse TiSa 2 laser box (from the left) and is reflected off of a series of pump beam mirrors,

which deflect the pump laser into the TiSa crystal through the backside of a folding mirror.

Once the pump laser has been focused into the TiSa crystal it will begin fluorescing. The

pump laser ensures that the number of electrons occupying a meta-stable energy state is larger

than the number of electrons occupying the ground state of the lasing medium. This is known

as population inversion and is a condition that must be maintained for sustained stimulated

emission to take place. The fluorescent light produced is cycled within the laser cavity resulting

in the amplification of the power of the laser light. An output coupler is integrated into this

cycling pathway and allows a fraction of the light to exit the laser head whilst reflecting the

rest back into the laser cavity. Following amplification via the crystal, the folding mirrors are

used to align the rays of laser light parallel to one another. A thin etalon, a birefringent (BiFi)

filter and a thick etalon all act as band-pass filters to ensure that the correct cavity mode is

achieved so that the TiSa outputs a laser beam with the desired wavelength. A tuning mirror

(TM) is attached to a piezo and is movable in order to change the length of the cavity, which

fine-tunes the wavelength of the selected lasing mode.

During operation it is possible for the wavelength of the laser to drift. This may be caused

by thermal expansions, mechanical interference, changes in humidity/air pressure etc., all of

which may change the optical properties or relative positions of the individual components of

the laser, and hence the frequency of light the laser produces. To mitigate frequency drifts some

of the laser light is reflected into a reference cell, which comprises a highly stable, scannable
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optical resonator that behaves as an external frequency reference. The intensity of transmitted

light from the reference cell observes an Airy-function and the frequency of the laser is set to

correspond to a point on one of the fringes of a transmission resonance peak. If the frequency

of the laser drifts, the transmission intensity will change and control signals will be directed to

the tuning mirror piezo and another piezo actuator (the fast piezo) upon which a second laser

resonator mirror is mounted. The piezo then respond accordingly to counteract the change

in transmission intensity and corresponding frequency drift. This is known as “side-of-fringe”

frequency stabilisation [57].

The emission spectrum producible by the TiSa laser spans a range between 662 nm to 1050 nm

[58]. As mentioned above, the birefringent filter, henceforth referred to as the ‘BiFi’, the thick

etalon, and the thin etalon are the components used for frequency selection [57]. Frequency

selection using these elements is illustrated in figure 4.9.

The BiFi is a broad-range tuning element and dictates the approximate wavelength output

by the Matisse by narrowing down the band of frequencies in which lasing modes may exist

to several hundred GHz. Formed from three plates with differing thicknesses, the BiFi uses

the phenomena of birefringence and the polarization selective property of the laser resonator

for selection. In operation, as the laser light passes through the BiFi its polarisation becomes

rotated, the amount of rotation is dependent on the wavelength of light. Accordingly, the BiFi

may be tuned so that all wavelengths of light bar the desired wavelength become elliptically

polarised. The elements of the BiFi are mounted at the Brewster’s angle, and as such light

that is not linearly polarised in the correct plane suffers reflection losses during transmission

through the filter.

To further reduce the number of laser modes output by the TiSa, the thin and thick etalons are

used. The thick etalon is formed from two reflective surfaces which sit parallel to one another

and are separated by an air space. The distance between the surfaces is adjustable. The thin

etalon has a similar composition but differs in construction as it is a single composite optic, and

therefore the distance between the reflective surfaces is fixed by a solid connective medium. In

operation, incident light with wavelengths of nλ = 2d, where d is the separation between the

partially-reflective surfaces, are transmitted through each etalon, and all other wavelengths of

light destructively interfere.

It is often the case that the wavelength of the transition being studied lies beyond the emission
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spectrum of the lasing material. This is the case in this experiment as the 358 nm and 425 nm

transitions do not fall within the 662 nm to 1050 nm range producible using the TiSa. For this

reason, it is necessary to ‘frequency double’ the laser light to ensure that the energy of the laser

photons corresponds to the resonances being studied. To do this a frequency-doubling crystal

contained within a cavity is introduced into the experimental setup. The doubling crystal,

which is a non-linear medium, is capable of doubling the frequency of the light incident upon

it. This is achieved by a phenomenon known as “second harmonic generation” [59].

Figure 4.9: An illustration of how frequency selection is achieved from the broad spectrum

produced by the TiSa, using the birefringent filter, thick etalon, and thin etalon. This is a

re-illustration of a figure provided in the Matisse TiSa 2 user guide [57].

Second harmonic generation can be understood in terms of polarisation in a non-linear dielectric

material. When a source of laser light is incident upon a dielectric material, the electric field

of the laser photon interacts with charges in the material, displacing them and thus inducing

secondary electric fields. This is known as polarisation, P . The magnitude of P can be expressed
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in terms of a power series of the initial electric field strength E:

P = ϵ0χ
(1)E+ ϵ0χ

(2)EE+ ϵ0χ
(3)EEE+ ... (4.6.1)

where ϵ0 is the permittivity of a vacuum, χn is the electric susceptibility of a dielectric material,

and E is the wave equation of an electric field. Substituting the following wave equation into

the polarisation power series demonstrates how frequency doubling occurs in such a material:

E = E0 cos(kz − wt), (4.6.2)

∴ EE = E2 = E0
2 cos2(kz − wt) =

1

2
E0

2[1 + cos(2kz − 2wt)], (4.6.3)

∴ P = [ϵ0χ
(1)E0 cos(kz − wt)] + [

1

2
ϵ0χ

(2)] + [
1

2
ϵ0χ

(2)E0 cos(2kz − 2wt)]. (4.6.4)

The third term of the polarization expansion shows that a second order harmonic with frequency

2w is generated (i.e production of a photon with double the frequency of the incident light).

In physical terms, this process can be understood as a photon of frequency w entering the

non-linear dielectric and polarising the material by inducing oscillating dipoles, some of which

oscillate with a frequency 2w, and thus emit photons with frequencies that match the dipole

oscillation frequency.
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Chapter 5

Experimental Campaigns

For this investigation, three separate experimental campaigns were undertaken:

• An offline campaign performed in June 2020,

• An online campaign performed in January/February 2021 (henceforth referred to as the

January 2021 campaign),

• A second offline campaign performed in July 2021.

5.1 June 2020 Offline Experimental Campaign

The purpose of this preliminary experimental series was to test the efficiencies of various atomic

transitions in chromium in preparation for an online campaign. In order to be able to use the

cyclotron facilities at the IGISOL facility, one must apply for a limited amount of time in

advance, therefore it is necessary to investigate which transitions are the most suitable to be

studied well in advance as setting up and optimising the laser to study a particular transition

can be a time-consuming process. Measurements of 8 different transitions were made during

this campaign, the details of which are presented in table 5.1. When deciding which transitions

may be suitable candidates for study many different factors are considered, for example, transi-

tions with high Einstein-A coefficients and highly populated lower states are desirable as these

factors influence the spectroscopic efficiency. Furthermore, the number, and therefore relative

intensities of the resonance peaks in a spectrum is dictated by the J values of each state and

the nuclear spin, I. Fitting models to the spectra becomes increasingly difficult if resonance

peaks are low-intensity or poorly resolved, so these factors must also be taken into account

when considering the objectives of the experiment.
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Table 5.2 shows which stable isotopes were measured on each line, and figure 5.1 shows samples

of the spectra measured for 53Cr on each line. 53Cr is the only stable isotope of chromium

which produces a hyperfine spectrum due to it having a non-zero spin (I = 3/2), the remaining

stable isotopes (50Cr, 52Cr and 54Cr) produce a single fine structure peak as they are spin-zero

and therefore do not have hyperfine structures.

Transition Lower State Lower State Upper State Upper State Efficiency

(nm) Energy (cm−1) Energy (cm−1) Rank

429 3d5(6S)4s 7S3 0 3d5(6S)4p 7P2 23305.0026 6

427 3d5(6S)4s 7S3 0 3d5(6S)4p 7P3 23386.3419 4

425 3d5(6S)4s 7S3 0 3d5(6S)4p 7P4 23498.8156 2

361 3d5(6S)4s 7S3 0 3d4(5D)4s4p(3P ) 7P2 27728.811 3

359 3d5(6S)4s 7S3 0 3d4(5D)4s4p(3P ) 7P3 27820.1975 5

358 3d5(6S)4s 7S3 0 3d4(5D)4s4p(3P ) 7P4 27935.2412 1

301 3d44s2 5D4 8307.5753 3d4(5D)4s4p(1P ) 5D3 41575.099 8

300 3d44s2 5D3 8095.1842 3d4(5D)4s4p(1P ) 5D2 41408.9840 7

Table 5.1: A table of the atomic transitions in chromium investigated in the June 2020 offline

campaign. Information from the National Institute of Standards and Technology spectral line

database [39].

Isotope (A) 429 nm 427 nm 425 nm 361 nm 359 nm 358 nm 301 nm 300 nm

50Cr ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

52Cr ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

53Cr ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

54Cr ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

Table 5.2: A table showing the isotopes that were measured for each atomic transition during

the June 2020 offline campaign.
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Figure 5.1: Plots to show examples of the spectra produced when measuring 53Cr using each

atomic transition.

The efficiencies of each spectral line were determined by calculating the ratio between the

resonance count rate and the rate of atoms passing through the beamline. The number of

atoms present at the end of the beamline was determined using a MagneToF detector; this is

a highly sensitive time-of-flight ion detector capable of measuring beam currents in the sub-pA

range. The resonance rate and rate of atoms passing through the beamline were calculated

using the following equations:

Resonance rate =
Max channel counts− Background

Dwell time ·No. of scans ·No. of bunches released per step
, (5.1.1)

Atom count rate = (Count rate− Background rate) ·Ksf . (5.1.2)

The MagneToF device is highly sensitive, and for this reason, it cannot be exposed to the full

number of atoms used in a typical resonance scan without potentially being damaged. During

a resonance scan, the MagneToF is raised out of the beamline so that the full fraction of atoms
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may be utilized, whereas when it is lowered into the beamline it is necessary to reduce the num-

ber of atoms reaching the laser-spectroscopy line. This is achieved by de-tuning optics along

the beamline leading to the switchyard. The number of ions directed from the switchyard to

the cooler-buncher is measured using a Faraday cup. The number of ions is measured using this

Faraday cup when the optics are optimally tuned and when they have been de-tuned. A scaling

factor, Ksf , may be calculated by dividing the optimised ion current by the de-tuned ion cur-

rent. It is assumed that the corresponding number of ions present in the laser-spectroscopy line

during a resonance scan is equal to the number of ions detected by the MagneToF multiplied

by the same scaling factor. If a resonance scan is performed using a different isotope to the one

for which the beam currents had been measured using the switchyard Faraday cup, the scaling

factor is modified further to account for the differences in isotopic abundance within the target

material, e.g. if the alternative isotope is five times more abundant, it is assumed five times as

many atoms are directed to the laser-spectroscopy line.

The efficiency of each transition is ranked in table 5.2. The 358 nm line is shown to be the

most efficient in this series of experiments followed by the 425 nm line (the 358 nm line was

determined to be approximately 2.8 times as efficient as the 425 nm line). The high efficiency

of the 358 nm line makes it ideal for collecting large quantities of statistics in a limited period

of time. The 425 nm line’s high efficiency coupled with the fact that it produces a hyperfine

spectrum highly appropriate for fitting models to also makes it a good candidate for use in the

online campaign. Furthermore, the literature indicates that this transition has a suitable field

shift factor for calculating the charge radii of the isotopes being studied [60]. The 358 nm and

425 nm lines share the same Jl state, therefore complementary measurements may be taken on

the 358 nm line to rapidly obtain additional statistics to be used when modelling.

5.2 January 2021 Online Experimental Campaign

The purpose of this campaign was to make measurements of the hyperfine structures of the non-

stable isotopes of chromium. The isotopes produced and measured include: 48Cr, 49Cr, 50Cr,

51Cr, 52Cr, 53Cr, and 54Cr. Initially, measurements of the hyperfine spectra of 48−53Cr were

made on the 358 nm line, and during the campaign, the transition being probed was changed

to the 425 nm line. The reason for this is discussed in the previous section: the 425 nm line

has a suitably high efficiency, produces a hyperfine spectrum that allowed for the extraction

of hyperfine parameters, and as it was later determined has a field shift factor more suitable
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for extracting the changes in mean-square charge radii from the measured isotope shifts than

the 358 nm line. Measurements of 48−54Cr were made on the 425 nm line. Examples of the

hyperfine spectra measured on each line are given in figures 5.2 and 5.3.

During the experiment, multiple measurements are taken for each isotope, and reference scans

are made of the stable isotopes throughout the campaign, between the measurements of the

isotopes of interest. When measuring on the 358 nm line 50Cr and 52Cr were used as the ref-

erence isotopes, whereas when measuring on the 425 nm line 50Cr and 54Cr were used as the

reference isotopes. The reason for taking reference measurements is that during the experiment,

systematic drifts may result in the spectra shifting slightly in frequency over the course of the

experimental run. If reference scans were simply made at the start or the end of an experimen-

tal run, these drifts could impact the isotope shifts extracted. Regular reference measurements

of the stable isotopes provide anchors from which the isotope shifts of the isotopes of interest

can be calculated, therefore mitigating the potential for systematic drifts to impact the results.

Towards the end of this campaign, attempts were made to measure the hyperfine spectrum of

55Cr. The target material was swapped to the 54Cr enriched target to produce the isotope

via a (d,p) stripping reaction, that is to say, the target is impinged by deuterons rather than

protons allowing the neutron of a deuteron to be captured by a 54Cr nucleus in the target,

thus producing 55Cr. Reference measurements were made using 54Cr. Unfortunately, it was

not possible to measure the hyperfine spectrum of 55Cr. The measured spectra do not exhibit

resonance peaks due to high relative background counts, this being in spite of efforts made

during the experimental run to improve the quality of the measurements, such as optimizing

the alignment of the laser to suppress background laser scatter, re-tuning the optics along the

beamline, and taking steps to reduce the number of impurities present in the beam.
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Figure 5.2: Plots to show examples of the hyperfine spectra obtained from each isotope of

chromium when measured using the 358 nm transition.
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Figure 5.3: Plots to show examples of the hyperfine spectra obtained from each isotope of

chromium when measured using the 425 nm transition.

The spectra obtained from this experimental campaign have features which make analysis dif-

ficult, for example, the peaks exhibit large asymmetries attributed to high-intensity satellite

peaks (as can be seen in figures 5.2 and 5.3) and are generally poorly resolved. This made fitting

models to the data very difficult. The hyperfine parameters and isotope shifts determined from

preliminary analyses were heavily dependent on the properties of the model being used and

were repeatedly inconsistent with the known literature values. For this reason, it was decided

that additional offline measurements would be made of the stable isotopes of chromium. If
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high-quality spectra were obtained in these remeasurements, it would be possible to use the

results determined from the analysis of these spectra to constrain the models being fitted to

the spectra obtained in the January 2021 campaign. It was hoped that this would simplify the

modelling process and yield results that are consistent with the known literature values.

5.3 July 2021 Offline Experimental Campaign

The purpose of this campaign was to take additional measurements of the stable isotopes of

chromium following the online campaign in January 2021. Measurements were made solely on

the 425 nm line as by this point it had been established that the field shift factor for the 358 nm

transition was not suitable for the extraction of charge radii from the isotope shifts (as will be

outlined in the results section).

During the time that elapsed between the January 2021 and July 2021 campaigns, some minor

improvements were made to the data acquisition system (DAQ) on the laser spectroscopy

setup, which improved the quality of the hyperfine spectra that were recorded as can be seen in

figure 5.4. The improvement in the quality of the measured spectra can be attributed to three

things: the first is that the cooler-buncher voltage divider had been upgraded. The purpose

of this component is to reduce the magnitude of the read-voltage of the cooler-buncher to one

which can be handled by the inputs of the DAQ without overloading the circuitry. The second

contribution is that a capacitor connected to the high-voltage platform and ground had been

installed, this had the effect of smoothing out the platform voltage. The third factor was that

the pressures and temperatures in the charge-exchange-cell appear to have been lower in the

July 2021 campaign, as will be established in the subsequent satellite peak analysis. As a result

of these contributions, the offline data allows for a much more precise determination of the A

and B hyperfine parameters as well as the centroids of each spectrum.
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Figure 5.4: Plots to show the hyperfine spectra of 53Cr measured on the 425 nm line in the

January 2021 (top) and the July 2021 (bottom) experimental campaigns.
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Chapter 6

Analysis Methods

6.1 Least-Squares Fitting

A model may be fitted to the data in order to extract properties from the spectra such as the

level of background noise in the spectrum, the relative intensities of each peak in the spectrum,

the full width at half maxima of each peak, the A and B hyperfine parameters, and the centroid

of the spectrum.

There are multiple methods that may be employed when modelling a hyperfine spectrum, all

similar but with minor amendments which may result in more accurate fitting results, for ex-

ample, it may be appropriate to modify the complexity of the model used to fit the data; some

atomic transitions produce hyperfine spectra with many unresolved and overlapping peaks,

which if modelled to too high a complexity, due to there being too many competing fitting

parameters, may result in the modelled parameters having exceedingly high associated errors.

This in turn makes it difficult to draw strong conclusions from the data. In such instances, the

models fitted the spectra may be simplified by using less mathematically complex line shapes

e.g. Lorentzian rather than Voigt.

The fitting routines used in this analysis all operate on the premise of χ2 minimisation, which

is to say that the fitting parameters output by the fitting routine provide a model fit that best

represents the trends of the data taking into account the magnitude of the associated error on

each data point. The value of χ2 is given by:

χ2 =

n∑
i=1

(
xi − µi

σi

)2

, (6.1.1)
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where xi is an observed experimental value, µi is an expected value derived from the model,

and σi is the uncertainty associated with the observed experimental value, which is given by

√
xi as this experiment is a counting experiment and therefore observes Poisson statistics.

The χ2 is divided by the number of degrees of freedom, which is calculated by subtracting the

number of fitting parameters from the number of data points used in the fitting, to give the

reduced χ2. The reduced χ2 is considered optimal when it has a value of 1, and it is the reduced

χ2 which is used to assess how likely the fit describes the data.

The χ2 minimisation routine utilises a least squares fitting imported from the Python module

“SciPy”. The least squares fitting can be used for non-linear, multi-variable functions, such as

the model used to describe a hyperfine spectrum. In this case, the least-squares fitting can be

used to best determine the values of the model parameters for the peak FWHM, background

statistics in the spectrum, hyperfine peak intensities, hyperfine A and B parameters, and the

centroid of the spectrum through an iterative process used to minimise the distance between

the model fit and experimental data points.

For example, the function used to model a particular hyperfine spectrum may be defined as:

y(x) = f(x, c1, c2, c3, ..., cn), (6.1.2)

where y is the number of counts detected, x is the observed laser frequency, and the c terms

represent the additional variables in the model such as the hyperfine parameters. This function

would give y points:

y1 = f(x1, c1, c2, c3, . . . , cn), (6.1.3)

y2 = f(x2, c1, c2, c3, . . . , cn), (6.1.4)

y3 = f(x3, c1, c2, c3, . . . , cn), (6.1.5)

... (6.1.6)

yn = f(xn, c1, c2, c3, . . . , cn). (6.1.7)

Due to the limitations of the model function and other limitations which hinder the quality of

the measured spectra, each experimental data point will differ somewhat from the value output

by the model function for that particular x value. For a given data point this difference, the
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residual, may be defined as:

Ri = yi − f(xi, c10, c20, c30, ..., cn0), (6.1.8)

where c10, c20, etc. represent the values of the variables initially used. The residual value can

then be minimised by using a Taylor series to determine how to optimise the values of the

function variables [61]:

yi = f(xi, c1, c2, . . . , cn) = f(xi, c10, c20, ..., cn0)+
∂f

∂c1
·∆c1+

∂f

∂c2
·∆c2+· · ·+ ∂f

∂cn
·∆cn, (6.1.9)

where ∆cn is a correction to the initial value used for a given variable:

cn = cn0 +∆cn. (6.1.10)

Using equation 6.1.8, the function f(xi, c10, c20, ..., cn0) in equation 6.1.9 may be replaced with

yi −Ri, which gives the following when rearranged:

∂f

∂c1
·∆c1 +

∂f

∂c2
·∆c2 + · · ·+ ∂f

∂cn
·∆cn = Ri. (6.1.11)

The derivatives in equation 6.1.11 may be evaluated for each value of x, giving a system of

linear equations:

∂f(x1)

∂c1
·∆c1 +

∂f(x1)

∂c2
·∆c2 + · · ·+ ∂f(x1)

∂cn
·∆cn = R1, (6.1.12)

∂f(x2)

∂c1
·∆c1 +

∂f(x2)

∂c2
·∆c2 + · · ·+ ∂f(x2)

∂cn
·∆cn = R2, (6.1.13)

... (6.1.14)

∂f(x3)

∂c1
·∆c1 +

∂f(x3)

∂c2
·∆c2 + · · ·+ ∂f(x3)

∂cn
·∆cn = Rm. (6.1.15)

These linear equations may be solved in a matrix:



∂f(x1)
∂c1

∂f(x1)
∂c2

∂f(x1)
∂cn

∂f(x2)
∂c1

∂f(x2)
∂c2

∂f(x2)
∂cn

...
...

...

∂f(xm)
∂c1

∂f(xm)
∂c2

∂f(xm)
∂cn





∆c1

∆c2

...

∆cm


=



R1

R2

...

Rm
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The expression above may be written in terms of the three matrices: the matrix of differentials,

also known as the Jacobian matrix, J , the matrix of ∆c values, ∆C, and the matrix of residuals,

R:

J ·∆C = R. (6.1.16)

In order to solve the equations to find the solutions of ∆C, J may be transformed so that it is

square [62]:

(JTJ)∆C = JTR, (6.1.17)

∴ ∆C = (JTJ)−1JTR, (6.1.18)

Once ∆C has been solved, the c values can be used to recalculate the residual values. This

process is repeated for a significant number of iterations until the results begin to converge

upon a solution (i.e. when the reduced χ2 approaches a minimal value).

6.2 Data Processing

Prior to the models being fitted to the measured spectra, the raw data recorded must be

organised and processed so that a suitable spectrum is produced. When processing the data it

is possible to apply corrections to the data where necessary. This is discussed in more detail

below.

6.2.1 Time-of-Flight Time Gating

When a bunch is released from the cooler it has a temporal width of approximately 10µs, how-

ever, the period following the release of each bunch during which the data acquisition system

records data for a given bunch is 200µs. Although the rate of counts detected by the PMT will

be the greatest during the window of time during which the bunch is passing directly in front

of it, background counts, which may be attributed to scattered laser light, will also contribute

to the recorded statistics across the whole 200µs period. The effect these background statistics

have in obscuring resonant photon counts in a spectrum can be significant, particularly when

the resonant photon detection rate is comparable to the scattered photon detection rate, as may

be the case if a particularly weak atomic transition or low yield isotope is being investigated.

The time-of-flight profile for a scan of 49Cr is provided in figure 6.1. An optimised time gate can
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be applied to this data set so that only the counts detected between 48µs and 58µs from cooler

release (the peak) are included in the spectrum. The number of counts in this peak account

for only 6.958% of the total number of counts in this data file. A comparison of the spectra

produced when using the optimised time-gated data vs the non-optimised time-gated data (the

200µs measurement period acts as a hardware imposed time-gate) is provided in figure 6.2. It

can be seen that features indistinguishable in the non-time-gated spectrum become pronounced

once optimised time-gating has been applied and the mass of background statistics eliminated.

The number of background counts present in a spectrum may be reduced by up to four orders

of magnitude using this method compared to using a continuous beam or no time gate being

applied.

Figure 6.1: An example of a time-of-flight spectrum: the number of photons detected by the

photo-multiplier tube as a function of the time elapsed since bunch release from the cooler. The

time gate to be applied is highlighted in red.
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Figure 6.2: A plot for comparison of the spectra produced by the same run file when applying

an optimised time gate vs the non-optimised time gate. For ease of comparison, each spectrum

shown has had the background counts removed so that the features shown in each spectrum

are offset to a similar value on the y-axis.

6.2.2 Voltage-to-Frequency Conversion

It is necessary to perform a voltage-to-frequency conversion. As discussed previously, the atoms

are brought to resonance by Doppler tuning them using a tuning voltage, Vtuning, before they

are neutralised in the CEC. As such, data may initially be presented as the number of counts

detected by the PMT as a function of tuning voltage, however, to perform meaningful analysis

this needs to be converted into the number of counts as a function of frequency. This is

achieved using a Python script known as the “time gating and frequency conversion program”,

or “conversion program”. The frequency of the laser in the reference frame of the atoms is

related to the applied potential by the following:

v = vl

(
1 + α+

√
2α+ α2

)
, (6.2.1)

where,

α =
eVtotal
mc2

, (6.2.2)
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v is the observed frequency, vl is the frequency of the laser, Vtotal = (Vcooler − Vtuning), e is the

charge of an electron, m is the mass of the atom, and c is the speed of light in a vacuum. The

measured values of Vtuning, Vcooler, and vl may have a correction applied in order to account

for systematic effects in the data acquisition; this is discussed in more depth below.

6.2.3 Tuning Voltage Correction

The tuning voltage actually applied to the ions differs slightly from the tuning voltage pro-

grammed to be applied. To account for this discrepancy, for each experimental run a full sweep

through the range of tuning voltages to be applied is made, and for each voltage increment

the corresponding read-back of the tuning voltage through a voltage divider is saved within a

file known as the “calibration file”. A reading of the wavenumber of the laser for a given run

is also recorded in this file to be used in the conversion calculation. A reading of the cooler

voltage is also recorded in this file. The conversion program produces a plot of the measured

tuning voltages as a function of the programmed tuning voltages and fits a line of best fit to

the data. The values of tuning voltage used in the remainder of the conversion calculation are

those provided by the line of best fit. An example of a tuning voltage calibration plot is shown

in figure 6.3.

Figure 6.3: An example of a calibration plot from which the corrected tuning voltages may be

determined for the voltage-to-frequency conversion calculation.
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6.2.4 Cooler Voltage Correction

When extracting isotope shifts and hyperfine parameters from a spectrum, it is also important

to ensure that the cooler voltage used in the frequency conversion calculation is appropriate.

The voltage reading of the cooler-buncher varies throughout the duration of a scan and for this

reason, a reading of the cooler voltage is recorded every time a photon is detected during a run;

this is then saved within a file known as the “run file”. The average of these recorded values

is taken to be the cooler voltage to be used in the voltage-to-frequency conversion calculation.

For each detection event, the following information is also recorded in the run file: the absolute

time of the event, the programmed tuning voltage, the bunch number, and the time elapsed

between the bunch being released from the cooler to the detection being made.

As an additional insurance, applying a small corrective offset to the cooler voltage may be neces-

sary before frequency converting the data files. The magnitude of this offset can be determined

by a simple calibration in which the hyperfine spectra of isotopes with very well-known hyper-

fine parameters are measured. For example, the hyperfine parameters of 171,173Yb are known to

a high degree of precision in the literature [63], therefore by measuring these spectra, extracting

the hyperfine parameters determined for a range of corrective offsets, and then comparing them

to the literature values, one can extrapolate what corrective offset should be applied to the

cooler voltage to achieve the best agreement between the experimental and literature hyperfine

parameters.

Measurements of the hyperfine spectra of 171,173Yb ions were taken at the end of both the

January 2021 and July 2021 experimental campaigns. The transition for which measurements

were taken was Jl = 4f146s2S1/2 → Ju = 4f146p2P1/2, also known as the 369.419 nm line. The

4f146s2S1/2 state is the ground state of ionic ytterbium, for which the A hyperfine parameters

are well known. The value of the A hyperfine parameters were taken to be the same as the

literature values used in the work of de Groote [63].

In this analysis, the Yb spectra were fitted simultaneously for each data set. The January 2021

data set contained 3 measurements of the 171Yb spectrum and 4 measurements of the 173Yb

spectrum. The July 2021 data set contained 6 and 5 measurements of the 171Yb and 173Yb

spectra, respectively. A consistent fitting procedure was adopted for both the January 2021

and July 2021 measurements; for each data set Lorentzian line shapes and Racah intensities

were used to model the resonance peaks, all of the available run files were fitted simultaneously
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with the Al hyperfine parameters being modelled as a single fitting parameter for each isotope,

and the Au : Al ratio being modelled as a single fitting parameter for all of the run files of

each isotope. Additional fitting parameters used when modelling satellite peaks did not need

to be considered in the fitting procedure as ionic species of Yb were used, meaning they did not

undergo charge exchange, which otherwise could have resulted in satellite peaks being present

in the spectra.

Figure 6.4 shows the difference between the experimental and literature values of the A hy-

perfine parameters of the ground states of 171,173Yb for the January 2021 and July 2021 data

sets. The weighted mean of the x-axis intercepts of the two lines of best fit was taken to be the

correct cooler voltage correction.

The weighted mean, x̄, of n variables, xi, with associated errors, σi, is calculated using the

following equation:

x =

∑n
i=1 (wi · xi)∑n

i=1 wi
, (6.2.3)

where wi is a weighting factor calculated as:

wi =
1

σi
2
, (6.2.4)

where σi is the error associated with xi. The standard error of the weighted mean is given by:

σx =

√
1∑n

i=1 wi
. (6.2.5)

The intercepts of the lines of best fit with y = 0 for the 171Yb and 173Yb data were inconsistent

with one another in both the January 2021 and July 2021 data. For this reason, the standard

error of the weighted average was inflated using the Birge ratio, σB , defined as [64]:

σB =

√
1

n− 1

∑ (xi − x̄)2

σ2
i

. (6.2.6)

The cooler voltage corrections were taken to be (37 ± 5)V and (−21 ± 5)V for the January

2021 data and July 2021 data, respectively. The large difference in cooler voltage corrections

is unsurprising as different voltage dividers were used in each campaign.

It is noteworthy and unexpected that in both analyses the cooler-voltage corrections determined

using 171Yb and 173Yb were inconsistent with one another. This suggests that an additional
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calibration must be performed. As the only other variable used in the voltage-to-frequency

conversion is the wavenumber of the laser, a similar calibration was performed to determine

the corrective offset that needed to be applied to the recorded value of the wavenumber in each

calibration file.
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Figure 6.4: A plot of the discrepancy between experimental A hyperfine parameters measured

in January 2021 (top), and July 2021 (bottom), with literature A hyperfine parameters, as a

function of cooler voltage correction for 171,173Yb. The coloured bands represent the combined

statistical uncertainties for the data points. January 2021: the weighted average of the x-axis

intercepts gives a cooler voltage correction of (37 ± 2)V, with a Birge inflated error of 5V.

July 2021: the weighted average of the x-axis intercepts gives a cooler voltage correction of

(−21± 2)V, with a Birge inflated error of 5V.
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6.2.5 Laser Wavenumber Correction

In order to determine the corrective offset that needs to be applied to the wavenumber used

in the conversion calculation, the cooler voltage corrections determined previously are applied

in the conversion program, and similarly to the previous stage of the analysis, the differences

between the literature and experimental hyperfine parameters are determined for 171Yb and

173Yb for a range of wavenumber corrections. However, unlike the previous stage of the analysis,

the discrepancy between these ‘experimental-literature difference’ values for the two isotopes is

taken and plotted as a function of the wavenumber correction. This data is then fitted linearly

to determine the wavenumber correction to be applied in the conversion calculation. The y = 0

intercept of the plot described gives the wavenumber correction that results in the lines of best

fit from figure 6.4 converging at the previously determined cooler voltage corrections. Figure

6.5 shows the plots used to determine the appropriate wavenumber corrections for the January

2021 and July 2021 data sets.

By repeating the analysis performed to determine the required cooler voltage correction, but

having applied the appropriate wavenumber corrections for the January 2021 and July 2021

data, it can be seen in figure 6.6 that the lines of best fit for 171Yb and 173Yb now converge

at the weighted average cooler voltage corrections determined previously, thus confirming that

the wavenumber corrections calculated are appropriate. It is noted that this approach does

result in a very small discrepancy between the point of intersection of the fitted lines and the

y = 0 line, however the analysis required to eliminate this discrepancy would be much more

challenging and time consuming and was deemed unjustifiable considering that the difference

in results would be insignificant.

83



Figure 6.5: A plot to show the discrepancy between the ‘experimental-literature difference’

values for 171Yb and 173Yb as a function of wavenumber correction for the January 2021 (top)

and July 2021 (bottom) data sets. The appropriate wavenumber correction as determined from

the y = 0 intercept of the line of best fit is (−2 ± 1) cm−1 for the January 2021 data, and

(−1.9± 0.9) cm−1 for the July data.
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Figure 6.6: A plot of the discrepancy between experimental A hyperfine parameters measured

in January 2021 (top), July 2021 (bottom), and literature A hyperfine parameters as a function

cooler voltage correction for 171,173Yb, when an appropriate correction has been applied to

the wave numbers recorded in the calibration files. The coloured bands represent the combined

statistical uncertainties for the data points, the green line indicates the cooler voltage correction

to be applied in the frequency conversion calculation for the January 2021 data set.
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6.3 Satellite Peak Analysis

As discussed previously, satellite peaks in the spectrum correspond to electrons being promoted

to excited states in the atom. Therefore, the energy offset of a satellite peak relative to its par-

ent resonance peak must be equal to the difference in energy between the excited state and the

ground state. Whilst the energy offset between a satellite peak and its parent peak is isotope

independent, the frequency offset differs for each isotope being investigated. This is because the

voltage-to-frequency conversion factor, a value directly proportional to the energy-to-frequency

conversion factor, is also isotope dependent.

In order to determine the properties of satellite peaks present in the spectra obtained in Jan-

uary 2021 and July 2021, various analysis methods were performed. When modelling a series

of satellite peaks, the model should include a sufficient number of satellite peaks to be realistic,

but not so many that the model becomes too computationally complex for efficient analysis.

The number of satellite peaks modelled per resonance peak was set to 3.

In order to simplify the analysis to the greatest extent possible, only the spectra obtained from

even-N , stable isotopes of chromium were used. This is due to the fact that these spectra have

sufficient statistics for meaningful analysis, and as a consequence of the lack of a nuclear spin,

these isotopes do not exhibit a hyperfine splitting - only a single peak corresponding to the fine

structure transition. The hyperfine spectra produced by the odd-N isotopes contain unresolved

hyperfine peaks when measured on both the 358 nm and 425 nm lines; this is difficult to model,

even when not accounting for additional unresolved satellite peaks, therefore these spectra were

not used for determining the properties of any potential satellite peaks.

Initially, the analysis was performed on the data obtained from the July 2021 experimental

campaign. This was due to the fact that, as mentioned previously, hyperfine spectra obtained

from this campaign were better resolved than those obtained in the January 2021 campaign.

For each isotope, the analysis methods used were the following:

1. The spectra were fitted with a skewed Lorentzian function, assuming the presence of 1,

2, or 3 series of satellite peaks present in the spectra, with each series having a unique

energy offset;

(a) wherein the peak full-width-half-maxima (FWHM) and Poisson factors were fitting

parameters unique to each run file;
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(b) wherein the FWHM was a fitting parameter shared between all of the run files, and

the Poisson factors were unique for each run file;

(c) wherein the FWHM and the Poisson factor were fitting parameters shared between

all of the run files.

2. The spectra were fitted with a skewed Lorentzian, wherein the satellite peak offsets were

fixed to frequencies that corresponded to known, strong ground state transitions. This

method was repeated under two different conditions:

(a) wherein the Poisson factor is a unique fitting parameter for each run file and for each

transition;

(b) wherein the Poisson factor is a shared fitting parameter across all run files for each

transition.

As the data obtained in the July 2021 campaign was obtained using an offline source of ions,

therefore guaranteeing a high ion delivery rate to the laser spectroscopy station, it was possible

to take all of the measurements in this data set over a short period of time. The conditions

within the charge-exchange-cell were unlikely to fluctuate significantly over the period that

measurements were taken. For this reason, it is permissible to fit the data where the FWHM

and Poisson fitting parameters are shared across each run file as was done in methods 1(b) and

1(c).

In order to conclusively identify which atomic transition(s) contributed to peak asymmetry in

the data sets when using method 1, the following criterion needed to be met: the analysis must

produce a satellite peak energy offset which is consistent across each isotope analysed, and with

a known ground state transition. The results were deemed to be consistent if the three sigma

consistency condition was met:

|x1 − x2| < 3
√
δx21 + δx22, (6.3.1)

where xi is one value and δxi is its associated uncertainty. When multiple series of satellite

peaks were modelled, the magnitudes of the energy offsets were used when comparing the offsets

determined using each isotope e.g. the smallest offset determined using 50Cr was compared to

the smallest determined using 52Cr and 54Cr etc.

The second analysis method was based on the assumption that the relative intensities of the

satellite peaks for each transition, measured by their Poisson factors, correlate to the likelihood
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that the transition is the root of any peak asymmetries. For this analysis, nine different ground

state transitions were considered as potential roots of the observed asymmetries owing to their

high transition strengths (A-values greater than or equal to 107 s−1). Table 6.1 outlines the

properties of each of these transitions. The strength of a transition correlates to the lifetime

of its excited state, for example, on average an electron will relax from an excited state and

back to the ground state more quickly for a higher-strength transition than for a lower-strength

transition. It is therefore more likely that the electron is in the ground state prior to interacting

with the laser and achieving resonance for a higher-strength transition, thus making them more

likely candidates as the root of any peak asymmetries.

The candidate transitions used in this analysis were grouped into series as indicated in table

6.1. This is because the difference in the frequency offsets corresponding to each transition

within a series was less than 0.5MHz for a given isotope. Accordingly, the frequency offset cor-

responding to the average energy of the transitions within each series was used in this analysis.

These groupings of transitions will henceforth be referred to as the 194 nm series, 359 nm series,

and 427 nm series.

Series Wavelength Photon Energy Lower State Upper State Transition Strength

Name (nm) (eV) (cm−1) (cm−1) (107 s−1)

194.0451 6.389515 0 51534.400 1.718

194 nm 194.0561 6.389156 0 51531.500 1.719

194.0640 6.388895 0 51529.400 1.719

357.8686 3.463563 0 27935.242 14.83

359 nm 359.3485 3.449299 0 27820.198 14.95

360.5329 3.437969 0 27728.812 16.14

425.4336 2.913511 0 23498.817 3.148

427 nm 427.4797 2.899566 0 23386.343 3.062

428.9717 2.889481 0 23305.005 3.155

Table 6.1: A table to show the properties of the candidate ground state transitions used in the

satellite peak analysis. All values taken from Kurucz spectral line database [38].

6.3.1 July 2021 Satellite Peak Analysis Results

The satellite peak offsets determined from analysis methods 1(a), 1(b), and 1(c) are shown in

figure 6.7. Only method 1(c), assuming the presence of 3 unique sets of satellite peaks, pro-

duced satellite peak offset energies that were consistent for each isotope according to equation

6.3.1. However, each of these offset energies were very small and did not correspond to any
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of the ground state transitions found in atomic chromium. For this reason, these offsets were

deemed unsuitable for use in the remainder of the analysis.

Figure 6.7: A plot to show the satellite peak offset energies determined from analysis methods
1(a), 1(b), and 1(c) using the data collected in July 2021. Note: It was only possible to extract
offset energies for 52Cr using method 1(b) assuming 3 unique satellite peak offsets; the fitting
script was unable to optimise models for 50Cr and 54Cr.

Figure 6.8 shows the Poisson factors determined for each transition in analysis 2(a). The results

show that the 427 nm series of transitions dominates in each instance, however, the large error

bars overlap with those of the other transitions which have smaller Poisson factors. In either

case, the 359 nm series of transitions has a Poisson factor that is largely consistent with 0,

therefore this transition may be disregarded.
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Figure 6.8: A plot to show the Poisson factors determined for each transition as a function of

isotope using analysis method 2(a) and the July 2021 data set. The dashed lines and coloured

bands represent the weighted averages and their associated errors, respectively. The run files

for each isotope have been assigned an arbitrary value to aid presentation. The assigned value

reflects the order in which the measurements were taken.

Figure 6.9 shows the Poisson factors determined for each transition in analysis 2(b). These
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show a similar trend in that the 427 nm series of transitions dominate, followed by the 194 nm

and then 359 nm series of transitions, which again give Poisson factors consistent with 0. From

this set of results, it again appears that the 427 nm series of transitions is the most likely to

contribute to the peak asymmetry in the spectra. It is noted that the Poisson factors deter-

mined for each transition series should be isotope independent, therefore the lack of consistency

between the Poisson factors determined for the 194 nm series is noteworthy.

Figure 6.9: A plot to show the Poisson factors determined for each transition as a function of

isotope using analysis method 2(b) and the July 2021 data set.

The results from the satellite peak analysis of the July 2021 data show that there is little

asymmetry in the peaks of the spectra, this is evidenced by the fact that when the energy

offsets are free to assign themselves to their optimal value, they consistently have energies

much smaller than the smallest energy ground state transition, this occurs even when the

energy offsets across isotopes are consistent with one another. Furthermore, the Poisson factors

determined in analysis methods 2(a) and 2(b) are very small, which is indicative of little peak

asymmetry. For this reason, a similar analysis was performed on the January 2021 data collected

during the online experimental campaign; this data set exhibits significant asymmetry.
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6.3.2 January 2021 Satellite Peak Analysis Results

The measurements made in the January 2021 campaign were taken over a series of days, over

which the conditions in the charge-exchange-cell may have fluctuated. For this reason, it is not

appropriate to perform analysis methods 1(b) or 1(c) on this data set.

The satellite peak offsets determined from analysis method 1(a) are shown in figure 6.10. It

can be seen that regardless of whether 1, 2, or 3 unique satellite peaks are fitted there is(are)

no consistent energy offset(s) output by the fitting routines across all isotopes. Therefore the

conclusion drawn is that none of these offsets are appropriate to be used in further analysis.

Figure 6.10: A plot to show the satellite peak offset energies determined from analysis method
1(a) using the data collected in January 2021.

Figure 6.11 shows the results of analysis method 2(a). It can be seen that the weighted average
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of the Poisson factors is generally largest for the 359 nm series of transitions (the exception

being for 52Cr), but that this is generally closely followed by that of the 427 nm series of tran-

sitions. In all instances, the contribution of the 194 nm transitions is the smallest. There are

however large uncertainties associated with each of the data points, which make interpreting the

results more difficult. For this reason, the results of method 2(b) should be considered. As the

measurements made in this campaign were taken over an extended period of time, during which

the conditions within the CEC are likely to have fluctuated, it could be argued that it is not

appropriate to fit the data using shared fitting parameters for the Poisson factor, however, due

to the large error bars associated with the sporadic data points obtained from analysis method

2(a), it is argued that a more flexible approach to determining which series of transitions is the

root of the peak asymmetry should be considered.
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Figure 6.11: A plot to show the Poisson factors determined for each transition as a function

of isotope using analysis method 2(a) and the January 2021 data set. The dashed lines and

coloured bands represent the weighted averages and their associated errors, respectively. for

each series The run files for each isotope have been assigned an arbitrary value to aid presen-

tation. The assigned value reflects the order in which the measurements were taken.
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Figure 6.12: A plot to show the Poisson factors determined for each transition as a function of

isotope using analysis method 2(b) and the January 2021 data set.

As can be seen from figure 6.12, it is apparent that the energy offset of the 427 nm series of

transitions dominates, followed by the 359 nm series of transitions, and then the 194 nm series

of transitions. This result is in agreement with the parallel analysis performed on the data ob-

tained in July 2021. The high Poisson factor determined for the 359 nm series when analysing

the 50Cr spectra is anomalous as, as mentioned previously, this value should be independent of

the isotope being investigated.

In summary, analysis methods have been performed to determine the energy offsets of any

satellite peaks that may be present in the spectra. The analysis shows that the spectra obtained

in July 2021 do not exhibit significant peak asymmetries. That being said, according to analysis

methods 2(a) and 2(b), if any satellite peaks were to be modelled in these spectra, the energy

offset corresponding to the 427 nm series of transitions should be used. The January 2021

data set does exhibit significant peak asymmetry, and it is not as apparent as to which energy

offset these underlying satellite peaks should adopt for further analysis; analysis method 2(a)

suggests that the energy offset corresponding to the 359 nm or 427 nm series of transitions

could be used, whereas analysis 2(b) suggests that offset corresponding to the 427 nm series of
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transitions should be used. Taking into consideration both the January 2021 and July 2021 data

sets, this analysis would suggest that the energy offset corresponding to the 427 nm series of

transitions should be used as the appropriate satellite peak energy offset in subsequent analysis.

6.4 Extracting Nuclear Moments and Charge Radii

Having performed the appropriate calibrations required for the frequency conversion, and de-

termining the properties of any potential satellite peaks present in the spectrum, it was possible

to perform a full analysis using the data for all isotopes.

6.4.1 Fitting Even-N Spectra

The even-N spectra each contain one resonance peak as their nuclear spins are equal to zero.

The spectrum of each run file was fitted using a Lorentzian line shape and assuming the presence

of two satellite peaks. The decision to fit assuming the presence of two satellite peaks was based

on the fact that from the isotope shifts between 50Cr and 52Cr (measured on the 425 nm line

during the January 2021 campaign), it was apparent that using more than two satellite peaks

in the model does not significantly impact the isotope shifts extracted, as shown in figure 6.13.

The approximately 30MHz spread in the isotope shifts shown in figure 6.13 is a reflection of the

challenges associated with fitting and extracting information from the spectra measured in the

January 2021 campaign. Two satellite peaks were also modelled for the spectra obtained in the

July 2021 campaign; the satellite peak analysis showed that the Poisson factors were very small

for these spectra, therefore the amplitude of any further satellite peaks would be negligible.
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Figure 6.13: A plot to show the isotope shifts between 50Cr and 52Cr spectra as a function

of the number of satellite peaks modelled in each spectrum. The legend shows which run files

were used when calculating the isotope shifts. 50Cr was used as the reference isotope in each

case.

6.4.2 Fitting Odd-N Spectra

The odd-N spectra have a much more complex structure and are therefore more difficult to

model, particularly due to the fact that in all of the spectra obtained, there are no individually

resolved peaks. In this analysis, the spectra obtained from the January 2021 and July 2021

experimental campaigns were modelled separately, however, certain fitting parameters obtained

from the July 2021 data were used when modelling the January 2021 data. This is because, as

mentioned previously, the spectra measured in the July 2021 campaign are much more clearly

resolved meaning that the hyperfine parameters extracted were much more precise. When mod-

elling the spectra obtained in the January 2021 campaign, the fitting parameters corresponding

to the hyperfine parameters common to both the January 2021 and July 2021 data were fixed

to the values obtained from the July 2021 data.
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Figure 6.14: A schematic to illustrate the hyperfine level schemes produced on the 358 nm and

425 nm lines for an I = 3/2 nucleus.

The hyperfine spectra obtained for 53Cr, which was the only odd-N isotope measured in the

July 2021 campaign, were fitted using a model which had the following features:

• The 53Cr spectra measured on 425 nm line were fitted using Lorentzian line shapes, Racah

intensities, and assuming the presence of two satellite peaks per resonance peak.

• A single fitting parameter representing the ground state hyperfine parameter, Al, was

shared across all of the 53Cr spectra measured during this campaign.

• A single fitting parameter representing the ratio between the upper and lower state A

hyperfine parameters (henceforth referred to as the A-ratio), Au : Al, was shared across

all of the 53Cr spectra measured during this campaign.

• Single fitting parameters for each of the upper and lower state B hyperfine parameters,

Bu and Bl, respectively, were shared across all of the 53Cr spectra measured during this

campaign.
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As previously discussed, the 358 nm and 425 nm lines both originate from the ground state of

atomic chromium, as illustrated in figure 6.14, therefore it is possible to fit the spectra produced

on both lines simultaneously in such a way that the fitting parameters that represent transition

independent parameters, such as the ground state A and B hyperfine parameters for each

isotope, are shared across both transitions. This is not the case for the hyperfine parameters of

the upper states. This practice increases the number of statistics being used when optimising

these parameters, therefore yielding better results. A sophisticated model was used to fit the

odd-N spectra for both transitions obtained from the January campaign simultaneously. This

model had the following features:

• The spectra were fitted using Lorentzian line shapes, Racah intensities, and assuming the

presence of two satellite peaks per resonance peak.

• For each isotope, a single fitting parameter representing the transition independent ground

state hyperfine parameter, Al, was shared across each spectrum, with the exception of

53Cr. This Al parameter was fixed to the value obtained from the July 2021 analysis.

• For measurements made on the 358 nm line, a single fitting parameter representing the

358 nm A-ratio was shared across each spectrum. For the measurements made on the

425 nm line, the fitting parameter representing the 425 nm A-ratio was fixed to the value

obtained from the July 2021 analysis.

• For each isotope, a single fitting parameter representing the transition independent ground

state B hyperfine parameter, Bl, was used, with the exception of 53Cr. This Bl parameter

was fixed to the value obtained from the July 2021 analysis.

• For each isotope and transition, a single fitting parameter representing the transition-

dependent upper state B hyperfine parameter, Bu, was used, with the exception of 53Cr

on the 425 nm line. This Bu parameter was fixed to the value obtained from the July

2021 analysis.

• For each run file the Poisson factor, λ, was constrained to adopt a value within the range

of 0.62 and 0.78, and was assigned a a starting estimate of 0.7.

The spectra measured for all odd-N isotopes comprise unresolved resonance peaks on both the

358 nm and 425 nm lines. For this reason, it was appropriate to simplify the models in order to

avoid ‘over-parameterisation’, which is why Lorentzian line shapes and Racah intensities were

adopted.
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The Poisson parameters were limited in this analysis as a more preliminary analysis showed

that when left free they would assign themselves to a large range of values, which did not follow

any particular trend. Furthermore, when left free, the Poisson parameters may adopt values

well in excess of the value at which the magnitude of the first satellite peak exceeds that of the

resonance peak, which is unlikely and would result in the wrong assignment of the resonance

peak, thus shifting the centroid frequency. The Poisson parameter is directly related to the

conditions in the CEC. The Poisson factors determined in this analysis are large and therefore

indicative of high temperatures and pressures in the CEC, which results in less optimal spectra.

Additionally, as the conditions in the CEC change gradually, it would be expected that the

Poisson factors determined from each consecutive run file would follow a trend, whereas, in

reality, they appear to be much more sporadic. For this reason, it was appropriate to con-

strain the values that the Poisson parameter may adopt. As 50Cr was measured regularly for

both transitions, the weighted mean of the Poisson factors determined for this isotope was

calculated, this would be the starting estimate of the Poisson parameter assigned for each run

file. The range in which the parameter is constrained to is ±1σ, where σ is the standard er-

ror of the weighted mean inflated by the Birge ratio (λ could adopt a value between 0.62−0.78).

6.4.3 Calculating Isotope Shifts

As mentioned previously, reference scans of stable isotopes are made throughout the duration

of an online experimental run. The purpose of this is so that isotope shift calculations can be

performed using these reference scans, without which large periods of time may elapse between

scans of the isotopes of interest and the stable isotope(s), and therefore the isotope shifts deter-

mined may be susceptible to systematic drifts which alter the measured centroid of a particular

spectrum over time.

During the January 2021 experimental campaign, both 50Cr and 52Cr were used as reference

isotopes when making measurements using the 358 nm transition, and 50Cr was used as the

reference when making measurements on the 425 nm line. The reference isotope chosen for the

July 2021 experimental campaign is 52Cr. The isotope shifts and changes in mean-square charge

radii reported in this thesis are all reported with reference to 52Cr to simplify the comparisons

between this isotope chain and others in the region. It is the convention to report the changes

in mean-square charge radii relative to the closed shell isotope, which in this region are the

N = 28 isotopes.
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Isotope shifts were calculated between run files that were either directly adjacent or near adja-

cent in the order of measurement. For each isotope, the weighted average of the isotope shifts

was calculated, as were the standard error of the weighted average and the Birge-modified stan-

dard error. The error assigned to the weighted average was the larger of the two calculated

errors. Where necessary, the isotope shifts were converted to be relative to 52Cr using the

experimentally determined δv50,52 values for each transition.

101



Chapter 7

Results and Discussion

Once the optimised parameters were extracted from the models fitted to the spectra, it was

possible to calculate the nuclear moments and mean-square charge radii of the isotopes being

studied. These values are presented in the following section.

7.1 King Plots

In order to extract the charge radii from the experimentally determined isotope shifts, mass and

field shift factors must be determined. This was achieved using a King plot with non-optical

data (see equation 3.4.2), where the changes in mean-square charge radii were taken as those

from Aufmuth et al. [10], the isotope shifts were taken as those determined from the January

2021 analysis.

The King plots shown in figures 7.1 and 7.2 were used to extract the mass and field shift factors

for the 425 nm and 358 nm transitions, respectively. The mass shift factor determined for the

425 nm line is (119±12)GHzu, with a corresponding field shift factor of (−505±80)MHz fm−2.

It can be seen from figure 7.1 that the line of best fit intersects all three of the data points

when taking into account their associated errors, although the data point for 53Cr lies further

from the line of best fit. This is a consequence of the data point having large associated errors,

therefore giving it less weighting in the linear regression.

The mass shift factor determined for the 358 nm line is (1100±12)GHzu, with a corresponding

field shift factor of (−13 ± 103)MHz fm−2. The very small 358 nm field shift factor, coupled

with its large associated error, means it is not suitable for calculating changes in mean-square

charge radii; therefore all changes in mean-square charge radii reported below are those calcu-
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lated using the isotope shifts determined for the 425 nm line.

It is noted that the magnitude of the field shift factors determined for each transition are in

agreement theoretical expectation. The 425 nm transition is an s electron becoming a p electron,

which corresponds to a large change in electron density (the ∆|ψ(0)|2 term in equation 3.3.12)

due to the minimal spatial overlap between the s orbital, which itself has a large overlap with the

nuclear volume, and the p orbital. For this reason, s to p transitions are particularly sensitive

to the mean-square charge radius as they produce large field shifts. Conversely, the 358 nm

transition is a d electron becoming a p electron, and as expected this resulted in a smaller field

shift factor than that of the 425 nm transition. Furthermore, the mass shift factor determined

for the 358 nm transition is greater than that of the 425 nm transition, again in aligned with

expectation as transitions involving d electrons produce large specific mass shifts [46].

Figure 7.1: The King Plot for the 425 nm transition. The mass and field shift factors determined

from this plot were (119± 12)GHzu and (−505± 80)MHz fm−2, respectively.
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Figure 7.2: The King Plot for the 358 nm transition. The mass and field shift factors determined

from this plot were (1100± 12)GHzu and (−13± 103)MHz fm−2, respectively.

7.2 Magnetic Dipole and Electric Quadrupole Moments

The hyperfine parameters extracted from the fitting were used to calculate the nuclear magnetic

dipole and electric quadrupole moments using equations 3.1.33 and 3.1.34, respectively. The Al

and Bl hyperfine parameters determined for 53Cr from this work were in agreement with their

literature values; for this reason, they were used as the reference parameters in the calculations,

matched to the literature values of the magnetic dipole and electric quadrupole moments of

53Cr: µ = −0.47454(3)µN [65] and Qs = −0.15(5) b [66]. The experimentally derived Au : Al

ratios for the 358 nm and 425 nm lines are 0.964(3) and 0.134(2), respectively.
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Isotope Iπ Al Al µ µ

(A) ℏ Exp (MHz) Lit (MHz) Exp (µN ) Lit (µN )

49 5/2− −50.0(7) — −0.480(7) 0.476(3)

51 7/2− −69.6(3) — −0.935(5) (−)0.934(5)

53 3/2− −82.4(3) −82.5985(15)1 —2 −0.47454(3)3

Table 7.1: A table of the available literature and experimental A hyperfine parameters deter-

mined in this analysis. Errors are reported in parentheses. 1 Taken from the work of Childs et

al. [67]. 2 Literature magnetic dipole moment used as the reference. 3 Taken from the Nuclear

Moments and Charge Radii Database [65].

Transition Isotope Iπ Bl Bl Bu Qs,Bl Qs,Bu Qs

(nm) (A) ℏ Exp (MHz) Lit (MHz) Exp (MHz) Exp (b) Exp (b) Lit (b)

358 49 5/2− −17(47) — −67(55) +25(427) +0.9(9) —

51 7/2− −2(23) — −5(31) +3(62) +0.07(40) —

53 3/2− +0.1(1.7) −0.003(8) +12(6) —3 —3 −0.15(5)4

425 49 5/2− —1 — −13(55) —1 −0.3(1.0) —

51 7/2− —1 — +11(26) —1 +0.2(5) —

53 3/2− —1 −0.003(8)2 −8(1) —3 —3 −0.15(5)4

Table 7.2: A table of the available literature and experimental B hyperfine parameters deter-

mined in this analysis. Errors are reported in parentheses. 1 These values are the same as those

for the 358 nm transitions as both transitions originate from the same J state. 2 Taken from

the work of Childs et al. [67]. 3 Literature value of electric quadrupole moment used as the

reference. 4 Taken from the work of Ertmer et al. [66]. There are no known Bu values known

for both the 358 nm and 425 nm transition in the literature.

With reference to table 7.1, it can be seen that the A hyperfine parameter for the lower J

state of 53Cr is in excellent agreement with the literature value. Furthermore, when calculating

the magnetic dipole moments using the experimentally determined A hyperfine parameters of

49,51,53Cr, and the literature value of the magnetic moment of 53Cr, the experimentally deter-

mined magnetic moments of 49,51Cr are also in excellent agreement with literature. The sign

of the nuclear magnetic moment of 51Cr is also confirmed to be negative, whereas previously

the negative sign had only been tentatively assigned.

With reference to table 7.2, it can be seen that the B hyperfine parameter for the lower J state

of 53Cr is consistent with literature. However, this is unsurprising due to the exceedingly high
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error associated with the experimental value. The theme of large associated errors is continued

for the Bl hyperfine parameters determined for 49,51Cr, and for Bu parameters determined for

each isotope on both lines, perhaps with the exception of the Bu parameter determined for 53Cr

when measured on the 425 nm line. The electric quadrupole moments, calculated using each

of the B hyperfine parameters (using the experimentally determined B hyperfine parameters

and literature electric quadrupole moment of 53Cr as a reference), inherit these large associ-

ated errors. Therefore, each quadrupole moment determined for 49,51Cr, regardless of which

B parameter was used in the calculation, is consistent with 0 b, and in all but one case may

be assigned either a negative or positive value. It is therefore not possible to comment on the

type, or magnitude, of nuclear deformation of the 49,51Cr nuclei.

It was anticipated that both of the transitions used in this study would exhibit little sensitivity

to the quadrupole moments, in part due to the fact that the ground state B hyperfine parameter

from the literature is very small, and in part due to the fact that the spectra obtained using

either transition have collapsed structures with unresolved peaks. It is the relative positions of

these unresolved peaks to one another from which the B hyperfine parameters are determined.

Couple this with the fact that each of these unresolved resonance peaks will have its own series

of unresolved satellite peaks, and it becomes clear why it is not possible to extract precise

B hyperfine parameters - to do so is too computationally complex and based on too many

assumptions.

7.3 Isotope Shifts and Mean-Square Charge Radii

The isotope shifts and corresponding changes in mean-square charge radii determined from this

work are presented below. Table 8 and figure 7.3 show the remarkable agreement between the

isotope shifts and changes in mean-square charge radii determined from the January 2021 data

set and the literature values from Aufmuth et al. [10]. All changes in mean-square charge radii

determined are consistent within errors with the literature values, as are all of the isotopes

shifts, with the only exception being δv50,52358nm, which becomes consistent with literature with a

1.6̇σ uncertainty. This gives confidence that the newly reported isotope shifts and charge radii

determined from this experimental campaign are accurate.
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Isotope Iπ δvA,52
358nm δvA,52

358nm δvA,52
425nm δvA,52

425nm δ⟨r2⟩A,52 δ⟨r2⟩A,52

(A) (ℏ) Exp (MHz) Lit (MHz) Exp (MHz) Lit (MHz) Exp (fm2) Lit (fm2)

48 0 +1747(14) — −253(7) — +0.125(14)[44] —

49 5/2− +1285(27) — −186(6) — +0.092(12)[32] —

50 0 +845(9) +815(15)1 −127(5) −130.3(2.0)2 +0.071(10)[22] 0.073(22)4

51 7/2− +409(7) — −42(5) — −0.005(10)[9] —

53 3/2− −401(9) −384(12)1 +18(6) +23(3)2 +0.050(12)[12] 0.062(18)4

54 0 — −770(12)1 −1(6) 0(6)3 +0.169(12)[32] 0.159(30)4

Table 7.3: A table of the available literature and experimental isotope shifts and changes in

mean-square charge radii determined from the January 2021 campaign. Statistical errors are

reported in round brackets and systematic errors are reported in square brackets. Changes in

mean-square charge radii were calculated using the isotope shifts determined on the 425 nm

line. 1Taken from the work of Fricke [68], 2taken from the work of Furmann [60], 3taken from

the work of Heilig and Wendlandt [69], 4taken from the work of Aufmuth [10].

Isotope Iπ δvA,52
425nm δvA,52

425nm δ⟨r2⟩A,52 δ⟨r2⟩A,52

(A) (ℏ) Exp (MHz) Lit (MHz) Exp (fm2) Lit (fm2)

50 0 −148(1) −130.3(2.0)1 +0.113(2)[26] 0.073(22)3

53 3/2− +18(1) +23(3)1 +0.050(2)[12] 0.062(18)3

54 0 +9(1) 0(6)2 +0.149(2)[29] 0.159(30)3

Table 7.4: A table of the available literature and experimental isotope shifts, and changes

in mean-square charge radii determined from the July 2021 campaign. Statistical errors are

reported in round brackets and systematic errors are reported in square brackets. 1Taken from

the work of Furmann et al. [60], 2taken from the work of Heilig and Wendlandt [69], 3taken

from the work of Aufmuth et al. [10].
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Figure 7.3: Plots to show the literature and experimental changes in mean-square charge radii

relative to 52Cr determined from the January 2021 campaign as a function of isotope. The error

bars on the experimental data points represent the statistical uncertainties, whereas the error

bands represent the systematic uncertainties inherited from the mass and field shift factors.

One standard deviation is presented in both cases. Literature values taken from the work of

Angeli and Marinova [11] (top) and Aufmuth et al. [10] (bottom). For both plots, the changes

in mean-square charge radii were calculated using atomic parameters determined from a King

plot that utilised the changes in mean-square charge radii reported in the work of Aufmuth et

al.
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With reference to table 8, it should be noted that the literature values of isotope shift reported

for the 358 nm transition are not those reported by Fricke [68], as these appear to be reported

with the incorrect sign. This correction has been made in the table. In an example given

within this paper, it is noted that the isotope shift is calculated by subtracting the centroid

frequency of the spectrum of 52Cr from that of the isotope of interest, therefore the isotope shift

is defined to be the same as in this work. However, from the experimental data, it becomes

apparent that the isotope shifts reported in Fricke must have been miscalculated, likely by

subtracting the centroid frequency of the spectrum of the isotope of interest from that of 52Cr,

which would result in the isotope shift having the opposite sign. This likely stems from the fact

that the convention for defining the isotope shift is not standardised across the literature, nor

is the notation used, as was discussed in the section 3.3. As discussed above, there is strong

agreement between the experimentally determined isotope shifts and literature values for the

358 nm line, but this is only the case when the sign of the literature values is reversed, which

strongly supports the conclusion that a miscalculation has been made or the values have been

misreported in the Fricke paper.

It is noteworthy that there is a disparity between the isotope shifts determined from the July

2021 data set and those of both the January 2021 data set and the literature. One possible

explanation for this is that the July 2021 data was collected using an offline ion source, which

is able to deliver a significant rate of ions to the laser-spectroscopy beamline. It is possible that

too many ions were delivered to the cooler-buncher during each run, which would increase the

density of charge and therefore the electrostatic interactions between the ions. This may then

have impacted the kinematics of the system resulting in a detrimental shifting of the centroids

for each isotope, which manifested itself in the isotope shifts determined. One can determine

if these space-charge effects are in play by inspecting the time-of-flight peak for each run file.

If the cooler-buncher has been overfilled the time-of-flight peak will have a characteristic tail

(e.g. see figure 7.4), this is because the higher charge density causes ions in the bunch to repel

one another thus extending the spatial profile of the bunch. As the time-of-flight profile shows

the number of photons detected as a function of time elapsed since a bunch left the cooler, if

the bunch is spatially diffuse, photons will be detected over a longer time as the bunch will

take longer to pass in front of the photo-multiplier tube. Inspection of the time-of-flight profiles

from the July 2021 data do not exhibit this tailing, therefore over-filling of the cooler-buncher

is most likely not responsible for the discrepancies in results.

An additional consideration to be made is that the data collected in July 2021 was measured
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Figure 7.4: A plot to show an example of a typical time-of-flight profile measured when the
cooler-buncher has been overfilled with ions.

over approximately a five-hour period. At face value this could be considered to be advanta-

geous as measuring data over such a short time period would minimise the impact that slow

systematic drifts have on the data. However, it is often the case that elements in the experi-

mental setup need time to equilibrate with the lab conditions. For example, the laser cavity is

very sensitive to changes in temperature, air pressure, and humidity. It may be the case that

after optimising the lasers, in response to the local conditions, the frequency of the resonance

laser drifted without detection. A reference cell is used to stabilise and lock the frequency of

the laser, however, it is possible that the response of the reference cell may also be impeded

by changing conditions. Online experiments usually take place over several days or weeks, and

considerable time before the experiment is spent ensuring that the experimental setup has been

optimised. As such, there is sufficient time for all elements of the setup to stabilise before any

online measurements are taken. Alternatively, there may be a systematic error that impacts

the centroid location of each spectrum, for example, an issue with the laser wavenumber, cooler

voltage, or tuning voltage read-back. It may be the case that the equipment used to measure

these values also needed additional time to equilibrate with the local conditions, this is to say

that it is possible that the laser wavenumber, cooler voltage and tuning voltages used were

appropriate, but that the measurements of them were not.
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In order to determine if either the cooler voltage or measurements of the cooler voltages may

have impacted the centroid frequencies of the spectra obtained in the July 2021 campaign, the

average of the measured cooler voltages for each run was plotted as a function of run number,

as shown in figure 7.5. From the figure, it is observed that, with the exception of the initial

two runs, the measured cooler voltage appears to be relatively consistent throughout the ex-

perimental campaign. If either the actual cooler voltage was drifting (and the measurement of

the cooler voltage was accurate), or the measurements of cooler voltage were subject to inac-

curacies due to any changing properties of measurement equipment, an upwards or downwards

trend would be seen in the figure 7.5. From the available data, neither of these effects appear

to manifest themselves. It should be noted that if the actual cooler voltage was drifting, its

impact would be negligible as this would still be accounted for when performing the voltage-

to-frequency conversion, assuming that the measurements of the cooler voltage were accurate.

Although it appears that the cooler voltages, or measurements of them, are not responsible for

any centroid shifting effects, it is not possible to rule out the possibility that the actual cooler

voltage and the properties of the measurement device were both changing in response to local

conditions and the combined effects are masking one another in the recorded data.

Figure 7.5: A plot to show the average of the cooler voltages measured during each run of the

July 2021 experimental campaign as a function of the run number.
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Despite the disparity between the isotope shifts, the charge radii extracted using the July 2021

data set are still consistent with both the charge radii determined from the January 2021 data

set and the literature values when including the systematic errors. These measurements are

therefore still of value, however, moving forward the discussion will revolve around the January

2021 data set as it provides better agreement with the literature, and includes the newly re-

ported charge radii measurements.

Angeli and Marinova [11] is a commonly cited source of literature, however, as can be seen in

figure 7.3, there is a large disparity between the change in mean-square charge radius reported

for 54Cr when compared to both the experimentally determined values (from both the January

2021 and July 2021 campaigns) and the value reported in Aufmuth et al. [10]. For this reason,

it is assumed that the value reported by Angeli and Marinova [11] is incorrect, and the values

reported by Aufmuth et al. are assumed to be a more appropriate set of values for comparisons

to be made with. It is for this reason that the values of the changes in the mean-square charge

radii used in the King plots were those reported by Aufmuth et al..

Having obtained the chromium charge radii, with reference to figure 7.3, it is observed that

above the N = 28 shell closure the mean-square charge radii increase as neutrons are added to

the system. This is in line with expectations as it was known from the available literature that

the charge radii of 53,54Cr are greater than that of 52Cr, and also due to the fact that the same

trend is observed for all other isotope chains in the region. Below the N = 28 shell closure

the mean-square charge radii also increase as neutrons are removed from the system, with the

exception of 51Cr which is reported to have a charge radius slightly smaller than that of 52Cr.

It is anticipated that 52Cr should have the smallest charge radius owing to its magic number

of neutrons, however, when taking into account its associated errors, 51Cr may also adopt a

charge radius larger than that of 52Cr. The similarity of the charge radii of 51Cr and 52Cr is

not unexpected as, with reference to figure 7.6, it is observed that for both the calcium and

titanium isotope chains the N = 27 isotopes are of a similar size to the N = 28 isotopes. For

both chains the N = 27 isotopes are slightly larger than their magic neighbours, however when

considering errors may also be equal in size to, or in the case of calcium, smaller than, their

N = 28 isotopes respectively.

Another feature present in figure 7.3 is the odd-even staggering along the isotope chain, this

being another characteristic feature that is shared with both calcium and titanium. For each

isotope chain, as one approaches the mid-shell the charge radii increase sequentially and in a
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non-linear fashion as can be seen in figure 7.6. It is possible to compare the magnitude of the

OES along the chromium isotope chain to that of the calcium and titanium chains quantitatively

using the three-point OES parameter, ∆
(3)
r , defined as:

∆(3)
r =

1

2
(rA+1 − 2rA + rA−1) , (7.3.1)

where rA is the charge radius of an isotope with A nucleons.
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Figure 7.6: Plots to show the the changes in means square charge radii of calcium, titanium

and chromium relative to their N = 28 isotopes (top), and the absolute charge radii of calcium,

titanium and chromium (bottom). The dashed lines represent the N = 20 and N = 28 shell

neutron closures. Error bars represent statistical uncertainties. The absolute charge radii of the

reference nuclides are taken as those reported in Angeli and Marinova [11] and their associated

errors are taken to be zero in each case. Literature values obtained Garcia Ruiz et al. (Ca) [5],

Miller et al. (Ca) [6], and Angeli and Marinova [11].
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Figure 7.7 shows the odd-even staggering along the calcium, titanium, and chromium isotope

chains, from which it is apparent that as pairs of protons are added to the nuclear system, and

one moves towards the proton mid-shell, the magnitude of the odd-even staggering decreases

sequentially.

Figure 7.7: A plot of the odd-even staggering along the calcium, titanium, and chromium isotope

chains as calculated using equation 7.3.1. The error bars represent statistical uncertainties. The

error associated with the absolute charge radii of reference nuclides was taken as zero in each

case.

In addition to comparing the charge radii of chromium to those of other isotope chains, they

can also be compared to theoretical predictions. Figure 7.8 shows the charge radii of even-

even chromium isotopes determined by Kortelainen et al. [70] using three different theoreti-

cal approaches: an ab-intio coupled cluster (CC) theory employing a two- and three-nucleon

∆NNLOGO interaction, and two approaches based on nuclear density functional theory (one

based upon the Skyrme parametrisation (SV-min) energy density functional and one based

on the Fayans functional parametrisation Fy(∆r, HFB) energy density functional). Figure

7.8 also shows the changes in mean-square charge radii of even-even isotopes determined by

Hemalatha [71] using two different approaches: the relativistic Hartree-Bogoliubov model us-

ing the density-dependent meson-exchange functional (DD-ME2), henceforth referred to as

DIRHB(DD-ME2), and the non-relativistic Hartree-Fock-Bogoliubov model using the Gogny

D1S interaction, henceforth referred to as the HFB(Gogny D1S).

115



Figure 7.8: A plot to compare the root-mean-square charge radii determined experimentally

from this work and theoretically by Kortelainen et al. [70] along the chromium isotope chain

(top), and a plot to compare the experimentally determined changes in mean-square charge

radii with those determined theoretically by Hemalatha [71]. The associated errors for the

theoretical predictions (where reported) are presented as error bands. For the experimental

values, error bars, which are too small to be visible, and an error band are used to present

the statistical and systematic uncertainties, respectively. The absolute charge radius of 52Cr is

taken as that reported in Angeli and Marinova [11] and its associated error is taken to be zero.
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From figure 7.8 it can be seen that there is good agreement between the predicted charge radii

of 52Cr as determined using the SV-min approach with the experimentally determined value,

whereas both the ∆NNLOGO and Fy(∆r, HFB) approaches underestimate the value. More in-

teresting is the trend as one moves along the isotope chain, for example, the rate of increase in

charge radii between 52Cr and 54Cr is once again best reproduced using the SV-min approach,

whereas the ∆NNLOGO and Fy(∆r, HFB) approaches both overestimate the rate of increase,

however it is noteworthy that each of the theoretical approaches reproduces the charge radii of

54Cr well. As one moves to the more neutron-deficient isotopes, the trend is best reproduced

by the ∆NNLOGO and SV-min models, which show the charge radii to increase as one moves

into the middle of the 1f7/2 neutron shell, whereas the Fy(∆r, HFB) predicts that the N = 24

isotope will be the smallest nucleus of those between the N = 20 and N = 28 shell closures.

With reference to the bottom plot of figure 7.8, it can be seen that the theoretical predictions

of Hemalatha are able to reproduce the kink present at N = 28, as both models correctly

predict the increase in the charge radii relative to the N = 28 isotope on either side of the shell

closure, with the increase being steeper on the neutron-rich side than the neutron-deficient side.

Although both models produce similar trends to those observed experimentally, both greatly

overestimate the magnitude of the change in mean-square charge radii along the isotope chain,

with no theoretical values shown to be in agreement with those determined experimentally.

This is clear when comparing the gradients of the lines connecting the N = 26 and N = 30

isotopes to the N = 28 isotope determined theoretically and experimentally - the gradients

determined by theory are much steeper than those determined experimentally.

Finally, recalling the importance of understanding isospin pairing mechanisms in self-conjugate

nuclei, the change in mean-square charge radii of 48Cr has been added to the plot presented

in the work of Koszorus et al. [13] as shown in figure 7.9. It should be noted that the work

of Charlwood et al. [72] is cited in the Koszorus paper when referencing manganese, however,

for the plot in this thesis, the changes in mean-square charge radii of 50Mn, 50mMn used were

those reported in the more recent work of Heylen et al. [8] where updated values for the atomic

factors were used. It can be seen that the charge radius of 48Cr sits between that of 44Ti and

50Mn as expected. It is also observed that other spin-zero, T = 1 states of the self-conjugate

nuclei appear to sit on an approximately smooth curve. With the additional data point for

chromium, it will become possible to verify whether the T = 1 state of 46V behaves the same as

the T = 1 states of its even-even self-conjugate neighbours once the charge radius of this isotope

has been established experimentally. The same is true for 50Mn, however in this instance the
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charge radius of 52Fe will need to be determined. In either case, the data points for 46V and

50Mn should lie on the straight lines connecting the data point for chromium with those of

titanium and iron, respectively.

Figure 7.9: A plot to show the changes in the mean-square charge radii relative to 40Ca for the

self-conjugate nuclei spanning from 36Ar to 50Mn. This plot is styled like that from the work

of Koszorus et al. [13] for ease of comparison. The shaded error bars represent the systematic

errors associated with the changes in mean-square charge radii only - the error associated with

absolute charge radii of the reference nuclides used to produce this plot was taken to be zero.

Values are taken from Angeli and Marinova [11] (absolute charge radii of 38Ar 40Ca, 48Ti,

55Mn), Blaum et al. [73] (36Ar), Koszorus et al. [9] (absolute charge radius of 39K), Bissel et

al. [12] (38K, 38mK), Koszorus et al. [13] (42Sc, 42mSc), Gangrsky et al. [74] (44Ti), and Heylen

et al. [8] (50Mn, 50mMn).
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Chapter 8

Conclusion and Outlook

8.1 Conclusion

A series of laser spectroscopy experiments were performed at the IGISOL-IV facility, Univer-

sity of Jyväskylä, to probe the hyperfine structure along the chromium isotope chain, and

determine how the sizes of the nuclei evolve as one moves into the 1f7/2 neutron shell. The

hyperfine structure of various isotopes of chromium were investigated by probing two different

fine structure transitions: the 358 nm (3d5 (6S)4s 7S3 → 3d4 (5D)4s4p(3P ) 7P4) and 425 nm

(3d5 (6S)4s 7S3 → 3d5 (6S)4p 7P4) lines.

It was observed that the experimentally determined isotope shifts and those known from the

literature were in very good agreement, with all but one being consistent within errors, and the

other being consistent within 1.6̇σ uncertainty. The newly reported isotope shifts reported for

each isotope relative to 52Cr for the 358 nm transition are: 1747(14)MHz for 48Cr, 1285(27)MHz

for 49Cr, and 409(7)MHz for 51Cr. The newly reported isotope shifts reported for each isotope

relative to 52Cr for the 425 nm transition are: −253(7)MHz for 48Cr, −186(6)MHz for 49Cr,

and −42(5)MHz for 51Cr. It was also observed that experimental conditions, for example, the

conditions within the charge-exchange-cell, can have a significant impact on the quality of the

hyperfine spectra measured.

Using the experimentally determined values of isotope shift and known values of changes in

charge radii relative to 52Cr from the literature, it was possible to make a King plot to deter-

mine the mass and field shift factors associated with each transition. The mass shift factors

determined are 1100(12)GHzu and 119(12)GHzu for the 358 nm and 425 nm transition, re-

spectively, and the field shift factors determined are −13(103)MHz fm−2 and −505(80)MHz
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fm−2 for the 358 nm and 425 nm transition, respectively. The field shift factor determined

for the 358 nm transition is unsuitable for use when calculating the changes in mean-square

charge radii and for this reason, the changes in mean-square charge radii were determined using

the mass shift factor, field shift factor and isotope shifts determined using the 425 nm transition.

The changes in mean-square charge radii determined from both the January 2021 and July

2021 campaigns were consistent with one another and the values known in the literature. The

newly reported values of the change in mean-square charge radii relative to 52Cr for 48Cr, 49Cr,

and 51Cr are 0.125(14)[44] fm2, 0.092(12)[32] fm2, and −0.005(10)[9] fm2, respectively, where

the statistical errors are reported in round brackets and the systematic errors are reported

in square brackets. The absolute charge radii and changes in mean-square charge radii have

been compared to theoretical predictions determined using state-of-the-art models, which have

demonstrated varying degrees of success, with some being able to predict global trends in the

region.

8.2 Future Work

The work completed for this thesis is useful and provides a better insight into the evolution of

nuclear properties along the chromium isotope chain, however it is clear from the discussion

above that additional work needs to be completed to build a more complete understanding of

the behaviour of nuclei in this region.

The scope of this work does not cover further exploration of nuclear properties above theN = 28

shell closure. As discussed earlier in this thesis, there is a sharp increase in charge radii for the

N > 28 nuclei in the calcium-nickel region regardless of which element is inspected. Obtaining

charge radii measurements for N > 30 isotopes of chromium would further aid our understand-

ing of nuclear behaviour on either side of the N = 28 shell closure. During this campaign,

measurements of the hyperfine spectrum of 55Cr were attempted, however, this was a fruitless

endeavour and unfortunately, no resonance peaks were detected. A future campaign to measure

the hyperfine spectrum of 55Cr is therefore a priority.

In addition to measuring additional neutron-rich isotopes of chromium, measurements of chromium

nuclei deeper in the 1f7/2 neutron shell, such as 47Cr, would be beneficial. Additional charge

radii measurements of the neutron-deficient isotopes of chromium are still required for a more

complete understanding of how the charge radii evolve in this region. These additional mea-
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surements will allow us to determine if the chromium charge radii continue to increase as one

moves below the mid-shell as is the case for titanium, or whether a turning point is established

at the mid-shell and the charge radii will begin to decrease, as is the case for calcium.

From the results presented in this thesis it is apparent that the transitions studied in this work

had little sensitivity to the electric-quadrupole moments. As such, it would be beneficial to

investigate the suitability of alternative transitions for use in any future campaign where the

objective is to determine the type and magnitude of any nuclear deformation. For example,

by introducing a second frequency doubling cavity into the experimental setup, it would be

possible to frequency-quadruple the light output by the laser, this in turn increases the number

of transitions that are accessible for study, providing that the power of the laser is sufficient

following the loses associated with frequency doubling. It is anticipated that transitions with

wavelengths above 205 nm, such as the 205.56 nm, 206.16 nm, and 206.55 nm lines would be

suitable for future studies. These transitions are strong and involve spectroscopy of the ion,

therefore eliminating the complications and efficiency losses associated with charge exchange.

An offline test would determine their sensitivity to the quadrupole moment.

The data obtained in the January 2021 experimental campaign proved very difficult to model

in part due to the large peak asymmetries present in the measured spectra. In order to gain

a better understanding of how the intensity of the satellite peaks is related to the conditions

within the charge-exchange-cell, an offline study could be performed wherein the temperature

of the charge-exchange-cell is systematically increased and the impact this has on the measured

spectra is quantitatively determined.

One of the key motivations for this work was to procure results that could be compared to the

theoretical predictions made using contemporary nuclear models, and thus allow us to evaluate

the success of these models. With the addition of the new charge radii reported in this thesis,

it is now possible to further develop these contemporary models: the additional data provide

new anchor points to be used when calibrating the theoretical results to the experimentally

determined observables.

As was mentioned in the introduction, this series of experiments that form this thesis work are

part of a larger campaign to collate additional data in the calcium-nickel region of the chart of

nuclides. Measuring other elements in the region is a priority. Recent experiments have been

performed to measure the cobalt and iron isotope chains. At the time of writing, the data
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obtained from these experiments are still being analysed, but the complimentary results yet to

be realised will certainly aid our understanding of the regional systematics in the calcium-nickel

region.
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“Given the pace of technology, I propose we leave math to the machines and go play outside.”

– Calvin, Calvin and Hobbes.
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Appendix A: Natural Line Width

Derivation

Beginning with equation 3.5.7:

F (ω) =

∫ ∞

−∞
e−At/2 · cos(ω10t) · e−iωtdt, (A.1)

using the identity:

cos(ω10t) =
1

2

(
eiω10t + e−iω10t

)
, (A.2)

the equation becomes:

F (ω) =
1

2

∫ ∞

−∞
e−At/2 ·

(
eiω10t + e−iω10t

)
· e−iωtdt, (A.3)

∴ F (ω) =
1

2

∫ ∞

−∞
e−At/2 ·

(
eiω10t−iωt + e−iω10t−iωt

)
dt, (A.4)

∴ F (ω) =
1

2

∫ ∞

−∞
e−At/2 ·

(
e−i(ω−ω10)t + e−i(ω+ω10)t

)
dt, (A.5)

∴ F (ω) =
1

2

∫ ∞

−∞

[
e[−i(ω−ω10)−A/2]t + e[−i(ω+ω10)−A/2]t

]
dt, (A.6)

As depopulation of the excited state must begin at a time t = 0, the integration limits are

modified to become:

∴ F (ω) =
1

2

∫ ∞

0

[
e[−i(ω−ω10)−A/2]t + e[−i(ω+ω10)−A/2]t

]
dt, (A.7)

∴ F (ω) =
1

2

[
e[−i(ω−ω10)−A/2]t

−i (ω − ω10)−A/2
+

e[−i(ω+ω10)−A/2]t

−i (ω + ω10)−A/2

] ∣∣∣∣∣
∞

0

, (A.8)
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∴ F (ω) =
1

2

[
e−[i(ω−ω10)+A/2]t

−i (ω − ω10)−A/2
+

e−[i(ω+ω10)+A/2]t

−i (ω + ω10)−A/2

] ∣∣∣∣∣
∞

0

, (A.9)

as e−∞ = 0 and e0 = 1, when evaluated the expression above becomes:

∴ F (ω) = −1

2

[
1

−i (ω − ω10)−A/2
+

1

−i (ω + ω10)−A/2

]
, (A.10)

∴ F (ω) =
1

2

[
1

i (ω − ω10) +A/2
+

1

i (ω + ω10) +A/2

]
, (A.11)

utilising the rotating wave approximation the non-resonant term becomes negligible leading to:

F (ω) ≈ 1

2

1

i(ω − ω10) +A/2
, (A.12)

which when multiplied by the complex conjugate gives:

|F (ω)2| ∝
(
1

2

1

i(ω − ω10) +A/2

)
·
(
1

2

1

−i(ω − ω10 +A/2)

)
, (A.13)

∴ |F (ω)2| ∝ 1

4
· 1

[i(ω − ω10) +A/2] · [−i(ω − ω10) +A/2]
, (A.14)

∴ |F (ω)2| ∝ 1

4
· 1

−i2(ω − ω10)2 +
i(ω−ω10)A

2 − i(ω−ω10)A
2 + (A/2)2

, (A.15)

∴ |F (ω)2| ∝ 1

4
· 1

(A/2)2 + (ω − ω10)2
. (A.16)

The normalisation condition:

∫ ∞

−∞
g(ω − ω10)dω =

∫ ∞

−∞
g(v − v10)dv = 1, (A.17)

gives the Lorentzian profile:

g(v − v10) =
A

(A/2)2 + 4π2(v − v10)2
, (A.18)

using the relation

v = 2πω. (A.19)
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