
ar
X

iv
:2

30
4.

05
27

0v
2

 [
cs

.D
S]

 2
 J

un
 2

02
3

Longest Common Subsequence with Gap

Constraints

Duncan Adamson, Maria Kosche, Tore Koß, Florin Manea, and Stefan Siemer

Department of Computer Science, University of Göttingen, Göttingen, Germany

Abstract. We consider the longest common subsequence problem in
the context of subsequences with gap constraints. In particular, following
Day et al. 2022, we consider the setting when the distance (i. e., the gap)
between two consecutive symbols of the subsequence has to be between
a lower and an upper bound (which may depend on the position of those
symbols in the subsequence or on the symbols bordering the gap) as well
as the case where the entire subsequence is found in a bounded range
(defined by a single upper bound), considered by Kosche et al. 2022. In all
these cases, we present efficient algorithms for determining the length of
the longest common constrained subsequence between two given strings.

1 Introduction

A subsequence of a string w = w[1]w[2] . . . w[n], where w[i] is a symbol from
a finite alphabet Σ for i ∈ {1, . . . , n}, is a string v = w[i1]w[i2] . . . w[ik], with
k ≤ n and 1 ≤ i1 < i2 ≤ . . . < ik ≤ n. The positions i1, i2, . . . , ik on which the
symbols of v appear in w are said to define the embedding of v in w.

In general, the concept of subsequences appears and plays important roles in
many different areas of theoretical computer science such as: formal languages
and logics (e. g., in connection to piecewise testable languages [62,63,38,39,40], or
in connection to subword-order and downward-closures [32,47,46,66]); combina-
torics on words (e. g., in connection to binomial equivalence, binomial complex-
ity, or to subword histories [58,23,50,49,60,55,59]); the design and complexity
of algorithms. To this end, we mention some classical algorithmic problems such
as the computation of longest common subsequences or of the shortest common
supersequences [17,34,35,53,54,56,6,11], the testing of the Simon congruence of
strings and the computation of the arch-factorisation and universality of words
[33,29,64,65,19,7,20,22,30,44]; see also [45] for a survey of some combinatorial al-
gorithmic problems related to subsequence matching. Moreover, these problems
and some other closely related ones have recently regained interest in the context
of fine-grained complexity (see [13,14,1,3]). Nevertheless, subsequences appear
also in more applied settings: for modelling concurrency [57,61,15], in database
theory (especially event stream processing [5,31,67]), in data mining [51,52], or
in problems related to bioinformatics [12].

Most problems related to subsequences are usually considered in the setting
where the embedding of subsequences in words are arbitrary. However, in [21],
a novel setting is considered, based on the intuition that, in practical scenarios,

http://arxiv.org/abs/2304.05270v2

2 D. Adamson et al.

some properties with respect to the gaps that are induced by the embeddings
can be inferred. As such, [21] introduces the notion of subsequences with gap
constraints : these are strings v which can be embedded by some mapping e in a
word w in such a way that the gaps of the embedding, i. e., the factors between
the images of the mapping, satisfy certain properties. The main motivation of
introducing and studying this model of subsequences in [21] comes from data-
base theory [41,42], and the properties which have to be satisfied by the gaps are
specified either in the form of length constraints (i. e., bounds on the length of
the gap) or regular-language constraints. We refer the reader to [21] for a detailed
presentation of subsequences with gap constraints and their motivations, as well
as a discussion of the various related models. The main results of [21] are related
to the complexity of the matching problem: given two strings w and v, decide if
there is an embedding e of v as a subsequence of w, such that the gaps induced by
e fulfil some given length and regular gap constraints. A series of other complexity
results related to analysis problems for the set of subsequences of a word, which
fulfil a given set of gap constraints, were obtained. The results of [21] are further
extended in [43], where the authors consider subsequences in bounded ranges:
these are strings v which can be embedded by some mapping e in a word w in
such a way that the range in which all the symbols of v are embedded has length
at most B, for some given integer B. This investigation was motivated in the
context of sliding window algorithms [24,25,26,27,28], and the obtained results
are again related to the complexity of matching and analysis problems.

One of the most studied algorithmic problem for subsequences is the problem
of finding the length of the longest common subsequence of two strings (for short
LCS), see, e. g., [17,34,35,53,54,56,6] or the survey [11]. In this problem, we are
given two strings v and w, of length m and n, respectively, over an alphabet of
size σ, and want to find the largest k for which there exists a string of length
k which can be embedded as a subsequence in both v and w. The results on
LCS are efficient algorithms (in most of the papers cited above) but also condi-
tional complexity lower bounds [3,1,2]. In particular, there is a folklore algorithm
solving LCS in O(N) time, for N = mn, and, interestingly, the existence of an
algorithm whose complexity is O(N1−c), for some c > 0, would refute the Strong
Exponential Time Hypothesis (SETH), see [1].

Our Contributions. In this paper, we investigate the LCS problem in the context
of subsequences with gap-length constraints, which seem to have a strong moti-
vation and many application (see [21,43] and the references therein). Clearly, in
the model considered by [21], the gap constraints depend on the length of the
subsequence, while in LCS this is not known, and we actually need to compute
this length. So, the model of [21] needs to be adapted to the setting of LCS.
One way to do this is to consider that all the gaps of the common subsequence
we search for are restricted by the same pair of lower and upper bounds; in this
case, the length of the common subsequence plays no role anymore. We extend
this initial idea significantly. On the one hand, we consider the case when there
is a constant number of different length constraints which restrict the gaps (and
they are given alongside the words). A further extension is the case when we

Longest Common Subsequence with Gap Constraints 3

are given, alongside the input words, an arbitrarily long tuple of gap-length con-
straints: the ith gap constraint in this tuple refers to the gap between the ith

and (i + 1)th symbol of the common subsequence we try to find (and it plays
some role only if that subsequence has length at least i+1); clearly, the longest
common subsequence can be as long as the input words, so it has at most length
min{m,n}. We also consider the case when the gap constraints are given by the
actual letters bounding the gap. All these extensions of LCS refer to models of
constrained subsequences, where the constraints are local, i. e., they depend on
the embedding of the symbols bounding the gap. Finally, we also consider LCS
in the case of subsequences in bounded ranges, where the upper bound B on the
size of the ranges in which we look for subsequences is given as input; in this
case, we have a global constraint on the embedding of the subsequence.

After defining these variants of the LCS, which seem interesting and well
motivated to us, we propose efficient algorithms for each of them. In most cases,
these algorithms are non-trivial extensions of the standard dynamic program-
ming algorithm solving LCS. A quick overview of our results for variants of
LCS, when the gaps are local: if all gap constraints are identical or we have
a constant number of different gap constraints (and the sequence of gap con-
straints fulfils some additional synchronization condition) we obtain algorithms
running in O(N) time; if we have arbitrarily many different constraints, we ob-
tain an algorithm running in O(Nk), where k is the length of the longest common
constrained subsequence of the input words; if, moreover, the sequence of con-
straints is increasing, then the problem can be solved in O(N polylogN); if the
constraints on the gaps are defined according to both letters bounding them, we
obtain an algorithm running in O(min{Nσ logN,Nσ2}); if the constraints on the
gaps are defined according only to the letter coming after (respectively, before)
them, we obtain an algorithm running in O(min{N logN,Nσ}). In the case of
subsequences in bounded range, we show an algorithm which runs in O(NBo(1))
time for the respective extension of LCS (i. e., it runs in O(NBd), for some
0 < d < 1), as well as an 1

3−approximation algorithm running in O(N) time.

Related Work. With respect to algorithms, the results of [37] cover the case
when all gap constraints are identical. In particular, [37] considers a variant of
LCS where the lengths of the gaps induced by the embeddings of the common
subsequence in the two input strings are all constrained by the same lower and
upper bounds and, additionally, there is an upper bound on the absolute value
of the difference between the lengths of the ith gap induced in w and the ith

gap induced in v, for all i. The authors of that paper propose a quadratic-time
algorithm for this problem and then derive more efficient algorithms in some
particular cases. To the best of our knowledge, the case of multiple gap-length
constraints was not addressed so far in the literature. In [1], the authors con-
sider LCS for subsequences in a bounded range, called there Local-2-LCS, as
an intermediate step in showing complexity lower bounds for LCS; they only
mention the trivial O(NB2) algorithm solving it. The results of [16] lead to an
O(N1+o(1)) solution for this problem; our solution builds on that approach.

4 D. Adamson et al.

With respect to lower bounds, LCS is a particular case for all the problems
we consider in our paper, as we can simply take all the length constraints to be
trivial: (0, n) in the case of gap constraints or B = n in the case of subsequences
in bounded ranges. Therefore, for each of our problems, the existence of an
algorithm whose worst case complexity is O(N1−c), with c > 0, would refute
SETH. Thus, if σ ∈ O(1) (i. e., when the input is over alphabets of constant size),
most of our algorithms solving LCS with gap-length constraints are optimal
(unless SETH is false) up to polylog-factors; the exceptions are the two cases
when we do not impose any monotonicity or synchronization condition on the
tuple of gap-constraints. If σ is not constant, the previous claim also does not
hold anymore for the case when the constraints on the gaps are defined according
to both letters bounding them. In the case of LCS for subsequences in a bounded
range, [1] shows quadratic lower bounds even for B being polylogarithmic in n.
Thus, unless B ∈ O(polylogN), there is a super-logarithmic mismatch between
the upper bound provided by our algorithm and the existing lower bound.

It is natural to ask what happens when we have non-trivial constraints, such
as, e.g., constraints of the form (a, b) with a, b ∈ O(1). In [21], it is shown that
deciding whether there exists an embedding of a string v as a subsequence of an-
other string w, such that this embedding satisfies a sequence of |v| constraints of
the form (a, b) with a, b ≤ 6, cannot be done in O(N1−c) time, with c > 0, unless
SETH is false; moreover, the respective reduction can be modified so that the em-
bedding fulfils our synchronization property for the case of O(1) distinct gap con-
straints. The respective decision problem can also be solved by checking whether
the longest common constrained subsequence of v and w, where the gap-length
constraints for the common subsequence are exactly those defined for the embed-
ding of v in w, has length |v|. So, the same lower bound from [21] (which coincides
with the lower bound for the classical LCS problem) holds for the constrained
LCS problem, even when we have a constant number of constant gap-length con-
straints, fulfilling, on top, the aforementioned synchronization property also. Due
to page limitations some proofs are omitted in this version; see the full version [4].

2 Preliminaries

Let N = {1, 2, . . .} be the set of natural numbers, [n] = {1, . . . , n}, and [m : n] =
[n] \ [m − 1], for m,n ∈ N. For (a, b), (c, d) ∈ N

2, we write (a, b) ⊆ (c, d) if and
only if c ≤ a and b ≤ d. All logarithms used in this paper are in base 2.

For a finite alphabet Σ, Σ+ denotes the set of non-empty words (or strings)
over Σ and Σ∗ = Σ+ ∪ {ε} (where ε is the empty word). For a word w ∈ Σ∗,
|w| denotes its length (in particular, | ε | = 0). We set w0 = ε and wk = wwk−1

for every k ≥ 1. For a word w of length n and some i ∈ [n], we denote by w[i]
the letter on the ith position of w, so w = w[1]w[2] · · ·w[n]. For every i, j ∈ [|w|],
we define w[i : j] = w[i]w[i + 1] . . . w[j] if i ≤ j, and w[i : j] = ε, if i > j. For
w ∈ Σ∗, we define alph(w) = {b ∈ Σ | b occurs at least once in w}. The strings
w[i : j] are called factors of the string w; if i = 1 (respectively, j = |w|), then
w[i : j] is called a prefix (respectively, suffix) of w. For simplicity, for a word w
and two natural numbers m ≤ n, we write w ∈ [m,n] if m ≤ |w| ≤ n.

Longest Common Subsequence with Gap Constraints 5

For an m× n matrix M = (M [i, j])i∈[m],j∈[n] and two sets I ⊂ [m], J ⊂ [n],
let M [I, J] be the submatrix (M [i, j])i∈I,j∈J consisting in the elements which
are at the intersection of row M [i, ·] and column M [·, j] for i ∈ I and j ∈ J .

Further, we define the notions of subsequence and subsequence with gap-
length constraints, following [21]. Our definitions are based on the notion of
embedding. For a string w, of length n, and a natural number k ∈ [n], an em-
bedding is a function e : [k] → [n] such that i < j implies e(i) < e(j) for all
i, j ∈ [k]. We say e is a matching embedding if e(k) = n. For strings u,w ∈ Σ∗

with |u| ≤ |w|, an embedding e : [|u|] → [|w|] is an embedding of u into w if
u = w[e(1)]w[e(2)] . . . w[e(k)], then u is called a subsequence of w.

For an embedding e : [k] → [|w|] and every j ∈ [k − 1], the jth gap of w
induced by e is the string gape(w, j) = w[e(j) + 1 : e(j + 1) − 1]. A t-tuple of
gap-length constraints is a t-tuple gc = (C1, C2, . . . , Ct) with Ci = (ℓi, ui) and
0 ≤ ℓi ≤ ui ≤ n for every i ∈ [t]. We set gc[i] = Ci for every i ∈ [t], and
gc[1 : i] = (C1, C2, . . . , Ci). We say that an embedding e satisfies a (k− 1)-tuple
of gap-length constraints gc with respect to a string w if it has the form e : [k]→
[|w|], and, for every i ∈ [k − 1], ℓi ≤ |gape(w, i)| ≤ ui (that is, gape(w, i) ∈ Ci).

If there is an embedding e of u into w satisfying the gap constraints gc, we
denote this by u�gc w. For a (k−1)-tuple gc of gap constraints, let SubSeq(gc, w)
be the set of all subsequences of w induced by embeddings satisfying gc, i. e.,
SubSeq(gc, w) = {u | u�gc w}. The elements of SubSeq(gc, w) are also called
the gc-subsequences of w. For more details see [21].

We are interested in defining and investigating the longest common subse-
quence problem (LCS for short) in the context of subsequences with gap con-
straints. However, in the framework introduced in [21], the gap constraints de-
pend on (the length of) the subsequence, and this is not known for the LCS
problem. As such, we propose a series of problems where we introduce variants
of LCS accommodating gap-length constraints. In all our problems, we have two
input strings v and w, with |v| = m and |w| = n and m ≤ n, and these strings
are over an alphabet Σ = {1, 2, . . . , σ}, with σ ≤ m. For the rest of this paper,
let N = mn. We also consider w.l.o.g. that, when the input contains gap-length
constraints, every individual constraint C = (ℓ, u) fulfils 0 ≤ ℓ ≤ u ≤ n.

First, some additional definitions. Let v, w ∈ Σ∗ be two words; a word s
is a common subsequence of v and w if s is a subsequence of both v and
w. Let gc be a (k − 1)-tuple of gap-length constraints. A word s of length k
is a common gc-subsequence of v and w if both s�gc w and s�gc v hold. Let
ComSubSeq(gc, v, w) denote SubSeq(gc, v)∩ SubSeq(gc, w).

A (k − 1)-tuple gc of gap-length constraints is called increasing if gc[i] ⊆
gc[i + 1], for all i ∈ [k − 2]. Let gc be an increasing (k − 1)-tuple of gap-length
constraints and let i ∈ [k − 2]. Assume s is a gc[1 : i]-subsequence embedded in
w[1 : i′], such that the last position of s is mapped to i′, and t is a gc[1 : j]-
subsequence embedded in w[1 : i′] as well, such that the last position of t is
mapped to i′, and j > i. If there exists a ∈ Σ such that the embedding of s
in w[1 : i′] can be extended to an embedding of sa in w[1 : i′′], which satisfies

6 D. Adamson et al.

gc[1 : i+1], for some i′′ > i′, then the embedding of t in w[1 : i′] can be extended
as well to an embedding of ta in w[1 : i′′] which satisfies gc[1 : i+ 1].

A (k − 1)-tuple gc of gap-length constraints is called synchronized when it
satisfies the property that for all i, j ∈ [k − 1], if gc[i] = gc[j] and i ≤ j then
gc[i+ e] ⊆ gc[j + e] for all e ≥ 0 such that i + e ≤ j + e ≤ m− 1; for example,
the tuple ((0, 5)(0, 1)(0, 2)(0, 3)(0, 1)(0, 5)(0, 3)(0, 4)) is synchronized. Let gc be
a synchronized (k−1)-tuple of gap-length constraints and let i ∈ [k−2]. Assume
s is a gc[1 : i]-subsequence embedded in w[1 : i′], such that the last position of
s is mapped to i′, and t is a gc[1 : j]-subsequence embedded in w[1 : i′] as well,
such that the last position of t is mapped to i′, and j > i and gc[i+1] = gc[j+1].
Now, if there exists a letter a such that the embedding of s in w[1 : i′] can be
extended to an embedding of sa in w[1 : i′′] which satisfies gc[1 : i + 1], for
some i′′ > i′, then the embedding of t in w[1 : i′] can be extended as well to an
embedding of ta in w[1 : i′′] which satisfies gc[1 : i+ 1].

The Longest Common Subsequence Problem (LCS) is defined as follows.

Problem 1 (LCS). Given v, w, compute the largest k ∈ [m] such that there exists
a common subsequence s of both v and w with |s| = k.

We now extend LCS to the case of subsequences with gap constraints (for
a more detailed discussion on variants of this problem, see the full version [4]).
Firstly we consider the case when the constraints are local, as in [21]: they concern
only the gaps occurring between two consecutive symbols of the subsequence.

Problem 2 (LCS-MC). Given v, w ∈ Σ∗ and an (m − 1)-tuple of gap-length
constraints gc, compute the largest k ∈ N such that there exists a common
gc[1 : k − 1]-subsequence s of v and w, with |s| = k. That is, find the largest k
for which ComSubSeq(gc[1 : k − 1], v, w) is non-empty.

Clearly, LCS is a particular case of LCS-MC, where gc = ((0, n), . . . , (0, n)).
In LCS-MC the input tuple gap-length constraints contains arbitrarily many

constraints (therefore the acronym MC in the name of the problem), as many as
the maximum amount of gaps that a common subsequence of v and w may have
(that is, m− 1). We also consider LCS-MC for increasing tuples of gap-length
constraints gc; this variant is called LCS-MC-INC.

We consider two special cases of Problem LCS-MC, where all these con-
straints are either identical (i. e., LCS with one constraint) or drawn from a set
of constant size (i.e., LCS with O(1) constraints), which seem interesting to us.

Problem 3 (LCS-1C). Given v, w ∈ Σ∗ and an (m − 1)-tuple of identical gap-
length constraints gc = ((ℓ, u), . . . , (ℓ, u)), compute the largest k ∈ N such that
there exists a common gc[1 : k − 1]-subsequence s of v and w, with |s| = k.

Problem 4 (LCS-O(1)C). Given v, w ∈ Σ∗ and an (m− 1)-tuple of gap-length
constraints gc = ((ℓ1, u1), . . . , (ℓm−1, um−1)), where |{(ℓi, ui) | i ∈ [m− 1]}| (the
number of distinct constraints of gc) is in O(1), compute the largest k ∈ N such
that there exists a common gc[1 : k− 1]-subsequence s of v and w, with |s| = k.

Longest Common Subsequence with Gap Constraints 7

The general results obtained for LCS-MC are improved for LCS-O(1)C, by
considering the latter problem in the restricted setting of synchronized gap-
length constraints only. The resulting problem is called LCS-O(1)C-SYNC.

In the problems introduced so far, the gap between two consecutive symbols
in the searched subsequence depends on the positions of these symbols inside
the respective subsequence (i. e., the gap between the ith and i+ 1th symbols
is always the same). That is, the actual symbols of the subsequence play no
role in defining the constraints; it is only the length of the subsequence which is
important. For the next problems, the constraints on a gap between consecutive
symbols are determined by one or both symbols bounding the respective gap,
and do not depend on the position of the gap inside the subsequence.

For this, we first need to modify our setting. Let left : Σ → [n] × [n] and
right : Σ → [n] × [n] be two functions, defining the gap constraints. For an
embedding e : [k] → [n], we say that e satisfies the gap constraints defined by
(left, right) with respect to a string x if for every i ∈ [k − 1] we have that
gape(x, i) ∈ left(x[e(i)]) ∩ right(x[e(i + 1)]); in other words, gape(x, i) has to
simultaneously fulfil the constraints left(x[e(i)]) and right(x[e(i + 1)]), defined
by the symbols bounding that gap. If there is an embedding e of a string y into x
satisfying the gap constraints (left, right), we denote this by y�left,right x and
call y a (left, right)-subsequence of x. In the following algorithmic problems,
functions g : Σ → [n]× [n] are given as sequences of σ tuples (a, g(a))a∈Σ .

Problem 5 (LCS-Σ). Given two words v, w ∈ Σ∗ and two functions left : Σ →
[n]× [n] and right : Σ → [n]× [n], compute the largest number k ∈ N such that
there exists a common (left, right)-subsequence s of v and w, with |s| = k.

When left(a) = (0, n) for all a ∈ Σ (respectively, right(a) = (0, n) for all a ∈ Σ),
the gap constraints are defined only by the function right (respectively, left),
and the problem LCS-Σ is denoted LCS-ΣR (respectively, LCS-ΣL).

In the problems introduced so far, the constraints were local (in the sense
that they were defined by consecutive problems in the subsequence). In the last
problem we introduce, we build on the works [1,43], and consider subsequences
which occur inside factors of bounded length of the input words. In particular,
for a given integer B, a word s is a B-subsequence of w if there exists a factor
w[i + 1 : i + B] of w containing s as subsequence, and we look for the largest
common B-subsequence of two input words. This problem was called Local-2-
Longest Common Subsequence in [1], but as the constraint acts now globally on
the subsequence, we prefer to call it LCS-BR (LCS in bounded range),

Problem 6 (LCS-BR). Given v, w ∈ Σ∗ and B ∈ [n], compute the largest k ∈ N

such that there exists a common B-subsequence s of v and w, with |s| = k.

We note that in all our definitions we are given a single tuple of gap-length
constraints, meaning that the embeddings of the common subsequence of v and w
should both fulfil the same constraints. Alternatively, we could have as input one
tuple gcv of gap-length constraints for v and one tuple gcw for w, constraining
the embeddings of the common subsequence in v and w, respectively. In this

8 D. Adamson et al.

settings, the embeddings would depend both on the subsequence and on the
target word, not only on the subsequence, as in the model used currently in the
paper.

Firstly, let us note that the model in which we have a single tuple of gap
constraints seems more natural to us, as the gaps allowed in an embedding
of a subsequence on a word seem to correspond rather to (or be determined
by) properties of the subsequence, not to properties of the text in which it is
embedded. For instance, in [21] as well as in the work on which that paper
builds [41], the gaps are defined for the string which one wants to embed as a
subsequence in a larger string.

Secondly, most of our results hold as such for the case when we are given as
input two sets of gap constraints instead of a single one. The only results that do
not hold in an identical form are those which rely on 2D RMQ data structures,
namely the solutions for LCS-ΣL/R running in O(N logN) and the solution
for LCS-Σ running in O(Nσ logN); in all these cases we need to extend the 2D
RMQ structure to allow queries on rectangular submatrices (instead of quadratic
only), and this leads to an increase in the complexities by a logn-factor.

We briefly discuss the computational model we use to describe our algorithms,
solving efficiently the problems described in Section 2. This model is the standard
unit-cost RAM with logarithmic word size: for an input of size L, each memory
word can hold logL bits. Arithmetic and bitwise operations with numbers in
[1 : L] are, thus, assumed to take O(1) time. Moreover, the numbers we are given
as inputs (describing, e. g., the gap constraints) are given in binary encoding. In
all the problems, we assume that we are given two words w and v, with |w| = n
and |v| = m (so the size of the input is L = n + m), over an alphabet Σ =
{1, 2, . . . , σ}, with 2 ≤ |Σ| = σ ≤ m. That is, we assume that the processed words
are sequences of integers (called letters or symbols), each fitting in O(1) memory
words. This is a common assumption in string algorithms: the input alphabet
is said to be an integer alphabet. Moreover, as the problems deal with common
subsequences, we can assume without loss of generality that the alphabets of
the two words are identical. For more details on this computational model see,
e. g., [18].

3 LCS with local gap constraints

An initial approach for LCS-MC. For all variants of LCS where the constraints
are local (i. e., they depend on the position of the gap in the subsequence, or on
the letters bounding it), the sets of subsequences which are candidates for s can
be, in the worst case, of exponential size in N . Therefore, computing the respec-
tive sets for both input words, their intersection, and then finding the longest
string in this intersection would result in an exponential time algorithm. LCS
can be, however, solved by a dynamic programming approach (considered folk-
lore) in O(N) time. Similarly, LCS-MC (and its particular cases LCS-1C and
LCS-O(1)C, as well as LCS-Σ) can also be solved by a dynamic programming

Longest Common Subsequence with Gap Constraints 9

approach, running in polynomial time. We describe this general idea for LCS-
MC only (as it can be easily adapted to all other problems). This idea reflects, to
a certain extent, a less efficient implementation of the folklore algorithm for LCS.

For input strings v, w and constraints gc = (C1, . . . , Cm−1) we define, for each
p ∈ [m], a matrix Mp ∈ {0, 1}m×n, where Mp[i, j] = 1 if and only if there exists a
string sp with |sp| = p and matching embeddings ev, ew, respectively into v[1 : i]
and w[1 : j], satisfying gc[1 : p−1]. We compute M1 by setting M1[i, j] = 1 if and
only if v[i] = w[j]. Then we compute Mp recursively by dynamic programming:
let Cp−1 = (ℓ, u) and note that Mp[i, j] = 1 if and only if v[i] = w[j] and there
are positions i′ with ℓ ≤ i− i′ − 1 ≤ u and j′ with ℓ ≤ j − j′ − 1 ≤ u such that
there is a string sp−1 of length p − 1 with matching embeddings into v[1 : i′]
and w[1 : j′], respectively, satisfying gc[1 : p − 2]. That is Mp[i, j] = 1 if and
only if there is a 1 in the submatrix Mp−1[I, J] with I = [i − u − 1 : i − ℓ − 1]
and J = [j − u− 1 : j − ℓ − 1]. In the end, the length k of the longest common
subsequence of v and w satisfying gc equals the largest p such that Mp is not
the 0-matrix. A naïve implementation of this approach runs in O(N2k) time.

A more efficient implementation is given in the following.

M [1, 1] ∗ ∗ ∗ ∗ ∗ M [1, j] ∗ M [1, m]

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ M [iu, ju] ∗ M [iu, jℓ] ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ M [iℓ, ju] ∗ M [iℓ, jℓ] ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

M [1, j] ∗ ∗ ∗ ∗ ∗ M [i, j] ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

M [n, 1] ∗ ∗ ∗ ∗ ∗ ∗ ∗ M [n,m]

Fig. 1: The computation of M [i, j] in Lemma 1 with xu = x − u − 1 and
xℓ = x− ℓ− 1 for x ∈ {i, j}.

Lemma 1. LCS-MC can be solved in O(Nk) time, where k is the largest num-
ber for which there exists a common gc[1 : k − 1]-subsequence s of v and w.

Proof. As mentioned above, we can compute M1 in O(N) time. So, let 2 ≤ p ≤
m, Cp−1 = (ℓ, u), and d = |Cp−1| = u− ℓ+1. We want to compute the elements
of Mp and assume that Mp−1 was already computed. For convenience we treat
Mp−1[i, j] = 0 when either i < 1 or j < 1.

We use a pair of m × n matrices A and B, where A[i, j] stores the sum
of (or equivalently the amount of 1s in) d consecutive entries Mp−1[i, j − d +
1], . . . ,Mp−1[i, j] in the rows of Mp−1. Then A[i, 1] = Mp−1[i, 1] and A[i, j] =

10 D. Adamson et al.

A[i, j − 1] − Mp−1[i, j − d] + Mp−1[i, j] for all i ∈ [m] and j ∈ [2 : n]. The
entry B[i, j] stores the sum of all entries Mp−1[i

′, j′] with 0 ≤ i − i′ < d and
0 ≤ j − j′ < d. Again, for convenience, we treat all entries A[i, j] as 0 if either
i < 1 or j < 1. Then we compute B[i, j] as follows. We set B[1, 1] = Mp−1[1, 1],
B[1, j] = B[1, j−1]−Mp−1[1, j−d]+Mp−1[1, j], and B[i, j] = B[i−1, j]−A[i−
d, j] +A[i, j] for all i ∈ [2 : m] and j ∈ [2 : n].

Since the computation of each entry in A or B takes O(1) time, we can
compute the matrices A and B in time O(N). Now Mp[i, j] = 1 if and only if
there is a 1 in the submatrix Mp−1[I, J], which is true if B[i−ℓ−1, j−ℓ−1] > 0.
Hence we can compute Mp[i, j] in constant time, Mp in O(N) time, and the
sequence M1, . . . ,Mk+1 in time O(Nk). ⊓⊔

An O(N log2 N) time algorithm for LCS-MC-INC. We now consider LCS-MC-
INC, a variant of LCS-MC where the tuple gc is increasing. We begin with a
lemma describing a data structure, which is then used to solve LCS-MC-INC.

Lemma 2. Given an m× n matrix M with all elements initially equal to 0, we
can maintain a data structure (two dimensional segment tree) T for M , so that
we can execute the following operations efficiently:

– updateT (i
′, i′′, j′, j′′, x): set M [i, j] = max{M [i, j], x}, for all i ∈ [i′ : i′′] and

j ∈ [j′ : j′′]; here, x is a natural number. Time: O(log n logm).
– queryT (i, j): return M [i, j]. Time: O(logm).

Proof (Sketch). The idea is to maintain a two dimensional (2D, for short) Seg-
ment Tree T for M (see, for instance, [10,9] for details about segment trees).
The 2D Segment Tree T is defined for the matrix M as follows (see, e.g., [48,36],
and also note that this is a relatively standard data structure in competitive
programming).

– We define a segment tree T for the range [1 : n].
– In each node α of the segment tree T we have a segment tree Tα for the

range [1 : m].
– In each node β of the tree Tα we store an integer value val(β), which is

initially 0.

Note that the nodes of T correspond to sub-ranges [x : y] of the range [1 : n].
So, assume that we have a node α which corresponds to the range [a, b]. Then
the nodes of Tα correspond canonically to the range [a : b] (as they depend on
α) but also on a range [c : d] of [1 : m] (as they are segment trees for [1 : m]).
So, the nodes of Tα correspond to submatrices M [c : d][a : b] of M .

Also there is a bijection between the leaves of the trees Tα, where α is a leaf
of T , and the elements M [i, j], with i ∈ [m] and j ∈ [n]. When constructing the
structure T as above, we can compute and store for each M [i, j] a pointer to the
leaf corresponding to it.

Now, we explain how the operations are performed (without going into details
w.r.t. the standard usage of segment trees and the results regarding them).

Longest Common Subsequence with Gap Constraints 11

Consider first updateT (i
′, i′′, j′, j′′, x). We first use the segment tree T1 to

identify the nodes α1, . . . , αe, with e ≤ logn, which correspond to a partition
of the interval [j′ : j′′]. The process of identifying these nodes is implemented
in the standard way, and requires O(log n) time. Then, for each of the trees Tα,
with α ∈ {α1, . . . , αe}, we identify the nodes βα

1 , . . . , β
α
eα , with eα ≤ logm, which

correspond to a partition of the interval [i′ : i′′]. Again, these can be identified in
O(logm) time. Now, the nodes βα

1 , . . . , β
α
eα , for α ∈ {α1, . . . , αe}, correspond to a

set of O(log n logm) submatrices which partition the submatrix M [i′ : i′′][j′ : j′′]
(whose elements we need to update). Further, for α ∈ {α1, . . . , αe} and for
β ∈ {βα

1 , . . . , β
α
eα}, we set val(β) = max{val(β), x}.

The time complexity of this update operation is O(log n logm).
To retrieve the current value of M [i, j], and answer queryT (i, j), we proceed

as follows. Note first that the actual entry M [i, j] might not have been changed.
Therefore, we need to account for the updates we did on the trees. However, this
is not complicated. We retrieve the leaf which corresponds to M [i, j] (say that
this is a leaf in a node Tα). Then, we move up in the tree until we reach the
root of this tree, and compute a value ret. Initially, ret = M [i, j]. Then, when
we reach node β of Tα, we update ret← max{ret, val(β)}. After processing the
root of Tα we stop, and return ret as the correct value of M [i, j].

The time complexity of this query operation is O(logm).
The correctness of this approach follows immediately from the properties of

segment trees. ⊓⊔

Based on this data structure, we can show the following Lemma.

Lemma 3. LCS-MC-INC can be solved in O(N log2 N).

Proof. Main idea. Our algorithm computes, one by one, the elements of an m×n
matrix M (whose elements are initially set to 0). The approach is to define
M [i, j], for each pair of positions (i, j) ∈ [m]× [n] such that v[i] = w[j], to equal
the length p of the longest string sp which has matching embeddings into v[1 : i]
and w[1 : j], respectively, satisfying gc[1 : p − 1]. Because gc is increasing (for
all i ∈ [m− 2], gc[i] ⊆ gc[i+ 1]), p can be determined as follows. It is enough to
extend with the symbol a = v[i] = w[j] (mapped to position i of v and position
j of w) the longest subsequence sp′ , with |sp′ | = p′, such that the embeddings of
sp′ in v and w end on positions i′ and j′, respectively, where the gap between i′

and i and the gap between j′ and j fulfil the gap constraint gc[p′ + 1]. Indeed,
this is enough: as gc is increasing, this longest subsequence can be extended in
exactly the same way as any other shorter subsequence with the same properties.
Then, to obtain sp′ , it is enough to set p = p′ + 1 and extend sp′ with the letter
a, mapped to v[i] and w[j] in the two embeddings, respectively.

However, when considering the position (i, j), we do not know the value of
p′, and, as such, we do not know the range where we need to look for i′ and j′.
Therefore, we need to find a way around this.

Dynamic programming approach. We now show how to compute the elements
of M . In the case of the dynamic programming algorithms solving LCS, the ele-
ment M [i, j] of the matrix M is computed by looking at some elements M [i′, j′],

12 D. Adamson et al.

with i′ ≤ i, j′ ≤ j, (i, j) 6= (i′, j′). By the arguments presented above, such an ap-
proach does not seem to work directly for LCS-MC-INC. However, if we know
the value p of some entry M [i, j], we can be sure that M [i′′, j′′] ≥ p+1 for all i′′

and j′′ such that i+ ℓ+1 ≤ i′′ ≤ i+ u+1 and j+ ℓ+1 ≤ j′′ ≤ j + u+1, where
gc[p + 1] = (ℓ, u); we store this information. Moreover, if we know already all
the values M [i, j], with i ≤ i′, j ≤ j′, (i, j) 6= (i′, j′), then we have already seen
(and stored) all possible values for M [i′, j′] (or, in other words, all possible sub-
sequences that we can extend in order to get M [i, j]), so we simply set M [i′, j′]
to the largest such possible value.

So, we compute the elements M [i, j] one by one, by traversing the elements
of M for i from 1 to m, for j from 1 to n, and proceed as follows. When we
reach an element M [i, j] in our traversal of M , we simply set it permanently to
its current value. Then, if we set M [i, j] to some value p, and gc[p] = (ℓ, u), we
update each element M [i′, j′] of submatrix M [I, J], where I = [i+ℓ+1 : i+u+1]
and J = [j + ℓ+ 1 : j + u+ 1], to be M [i′, j′] = max{M [i′, j′], p+ 1}.

The algorithm. First we define the matrix M , and initialize all its entries
with 0. Then, we build the data structure T from Lemma 2 for M . In an initial
step, we set all values M [1, j] = 1, where v[1] = w[j], and M [i, 1] = 1, where
v[i] = w[1]; this is done by using update-operations on T (to set the entry
M [i, j] = x, for some x > 0, given that M [i, j] was equal to 0, it is enough to
execute update(i, i, j, j, x)). Further, we execute the following procedure.

1: for i = 2 to m do
2: for j = 2 to n do
3: Set M [i, j] =queryT (i, j) = p; M [i, j] remains equal to p permanently;
4: For (ℓ, u) = gc[p] updateT (i+ ℓ+1, i+u+1, j+ ℓ+1, j+u+1, p+1).

The solution to LCS-MC-INC is the maximum element of M .
Conclusion. The correctness of our algorithm follows from the arguments pre-

sented above. The time complexity of the algorithm is O(N log2 N), as we need
O(N log2 N) time for the preprocessing (setting up T and doing the initial up-
dates on it). Then the 4-step procedure described above takes also O(N log2 N)
time, as in each iteration of the inner loop we perform as the most time consum-
ing operation an update on T . Our claim follows. ⊓⊔

Summing up, we have shown the following theorem regarding LCS-MC.

Theorem 1. LCS-MC can be solved in O(Nk) time, where k is the largest
number for which there exists a common gc[1 : k − 1]-subsequence s of v and w.
LCS-MC-INC can be solved in O(N log2 N).

O(N) solutions for LCS-1C and LCS-O(1)C. While this problem was already
solved in [37], we also briefly describe our solution for it. Our approach is based
on the following data-structures lemma, which are also used to solve some of the
other problems we discuss here.

Lemma 4. Let Ψ : [m]× [n]→ {0, 1} be a predefined function, such that Ψ(i, j)
can be retrieved in O(1) time. Given an m × n matrix M , with all elements

Longest Common Subsequence with Gap Constraints 13

initially equal to 0, and four positive integers ℓ1 ≤ u1, ℓ2 ≤ u2, we can maintain
a data structure D for M , so that the following process runs in O(N) time:

1: for i = 1 to m do
2: update D (set up for processing line i);
3: for j = 1 to n do
4: update D (set up for computing M [i, j]);
5: use D to retrieve m, the maximum of the submatrix M [I, J]

where I = [i− u1 : i− ℓ1] and J = [j − u2 : j − ℓ2];
m is set to be 0 when I or J are empty.

6: if Ψ(i, j) = 1 then set M [i, j] = m+ 1.

Proof. Preprocessing phase. In the preprocessing, we define D. This data struc-
tures contains a double ended queue (deque) Qf for each column M [·, f] of the
matrix M , with f ∈ [n], as well as an array Max with n elements.

Main idea. In general we maintain the following invariant property for deque
Qf : the content of the deque Qf is the list of matrix entries (in order, from the
first element in Qf to the last element of Qf) M [i1,f , f], . . . ,M [ief ,f , f] of M [·, j]
such that the following hold:

– i1,f < i2,f < . . . < ief ,f ,
– M [i1,f , f] > . . . > M [ief ,f , f], and
– M [ig,f , f] > M [h, f] for all ig−1,f < h < ig,f , for g ∈ [2 : ef].
– After executing step 4 of the process above for some values i and j, the

queues Qf , with f ∈ J , only contain elements of the submatrix M [I, J].

Implementation. Initially, all deques in D are empty.
The data structure D is updated as follows (in step 2 of our process): for

f from 1 to n, we remove from the deque Qf the element M [i − 1 − d1, f], if
that was contained in Qf . As we execute this step for all values i, it is clear that
when we execute step 2 for i = a, then the first element of Qf is M [e, f] for some
e ≥ i − 1 − d1. Moreover, once this step is completed, we recompute the array
Max such that M [f] is the maximum between the first element of Qf (i. e., the
greatest element of Qf) and M [i− d1 + ℓ1, f]. For the array Max we construct
in O(n) time data structures allowing us to answer Range Maximum Queries in
O(1) time (see [8]). At this point, we can retrieve in O(1) time the maximum
element in any subarray Max[a : b], with 1 ≤ a ≤ b ≤ n.

Further, D is updated as follows (in step 4 of our process).

– When we execute step 3 of our algorithm for some values i and j, we insert
M [i− d1 + ℓ1, j − d2 + ℓ2] in Qj−d2−ℓ2 .

– The insertion of a value x in the deque Qf for some f is handled as follows:
we traverse Qf from last element towards the first and remove all values
smaller or equal to x. When we meet an element strictly greater than x or
we have emptied Qf , we store the value x as the last element of Qf . This
x is now the smallest element of Qf (while the first element in Qf is the
greatest element in Qf).

14 D. Adamson et al.

Note that after the execution of this update step, the first element of the deque
Qf is exactly the element Max[f], for all f ∈ J .

So, using the Range Maximum Query structures constructed in step 2, we
can implement step 5 as simply querying to find the greatest element of Max
over the range J . This is returned in O(1) time.

Conclusion. The correctness of this implementation follows from the expla-
nations given above. To analyse the complexity of the algorithm, we note first
that step 2 takes O(n) time (and is executed m times), steps 5 and 6 take O(1)
time (and are executed mn times). To see how much time is spent in the exe-
cution of step 4 over the entire execution of the algorithm it is enough to note
that each element of M is inserted once in one of the deques stored in D, and
the time spent in step 4 is proportional to the number of elements removed from
these deques. So, the time spent overall in the execution of this step is upper
bounded by the number of elements inserted in the deques. Thus, step 4 adds at
most O(mn) time to the overall complexity of the algorithm. In total, this means
that the respective procedure runs O(N) time, in the implementation described
here. ⊓⊔

We can now show immediately the following result.

Theorem 2. LCS-1C can be solved in O(N) time.

Proof. Let (ℓ, u) be the single gap-length constraint appearing in gc. We define
the m × n matrix M , where M [i, j] = p if and only if p is the greatest number
for which there exists a subsequence sp, with |sp| = p, such that there are two
matching embeddings ev and ew of sp into v[1 : i] and w[1 : j], respectively, both
satisfying gc[1 : p−1]. We have that M [i, j] = p if and only if v[i] = w[j] and p−1
is the greatest number for which there exist i′ and j′ with i−u−1 ≤ i′ ≤ i−ℓ−1
and j − u − 1 ≤ j′ ≤ j − ℓ − 1 and M [i′, j′] = p − 1. Hence, the entries of M
can be computed using Lemma 4, for u1 = u2 = u + 1, ℓ1 = ℓ2 = ℓ + 1 and
Ψ(i, j) = 1 if and only if v[i] = w[j]. ⊓⊔

This result can be extended to the case of LCS-O(1)C-SYNC. It is, however,
open if a similar result holds for the unrestricted problem LCS-O(1)C.

Theorem 3. LCS-O(1)C-SYNC can be solved in O(N) time, where the con-
stant hidden by the O-notation depends linearly on the number h of distinct
gap-length constraints of gc.

The result of Theorem 3 holds, in fact, for a larger family of constraints, namely
constraints whose elements can be partitioned in h ∈ O(1) classes, such that, for
all 1 ≤ i < j ≤ k−1, if i, j are in the same class of the partition then gc[i] = gc[j]
and gc[i+ e] ⊆ gc[j + e] for all e ≥ 0 such that i+ e ≤ j + e ≤ m− 1.

Proof. Preprocessing phase. Assume (ℓ′1, u
′
1), . . . , (ℓ

′
h, u

′
h) is an enumeration of

the distinct constraints from the set {(ℓi, ui) | i ∈ [m−1]}, where h is a constant
and (ℓ′g, u

′
g) ≤ (ℓ′g+1, u

′
g+1) (w.r.t. canonical ordering of pairs of natural num-

bers). In O(m + n) time, we can radix-sort the list constraints of (ℓi, ui), with

Longest Common Subsequence with Gap Constraints 15

i ∈ [m − 1], and obtain the list (ℓ′1, u
′
1), . . . , (ℓ

′
h, u

′
h), as well as an array label

with m− 1 elements, where label[i] = j if and only if (ℓi, ui) = (ℓ′j , u
′
j); we say,

for simplicity, that label[i] defines the gap (ℓ′label[i], u
′
label[i]). Now we move on to

the description of the main algorithm.

Main idea. Our approach is to compute for each pair of positions (i, j) ∈
[m] × [n], such that v[i] = w[j] = a, and each r ∈ [h] the longest common
subsequence sp of v[1 : i] and w[1 : j], with |sp| = p and label(p) = r, which
fulfils gc[1 : p− 1] and the last symbol of sp is mapped to v[i] in the embedding
of sp in v[1 : i] and to w[j] by the embedding of sp in w[1 : j]. This is obtained
by extending a common subsequence sp−1 of v and w, with |sp−1| = p−1, which
fulfils gc[1 : p − 2] and whose last symbol is mapped to position i′ of v and to
position j′ of w, such that the gap between i′ and i and the gap between j′ and
j fulfil the gap constraint defined by r′ = label[p− 1].

The main observation here is that, due to the synchronization property of gc
(for all i, j ∈ [m − 1], if gc[i] = gc[j] and i ≤ j then gc[i + e] ⊆ gc[j + e] for all
e ≥ 0), p can be determined as follows. For each r′ ∈ [h], it is enough to extend
with a symbol a (mapped to position i of v and position j of w) only the longest
subsequence smr′

such that label(mr′) = r′ and the embeddings of smr′
in v

and w end on positions i′r′ and j′r′ , respectively, where the gap between i′ and
i and the gap between j′ and j fulfil the gap constraint defined by r′. Indeed,
this is enough: due to the synchronization of gc, this longest subsequence can
be extended in exactly the same way as any other shorter subsequence with the
same properties. Then, to obtain sp, it is enough to extend the longest of the
subsequences smr′

, for r′ ∈ [h], such that label[mr′ +1] = r. This naturally leads
to a dynamic programming algorithm, which we describe in the following.

Dynamic programming. For each r ∈ [h], we define an m × n matrix Mr,
where Mr[i, j] = p if and only if v[i] = w[j] and p is the greatest number for
which r and there exists a gc[1 : p − 1]-subsequence sp of v[1 : i] and w[1 : j]
for which there are two embeddings ev and ew of sp into v[1 : i] and w[1 : j],
respectively, with ev(p) = i, ew(p) = j.

According to the definition of Mr and the observations made above, we have
that Mr[i, j] = p if and only if v[i] = w[j] and p − 1 is the greatest number for
which label[p] = r and there exist i′ and j′ with i − u′

r′ − 1 ≤ i′ ≤ i − ℓ′r′ − 1
and j − u′

r′ − 1 ≤ j′ ≤ j − ℓ′r′ − 1 such that Mr′[i
′, j′] = p− 1, for some r′ ∈ [h].

That is, Mr[i, j] = p if there exists an embedding of subsequence of length p− 1
which fulfils the gap constraints and which can be extended (while still fulfilling
the constraints) to a subsequence of length p, whose last symbol is embedded
in v[i] and w[j], respectively, and, moreover, the label of the pth gap (the one
following the newly found pth symbol) is r.

So, to compute Mr[i, j] we first have to compute for all r′ ∈ [h] the maximum
value mr′ of Mr′ [Ir′ , Jr′], for Ir′ = [i−u′

r′−1 : i− ℓ′r′−1] and Jr′ = [j−u′
r′−1 :

j − ℓ′r′ − 1]. Then, we simply set Mr[i, j] = 1 + maxr′∈[h],label[mr′+1]=r mr′ .

Now, what remains to be explained is how to retrieve the maximum value pr′

of Mr′ [Ir′ , Jr′], for Ir′ = [i−u′
r′−1 : i−ℓ′r′−1] and Jr′ = [j−u′

r′−1 : j−ℓ′r′−1].
For this we use Lemma 4, as shown below.

16 D. Adamson et al.

The algorithm. We initialize the m×n matrices Mr, for r ∈ [h], such that all
their entries are 0, and define for each of them a data structure Dr as in Lemma
4, with the four input numbers being ℓ′r+1, u′

r+1, ℓ′r+1, u′
r+1. Then, we adapt

the procedure of Lemma 4 to compute these matrices as follows:

1: for i = 1 to m do
2: update Dr′ , for r′ ∈ [h];
3: for j = 1 to n do
4: update Dr′ , for r′ ∈ [h];
5: for r′ ∈ [h], use Dr′ to retrieve mr, the maximum of Mr′ [Ir′ , Jr′]

where Ir′ = [i−u′
r′−1 : i−ℓ′r′−1] and Jr′ = [j−u′

r′−1 : j−ℓ′r′−1];
mr′ is set to be 0 when Ir′ or Jr′ are empty.

6: Compute set maxr = maxr′∈[h],label[mr′+1]=r mr′ , for all r ∈ [h];
7: for r ∈ [h], if v[i] = w[j] then set Mr[i, j] = 1 +maxr.

The result of LCS-O(1)-SYNC is given by the maximum value stored in
one of the matrices Mr at the end of the computation.

Conclusion. The correctness of the algorithm follows from the explanations
given above. Its time complexity is O(N), based on the result of Lemma 4 and
on the fact that h ∈ O(1). ⊓⊔

First, we analyse the problem LCS-ΣR. The input of this problem consists in
two words v and w and one function right : σ → [n]×[n] with right(a) = (ℓa, ua)
for all a ∈ Σ (that is, for the right-function we have right(a) = (0, n) for all
a ∈ Σ). The approach we use is based on Lemma 4, as in the solution to LCS-
O(1)C-SYNC.

Lemma 5. LCS-ΣR can be solved in O(Nσ) time.

Proof. Main idea. Our approach is to compute for each pair of positions (i, j) ∈
[m]× [n], such that v[i] = w[j] = a, the longest (right)-subsequence sp of both
v and w, where |sp| = p and the last symbol of sp is mapped to v[i] in the
embedding of sp in v[1 : i] and to w[j] by the embedding of sp in w[1 : j]. This
can be obtained by simply extending with the symbol a = v[i] = w[j] the longest
(right)-subsequence sr, of length r, whose last symbol is mapped to position i′

of v and to position j′ of w, such that the gap between i′ and i and the gap
between j′ and j fulfil the gap constraint defined by right(a); clearly, p is then
defined as r + 1.

Dynamic Programming. We compute an m × n matrix M , where M [i, j] is
length of the longest (right)-subsequence sp of both v and w, where |sp| = p and
the last symbol of sp is mapped to v[i] in the embedding of sp in v[1 : i] and to
w[j] by the embedding of sp in w[1 : j]; M [i, j] = 0 if and only if v[i] 6= w[j].
To compute M [i, j] we need to retrieve the largest entry Ma of the submatrix
M [Ia, Ja], where Ia = [i− ua − 1 : i− ℓa − 1] and Ja = [j − ua − 1 : j − ℓa − 1],
and set M [i, j] = Ma + 1. We can proceed as follows.

The algorithm. We initialize the m×n matrices M such that all their entries
are 0, and define for each a ∈ Σ a data structure Da as in Lemma 4, for the
matrix M with the four input numbers being ℓa+1, ua+1, ℓa+1, ua+1, where
right(a) = (ℓa, ua). Then, we adapt the procedure of Lemma 4 to work as follows:

Longest Common Subsequence with Gap Constraints 17

1: for i = 1 to m do
2: update Db, for b ∈ Σ;
3: for j = 1 to n do
4: update Db, for b ∈′ Σ;
5: if w[j] = v[i], let a = w[j];
5: use Da to retrieve Ma, the maximum of M [Ia, Ja]

where Ia = [i−ua− 1 : i− ℓa− 1] and Ja = [j−ua− 1 : j− ℓa− 1];
Ma is set to be 0 when Ia or Ja are empty.

6: set M [i, j] = 1 +Ma.

Conclusion. The correctness of the algorithm follows from the explanations
given above. Its time complexity is O(Nσ), based on the result of Lemma 4 and
on the fact that we need to maintain σ data structures Da, for a ∈ Σ, and each
of them can be maintained in overall time O(N). ⊓⊔

We now present another algorithm for LCS-ΣR, running in O(N logm) time.
This algorithm uses a special case of the two-dimensional Range Maximum

Query data structure (for short, RMQ), which is able to answer maximum queries
on square sized submatrices of a matrix M of size m×n in O(log(m)) time, and
which allows a special type of updates needed in our solution for LCS-ΣR. This
structure extends the Sparse Table approach from [8].

The two dimensional Range Maximum Query structure. At its base, our RMQ
data structure maintains an m×n×(1+⌈logm⌉) array RMQ[·, ·, ·], such that for
1 ≤ i ≤ m and 1 ≤ j ≤ n and 0 ≤ q ≤ ⌈logm⌉, RMQ[i, j, q] stores the maximum
of the submatrix M [I, J] with I = [i − 2q + 1 : i] and J = [j − 2q + 1 : j]. For
simplicity, we assume that M [i, j] = 0 if i ≤ 0 or j ≤ 0, and RMQ[i, j, q] is
defined as 0 if i ≤ 0 or j ≤ 0. Further, in a linear time preprocessing phase
we can compute an array Q[1 : n] where, for h ∈ [m], we have Q[h] = max{q ∈
N∪{0} | 2q ≤ h} (in other words, Q[h] = ⌊log h⌋). Let us now see how to retrieve
the maximum of an arbitrary square submatrix of M [I, J] with I = [i′ : i′′] and
J = [j′ : j′′] (with |i′′− i′| = |j′′ − j′|) in constant time, once we have computed
the three dimensional array RMQ.

Lemma 6. Given RMQ[·, ·, ·], we can retrieve maxM [I, J] in O(1).

Proof. As said, assume that we want to compute the largest value of M [I, J]
with I = [i′ : i′′] and J = [j′ : j′′]. At first we need to determine the largest q,
such that a square of size 2q completely fits into the square M [I, J]. That is to
find a maximal q with 2q ≤ |i′ − i′′| = |j′ − j′′| < 2q+1, so q = Q[|i′ − i′′|].

We now claim that the maximum of the values RMQ[i′ + 2q, j′ + 2q, q],
RMQ[i′+2q, j′′, q], RMQ[i′′, j′+2q, q], RMQ[i′′, j′′, q] is a maximum in M [I, J].
We distinguish two cases.

Case 1: 2q = |i′ − i′′| = |j′ − j′′|. In this case we replace 2q in all four cases
by |i′− i′′| and get immediately four times the lookup RMQ[i′′, j′′, q], that is by
definition of RMQ[·, ·, ·] the desired answer.

Case 2: 2q < |i′ − i′′| = |j′ − j′′| < 2q+1. Let us have a look at the
sets of values considered by the single RMQ look up operations. We have

18 D. Adamson et al.

M [I1, J1],M [I1, J2],M [I2, J1],M [I2, J2] with I1 = [i′ : i′ + 2q − 1], J1 = [j′ :
j′ + 2q − 1], I2 = [i′′ − 2q + 1 : i′′] and J2 = [j′′ − 2q + 1 : j′′] . Because we
have 2q < |i′ − i′′| < 2q+1 and 2q < |j′ − j′′| < 2q+1, we have I1 ∩ I2 6= ∅ and
J1 ∩ J2 6= ∅. Therefore, we completely cover all values of M [I, J]. ⊓⊔

Now that we have understood how the array RMQ is used, we see how
to calculate RMQ[i, j, q] for all q initially. Clearly, RMQ[i, j, 0] = M [i, j], for
all i ∈ [m] and j ∈ [n]. Then we use a dynamic programming approach. We
assume that all the entries RMQ[i, j, q − 1] for 1 ≤ i ≤ m and 1 ≤ j ≤ n have
been computed already. Then, RMQ[i, j, q] = max{RMQ[i− 2q−1, j− 2q−1, q−
1], RMQ[i, j− 2q−1, q− 1], RMQ[i− 2q−1, j, q− 1], RMQ[i, j, q− 1]}. Cleary, we
need O(N) time to compute RMQ[·, ·, q]. So, to compute the entire array RMQ
we need O(N logm) time.

A RQM-based solution for LCS-ΣR. Our second solution to LCS-ΣR is de-
scribed in the following.

Lemma 7. LCS-ΣR can be solved in O(N logm) time.

Proof. Main idea. We compute an m × n array M [·, ·] such that M [i, j] = p if
and only if p is the largest number for which there exists a (right)-subsequence
sp of v[1 : i] and w[1 : j] such that there are two embeddings ev and ew of sp
into v[1 : i] and w[1 : j], respectively, with ev(p) = i, ew(p) = j.

The main observation is that M [i, j] = p if and only if v[i] = w[j] = a, where
right(a) = (ℓa, ua), and the maximum value in M [I, J], for I = [i − ua − 1 :
i − ℓa − 1] and J = [j − ua − 1 : j − ℓa − 1], is p − 1. That is, there exist
i′ ∈ I and j′ ∈ J such that M [i′, j′] = p − 1, and this indicates the existence
of a (right)-subsequence sp−1 of v[1 : i′] and w[1 : j′], with |sp−1| = p− 1, and
whose last symbol is mapped, respectively, to v[i′] and w[j′], and, moreover, this
subsequence sp−1 can be extended to a (right)-subsequence sp of v[1 : i] and
w[1 : j] whose last symbol is mapped, respectively, to v[i] and w[j].

Preprocessing. To begin with, we set all values of M to be 0. Then, for j from
1 to n, we set M [1, j] = 1 if v[1] = w[j], and for i from 1 to m, we set M [i, 1] = 1
if v[i] = w[1]. We also compute the data structure RMQ[·, ·, ·] for M .

Dynamic programming algorithm. We compute the entries of M [·, ·] as follows:

1: for i = 2 to m do

2: for j = 2 to n do

3: get the constraint right(a) = (ℓa, ua) for a = v[i] = w[j];

4: set I = [i− ua − 1 : i− ℓa − 1] and J = [j − ua − 1 : j − ℓa − 1];

5: set M [i, j] as the maximum of M [I, J], computed using RMQ;

6: set RMQ[i, j, 0] = M [i, j];

7: for q = 1 to ⌈logm⌉
8: Set RMQ[i, j, q] = max{RMQ[i− 2q−1, j − 2q−1, q − 1],

RMQ[i, j−2q−1, q−1], RMQ[i−2q−1, j, q−1], RMQ[i, j, q−1]}

Longest Common Subsequence with Gap Constraints 19

After we have computed all entries of M , we can simply compute its maxi-
mum in O(N) time, and return it as the output value for the LCS-ΣR.

Conclusion. The correctness of our algorithm can be shown as follows. Clearly
the entries of the arrays M [1, ·] and M [·, 1] are correctly computed, and the data
structure RMQ is correctly initialized. Assume now that M [i′, j′] is correctly
computed and the data structure RMQ correctly returns RMQ[i′, j′, q] for all
i′ ≤ i and j′ ≤ j such that (i′, j′) 6= (i, j). By our observations made above, the
computation from step 5 of M [i, j] is therefore correct. Moreover, once M [i, j]
is computed, steps 6, 7, 8 ensure that our RMQ data structure correctly returns
RMQ[i′, j′, q] for all i′ ≤ i and j′ ≤ j such that (i′, j′) 6= (i, j). So, by induction,
it follows that all the entries of M are correctly computed.

The overall time complexity of the algorithm is, clearly, O(N logm). ⊓⊔

Solutions for LCS-ΣL and LCS-Σ. Further, we consider the problem LCS-ΣL,
for which right(a) = (0, n) for all a ∈ Σ. The input of this problem consists in
two words v, w and one function left with left(a) = (ℓa, ua) for all a ∈ Σ. We
can immediately transform this problem into LCS-ΣR with input words vR and
wR (i. e., the mirror images of the input words) and the function right′ which
defines the gap constraints, where right′(a) = left(a), for all a ∈ Σ. Then we
can use the solutions we have seen in Lemmas 5 and 7 to get a solution for
LCS-ΣL.

Theorem 4. LCS-ΣR, LCS-ΣL can be solved in O(max{Nσ,N logm}) time.

Our approaches can be generalized to solve the general problem LCS-Σ.

Theorem 5. LCS-Σ can be solved in O(min{Nσ2, Nσ logm}) time.

Proof. Main idea. As in the case of LCS-ΣR, our approach is to compute for
each pair of positions (i, j) ∈ [m] × [n], such that v[i] = w[j] = a, the longest
(left, right)-subsequence sp of both v and w, where |sp| = p and the last symbol
of sp is mapped to v[i] in the embedding of sp in v[1 : i] and to w[j] by the
embedding of sp in w[1 : j]. This can be obtained by extending with the symbol
a = v[i] = w[j] the longest (left, right)-subsequence sr, of length r, whose last
symbol, say b, is mapped to position i′ of v and to position j′ of w, such that
the gap between i′ and i and the gap between j′ and j fulfils the gap constraint
defined by the pair (left(b), right(a)); clearly, p is then defined as r + 1.

To find, for some i and j such that v[i] = w[j], the longest (left, right)-
subsequence sr which can be extended with the symbol a = v[i] = w[j] to a
longer (left, right)-subsequence we proceed as follows. Let right(a) = (ℓa, ua).
For each letter b ∈ Σ, let left(b) = (ℓ′b, u

′
b). We compute the pair (ℓab, uab) =

(max{ℓa, ℓ′b},min{ua, u
′
b}) and let Iab = [i − uab − 1 : i − ℓab − 1] and Jab =

[j − uab − 1 : j − ℓab − 1]. Then, we compute Mab the maximum entry M [i′][j′]
of M [Iab][Jab] with v[i′] = w[j′] = b. Therefore, we need a mechanism allowing
us to extract from M the maximum from a submatrix, but only consider the
entries of this submatrix that correspond to a certain letter.

20 D. Adamson et al.

Dynamic Programming. To achieve this, we compute σ m×n matrices Mb, for
all b ∈ Σ and an m×n matrix M . We define M [i, j] as the longest (left, right)-
subsequence sp of both v and w, where |sp| = p and the last symbol of sp is
mapped to v[i] in the embedding of sp in v[1 : i] and to w[j] by the embedding
of sp in w[1 : j]; clearly, M [i, j] 6= 0 if and only if v[i] = w[j]. Then, for all b ∈ Σ,
Mb[i, j] is initialized as 0 and whenever we set M [i, j] = x, if v[i] = w[j] = b
then we also set Mb[i, j] = x.

Now, to compute M [i, j], if v[i] = w[j] = a, we need to retrieve, for all
b ∈ Σ, the largest entry Mab of the submatrix Mb[Iab, Jab], and set M [i, j] =
maxb∈Σ Mab + 1.

To avoid repeating the same algorithms again, we only describe how this
is done informally. On the one hand, we can use the approach from Lemma
5, and maintain data structures Dab for each matrix Mb, for all a, b ∈ Σ (so,
in total, maintain σ2 such data structures). Then, using the same algorithmic
approach outlined in Lemma 4, the computation of all entries M [i, j] can be
done in O(Nσ2) time. On the other hand, we can use the approach from Lemma
7, and maintain RMQ data structures for each matrix Mb, for all b ∈ Σ. Using
the same algorithmic approach as in Lemma 7, the computation of all entries
M [i, j] can be done in O(Nσ logm) time.

Conclusion. The correctness of this approach follows from the explanations
given above and the discussions and proofs regarding LCS-ΣR. Its time com-
plexity is O(min{Nσ2, Nσ logm}). ⊓⊔

4 LCS with Global Constraints

In this section, we present our solution to LCS-BR. First, we note the naïve
solution: we consider every pair (v[i + 1 : i + B], w[j + 1 : j + B]) of factors of
length B of the two input words, respectively, and find their longest common sub-
sequence, using the folklore dynamic programming algorithm for LCS. As each
word of length n has n−B+1 factors of length B, this approach requires solving
LCS for O((m − B)(n − B)) ⊆ O(N) words, with each such LCS-computation
requiring O(B2) time. This yields a total time complexity of O(NB2).

Here, we improve this by providing an O(NBo(1)) time algorithm via the
alignment oracles provided by Charalampopoulos et al. [16]. Each such oracle is
built for a pair of words v and w, with |v| = m, |w| = n and N = mn, and is able
to return the answer to queries asking for the length of the LCS between two
factors v[i : i′] and w[j : j′]. One of the results of [16] is the following theorem.

Theorem 6 ([16]). We can construct in N1+o(1) time an alignment oracle for

the words v and w, with log2+o(1) N query time.

Theorem 6 can be used directly to build an alignment oracle A for the input
words w and v in O(N1+o(1)) time. Using this oracle, we can solve LCS-BR
by making O(N) queries to A, for every pair of indices i ≤ m, j ≤ n, each

requiring O(log2+o(1) N) time. The total time complexity of this direct approach
is therefore O(N1+o(1)). We improve this approach by creating a set of smaller

Longest Common Subsequence with Gap Constraints 21

oracles, allowing us to avoid the extra work required to answer LCS queries
beyond the bounded range. For simplicity, assume w.l.o.g. that m and n are
multiples of 2B. Let, for all i, wi = w[iB +1 : (i+2)B], or wi = w[iB +1 : n] if
(i+2)B > n and vi = v[iB+1 : (i+2)B], or vi = v[iB +1 : n] if (i+2)B > m.
Observe that every factor of length B of w appears in at least one subword wi

and every factor of length B of v appears in at least one subword vi . Therefore,
solving LCS-BR with input vi, wj for every i ∈ [0,m/B], j ∈ [0, n/B] would also
give us the solution to LCS-BR for input words v, w.

To find the solution to LCS-BR with input vi, wj , we use Theorem 6 to
construct an oracle Ai,j for vi and wj . As |vi| = |wj | = 2B, the oracle Ai,j can
be constructed in O(B2+o(1)) time. The solution of LCS-BR for the input words
vi, wj can be then determined by making O(B2) queries to Ai,j , each requiring

O(log2+o(1) B) time. So, the total time complexity of solving LCS-BR for input
words vi, wj is O(B2+o(1)). As there are O(N/B2) pairs of factors vi, wj , the time
complexity of solving LCS-BR for words v, w is O

(

N
B2B

2+o(1)
)

= O(NBo(1)).

Theorem 7. LCS-BR can be solved in O(NBo(1))time.

We complement our exact algorithm with an O(N) time constant-factor ap-
proximation algorithm. As before, we use the subwords vi = v[iB+1 : (i+2)B]
and wj = w[jB + 1 : (j + 2)B]. Letting s be the longest common subse-
quence within a bounded range of length B between v and w, note that |s| ≤
maxi,j∈[0,n/B] LCS(vi, wj) ≤ 3|s|. Therefore, maxi,j∈[0,n/B] LCS(vi, wj)/3 is at
most a (1/3)-approximation of the longest common B-subsequence between v
and w.

Theorem 8. Given a pair of words v, w ∈ Σ∗, of length at most n, and let
vi = v[iB+1 : (i+2)B] and, respectively, wj = w[jB+1 : (2+1)B]. The length
of the longest common B-subsequence s between v and w has the following bound:

max
i,j∈[n/B]

LCS(vi, wj)/3 ≤ |s| ≤ max
i,j∈[n/B]

LCS(vi, wj)

where LCS(vi, wj) is the length of longest common subsequence between the
strings vi and wj . Further, these bounds can be found in O(N) time.

Proof. Let x, y ∈ [B + 1, n] be the pair of indices maximising LCS(v[x − B :
x], w[y−B : y]), and let s be the longest common subsequence between v[x−B :
x] and w[y − B : y]. Note that s must appear as a subsequence of vi and wj

where i = ⌊ xB ⌋ and j = ⌊ yB ⌋. Therefore, as LCS(vi, wj) ≥ |s|, the length of s is
at maxi,j∈[n/B] LCS(vi, wj).

On the other direction, assume for the sake of contradiction, that there ex-
ists some vi, wj such that |s| < LCS(vi, wj)/3. Let s′ be the longest common
subsequence between vi and wj such that |s′| > 3|s|. Now, let (x1, y1), (x2, y2),
. . . , (x|s′|, y|s′|) be a set of tuples of indices such that v[xℓ] = w[yℓ] = s′[ℓ].
Observe that there exists a set of indices such that, for every ℓ ∈ [2, |s′|],
x − B ≤ xℓ−1 < xℓ ≤ x and y − B ≤ yℓ−1 < yℓ ≤ y. Therefore, if there
exists some pair of indices xℓ > iB + B, yℓ ≤ jB + B, there can not exist any

22 D. Adamson et al.

pair xℓ′ ≤ iB+B, yℓ′ > jB+B. Conversely if there exists some pair xℓ ≤ iB+B,
yℓ′ > jB + B, then there can not exist any pair xℓ′ ≤ iB + B, yℓ′ > jB + B.
Therefore, there must be a set of sequences s′1, s

′
2, s

′
3 such that s′ = s′1, s

′
2, s

′
3,

and:

– s′1 is a subsequence of vi[1 : B] and wj [1 : B].
– s′2 is a subsequence of either vi[1 : B] and wj [B + 1 : 2B] or vi[B + 1 : 2B]

and wj [1, B].
– s′3 is a subsequence of vi[B + 1 : 2B] and wj [B + 1 : 2B].

As |s′1|+ |s
′
2|+ |s

′
3| = |s

′|, then the length of at least one of LCS(vi[1 : B], wj [1 :
B]), LCS(vi[1 : B], wj)[B+1 : 2B], LCS(vi[B+1 : 2B], wj [1 : B]) or LCS(vi[B+
1 : 2B], wj [B + 1 : 2B]) must be at least |s′|/3 ≤ |S|. Hence,

max
i,j∈[n/B]

LCS(vi, wj)/3 ≤ |s| ≤ max
i,j∈[n/B]

LCS(vi, wj).

The time complexity follows directly. ⊓⊔

5 Future Work

A series of problems remain open from our work. Can our results regarding LCS-
MC be improved, at least in its particular case LCS-O(1)C? If not, can one
show tight complexity lower bounds for these problems? Can the dependency
of Σ from the solutions to LCS-Σ and its variants be removed? We were not
focused on shaving polylog factors from the time complexity of our algorithms,
but it would be also interesting to see if this is achievable. Nevertheless, it would
be interesting to address also the problem of efficiently computing the actual
longest common constrained subsequences in the case of all addressed problems.

References

1. Abboud, A., Backurs, A., Williams, V.V.: Tight hardness results for
LCS and other sequence similarity measures. In: Guruswami, V. (ed.)
IEEE 56th Annual Symposium on Foundations of Computer Science,
FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015. pp. 59–78. IEEE
Computer Society (2015). https://doi.org/10.1109/FOCS.2015.14 ,
https://doi.org/10.1109/FOCS.2015.14

2. Abboud, A., Rubinstein, A.: Fast and deterministic constant fac-
tor approximation algorithms for LCS imply new circuit lower
bounds. In: 9th Innovations in Theoretical Computer Science Con-
ference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA. pp.
35:1–35:14 (2018). https://doi.org/10.4230/LIPIcs.ITCS.2018.35,
https://doi.org/10.4230/LIPIcs.ITCS.2018.35

3. Abboud, A., Williams, V.V., Weimann, O.: Consequences of faster alignment of
sequences. In: Automata, Languages, and Programming - 41st International Col-
loquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part
I. pp. 39–51 (2014). https://doi.org/10.1007/978-3-662-43948-7_4

https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.4230/LIPIcs.ITCS.2018.35
https://doi.org/10.4230/LIPIcs.ITCS.2018.35
https://doi.org/10.4230/LIPIcs.ITCS.2018.35
https://doi.org/10.1007/978-3-662-43948-7_4
https://doi.org/10.1007/978-3-662-43948-7_4

Longest Common Subsequence with Gap Constraints 23

4. Adamson, D., Kosche, M., Koß, T., Manea, F., Siemer, S.: Longest common sub-
sequence with gap constraints. CoRR to appear (2023)

5. Artikis, A., Margara, A., Ugarte, M., Vansummeren, S., Weidlich,
M.: Complex event recognition languages: Tutorial. In: Proceed-
ings of the 11th ACM International Conference on Distributed and
Event-based Systems, DEBS 2017, Barcelona, Spain, June 19-23,
2017. pp. 7–10 (2017). https://doi.org/10.1145/3093742.3095106 ,
https://doi.org/10.1145/3093742.3095106

6. Baeza-Yates, R.A.: Searching subsequences. Theor. Comput. Sci. 78(2), 363–376
(1991)

7. Barker, L., Fleischmann, P., Harwardt, K., Manea, F., Nowotka, D.: Scattered
factor-universality of words. In: Proc. DLT 2020. Lecture Notes in Computer Sci-
ence, vol. 12086, pp. 14–28. Springer (2020)

8. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Panario, D., Viola, A. (eds.) LATIN 2000: Theoretical Informatics, 4th Latin
American Symposium, Punta del Este, Uruguay, April 10-14, 2000, Proceed-
ings. Lecture Notes in Computer Science, vol. 1776, pp. 88–94. Springer (2000).
https://doi.org/10.1007/10719839_9, https://doi.org/10.1007/10719839_9

9. de Berg, M., Cheong, O., van Kreveld, M.J., Overmars, M.H.: Computa-
tional geometry: algorithms and applications, 3rd Edition. Springer (2008),
https://www.worldcat.org/oclc/227584184

10. de Berg, M., Cheong, O., van Kreveld, M.J., Over-
mars, M.H.: More Geometric Data Structures. Springer
(2008). https://doi.org/10.1007/978-3-540-77974-2_10,
https://www.worldcat.org/oclc/227584184

11. Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common sub-
sequence algorithms. In: de la Fuente, P. (ed.) Seventh International
Symposium on String Processing and Information Retrieval, SPIRE
2000, A Coruña, Spain, September 27-29, 2000. pp. 39–48. IEEE Com-
puter Society (2000). https://doi.org/10.1109/SPIRE.2000.878178 ,
https://doi.org/10.1109/SPIRE.2000.878178

12. Bille, P., Gørtz, I.L., Vildhøj, H.W., Wind, D.K.: String match-
ing with variable length gaps. Theor. Comput. Sci. 443,
25–34 (2012). https://doi.org/10.1016/j.tcs.2012.03.029 ,
https://doi.org/10.1016/j.tcs.2012.03.029

13. Bringmann, K., Chaudhury, B.R.: Sketching, streaming, and fine-grained complex-
ity of (weighted) LCS. In: Proc. FSTTCS 2018. LIPIcs, vol. 122, pp. 40:1–40:16
(2018)

14. Bringmann, K., Künnemann, M.: Multivariate fine-grained complexity of longest
common subsequence. In: Proc. SODA 2018. pp. 1216–1235 (2018)

15. Buss, S., Soltys, M.: Unshuffling a square is NP-hard. J. Comput. Syst.
Sci. 80(4), 766–776 (2014). https://doi.org/10.1016/j.jcss.2013.11.002,
https://doi.org/10.1016/j.jcss.2013.11.002

16. Charalampopoulos, P., Gawrychowski, P., Mozes, S., Weimann, O.: An al-
most optimal edit distance oracle. In: Bansal, N., Merelli, E., Worrell, J.
(eds.) 48th International Colloquium on Automata, Languages, and Program-
ming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Confer-
ence). LIPIcs, vol. 198, pp. 48:1–48:20. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2021). https://doi.org/10.4230/LIPIcs.ICALP.2021.48,
https://doi.org/10.4230/LIPIcs.ICALP.2021.48

https://doi.org/10.1145/3093742.3095106
https://doi.org/10.1145/3093742.3095106
https://doi.org/10.1145/3093742.3095106
https://doi.org/10.1007/10719839_9
https://doi.org/10.1007/10719839_9
https://doi.org/10.1007/10719839_9
https://www.worldcat.org/oclc/227584184
https://doi.org/10.1007/978-3-540-77974-2_10
https://doi.org/10.1007/978-3-540-77974-2_10
https://www.worldcat.org/oclc/227584184
https://doi.org/10.1109/SPIRE.2000.878178
https://doi.org/10.1109/SPIRE.2000.878178
https://doi.org/10.1109/SPIRE.2000.878178
https://doi.org/10.1016/j.tcs.2012.03.029
https://doi.org/10.1016/j.tcs.2012.03.029
https://doi.org/10.1016/j.tcs.2012.03.029
https://doi.org/10.1016/j.jcss.2013.11.002
https://doi.org/10.1016/j.jcss.2013.11.002
https://doi.org/10.1016/j.jcss.2013.11.002
https://doi.org/10.4230/LIPIcs.ICALP.2021.48
https://doi.org/10.4230/LIPIcs.ICALP.2021.48
https://doi.org/10.4230/LIPIcs.ICALP.2021.48

24 D. Adamson et al.

17. Chvátal, V., Sankoff, D.: Longest common subsequences of two ran-
dom sequences. Journal of Applied Probability 12(2), 306–315 (1975),
http://www.jstor.org/stable/3212444

18. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on strings. Cambridge Uni-
versity Press (2007)

19. Crochemore, M., Melichar, B., Tronícek, Z.: Directed acyclic subsequence graph
— overview. J. Discrete Algorithms 1(3-4), 255–280 (2003)

20. Day, J.D., Fleischmann, P., Kosche, M., Koß, T., Manea, F., Siemer,
S.: The edit distance to k-subsequence universality. In: 38th Interna-
tional Symposium on Theoretical Aspects of Computer Science, STACS
2021, March 16-19, 2021, Saarbrücken, Germany (Virtual Conference).
pp. 25:1–25:19 (2021). https://doi.org/10.4230/LIPIcs.STACS.2021.25,
https://doi.org/10.4230/LIPIcs.STACS.2021.25

21. Day, J.D., Kosche, M., Manea, F., Schmid, M.L.: Subsequences with
gap constraints: Complexity bounds for matching and analysis problems.
In: Bae, S.W., Park, H. (eds.) 33rd International Symposium on Algo-
rithms and Computation, ISAAC 2022, December 19-21, 2022, Seoul, Ko-
rea. LIPIcs, vol. 248, pp. 64:1–64:18. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2022). https://doi.org/10.4230/LIPIcs.ISAAC.2022.64,
https://doi.org/10.4230/LIPIcs.ISAAC.2022.64

22. Fleischer, L., Kufleitner, M.: Testing Simon’s congruence. In: Proc. MFCS 2018.
LIPIcs, vol. 117, pp. 62:1–62:13 (2018)

23. Freydenberger, D.D., Gawrychowski, P., Karhumäki, J., Manea, F., Rytter, W.:
Testing k-binomial equivalence. In: Multidisciplinary Creativity, a collection of pa-
pers dedicated to G. Păun 65th birthday. pp. 239–248 (2015), available in CoRR
abs/1509.00622

24. Ganardi, M., Hucke, D., König, D., Lohrey, M., Mamouras, K.: Automata theory
on sliding windows. In: STACS. LIPIcs, vol. 96, pp. 31:1–31:14. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2018)

25. Ganardi, M., Hucke, D., Lohrey, M.: Querying regular languages over sliding win-
dows. In: FSTTCS. LIPIcs, vol. 65, pp. 18:1–18:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2016)

26. Ganardi, M., Hucke, D., Lohrey, M.: Randomized sliding window algorithms for
regular languages. In: ICALP. LIPIcs, vol. 107, pp. 127:1–127:13. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2018)

27. Ganardi, M., Hucke, D., Lohrey, M.: Sliding window algorithms for regular lan-
guages. In: LATA. Lecture Notes in Computer Science, vol. 10792, pp. 26–35.
Springer (2018)

28. Ganardi, M., Hucke, D., Lohrey, M., Starikovskaya, T.: Sliding window property
testing for regular languages. In: ISAAC. LIPIcs, vol. 149, pp. 6:1–6:13. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2019)

29. Garel, E.: Minimal separators of two words. In: Proc. CPM 1993. Lecture Notes
in Computer Science, vol. 684, pp. 35–53 (1993)

30. Gawrychowski, P., Kosche, M., Koß, T., Manea, F., Siemer, S.: Ef-
ficiently testing Simon’s congruence. In: 38th International Sympo-
sium on Theoretical Aspects of Computer Science, STACS 2021,
March 16-19, 2021, Saarbrücken, Germany (Virtual Conference). pp.
34:1–34:18 (2021). https://doi.org/10.4230/LIPIcs.STACS.2021.34,
https://doi.org/10.4230/LIPIcs.STACS.2021.34

http://www.jstor.org/stable/3212444
https://doi.org/10.4230/LIPIcs.STACS.2021.25
https://doi.org/10.4230/LIPIcs.STACS.2021.25
https://doi.org/10.4230/LIPIcs.STACS.2021.25
https://doi.org/10.4230/LIPIcs.ISAAC.2022.64
https://doi.org/10.4230/LIPIcs.ISAAC.2022.64
https://doi.org/10.4230/LIPIcs.ISAAC.2022.64
https://doi.org/10.4230/LIPIcs.STACS.2021.34
https://doi.org/10.4230/LIPIcs.STACS.2021.34
https://doi.org/10.4230/LIPIcs.STACS.2021.34

Longest Common Subsequence with Gap Constraints 25

31. Giatrakos, N., Alevizos, E., Artikis, A., Deligiannakis, A., Garofalakis,
M.N.: Complex event recognition in the big data era: a survey. VLDB
J. 29(1), 313–352 (2020). https://doi.org/10.1007/s00778-019-00557-w,
https://doi.org/10.1007/s00778-019-00557-w

32. Halfon, S., Schnoebelen, P., Zetzsche, G.: Decidability, complexity, and expressive-
ness of first-order logic over the subword ordering. In: Proc. LICS 2017. pp. 1–12
(2017)

33. Hebrard, J.J.: An algorithm for distinguishing efficiently bit-strings by their sub-
sequences. Theor. Comput. Sci. 82(1), 35–49 (22 May 1991)

34. Hirschberg, D.S.: Algorithms for the longest common subsequence problem.
J. ACM 24(4), 664–675 (1977). https://doi.org/10.1145/322033.322044 ,
https://doi.org/10.1145/322033.322044

35. Hunt, J.W., Szymanski, T.G.: A fast algorithm for com-
puting longest subsequences. Commun. ACM 20(5), 350–
353 (1977). https://doi.org/10.1145/359581.359603 ,
https://doi.org/10.1145/359581.359603

36. Ibtehaz, N., Kaykobad, M., Rahman, M.S.: Multidimensional segment
trees can do range updates in poly-logarithmic time. Theor. Comput.
Sci. 854, 30–43 (2021). https://doi.org/10.1016/j.tcs.2020.11.034 ,
https://doi.org/10.1016/j.tcs.2020.11.034

37. Iliopoulos, C.S., Kubica, M., Rahman, M.S., Walen, T.: Algorithms
for computing the longest parameterized common subsequence. In:
Ma, B., Zhang, K. (eds.) Combinatorial Pattern Matching, 18th An-
nual Symposium, CPM 2007, London, Canada, July 9-11, 2007, Pro-
ceedings. Lecture Notes in Computer Science, vol. 4580, pp. 265–
273. Springer (2007). https://doi.org/10.1007/978-3-540-73437-6_27,
https://doi.org/10.1007/978-3-540-73437-6_27

38. Karandikar, P., Kufleitner, M., Schnoebelen, P.: On the index of Simon’s congru-
ence for piecewise testability. Inf. Process. Lett. 115(4), 515–519 (2015)

39. Karandikar, P., Schnoebelen, P.: The height of piecewise-testable languages with
applications in logical complexity. In: Proc. CSL 2016. LIPIcs, vol. 62, pp. 37:1–
37:22 (2016)

40. Karandikar, P., Schnoebelen, P.: The height of piecewise-testable languages and
the complexity of the logic of subwords. Log. Methods Comput. Sci. 15(2) (2019)

41. Kleest-Meißner, S., Sattler, R., Schmid, M.L., Schweikardt, N., Wei-
dlich, M.: Discovering event queries from traces: Laying founda-
tions for subsequence-queries with wildcards and gap-size constraints.
In: 25th International Conference on Database Theory, ICDT 2022.
LIPIcs, vol. 220, pp. 18:1–18:21. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2022). https://doi.org/10.4230/LIPIcs.ICDT.2022.18,
https://doi.org/10.4230/LIPIcs.ICDT.2022.18

42. Kleest-Meißner, S., Sattler, R., Schmid, M.L., Schweikardt, N., Weidlich, M.:
Discovering multi-dimensional subsequence queries from traces - from theory
to practice. In: König-Ries, B., Scherzinger, S., Lehner, W., Vossen, G. (eds.)
Datenbanksysteme für Business, Technologie und Web (BTW 2023), 20. Fach-
tagung des GI-Fachbereichs „Datenbanken und Informationssysteme" (DBIS), 06.-
10, März 2023, Dresden, Germany, Proceedings. LNI, vol. P-331, pp. 511–533.
Gesellschaft für Informatik e.V. (2023). https://doi.org/10.18420/BTW2023-24 ,
https://doi.org/10.18420/BTW2023-24

https://doi.org/10.1007/s00778-019-00557-w
https://doi.org/10.1007/s00778-019-00557-w
https://doi.org/10.1007/s00778-019-00557-w
https://doi.org/10.1145/322033.322044
https://doi.org/10.1145/322033.322044
https://doi.org/10.1145/322033.322044
https://doi.org/10.1145/359581.359603
https://doi.org/10.1145/359581.359603
https://doi.org/10.1145/359581.359603
https://doi.org/10.1016/j.tcs.2020.11.034
https://doi.org/10.1016/j.tcs.2020.11.034
https://doi.org/10.1016/j.tcs.2020.11.034
https://doi.org/10.1007/978-3-540-73437-6_27
https://doi.org/10.1007/978-3-540-73437-6_27
https://doi.org/10.1007/978-3-540-73437-6_27
https://doi.org/10.4230/LIPIcs.ICDT.2022.18
https://doi.org/10.4230/LIPIcs.ICDT.2022.18
https://doi.org/10.4230/LIPIcs.ICDT.2022.18
https://doi.org/10.18420/BTW2023-24
https://doi.org/10.18420/BTW2023-24
https://doi.org/10.18420/BTW2023-24

26 D. Adamson et al.

43. Kosche, M., Koß, T., Manea, F., Pak, V.: Subsequences in bounded
ranges: Matching and analysis problems. In: Lin, A.W., Zetzsche, G.,
Potapov, I. (eds.) Reachability Problems - 16th International Confer-
ence, RP 2022, Kaiserslautern, Germany, October 17-21, 2022, Pro-
ceedings. Lecture Notes in Computer Science, vol. 13608, pp. 140–
159. Springer (2022). https://doi.org/10.1007/978-3-031-19135-0_10,
https://doi.org/10.1007/978-3-031-19135-0_10

44. Kosche, M., Koß, T., Manea, F., Siemer, S.: Absent subsequences in
words. In: Bell, P.C., Totzke, P., Potapov, I. (eds.) Reachability Prob-
lems - 15th International Conference, RP 2021, Liverpool, UK, October
25-27, 2021, Proceedings. Lecture Notes in Computer Science, vol. 13035,
pp. 115–131. Springer (2021). https://doi.org/10.1007/978-3-030-89716-1_8,
https://doi.org/10.1007/978-3-030-89716-1_8

45. Kosche, M., Koß, T., Manea, F., Siemer, S.: Combinatorial algorithms for
subsequence matching: A survey. In: Bordihn, H., Horváth, G., Vaszil, G.
(eds.) Proceedings 12th International Workshop on Non-Classical Models of Au-
tomata and Applications, NCMA 2022, Debrecen, Hungary, August 26-27, 2022.
EPTCS, vol. 367, pp. 11–27 (2022). https://doi.org/10.4204/EPTCS.367.2 ,
https://doi.org/10.4204/EPTCS.367.2

46. Kuske, D.: The subtrace order and counting first-order logic. In: Proc. CSR 2020.
Lecture Notes in Computer Science, vol. 12159, pp. 289–302 (2020)

47. Kuske, D., Zetzsche, G.: Languages ordered by the subword order. In: Proc. FOS-
SACS 2019. Lecture Notes in Computer Science, vol. 11425, pp. 348–364 (2019)

48. Lau, J., Ritossa, A.: Algorithms and hardness for multidimensional range
updates and queries. In: Lee, J.R. (ed.) 12th Innovations in Theoretical
Computer Science Conference, ITCS 2021, January 6-8, 2021, Virtual Confer-
ence. LIPIcs, vol. 185, pp. 35:1–35:20. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2021). https://doi.org/10.4230/LIPIcs.ITCS.2021.35,
https://doi.org/10.4230/LIPIcs.ITCS.2021.35

49. Lejeune, M., Leroy, J., Rigo, M.: Computing the k-binomial complexity of the
Thue-Morse word. In: Proc. DLT 2019. Lecture Notes in Computer Science, vol.
11647, pp. 278–291 (2019)

50. Leroy, J., Rigo, M., Stipulanti, M.: Generalized Pascal triangle for binomial coef-
ficients of words. Electron. J. Combin. 24(1.44), 36 pp. (2017)

51. Li, C., Wang, J.: Efficiently mining closed subsequences with gap constraints. In:
SDM. pp. 313–322. SIAM (2008)

52. Li, C., Yang, Q., Wang, J., Li, M.: Efficient mining of gap-constrained subsequences
and its various applications. ACM Trans. Knowl. Discov. Data 6(1), 2:1–2:39 (2012)

53. Maier, D.: The complexity of some problems on subsequences and supersequences.
J. ACM 25(2), 322–336 (Apr 1978)

54. Masek, W.J., Paterson, M.: A faster algorithm comput-
ing string edit distances. J. Comput. Syst. Sci. 20(1), 18–
31 (1980). https://doi.org/10.1016/0022-0000(80)90002-1,
https://doi.org/10.1016/0022-0000(80)90002-1

55. Mateescu, A., Salomaa, A., Yu, S.: Subword histories and Parikh matrices. J.
Comput. Syst. Sci. 68(1), 1–21 (2004)

56. Nakatsu, N., Kambayashi, Y., Yajima, S.: A longest common subsequence al-
gorithm suitable for similar text strings. Acta Informatica 18, 171–179 (1982).
https://doi.org/10.1007/BF00264437, https://doi.org/10.1007/BF00264437

https://doi.org/10.1007/978-3-031-19135-0_10
https://doi.org/10.1007/978-3-031-19135-0_10
https://doi.org/10.1007/978-3-031-19135-0_10
https://doi.org/10.1007/978-3-030-89716-1_8
https://doi.org/10.1007/978-3-030-89716-1_8
https://doi.org/10.1007/978-3-030-89716-1_8
https://doi.org/10.4204/EPTCS.367.2
https://doi.org/10.4204/EPTCS.367.2
https://doi.org/10.4204/EPTCS.367.2
https://doi.org/10.4230/LIPIcs.ITCS.2021.35
https://doi.org/10.4230/LIPIcs.ITCS.2021.35
https://doi.org/10.4230/LIPIcs.ITCS.2021.35
https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1007/BF00264437
https://doi.org/10.1007/BF00264437
https://doi.org/10.1007/BF00264437

Longest Common Subsequence with Gap Constraints 27

57. Riddle, W.E.: An approach to software system modelling and analysis. Comput.
Lang. 4(1), 49–66 (1979). https://doi.org/10.1016/0096-0551(79)90009-2,
https://doi.org/10.1016/0096-0551(79)90009-2

58. Rigo, M., Salimov, P.: Another generalization of abelian equivalence: Binomial
complexity of infinite words. Theor. Comput. Sci. 601, 47–57 (2015)

59. Salomaa, A.: Connections between subwords and certain matrix mappings. Theo-
ret. Comput. Sci. 340(2), 188–203 (2005)

60. Seki, S.: Absoluteness of subword inequality is undecidable. Theor. Comput. Sci.
418, 116–120 (2012)

61. Shaw, A.C.: Software descriptions with flow expressions. IEEE Trans. Soft-
ware Eng. 4(3), 242–254 (1978). https://doi.org/10.1109/TSE.1978.231501 ,
https://doi.org/10.1109/TSE.1978.231501

62. Simon, I.: Hierarchies of events with dot-depth one — Ph.D. thesis. University of
Waterloo (1972)

63. Simon, I.: Piecewise testable events. In: Autom. Theor. Form. Lang., 2nd GI Conf.
LNCS, vol. 33, pp. 214–222 (1975)

64. Simon, I.: Words distinguished by their subwords (extended abstract). In: Proc.
WORDS 2003. TUCS General Publication, vol. 27, pp. 6–13 (2003)

65. Tronícek, Z.: Common subsequence automaton. In: Proc. CIAA 2002 (Revised
Papers). Lecture Notes in Computer Science, vol. 2608, pp. 270–275 (2002)

66. Zetzsche, G.: The complexity of downward closure comparisons. In: Proc. ICALP
2016. LIPIcs, vol. 55, pp. 123:1–123:14 (2016)

67. Zhang, H., Diao, Y., Immerman, N.: On complexity and optimization of
expensive queries in complex event processing. In: International Conference
on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-
27, 2014. pp. 217–228 (2014). https://doi.org/10.1145/2588555.2593671 ,
https://doi.org/10.1145/2588555.2593671

https://doi.org/10.1016/0096-0551(79)90009-2
https://doi.org/10.1016/0096-0551(79)90009-2
https://doi.org/10.1016/0096-0551(79)90009-2
https://doi.org/10.1109/TSE.1978.231501
https://doi.org/10.1109/TSE.1978.231501
https://doi.org/10.1109/TSE.1978.231501
https://doi.org/10.1145/2588555.2593671
https://doi.org/10.1145/2588555.2593671
https://doi.org/10.1145/2588555.2593671

	Longest Common Subsequence with Gap Constraints

